
FINAL REPORT

U.S. Department of Energy

COLLABORATIVE RESEARCH: HYDROGEOLOGICAL-

GEOPHYSICAL METHODS FOR SUBSURFACE SITE

CHARACTERIZATION

Principal Investigator:  Gary Mavko

Stanford University

Project No: 54655

Contract Number: DE-FG07-96ER 14723

Contract Project Officer:  Jose L. Elizondo and Thomas W. Hillebrant

Project Duration: 09/15/96 – 12/31/99.



2

TABLE OF CONTENTS

Executive Summary 3

Research Objectives 8

Methods and Results 8

Relevance, Impact, and Technology Transfer 23

Project Productivity 24

Personell Supported 25

Publications 25

Interactions 25

Transitions 26

Patents 26

Future Work 26

Appendices 28



3

EXECUTIVE SUMMARY

The objective of this research has been to improve aquifer characterization. This

objective was met by focusing on using rock physics theory and geophysical data to

predict flow properties, such as porosity, permeability and clay content.  The advantage

of using geophysical data to predict these properties stems from the fact that geophysical

data are less expensive and more spatially-abundant than lab- or field-measured, flow-

property data. This research contributes three newly-developed relationships that

significantly improve aquifer characterization: (1) a general relationship between total

and channel porosities, (2) a general relationship between electrical resistivity and

channel porosity, and (3) bounds on the electrical resistivity – seismic velocity

relationship.

The objective of aquifer characterization is to create hydrogeologic maps of the

geometries of aquifers and aquitards and their flow properties, such as porosity and

permeability.  Without characteristic hydrogeologic maps, hydraulic flow and

contaminant transport cannot be accurately modeled.  Historically, hydrogeologic maps

have been created by qualitatively interpolating flow properties between wells using

hydraulic, chemistry and lithologic well data.  However, over the past few decades,

geostatistical techniques and geophysical data have been used in addition to traditional

data analysis techniques to quantitatively interpolate flow properties throughout the well

columns and away from wells where data do not exist.  These innovative techniques have

proven to be more cost-efficient and less subjective than traditional ones.
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The research in this project was focused on developing better techniques for

characterizing aquifer environments, a much-needed area of research.  The first part of

the work focuses on basic data exploration from a field site chosen for the collaborative

part of the study.  We were able to find correlations between geophysical observations

and sediment types.  We were also able to conclude from a rigorous analysis of bounds

that certain low seismic velocity anomalies could only be explained by undersaturation.

This portion of the study also highlighted the need for improved rock physics relations

among porosity, permeability, electrical resistivity and seismic velocities.

The second part of the work includes new developments for constraining porosity

estimates.  In particular, it focuses on developing the relationship between channel and

total porosities and discussing how porosity is defined physically, hydraulically,

electrically and seismically.  Channel porosity is the fraction of the total pore volume

fraction of a composite that is available for hydraulic and electrical flow.  The total

porosity is the total pore volume fraction of a composite; a controlling factor for the

response of seismic waves.  We show that a composite’s channel porosity can be related

to its total porosity by its porous percolation threshold, critical porosity, and a pore space

parameter.  The percolation threshold and critical porosity define three distinct porosity

regions physically, hydraulically, electrically and seismically. Region I is defined for

porosities less than the porous percolation threshold, Region II is defined for porosities

between the porous percolation threshold and critical porosity, and Region III is defined

for porosities greater than the critical porosity. The channel porosity – total porosity

relationship is valuable for converting from channel to total porosity or vise versa when

(1) comparing lab-measured and estimated porosities with hydraulic permeability,
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formation resistivity factor, or seismic velocity data, and (2) relating seismic velocity data

to resistivity or permeability data.  The most significant contributions of this work are (1)

the development of the total porosity – channel porosity relationship, and (2) insight into

the relationships between channel porosity and formation factor and between channel

porosity and permeability.

The next part of the project focused on theoretically and empirically exploring the

influence of a composite’s pore space characteristics and electrical properties on

resistivity.  There are three significant contributions of this work, each based on the

following observations of (1) the absence of electrical flow through pore space at

porosities less than a composite’s porous percolation threshold, and (2) resistivity –

porosity data in various sediments and rocks converge towards the theoretical lower

Hashin-Shtrikman (HS) bound near the composite’s critical porosities.  The first

significant contribution is the development of a tight empirical upper bound on the

resistivity – total porosity relationship, where the upper bound is constrained by the

percolation threshold at one end and by the critical porosity at the other.  The upper

bound is valid within the porosity range defined by the percolation threshold and critical

porosity (Region II).  The upper bound greatly reduces the range in possible resistivity

values for a given porosity.  The second significant contribution of this work is the

development of a general equation that relates the internal geometry parameter and

cementation exponent; both are empirical parameters in the resistivity – porosity

relationship defined within the Region II porosity range.  This relationship can be used to

estimate one of the empirical parameters when the other can be constrained.  The general

relationship between the parameters is defined by a composite’s critical porosity and the
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primary constituent’s grain sphericity.  The third contribution of this work is insight into

predicting a formation’s pore space characteristics using resistivity – porosity data.

Discussion on the influence of various pore space characteristics is based upon decades

of published observations.  Each of these contributions is valuable to both the

environmental and petroleum industries for improving the characterization of aquifers

and reservoirs, respectively.

Electrical resistivity measurements are controlled by the formation’s channel

porosity, whereas seismic velocity measurements are controlled by the formation’s total

porosity; thus the formation’s channel porosity – total porosity relationship provides a

link between resistivity and velocity.  However, to date, minimal research has focused on

relating resistivity and velocity.  Our work focuses on theoretically and empirically

exploring the relationship between electrical resistivity and seismic velocity.  There are

two significant contributions of this research.  The first contribution is the development

of upper and lower bounds on the electrical resistivity – seismic velocity relationship

through their dependence on porosity.  The resistivity – velocity bounds are simply

created by combining resistivity and elastic moduli bounds at equal total porosities.

These bounds can be used to constrain possible resistivity – velocity data pairs or to

constrain the possible porosity range for a given data pair.  The second contribution of

this work is insight into constraining a formation’s pore space characteristics using

resistivity – velocity data.  The real significance of these results is the potential for using

known empirical relationships between resistivity and pore space characteristics to

explain velocity trends and vice versa. With these results, electrical logs can be used to
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better constrain seismic interpretations and develop more accurate maps of flow

properties; a benefit to both the petroleum and environmental industries.
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RESEARCH OBJECTIVES

The objective of this research has been to improve aquifer characterization. This

objective was met by focusing on using rock physics theory and geophysical data to

predict flow properties, such as porosity, permeability and clay content.  The advantage

of using geophysical data to predict these properties stems from the fact that geophysical

data are less expensive and more spatially-abundant than lab- or field-measured, flow-

property data. This research contributes three newly-developed relationships that

significantly improve aquifer characterization: (1) a general relationship between total

and channel porosities, (2) a general relationship between electrical resistivity and

channel porosity, and (3) bounds on the electrical resistivity – seismic velocity

relationship.

METHODS AND RESULTS

EXPLORATION OF DATA AND ROCK PHYSICS RELATIONS AT THE
COLLABORATIVE FIELD SITE

This portion of the work was based on the fruitful collaboration with Dr. Frank

Morrison, Dr. Yoram Rubin, and Dr. Jamie Rector from the University of California at

Berkeley.  The approach was to explore ways to enhance hydrogeological site

characterization techniques by integration of geophysical imaging – with emphasis on

borehole and surface-to-borehole seismic and electromagnetic techniques.  A critical

element of this work is a strong rock physics effort, which will provide the quantitative

link between the geophysical observables, and the sediment and fluid properties that we

need for the hydrogeologic interpretation.

One of the important issues in using rock physics to interpret seismic and VSP

velocities is to understand the variations of velocity with lithology and clay content

relative to the velocity variations with pore fluid saturations.  Figure 1 on the left shows a

lithology log at the well; the corresponding VSP velocities at two different offsets (10m
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and 30m) are shown on the adjacent panels.  Each panel plots the VSP velocity at

different azimuth around the well.  We do not see any strong azimuthal velocity

variations.  There is a marked increase in velocity just below the water table.  Another

interesting feature is the low velocity zone at about 37m depth.  This low velocity zone

shows up at both offsets.  The HSU tops are not marked by any distinct changes in

velocity across the boundary.
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Figure 1.
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Figure 2 compares the VSP velocities for different lithologies (sands, clays, gravels,

silty sands) with lab data on sediments.  The data points are coded according to their

position relative to the water table.  The VSP velocities are comparable to the laboratory

data, suggesting that laboratory derived velocity models (such as the Marion binary

mixture model) may be applicable at this site.  The velocities do not show a strong

dependence on lithotype.  In general velocities below the water table are higher than

those above the water table, except for a few points.  These correspond to a low velocity

zone, and suggests the presence of an undersaturated region below the water table.  The

Hashin-Shtrikman upper and lower bounds (HS+, HS-) provide a simple yet robust

indicator of undersaturation.

Figure 2

One of the goals was to test the impact of various seismic measurements on upscaling

of rock physics relations between various properties such as velocity-porosity and

velocity-clay relations.  As a testing ground we build a synthetic model (Figure 3)
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consistent with the shallow unconsolidated nature of the sediments at the site.  The

available well logs were used to assign distributions of physical properties to the different

facies. The figure shows the facies distribution, the porosity, the related seismic velocity,

and the resistivity.  Care was taken to build the model in a self-consistent way taking into

account the various relations between facies type, clay content, porosity, resistivity, and

velocity.
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Figure 3.

Figure 4 shows the basic velocity-porosity relation used to define the seismic

velocities in the earth model.  The velocity-porosity relation is based on the Hamilton-

Bachman regression which was derived for unconsolidated ocean bottom silty sand and
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shale sediments.  The figure also shows the modified Voigt and Raymer-Hunt-Gardner

trends which are more appropriate for well-consolidated sediments, and have been used

successfully in the oil and gas energy industry.

Figure 4

Once we had a consistent earth model we simulated a surface seismic image using a

single scattering, frequency domain, Born filter approximation.  Figure 5 shows the 'true'

velocity model (top), and the observed seismic image (bottom).
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Figure 5
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Velocity-porosity and Velocity-clay relations which may be perfectly correlated at a

fine scale can appear to have large scatter when imaged at a coarser scale.  Figure 6 on

the top left shows the velocity-clay relation for a dispersed binary mixture model of shaly

sand sediments (the Marion model).  The other panels show the scatter indroduced in this

bilinear curve by the image response function of seismic measurements.  On top right is

the velocity-clay scatter plot obtained from the velocities imaged by an ART traveltime

tomographic technique.  On the lower row we see similar scatter from velocities in

images synthesized by the Born filter, and another approximate pie filter in the spatial

frequency domain.  Thus taking the velocities obtained in any tomographic inversion and

directly applying a deterministic transformation (such as the Marion model) to estimate

sediment properties can lead to errors.  It is necessary to take into account the scatter

introduced by the image response of the measurement.
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Figure 6
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Figure 7

Figure 7 shows the topography of the LLNL remediation site with well locations. The

well in the center is one of the wells where azimuthal VSP data has been acquired.
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Figure 8

Figure 8 shows depths to the tops of the main subsurface hydrostratigraphic units

(HSU) at the site.
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Figure 9

Figure 9 shows horizontal sections of the azimuthal VSP velocity data, slicing down

from the top (upper left) to the bottom (lower right) of the data cube centered around the

well.  We see low velocities at the top (blues and greens), followed by a jump in the

velocity (red) when the water table is encountered (second row).  As we go deeper, a low

velocity zone (blue) shows up around the well (third row).
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Figure 10

Figure 10 shows a 3-dimensional view of the well (center) and the P velocity around

the well.  The velocities along the tops of the two HSUs and the water table are also

displayed.  The water table is marked by the change from blue (lower velocity) to red

(faster velocity).  Below the water table we see the low velocity, possibly undersaturated

zone around the well.
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DEVELOPMENT OF BASIC ROCK PHYSICS RELATIONS FOR ELECTRICAL
AND ACOUSTIC PROPERTIES OF SHALLOW SEDIMENTS

In this part of the project, we developed a method for bounding the relationship

between formation resistivity factor F and compressional velocity Vp.  This method

constrains porosity by constraining possible ranges of F-Vp data.  Both the petroleum and

environmental industries would benefit from this technique because of the potential for

using electrical logs to better constrain seismic interpretations and develop more accurate

maps of flow properties.  Our approach is simple.  It involves combining the well-known

Hashin-Shtrikman bounds for electrical conductivity and acoustic velocity and tracking

porosity changes with the bounds.  The significance of our approach is in its potential for

using known relationships between formation factor and material properties in sediments

and rocks to explain velocity trends and vice versa.  We found that F – φ data in

unconsolidated glass beads, and suspensions fall along the lower HS bound (Figure 11)

and the F – φ values move up the lower HS bounds as a result of compaction and sorting

while cementation moves the points away from the bound.  Both resistivity and seismic

velocity are significantly influenced by the same variables: pore structure (amount,

texture and content), grain contacts (shape, sorting and cement degree and type) and clays

(amount, type and distribution).  Despite the complexity in the F – φ  and Vp – φ

relationships the electrical and acoustic Hashin-Shtrikman HS bounds can be combined at

equal porosities to provide bounds on the F – Vp relationship (Figure 12).  The bold, solid

line in Figure 12 represents the lower HS bounds and the curved, bold, dashed line

represents the modified VoigtVp upper bound.  The vertical dashed line represents a

suspension porosity limit.  No F – Vp data is feasible within the region marked by x's.

Thus combining electrical and elastic data narrows the feasible region, constraining the

possible sediment properties.



23

Figure 11.

Figure 12

RELEVANCE, IMPACT, AND TECHNOLOGY TRANSFER

The results of this project apply directly to the technology needs of DOE’s

environmental management program.  Geophysical methods, such as seismic and

electrical imaging, provide a means to image the subsurface with a combination of

resolution and volumetric coverage not possible by any other means.  The results of this

project allow for improved interpretation of these geophysical images, in terms of
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sediment pore space microstructure.  Of course, geophysical images cannot replace

drilling, sampling, and well flow-testing, but they provide powerful and cost-effective

complementary information.

The results can, in principle, be applied to any field or laboratory study where

determination of flow properties is important, and where conditions are amenable to the

collection of geophysical images.

We expect that these and similar results will eventually become a routine part of

geophysical site characterization.  Our results reported at scientific meetings usually

generated substantial interest by both researchers and practitioners in environmental

work.

PROJECT PRODUCTIVITY

The project met and exceeded our initial research goals.  The collaboration with

colleagues at UC Berkeley early in the project, allowed us to conclusively determine that

low seismic velocity anomalies could only be explained by undersaturation.  The

subsequent work by those colleagues on field electrical imaging reinforced the need to

improve our rock physics understanding of how sediment flow properties are related to

seismic and electrical properties.

While the project stayed essentially on schedule, we requested and were granted a no-

cost extension to allow for completion of a Ph.D. dissertation that was tied to the project.

PERSONNEL SUPPORTED

Gary Mavko, PI; Manika Prasad, Research Associate; Bill Waite, Post-doc;

Madhumita Sengupta, Yuguang Liu, Rubina Sen, Per Avseth, Wendy Corona, and

Wei Chen, as  graduate students .
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PUBLICATIONS

Publications resulting from this work included:

Wempe, W. L., 2000, Predicting flow properties using geophysical data:  Improving

aquifer characterization, Ph.D. dissertation, Stanford University.

Wempe, W. and Mavko. G., The Electrical Resistivity - Acoustic Velocity Relationship:

a method for constraining porosity, "SAGEEP Proceedings". Expected February

2000.

Wempe, W. and Mavko, G., The Propagation of Errors in Archie's Water Saturation

Equation: the influence of an a-m relationship. Presented at the Geological Society of

America 1999 Conference. October 1999.

Corona, W.W. and Mavko, G., Predicting Clay Content and Porosity from Gamma-ray

and Conductivity Logs. "SAGEEP Proceedings", March 1999.

INTERACTIONS

Interaction with other workers and agencies during this project included the

following:

a.  Presentation of the results at international meetings, such as the Geological Society

of America and SAGEEP.

b.  Presentation of results at the 1999 and 2000 annual EMSP national workshops.

c.  Collaboration with our colleagues at the University of California at Berkeley.

TRANSITIONS
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The results of this work are directly applicable to many aspects of geophysical data

interpretation, aimed at shallow environmental problems.  The results are being

incorporated into the teaching materials that we present to our graduate students at

Stanford University.  We also intend to propose follow-on projects building on the new

results, to the DOE and other potential funding agencies.

PATENTS:

No patents were filed as a result of this project.

FUTURE WORK

The future work that we hope to pursue includes further refinement and validation of

the resistivity and seismic relations developed in this project.  In particular, we plan to

continue exploring the relations of formation factor and velocity to pore microstructure,

including grain size, sorting, angularity, compaction, and cementation.  Ultimately, these

will allow us to more effectively combine qualitative geologic information with more

quantitative rock physics theory to optimally interpret geophysical data from hydrologic

field sites.
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APPENDICES – TECHNICAL DETAIL ON THE RESULTS AND

METHODS OF THE PROJECT

A.  THE CHANNEL POROSITY – TOTAL POROSITY
RELATIONSHIP DEFINED PHYSICALLY, HYDRAULICALLY,
ELECTRICALLY, AND ELASTICALLY

Background

Background on Defining Porosity Type

The total (or absolute) porosity φ is the sum of the channel φch (or effective, or

flowing, or free), trapped φtr (or stagnant, or residual) and isolated φi (or vuggy) porosities

(Figure A1a).

itrch φφφφ ++= (A1)

Total porosity can be measured in the lab using granular density data or estimated in

the field using sonic or density logs. The channel porosity, the pore volume available for

electrical and hydraulic flows, can be measured in the lab using helium or mercury

injection or estimated in the field using electrical techniques. Trapped and isolated

porosities are very difficult to measure directly, but can be estimated in the lab using

grain density and channel porosity data. Isolated porosity, however, is insignificant in

most clastic sediments (φi ≈ 0), with the exception of those with shale fragments or

basalt-derived grains.
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φch

φtr

φtr

φp~< ~<0.020 0.045 φc ~<0.35 0.80~<φ = φch + φtr

(a) Porosity Types (c) Critical Porosity(b) Percolation Threshold

Figure A1:  Pore space schematics. Schematic of (a) porosity type, (b) porosity percolation
threshold and (b) granular critical porosity.  Channel (white), trapped (gray) and isolated (gray)
porosities. Granular region is shown in black.

As demonstrated in Figure A2, there is an apparent dependence of a clastic

sediment’s total porosity range on grain size; i.e. gravels have a narrower and lower

porosity range than clays.  The high porosity limit of a sediment’s total porosity range,

also known as critical porosity (discussed in the next section), occurs when the grains are

randomly-oriented and loose. The low porosity limit, on the other hand, occurs when the

same grains are packed as tightly as physically possible.

In nature, different grains weather differently depending on their mineralogy, thus

have different characteristic shapes and sizes. Grain shape can be defined by its

sphericity, roundness and texture. The sphericity of sand-size and smaller grains is

mainly a function of the original mineral form, whereas the sphericity of pebble-size and

larger grains is mainly a function of the transport process and duration (Boggs, 1987).

The roundness of sand-size and smaller grains is primarily a function of mineralogy; i.e.

hard quartz sand grains are rounded less readily than soft feldspar sand grains during

transport. And, pebble-size and larger grains tend to be more easily rounded than smaller

ones (Boggs, 1987). Regardless of mineralogy, however, small grains have larger specific

surface areas, thus greater cohesive forces (Gueguen and Palciauskas, 1994) than large

grains.

In summary, in a system of randomly-oriented loose grains, small platy grains (i.e.

clays) have a higher porosity limit than a system of larger more spherical ones (i.e. eolian
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sands). In a system of well-sorted grain pack, platy grains have greater available grain-to-

grain contact area, therefore can reach tighter packing than a system of more spherical

grains.
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Figure A2:  Observed total porosity ranges and grain size classes. Observed total porosity ranges
for unconsolidated sediments and sedimentary rocks (Freeze and Cherry, 1979).  Also shown are
the ranges in grain sizes for gravel, sand, silt and clay grain-size classes (Boggs, 1987).

Percolation Threshold Theory Background

Extensive theory has been developed to define the inclusion volume fraction at which

randomly oriented inclusions, whether pores or grains, are no longer connected; this

volume fraction is known as the inclusion percolation threshold fp (Webman et al, 1976,

1977; Straley, 1978; discussed in Gueguen and Palciauskas, 1994).  The porous

percolation threshold φp is defined by the porosity at which the pores are no longer

connected; at φ < φp, φ = φtr and φch = 0. The granular percolation threshold φc, also known

as critical porosity, is the porosity at which grains are in suspension; at φ > φc, φ = φch and

φtr  = 0.

The inclusion percolation threshold can be defined solely in terms of the inclusion

depolarizing factor Li of each principal axes i of the ellipsoidal inclusion. The

depolarizing factors are functions of the ellipsoid length ratios between the principal axes

(Landau and Lifshitz, 1960; Mendelson and Cohen, 1982), but they are not functions of

the inclusion size itself.  The depolarizing factors are constrained by

0 ≤ Lj ≤ 1  (A2)
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L1 + L2 + L3 = 1

For the special case of spheroidal inclusions (L2=L3) (Landau and Lifshitz, 1960) the

depolarizing factors can be simplified to a general depolarizing factor term L where

1LL =  and )1(2
1

32 LLL −== (A3)

Landau and Lifshitz (1960) showed that the general depolarizing factor L is a

function of the inclusion eccentricity e, where 
2121 α−=e .  The inclusion aspect ratio α

is equal to the ratio of the axis of symmetry b2/b1 where b1 and b2 are lengths in x1 and x2

directions.  For prolate spheroids, α < 1 (approaching disk-shape) and

L
e

e

e

e
e= − +

−
−1

2

1

1
2

2

3 (ln ) (A4)

For oblate spheroids, α > 1 (approaching needle-shape) and

( )ee
e

e
L 1

3

2

tan
1 −−−= (A5)

For spheres, α = 1 and L  = 1/3. Norris et al (1984) showed that the percolation

threshold of spheroids can be expressed as

L
LL

f p 91
)31)(1(

1
+

++−= (A6)

The inclusion percolation threshold fp, the inclusion volume fraction at which

inclusions become disconnected, is 1/3 for spherical, 1/5 for disk-shaped, and 0 for

needle-shaped inclusions. Both the porous percolation threshold (φp = fp) and the granular

percolation threshold (φc = 1 - fp) can be determined experimentally using electrical

techniques.

The porous percolation threshold φp is defined in a system of insulating grains and

conductive fluid by the porosity at which an electrical current does not transmit through

the pore space. The hydraulic percolation threshold occurs at very low porosity fractions

in natural rocks; 0.025 in Fontainebleau sandstone, 0.035 in fused glass beads, and 0.045

in hot-pressed calcite (Mavko and Nur, 1997).  According to percolation theory, these

results suggest that pores are nearly needle-shaped at very low porosities. Sen et al (1981)

and Webman et al (1975) found 0.135 ≤ φc ≤ 0.250 using a modified Archie’s equation

(Eqn. B13) and numerical modeling.
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The granular percolation threshold φc is defined in a system of conductive inclusions

(representing grains) and insulating fluid by the granular volume fraction at which the

grains become suspended and an electrical current does not transmit through the granular

system.  Nur et al (1995) demonstrated the influence of φc on elastic properties;

acoustically derived φc values range between 0.40 and 0.65 for various unconsolidated

materials (Mavko et al, 1998).  φc likely decreases in a material as a result of increased

grain sphericity and grain smoothness. Even though sediments are grain-supported in

static environments, not suspended, the φc of a material provides tremendous insight into

the electrical resistivity – porosity  and acoustic velocity – porosity relationships.

Background on Channel Porosity – Total Porosity Relationships

Since hydraulic permeability is a function of channel porosity, several authors have

developed relationships to convert between total and channel porosities.  Gal et al (1998)

used lab-measured total and trapped porosity data (Figure A3) in the Fontainebleau

sandstone (Bourbie and Zinszner, 1985) to derive the following empirical relationship

( ) 4.1021.03486.1 −= φφch (A7)

As seen in Figure A3, according to Eqn. A7, φch ≈ 0 for φ < 0.021 and φch ≈ φ at φ ≈

0.54. Perez-Rosales (1982), however, discussed the relationship between total and

channel porosities in terms of the total porosity term in Archie’s equation (Eqn. B13).
m

ch φφ = (A8)

The cementation exponent m  is high in composites where the pore space is

discontinuous and disconnected, which translates to high amounts of φtr, where φtr = φ -

φch. According to Eqn. A8, however, channel porosity should exist at porosities less than

the composite’s percolation threshold φp (Figure A3) and trapped porosity should exist

even when grains are in suspension (φ > φc) (Figure A4), neither of which is observed.
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Figure A3:  Channel and total porosities from previous work. Channel and total porosities
according to Perez-Rosales (1982) (Eqn. A8)and Gal et al (1998) (Eqn. A7).
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Figure A4:  Trapped and total porosities from previous work. Trapped and total porosities
according to Perez-Rosales (1982) (Eqn. A8) and Gal et al (1998) (Eqn. A7).

Sen et al (1979) suggested modifying the porosity term in Archie’s equation to

account for the percolation threshold by φ φ−( )p

m
.  If the porosity term in Archie’s

equation is equal to the channel porosity like Perez-Rosales (1982) suggested, then the

channel porosity could be expressed as

φ φ φch p

m
= −( ) (A9)

The modification of the porosity term made by subtracting the percolation threshold

is similar to the modification in the Kozeny-Carman equation for permeability by Mavko

and Nur (1997), which is of the form φ φ−( )p

x
. The percolation threshold term in Eqn.

A9 has a minimal effect on φch at high φ values.
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New Results on the Channel Porosity – Total Porosity Relationship

Three Distinct Porosity Regions Defined Physically, Hydraulically, Electrically

and Acoustically

The granular and porous percolation thresholds together define three distinct porosity

regions physically, hydraulically, electrically and elastically.  Physically, these three

porosity regions are defined by the amounts of channel porosity φch and trapped porosity

φtr. Hydraulically and electrically, the regions are defined by the ability for fluid and

currents to flow through the pore space.  Acoustically, the regions are defined by the pore

space stiffness and rigidity that contributes to the system as a whole.

Region I is defined for porosities less than the porosity percolation threshold (φ < φp),

where the pore space is no longer connected (φch = 0); all of the porosity is trapped (φ =

φtr from Eqn. A1).  Electrical currents and fluids cannot flow through a system’s pore

space if porosities are lower than the percolation threshold since the pores aren’t

connected; in other words the system’s formation resistivity factor immediately

approaches infinity and the hydraulic permeability equals zero.  Since fluids cannot

escape from the pore space when an acoustic wave travels through the system (the

system’s pore pressure gradients are “unrelaxed”), the pore space is relatively stiff; the

moduli of such low porosity materials are approximately equal those of the mineral

constituent.

Region II is defined for porosities in between the porous percolation threshold and the

critical porosity (φp ≤ φ ≤ φc), where the total porosity is connected but trapped porosity

exists (φ = φch + φtr from Eqn. A1).  Since not all of the porosity is available for flow in

this region, the abilities for electrical currents and fluids to flow depend on the amount of

trapped porosity. The amount of trapped porosity depends on the formation’s pore space

characteristics; i.e. sorting, cementation, compaction and dispersed clay content. These

same pore space characteristics control the empirical, formation-specific parameters B in

the Kozeny-Carman relation for permeability (Mavko and Nur, 1998) and aH and m in the

Humble equation (Eqn. B13) for formation factor (Table A1).  These pore space

characteristics also influence the system’s stiffness K, rigidity µ and density ρ; hence
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they influence the system’s acoustic velocities (Table A1).  The influences of these pore

space characteristics on the φch - φ relationship are discussed later.

Region III is defined for porosities greater than the critical porosity where grains are

in suspension and all of the pore space is not only connected, but is also available for

flow (φtr = 0, so φ = φch from Eqn. A1).   Since all of the porosity is available for flow, the

permeability is infinite and the formation factor only depends on the total porosity (Table

2.1), not on other properties such as sorting, clay content, or grain shape.  A system of

suspended grains lacks rigidity (µ = 0) and is highly compressible (low K), therefore in

this region, the effective bulk modulus K is dominated by the fluid modulus Kw.

Reg

ion

Porosity

Range

Permeability Resistivity P-wave Velocity

I 0 ≤ φ < φp 0 f(Rm) f(Vp-m)

II φp ≤ φ ≤ φc f(φ, B) f(φ, aH, m) f(φ, Ki, µi, ρ i)

III φc < φ ≤ 1 f(φ, B) f(φ, Ri) f(φ, Ki)

Table A1: Three distinct porosity regions defined hydraulically, electrically and elastically.

Defined by the percolation threshold φp and critical porosity φc.
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New Channel Porosity – Total Porosity Relationship

As discussed in above, the percolation threshold φp and critical porosity φc define

three distinct φch – φtr porosity regions (Table 2); φch = 0 in Region I, φtr = 0 in Region III,

and both φch and φtr exist in Region II.   This section focuses on developing a relationship

that describes how φch and φtr are controlled in the Region II (φp ≤ φ ≤ φc), the porosity

range of most rocks and sediments. In Region II, a composite’s characteristic hydraulic

permeability k and formation resistivity factor F are functions of the composite’s channel

porosity φch, whereas its characteristic elastic moduli K  and µ  are functions of the

composite’s total porosity φ.  The total porosity is the sum of channel and trapped

porosities (Eqn. A1), assuming isolated porosity is negligible (φi = 0). A composite’s

trapped porosity is a function of the pore space characteristics and can be described by

Archie’s exponent m. The φch – φ relationship, which is based upon the pore space

characteristics, provides the link between k, F, K and µ; an extremely valuable link for

groundwater, petroleum and geotechnical engineers.

From the discussion above, we know that the channel porosity is zero at the

percolation threshold (the low porosity limit) and equal to the total porosity at the critical

porosity (the high porosity limit). The porosity term proposed by Sen et al (1979)

accounts for the low porosity limit, but as seen in Figure A4, it suggests that significant

trapped porosity exists when the composite is a suspension, which does not meet the high

porosity limit.  The high porosity limit can be account for by multiplying Eqn. A9 by a

formation-specific parameter A, which is defined by the composite’s percolation

threshold φp and critical porosity φc.

φ φ φch p

m
A= −( ) (A10)

m
pc

cA
)( φφ

φ
−

= (A11)

As seen in Figure A5, A significantly influences the φ - φch relationship, especially at

high porosities. Eqn. A10 is of the same form as that empirically derived by Gal et al
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(1998) (Eqn. A7).  The φp, φc and m values characteristic of the Fontainebleau sandstone

can be solved for in Eqn. A7 by Eqn. A10; φp = 0.021, φc = 0.54, and m =1.4 (Figure A5).

Regio

n

Porosity

Range

Channel Porosity, φch Trapped Porosity, φtr

I 0 ≤ φ < φp 0 φ

II φp ≤ φ ≤ φc ( )mpA φφ − ( )mpA φφφ −−

III φc < φ ≤ 1 φ 0

Table A2: Three porosity regions defined physically. Defined by the percolation threshold φp and

critical porosity φc in terms of channel and trapped porosities.
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Figure A5:  Channel and total porosities using new relationship. Channel and total porosities
according to Eqns. A10 and A11 and Gal et al (1998) (Eqn. A7).
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Figure A6:  Trapped and total porosities using new relationship. Trapped and total porosities
according to Eqns. A10 and A11 and Gal et al (1998) (Eqn. A7).
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Insight into Empirical Parameters in Formation Factor and Permeability

Equations

As discussed earlier, both formation resistivity factor F and hydraulic permeability k

are controlled by the ability for electrical currents and fluids, respectively, to flow

through a formation’s pore space; the formation’s channel porosity φch defines the pore

space available for flow.  Forms of both the Humble (Winsauer et al, 1952) and the

Kozeny-Carman (Kozeny, 1927 and Carman, 1937) equations are by far the most widely

used empirical F – φ  and k  – φ relationships, respectively. Each relationship has

formation-specific empirical parameters and a formation-specific exponential porosity

term of the form of Eqn. A10.

Equation A10 suggests that the formation-specific A term is absorbed into the

empirical, formation-specific aH term in the Humble equation (Eqn. B14) modified by

Sen et al (1979).  In fact, later we show just that; aH can be expressed as a function of A

(Eqn. B19).

Mavko and Nur (1997) modified the porosity term in the Kozeny-Carman equation

for permeability by subtracting the percolation threshold from the total porosity. The

modification is of the form φ φ−( )p

x
, where x ≈ 3 in cemented rocks. If it is assumed that

x  ≈  m  in Eqn. A10, then the A term is likely adsorbed into the empirical, formation-

specific parameter B in the Kozeny-Carman equation.
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The Influence of Pore Space Characteristics on Channel and Trapped Porosities

In the porosity region φp ≤  φ  ≤  φc (Region II), the channel porosity φch and total

porosity φ can be influenced by several pore space characteristics such as sorting,

cementation, compaction, and dispersed clay volume.  When a material of a given

volume fills the pore space of a composite, the composite’s total porosity decreases by an

amount equal to the volume of the pore-filling material.  The degree of influence of the

pore-filling material on trapped and channel porosities, however, is defined by the

parameter m in Eqn. A10.  For example, in two different composites with the same total

porosity, the trapped porosity of a poorly sorted composite will be less (low m value) than

that in a cemented one (high m value) where pore throats become sealed and trapped.

Decades of observations show that m tends to be largest when porosity decreases from

cementation, smallest when it decreases from sorting and somewhere in between when it

decreases from compaction and increased volume of pore-filling, dispersed clay.  The

influences of the pore space characteristics on the φch – φ relationship are shown in Figure

A7.
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Conclusions

• A formation’s percolation threshold φp and critical porosity φc define three distinct

porosity regions physically, hydraulically, electrically and elastically: 0 ≤ φ ≤ φp

in Region I, φp < φ < φc in Region II, and φc ≤ φ ≤ 1 in Region III.

•  A formation’s trapped porosity φtr is controlled by the formation’s pore space

characteristics through Archie’s exponent  m.

•  The φ ch – φ  relationship for a formation is defined by the formation’s

characteristic φp, φc and m values.

• The formation-specific A term in the φch – φ relationship can be expressed solely

as a function of φp, φc and m.

• The A term is adsorbed into the empirical, formation-specific parameters aH and B

in the Humble and Kozeny-Carman equations



43

References

Archie, G.E., 1942. The electrical resistivity log as an aid in determining some reservoir

characteristics. Trans. Am. Inst. Mech. Eng., 146, 54-62.

Bourbie, T., and Zinszner, B., 1985. Hydraulic and acoustic properties as a function of

porosity in Fontainbleau sandstone.  J. Geophys. Res., v. 90, 11,524 – 11, 532.

Boggs, S. Jr., 1987. Principles of Sedimentology and Stratigraphy. Merrill Publishing

Company, Columbus, Ohio.

Carman, P.C., 1937. Fluid Flow through a granular bed. Trans. Inst. Chem. Eng. London, 15,

150 – 156.

Freeze, R.A. and Cherry, J.A., 1979. Groundwater. Prentice Hall, Englewood Cliffs, N.J.

Gal, D., Dvorkin, J., and Nur, A., 1998. A physical model for the porosity reduction in

sandstones.  Geophys., 63, 454 – 459.

Gueguen, Y.,  and Palciauskas V., 1994. Introduction to the Physics of Rocks. Princeton

University Press, Princeton.

Kozeny, J., 1927. Uber kapillare Leitung des Wassers im Boden. Sitzungsber. Akad. Wiss.

Wien., v. 136,  271 – 306.

Landau, L.D., and Lifshitz, E.M., 1960. Electrodynamics of continuous media. Oxford,

Pergamon Press.

Mavko, G., and Nur, A., 1997. The effect of a percolation threshold in the Kozeny-Carman

relation. Geophys., 1480 – 1482.

Mavko, G., Mukerji, T., and Dvorkin, J., 1998, The Rock Physics Handbook: tools for

seismic analysis in porous media, Cambrige University Press.

Mendelson, K.S., and Cohen, M.H., 1982.  The effect of grain anisotropy on the electrical

properties of sedimentary rocks. Geophys., 47, 257 – 263.

Norris, A.N., Sheng, P., and Callegari, A.J., 1984. Effective-medium theories for two-phase

dielectric media. J. Appl. Phys., 57, 1990 – 1996.



44

Nur, A., Mavko, G., Dvorkin, J., and Gal, D., 1995. Critical Porosity: The key to relating

physical properties to porosity in rocks, in Proc., 65th Ann. Int. Meeting, Soc. Expl. Geophys.,

878.

Perez-Rosales, C., 1982, On the Relationship Between Formation Resistivity Factor and

Porosity, Soc. Pet. Eng. J., 531-536.

Sen, P.N., Scala, C., and Cohen, M.H., 1981. A self-similar model for sedimentary rocks with

application to the dielectric constant of fused glass beads. Geophys., V. 46, N. 5, 781 – 795.

Straley, J.P., 1978. Critical phenomena in resistor networks. J. Phys., v. C9, 783 – 795.

Webman, I., Jortner, J., and Cohen, M.H., 1967. Numerical simulation of continuous

percolation conductivity. Phys. Rev., V. B14, 4737 – 4740.

Webman, I., Jortner, J., and Cohen, M.H., Numerical simulation of electrical conductivity in

microscopically inhomogeneous materials. Phys. Rev., v. B11, 2885 – 2892.

Webman, I., Jortner, J., and Cohen, M.H., 1977. Theory of optical and microwave properties

of microscopically inhomogeneous materials. Phys. Rev., v. B15, 5712 – 5723.

Winsauer, W.O., Shearin, H.M. Jr., Masson, P.H., and Williams, M., 1952. Resistivity of

Brine-Saturated Sands in Relation to Pore Geometry. Bull., AAPG, 36, 2, 253-277.



45

B.  DEVELOPMENTS IN THE ELECTRICAL RESISTIVITY –

POROSITY RELATIONSHIP

Introduction

Electrical resistivity data are by far the most common geophysical data collected for

environmental groundwater investigation.  Since electrical currents respond to changes in

a formation’s electrical properties and pore-space characteristics, resistivity data are

typically used to qualitatively interpret changes in fluid properties (i.e. freshwater versus

contaminated water) and locate clay-rich formations.  Resistivity data, however, can also

be used quantitatively to estimate porosity and permeability. Channel porosity and

permeability control hydraulic flow and are therefore the most important formation

properties to estimate in order to characterize flow.

This section focuses on theoretically and empirically exploring the influence of a

composite’s pore space characteristics and electrical properties on resistivity.  The most

significant contributions of this work are the development of a tight upper bound on the

formation factor – total porosity relationship, the generalization of the internal geometry

parameter – cementation exponent relationship, and insight into determining formation

pore space characteristics using formation factor – porosity data.  A common problem

encountered when analyzing resistivity – porosity data is determining formation-specific,

empirical parameters a and m in the resistivity – porosity relationship. The developments

within this section can be used to deal with such problems. These developments are

valuable to both the environmental and petroleum industries for improving the

characterization of aquifers and reservoirs.

A composite’s electrical conductivity, the inverse of resistivity, is a measure of the

ease for an electrical current to be transmitted (via electrons and ions) through the

composite. Varying material properties are responsible for variations up to 20 orders of

magnitude in the resistivity of sediments and rocks.  The conductivity of a material is

influenced by the conductivities of the mineral and fluid constituents and by the
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composite’s formation resistivity factor, the inability for electrical flow through the pore

space.  Both conductivity and formation factor are influenced by formation anisotropies.

The majority of common minerals are insulators (i.e. feldspars and quartz)

(Parkhomenko, 1967), however, ore and clay minerals are conductive.   Fluids such as

oil, freshwater and gas are resistive, whereas brines can be highly conductive.  Besides

the influence of their electrical properties, liquids may additionally increase the mobility

of the surface ions on insulators that have strong adsorption characteristics

(Parkhomenko, 1967). Electrically, most sediments can be simplified as one of two

mineral-fluid systems: (1) insulating minerals and pore-filling fluid, or (2) insulating

minerals, conducting clay minerals, and pore-filling fluid (liquid or gas).  Even though

the data acquisition frequency and formation anisotropies can significantly influence

resistivity measurements, the discussion of these topics is beyond the scope of this work.

Mineral/Fluid Resistivity (Ω-m)

Water 10-2  - 102    (2)

Quartz 10 14 – 1016  (1)

Calcite 5.1014   (1)

Whetted Clay 1 – 10 3    (2)

Table B1: Resistivities of common sediment constituents. (1) Parkhomenko (1967);             (2)

Rider (1986)

Theoretical effective medium bounds on resistivity are functions of the constituent’s

conductivities and volumes, whereas theoretical effective medium approximations

additionally require grain geometry information. Theory has not been developed to

describe the influence of various pore-space characteristics, such as cementation and

tortuosity, on conductivity. For comprehensive discussion of various theories refer to

Berryman (1995) and Mavko et al (1998).

Empirical relationships are valuable for determining the relationship between

resistivity and porosity when the composite’ granular geometries and mineral constituents

are unknown. Most empirical relationships require true (measured) conductivity and the

conductive constituent’s conductivity and volume fraction. The influence of various pore

space characteristics is accounted for in empirical parameters. For a review of empirical
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relationships refer to Tiab and Donaldson (1996), Schlumberger (1989) and Worthington

(1985).

Background

Theoretical Resistivity Background

Hashin-Shtrikman Bounds

The theoretical Hashin-Shtrikman (HS) bounds for electrical conductivity (Hashin

and Shtrikman, 1962) provide upper and lower limits for the resistivity-porosity

relationship in a multi-constituent media.  The upper HS bound on resistivity RHS+ is

equal to the inverse of lower conductivity HS bound 1−
−HSσ  and is a function of the

individual constituent fractions fi and conductivities σi.

( )−−−−
−

+ −+== AAR HSHS ασσ 1min
1 (B1)

where

A fi i
i

N

−
−

−
=

= −( ) +[ ]∑ σ σ αmin
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1
min )3( −

− = σα

and where σmin = σ1 is the minimum conductivity ( iσσ ≤min ) and N is the total number of

constituents. The lower HS bound on resistivity RHS- is equal to the inverse of the upper

conductivity HS bound 1−
+HSσ  and is

( )++++
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where

A fi i
i

N

+
−

+
=

−

= −( ) +[ ]∑ σ σ αmax

1

1

1

1
max )3( −

+ = σα

The liquid component typically has the maximum conductivity where σ i ≤ σmax=σN.

Both the upper and lower HS bounds satisfy the conditions that the resistivity RHS equals

the mineral resistivity Rm when the fluid fraction is zero (φ = 0) and equals the fluid

resistivity Rw when the mineral fraction is zero (φ = 1) (Figure B1).
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The upper HS resistivity bound corresponds to isolated conductive spheres (pores)

covered by a resistive shell (mineral) (Mendelson and Cohen, 1982), a likely scenario for

pumice and some basalts, but an unlikely one for granular materials.  The lower HS

resistivity bound corresponds to isolated resistive spheres (mineral) covered by a

conductive shell (water and/or clay), a more likely model for sediments. This is

schematically shown in Figure B1; the black regions represent the resistive constituent

and the white region the conductive constituent. Notice that both the upper and lower HS

bounds are approximately linear for porosities less than approximately 0.30.

The HS bounds can be used to determine a range in the fluid volume fraction φ for a

given R/Rw or vice versa.  Other bounding models exist, however the HS bounds provide

the tightest bounds for an isotropic composite without specifying the geometries of the

constituents.  As seen in Figure B1, the bounds are very wide for constituents with

extremely different conductivities (i.e. quartz sand – fluid system) and tight for

constituents with very similar conductivities (i.e. clay – fluid system).  The upper bound

is insignificantly influenced by the fluid resistivity Rw = σmax.  The lower HS bound is

essentially unaffected by the mineral resistivity Rm = σmin for φ > 0.01 as long as Rm/Rw is

approximately greater than 103.  In fact, Berryman (1995) showed that the lower HS

bound can be simplified as a function of the fluid resistivity Rw and volume fraction φ in

systems of insulating spherical grains saturated by a conductive fluid.

R

R
HS

w

− −≈ − = −3

2

3

2

1

2
1φ

φ
φ (B3)
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Figure B1:  The Hashin- Shtrikman resistivity bounds. Example is for two systems saturated by a

fluid with Rw = 1
1
−σ = 1 Ω-m:  Rm1 = 1

2
−σ  = 1015 Ω-m (dashed line) and Rm2 = 1

2
−σ  = 104 Ω-m

(short dashed line); the lower HS bound (bold solid line) is essentially the same at φ ≥ 0.01 for
both systems.  The black regions in the schematic sphere pack represent the resistive constituent
and the white represents the conductive constituent.
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Maxwell-Garnett Approximation

Maxwell (Bergman, 1978) derived a non-self-consistent theory for a system of

suspended spheres, also known as the Maxwell-Garnett, Clausius-Mossotti and Lorenz-

Lorentz equation.  Fricke (1924) generalized the Maxwell-Garnett equation for dispersive

systems spheroids.  The theory describes the effective electrical conductivity *
Fσ  as a

function of the host volume fraction f1, the inclusion shape parameter x, and the

conductivity of the host σ1 and of the spheroidal inclusions σ2.

x
f
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F

+
−=

+
−

12

12
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2
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2
* 11

σσ
σσ

σσ
σσ

(B4)

The inclusion shape parameter x is a function of the conductivity ratio σ2/σ1 and the

aspect ratio α (or the depolarizing factors, Li).  The equations for x are given in Fricke

(1924). When modeling a sediment or rock, the host is the fluid constituent and the

inclusion is the granular constituent.  However, since the MG theory describes systems of

spheroids in suspension, it does not necessarily hold for systems where grains are in

contact. In a system of resistive spheroidal inclusions (σ2 ≈ 0) suspended in a conductive

fluid, the effective resistivity RF increases as grain ellipticity.

R
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≈ + −( )1 φ
φ

= + −
1

1
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φ
φ

= + −−a aF Fφ 1 1( ) (B5)

where

xxaF )1( += (B6)

In a system of resistive inclusions, x is only a function of the aspect ratio α since

σ2/σ1 = 0.  Fricke (1924) showed that x = 2 for resistive spheres, x ≈ 1.39 for high-

sphericity sands, x ≈ 0.85 for more angular sands (Figure B2), and approaches zero for

penny-shaped resistive grains. Assuming that the maximum grain eccentricity is 0.95,

Mendelson and Cohen (1982) showed that in a 2-D system of aligned grains the

maximum aH is approximately 10, which corresponds to x ≈ 0.095.
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Figure B2:  Modified Maxwell-Garnett approximation for resistive grains with different shapes.

Example is for a system of minerals with Rm = 1
2
−σ  = 1015 Ω-m and fluid with Rw = 1

1
−σ  = 1 Ω-m.

The bold line for spheres (x = 2) corresponds to the lower HS bound.  x ≈ 1.39 in highly spherical
sand grains, x ≈ 0.85 in more angular sand grains, and xmax ≈ 0.095 for platy grains. For φ < 0.2,
the φ - R/Rw relationship is nearly linear and m ≈ 1.5 and aH increases with decreasing ellipticity.
Schematic grain shapes are not to scale.

For a system of resistive grains suspended in a conducting fluid, like Eqn. B5, the

effective resistivity RF of the composite is a function of the fluid’s resistivity, not of the

mineral resistivity. For the specific case of a system of insulating spherical grains (x = 2),

Eqn. B8 reduces to the lower HS bound (Eqn. B5); in other words, the minimum RF

occurs when the grains are spherical.  The less spherical the grains, the further the MG

curve plots above the lower HS bound.  Notice, however, that for approximately φ < 0.20,
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m ≈ 1.5 and aH increases as ellipticity decreases (Figure B2); in other words there is a

nearly linear relationship between φ and R/Rw for φ < 0.20 and aH and m are independent.

Self-consistent Approximation

The self-consistent estimate of effective conductivity *
SCσ  for an isotropic system of

ellipsoidal inclusions is a function of the inclusion depolarizing factors Lj, conductivity σi

and volume fractions fi (Berryman, 1995)

f Pi i SC
i
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σ σ−( ) =
=
∑ * * 0

1

(B7)
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where N is the number of constituents and Lj is defined in Appendix A. *
SCσ  is solved for

through iteration and always satisfies the HS bounds.

SC theory describes a system where the pore space has defined inclusion shapes,

unlike the MG theory.  Because the pore space has a defined shape, there is a porosity

limit below which the pore inclusions are no longer connected and the effective

conductivity approaches zero; this porosity limit is known as the porosity percolation

threshold φp. The percolation threshold is a function of pore shape in Eqn. B7; spherical

pores having the largest φp and needles having the smallest φp.  In a system of spherical

grains and pores of different shapes, the porosity percolation threshold φp  (Figure B3) is

1/3 for spherical pores (α=1), 1/5 for disk-shaped pores (α = -∞), and 0 for needle-

shaped pores (α = ∞)  (Norris et al, 1985).

According to SC theory, pore and grain ellipticity have opposing effects on R; R

increases from increasing pore ellipticity and decreasing grain ellipticity. SC theory

predicts that resistivity data converge at φ  ≈ 0.70 (Figure B2), regardless of the pore

shape or constituent resistivities in two-constituent systems. For φ > 0.70, resistivity data

falls along a single curve, which is approximately equal to the lower HS bound.  For φ <

0.70, the SC resistivity estimate is greatest for spherical pores and least for disk-shaped

pores (Figure B2).  This is likely a consequence of ellipsoid surface area; spheres have a

minimum surface area per unit volume, therefore less area in contact with other pores.
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The percolation threshold in natural sediments and rocks is very low, therefore the pore

space likely becomes more needle-shaped as porosity decreases.
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Figure B3:  Self-consistent approximation for three pore shapes. Self-consistent approximations

for spherical grains (Rm = 1
2
−σ  = 1015 Ω-m) and pores that are spherical (dotted line), needle-

shaped (dash-dot line), and disk-shaped (dashed line) (Rw = 1
1
−σ  = 1 Ω-m).  The lower HS bound

(bold solid line) is shown for reference. The porosity percolation threshold φp is 1/3 for spheres,
1/5 for disks, and 0 for needles.  The SC curves converge at φ ≈ 0.70.  The black regions in the
schematic sphere pack represent the resistive grain constituent and the white represents the
conductive pore constituent. Schematic grain shapes are not to scale.
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Empirical Resistivity Background

The R – F Relationship

Archie (1942) found empirically that the true resistivity R of a fully brine-saturated

system of insulating grains increased linearly with varying brine resistivity Rw.

wFRR = (B8)

The proportionality constant that relates the material’s true resistivity and brine

resistivity is the formation resistivity factor F (F ≥ 1).

The electrical current solely flows through the conducting liquid in a system of

insulating grains with both resistive fluid (i.e. gas) and conducting liquid in the pore

space (i.e. brine).  In such a system, the ability for the current to flow is strongly

influenced by the conducting liquid fraction S w .  Archie’s water saturation equation

(Archie, 1942)

n
wwSFRR −= , (B9)

is a general form of Eqn. B8 that accounts for partial saturation. The saturation exponent

n is approximately two (Tiab and Donaldson, 1996).  The water saturation equation is

typically used to predict brine saturation in systems of insulating grains, such as clean

sands.

The effects of clays on R have been studied since the 1950’s, however a practical and

universal method for accounting for the affect of clay conductivity and particle shape still

has not been developed. Two different concepts have been developed to estimate the

influences of clays on R (summarized in Worthington, 1985): one is based on the clay

volume fraction and the other on ionic double-layer phenomenon.  Models based on the

clay volume fraction are have little physical basis, however, those based on ionic double-

layer phenomenon require destructive core analysis, making them less practical.   Both

types of models have the general form of

XFRR w += (B10)

In clean sands, X approaches zero and Eqn. B10 reduces to Archie’s equation (Eqn.

B8).  X is typically written either as a function of the cation exchange capacity or the

distribution of clays, the clay conductivity and volume.  The presence of clays leads to a

non-linear relationship between R and Rw  if Rw is high (Worthington, 1985). The clay
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conductivity effect is insignificant in a fully brine saturated system when the ratio of the

liquid to clay resistivities Rw/Rcl is less than 0.10 (Hoyer and Spann, 1975).  Interestingly,

like the theoretical Eqns. B3 and B5, the clay-adjusted models are functions of the

conductive constituents, not the resistive constituents.

An example of a practical resistivity model based on the clay volume fraction is

(Schlumberger, 1989)

1)1( +−− +−= n
w

cl

cln
wclw S

V
R

SVFRR   (B11)

Eqn. B11 ( same as Eqn. 2.4) is typically used to predict brine saturation in clay-rich

systems, where R and Rw are measured, the clay volume fraction Vcl is estimated, the clay

resistivity Rcl is assumed, and F is estimated using Eqn. B12. A variety of clay-adjusted

equations have been developed that satisfy Eqn. B8 (Summarized in Worthington, 1985,

Tiab and Donaldson, 1996, and Schlumberger, 1989). However, Eqn. B11 works well

(Schlumberger, 1989) for many clay-rich formations, independent of the distribution of

the clays (dispersed, laminated or structural).  When the clay fraction is zero, Eqn. B11

reduces to Archie’s water saturation equation for clean sands (Eqn. B8).

The F – φ Relationship

Much like hydraulic permeability, the formation resistivity factor F is the

characteristic flow property of a material; it is a measure of the inability for an electrical

current to flow through pore space.  Archie derived the empirical relationship F = φ  -m,

which Winsauer et al (1952) later generalized as

m
Ha

F
φ

= (B12)

The Humble equation (Eqn. B12) is only valid for the formation’s porosity range.

Since the Humble equation is empirical, it is not required to meet the limiting conditions

R = Rm at φ = 0 nor R = Rw at φ  = 1.   There isn’t a percolation threshold term in the

Humble equation, therefore the pore space is assumed connected for all porosities

(Webman et al, 1976, 1977; Straley, 1978). Sen et al (1979) suggested modifying the

Humble equation to account for the percolation threshold by

m
p

Ha
F

)( φφ −
= (B13)
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The modification of the porosity term by subtracting the percolation threshold is

similar to the modification in the Kozeny-Carman equation for permeability by Mavko

and Nur (1997). The percolation threshold term in Eqn. B13 significantly influences high

F values, corresponding low φ values; therefore aH and m values derived from Eqn. B13

would be significantly influenced by the percolation term in low porosity data.

Eqn. B12 was derived based upon the observation of φ - F data for a particular

formation plotting linearly on a log-log plot.  For example, taking the log of both sides of

Eqn. B12 leads to

)ln()ln()ln( φmaF H −= (B14)

The internal geometry parameter aH and cementation exponent m are computed as the

y-intercept and negative slope, respectively, of the least-squares fit to φ - F data on a log-

log plot (Figure B4a).  aH and m define the formation’s characteristic properties therefore

are computed for individual formations.  aH and m cannot be defined uniquely for a

formation if either there are too few porosity data available or the porosity range is too

narrow (Figure B4b), a common problem encountered with environmental data sets. In

such cases, aH and m can be extrapolated from similar hydrogeologic formations. The

uncertainty in the parameters aH and m , which define the linear relationship, can

significantly influence porosity estimates that are outside the range of the porosity data.
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Figure B4:  Linear relationship between F  and φ on log-log plot. Example of: (a) full data set
where there is a linear relationship and (b) partial data set where there is greater uncertainty in aH

and m.

Both aH and m are to some degree influenced by pore space and bulk characteristics

such as shape, sorting, packing, pore configuration and size, tortuosity, type of pore

system (intergranular, intercrystalline, vuggy, fractured), compaction and clay content

(Tiab and Donladson, 1996).   Gomez-Rivero (1976) derived relationships between aH

and m of the form

mCCaH 21)ln( += (B15)

where C1 and C2 values for various materials are listed in Table B2. The relationship

between m and ln(aH) originates from the way aH and m are derived in Eqn. B14.  Archie

(1942), on the other hand, showed that a ≈ 1 and m increases with increased cement in

clean sands (Figure B5.a), and MG theory suggests that for φ < 0.20, m ≈ 1.5 and aH

increases as ellipticity decreases (Figure B5.b); both suggest that aH and m  are

independent since one is assumed constant.  These observations suggest that if either aH

or m can be constrained then the other can be determined; this is especially significant

when the porosity data range is too narrow to define aH and m uniquely.

ID Formation Description y-intercept C1 slope C2
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1 Sandstones 1.04 -0.60

2 Sands 1.40 -0.78

3 Carbonate rocks 2.26 -1.11

Table B2:  Slopes and intercepts that define the ln(aH ) – m relationship for various materials

(Gomez-Rivero, 1976).
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Figure B5:  Schematic of aH and m. (a) aH constant, (b) m constant, and (c) aH – m related.

The cementation exponent m value is dominated by the presence of cement. m  is

much larger in cemented materials than in uncemented ones (Wyllie and Gregory, 1953),

however, it has not been correlated with the amount of cement.  Various authors

(Neustaedter, 1968; Gomez-Rivero, 1976; Sethi, 1979) have shown correlations between

m  and φ in rocks.  Perez-Rosales (1982) suggested that m is the conversion exponent

between channel porosity and total porosity φch = φm; the greater the m, the lesser the

channel porosity φch and the greater the trapped porosity φtr.  The observed range of m is

1.2 - 4 (Mendelson and Cohen, 1982)

The internal geometry parameter aH value appears to be dominated by the influence of

tortuosity (Wyllie and Gardner, 1958; Herrick, 1988). In most natural composites, aH

doesn’t vary much (Schlumberger, 1989). However, as seen in Figure B2, aH is expected

to increase significantly as grain ellipticity decreases.  The theoretical range of aH defined

by grain ellipticity  is 0.25 – 10 (Mendelson and Cohen, 1982).
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New Results on the Resistivity – Porosity Relationship

New Insight into the Influence of Clay on R, F, aH and m

It is standard practice to use resistivity data to solve for F using Eqn. B8 so that F – φ

relationships can be determined for each formation using Eqn. B12.  However, Eqn. B8 is

only valid for systems of fully saturated insulating grains; it is not valid for systems of

neither partial saturation nor conducting minerals (F ≠  R/Rw).  Therefore, F values

published as R/Rw do not describe the material’s flow characteristics unless in a clay-free

and fully saturated systems.  Solving for F correctly is particularly important when using

F to solve for permeability. For this reason, R/Rw is referred to as the normalized

resistivity throughout the rest of this section, rather than formation factor.

To better understand the difference between the normalized resistivity R/Rw and

formation factor F, consider the following: electrical conductivity is analogous to

hydraulic conductivity and formation resistivity factor is analogous to permeability. R/Rw

is a function of F and they are only equivalent when Sw = 1 and σm ≈ 0 (Eqn. B11).  We

suggest that it is more appropriate to solve for F using a clay-adjusted equation like Eqn.

B11, rather than Eqn. B8, in systems of insulating grains with partial saturation and/or

conducting minerals.  Solving for F in such a way would “remove” the influence of the

conducting minerals so that F would be a function of the pore space, not of the

conducting mineral component.

It is important to understand the influence of clays on R and F when interpreting pore

space characteristics using φ  - R/Rw data and when comparing aH and m  values.

Dispersed or structural clay can be added to a system by either replacing pore or granular

volumes. The clay influences on F  and R depend on the clay distribution and

conductivity. Replacing pore space with clay increases F, however, effect of replacing

granular volume with clay depends on the clay distribution and compaction; replacing

granular volume with structural clay likely has a minimal influence on F and replacing

the same granular volume with dispersed clay likely increases F and the degree of

influence depends on the clay compaction.  There are two competing effects of clays on

R; (1) the conductivity effect: the high conductivity of clays decreases the bulk mineral
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resistivity, which contributes to a decrease in R, and (2) the tortuosity effect of dispersed

clays: the presence of dispersed clays increases F, which contributes to an increase in R.

The influences of clay on F are shown in Figure B6.a. Replacing pore space with

platy dispersed clays significantly increases F by increasing tortuosity and trapped

porosity. This effect is theoretically described by Eqn. B4 (Figure B2) and empirically

accounted for in the internal geometry parameter aH, a measure of tortuosity (Eqn. B12).

However, if the same amount of pore space is replaced with structural clays (i.e. shale

fragments), then the influence of clay on F is minimal since the tortuosity wouldn’t

change significantly; it is essentially a sorting effect. Therefore, the slope -m on a log-log

φ - F plot should be greater for systems of dispersed clays than for systems of structural

clays (Figure B6.a).

The influences of replacing sand pore space with clay on resistivity are summarized

in Table B3 and schematically shown in Figure B6.b.  The influences of clay on R depend

on the clay’s conductivity, volume and distribution within the sand’s pore space (Eqn.

B11).  The clay conductivity effect is insignificant in a fully brine saturated system when

the ratio of the liquid to clay resistivities Rw/Rcl is less than 0.10 (Hoyer and Spann, 1975).

In such systems, the influence of clay is solely through tortuosity, therefore the influence

on R/Rw is the same as on F (Figures B6.a and B6.b). In a saturated freshwater system,

the clay tortuosity effect likely dominates when dispersed clay fills the pore space,

resulting in a high R, whereas the clay conductivity effect likely dominates when

structural clays fill the same amount of pore space, resulting in low R (Figure B6.b).

Erickson and Jarrard (1998) used φ - R/Rw data in high porosity, clay rich materials to

show that muds have higher m and lower aH values than clay-rich sands.  The data they

used also shows a transition in the φ  - R /Rw relationship between clay-rich sands and

sandy muds at φ  ≈ 0.55, which is approximately the critical porosity of sand; in other

words, like work by Marion (1990), the critical porosity defines the transition between

clay-dominated and sand-dominated systems.  In the sand-dominated system, dispersed

clays replace pore space and in the clay-dominated system, dispersed clays essentially

replace sand grains. Several other authors (Carothers, 1968; Porter and Carothers, 1971)

have observed that φ - R/Rw data in clay-rich sands typically have low m and unusually

high aH values, whereas φ - R/Rw data in muds and shales have high m and low aH values
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(Schlumberger, 1989). The unusually high aH values in clay-rich sands are likely either a

consequence of the non-linear dependence of R on clay volume (Eqn. B11) or a grain

shape effect; according to MG theory, R is higher for platy grains than spherical ones.
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Figure B6:  The influence of clays on F and R.  The influence of adding clay to a sand system: (a)
the influence on F  of adding dispersed and structural clays to a saturated sand and (b) the
influence on R/Rw of adding dispersed and structural clays to brine and freshwater saturated sands.

Adding clay to sand pore space Conductivity

effect

Tortuosity

effect

dispersed clays to brine saturated sands insignificant increases

dispersed clays to freshwater sands decreases increases

structural clays to brine saturated sands insignificant slightly

increases

structural clays to freshwater sands decreases slightly

increases

Table B3: The proposed influence of dispersed and structural clays in freshwater and brine-

saturated sands on resistivity.

Evaluating Pore Space Characteristics using φ - R/Rw Data
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Changes within a formation can occur from the addition or subtraction of material

from the pore or granular volumes.  When the granular volume changes, the resistivity

might change without a change in porosity, such as replacing resistive sand grains with

shale fragments or spherical grains with elliptical ones. However, when the pore volume

changes there is a change in both resistivity and porosity. Changes in a composite’s pore

space characteristics can occur from changes in cementation, compaction, sorting, grain

ellipticity and clay volume. Trends of data on an φ - R/Rw plot can help identify the

varying pore space characteristics within a particular formation and delineate individual

formations with different characteristic properties.

R/Rw increases from increased tortuosity and trapped porosity; this occurs from

changes in the pore space characteristics such as increased clay volume, cementation

(Archie, 1942) and compaction (Tiab and Donaldson, 1996) and decreased sorting (large

grain size distribution) (Wyllie and Gregory, 1953) and granular ellipticity (Fricke, 1924)

in a system.  These same changes in pore space characteristics result in a reduction of the

system’s total porosity φ (Wyllie and Gregory, 1953; Maxwell, 1960; Beard and Weyl,

1973).

The location of data on a φ  - R/Rw plot can be thought of as a particular stage of

evolution in the complexity of a simple system’s pore space.  For example, let’s say the

original system is of well-sorted, single constituent, loosely-packed grains and for

simplicity of explanation, assume the grains are resistive and spherical (Figures B7 a, b

and c).  In such a system, φ - R/Rw data plot at the system’s origin, which is defined by the

point on the lower HS bound evaluated at the system’s critical porosity φc (Figures B7 a,

b and c); the lower HS bound coincides with the MG curve for suspended spherical

grains. As the system’s φ decreases from a particular pore space property, R/Rw increases

linearly on a log-log plot, resulting in a fan of lines emanating from the system’s origin.

The slope -m and y-intercept ln(aH) of the line depends on the pore space property that is

changing.  For example, increasing the degree of cementation has a more significant

affect on R/Rw than φ, therefore m is high and aH is low (Figure B7.b). Decreasing the

sorting of the sphere pack has a lesser effect than cementation on R/Rw at the same

porosity, therefore m  is lower and aH is higher (Figure B7.a).  As the loose spheres
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become compacted (Figure B7.c), they are arranged into tighter packing, increasing R/Rw

and decreasing φ.

If instead of spherical grains, the original system is of aspherical, well-sorted, single

constituent, loosely-packed, resistive grains, then the system’s origin is defined by the

point on the MG curve (Eqn. B4; dashed line in Figures B7 d, e and f) evaluated at the

system’s critical porosity φc. For grains of low sphericity, the MG curve plots above the

lower HS bound (Figure B2) and the system’s critical porosity is greater than that of

spheres. As explained by MG theory, increased grain ellipticity in grain-supported

systems insignificantly influences m , however increases aH, so the slopes are

approximately the same as in Figures B7 a, b and c.

In most natural systems, a combination of pore space properties can influence the

system’s φc, which could result in linear trends that don’t precisely intersect the original

system’s origin.  However as seen in Figure B8, for the most part, the hypothesis of lines

converging near the lower HS bound at the critical porosities of granular systems is a

good approximation in a wide variety of systems. This hypothesis suggests that as m

increases, ln(aH) decreases linearly, and the linear relationship between m and ln(aH) is

defined by the system’s origin.  The relationship between aH and m is discussed below.
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Figure B7:  Schematic of the influence of ellipticity, sorting, cement and compaction on F and φ.
The influence of (a,d) sorting, (b,e) cement and (c,f) compaction on F  and φ in systems of
spherical and aspherical grains. The arrows indicate direction of increased change in property.
The bold solid line is the lower HS bound (Eqn. B2.1) and the bold dashed line in is the MG curve
for elliptical grains (Eqn. B5).
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Figure B8:  R/Rw - φ lab and field data. Shown are: loose clean sands (Wyllie and Gregory, 1953;
Fricke, 1924), loose glass spheres (Wyllie and Gregory, 1953; Klinkenberg, 1951; Slawinski,
1926; Balderas-Joers, 1975), loose glass cubes (Wyllie and Gregory, 1953), limestones and
dolomites (Mendoza-Romero and Perez-Rosales, 1985), sandstone (Winsauer et al, 1952; Wyllie
and Spangler, 1952; Sanyal et al, 1973; Wyllie and Rose, 1950), clay-rich sandstone (Porter and
Carothers, 1971), and artificially cemented glass spheres (Wyllie and Gregory, 1953); the lower
HS bound (solid line) is plotted for reference. Data converges near the HS lower bound at
approximately 0.30 ≤ φ ≤ 0.4.

New aH  - m Relationship

Both aH and m are, to some degree, influenced by the same pore space and bulk

characteristics and are likely related.  And, as seen in Figure B8, φ - R/Rw data converge

towards the lower HS bound evaluated at porosities near the critical porosities of granular

systems. This suggests that as m increases, ln(aH) decreases linearly, and the linear

relationship between m and ln(aH) is defined by critical porosity and grain shape.  The
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point defined by the MG curve for the primary constituent’s shape evaluated at the

composite’s critical porosity (φc, 
*
MGR /Rw) may be a pivot point for linear R/Rw  – φ

relationships (Figures B7 and B6.c). By solving for ln(a) in Eqn. B14 and substituting

Eqn. B5 in for F evaluated at φc gives

mCCaH 21)ln( += (B16)

where

C
x

x
c

c
1

1= + −
ln(

( )
)

φ
φ

= + −ln( )
a

aF

c
Fφ

1 (B17)

)ln(2 pcC φφ −= (B18)

Eqn. B16 is of the same form as the empirical relationship derived by Gomez-Rivero

(1976), where the y-intercept C1 and slope C2 are the formation-specific constants in Eqn.

B15 and Table B2.  The φc and x values in Table B4 were found by solving for φc in Eqn.

B18 and x in Eqn. B17 in terms of the empirically derived C1 and C2 values in Table B2.

These φc and x values represent the overall values for each formation represented by an aH

– m data pair.  As discussed earlier and defined by Eqn. B5, for each formation, the MG

curve corresponding to x evaluated at φc defines the origin from which linear φ  - F

relationships emanate (Figure B9).
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I

D
Formation

calculate

d φc

published

φc

calculated

x

published

x

1 Sandstones 0.33 0.40 (1) 0.83 --

2 Sands 0.46 -- 0.63 0.85 (2)

3 Carbonate rocks 0.55 0.60 (1) 0.31 --

Table B4:  Calculated φc and x values from C1 and C2 values by Gomez-Rivero (1976) in found in

Table B1; published φc and x values (1) Mavko et al (1998) & (2) Fricke (1924).

The φc and x values found using Eqns. B17 and B18 agree very well with published

values (Table B2) even though Gomez-Rivero’s empirical relationships were derived

from F = R/Rw data in partially brine-saturated, clay-rich materials.  Eqns. B16 – B18 are

particularly useful when the porosity data range is too narrow to define aH and m uniquely

and either aH and m can be estimated.
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Figure B9:  The pivot points of linear R/Rw – φ relationships.  The x and φc values determined from
aH – m  relationships for different formations define the pivot points (origins) for linear R/Rw – φ
relationships.

Defining a Generalized Archie’s Equation

As discussed in above, a formation’s total and channel porosities are related by a

normalizing factor A (Eqn. A11), which is a function of the critical porosity, percolation

threshold, and Archie’s exponent m . The A factor is essentially adsorbed into the

formation-specific, empirical constant aH in the Humble equation (Eqn. B12).  aH can be

expressed in terms of A by solving for aH in Eqns. B16 – B18 and assuming a porosity

term of the form (φ - φp)
m in Eqn. B13.



70

c
FF

H A
a

A
a

a φ)1( −+=
Ax
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(B19)

Eqn. B19 is useful for estimating aH when too few porosity measurements are

available to define a linear relationship between φ and R/Rw. From Eqns. B13 and B19, a

general Archie’s equation can be expressed in terms of a system’s channel porosity, grain

shape parameter, and critical porosity by

ch

c

x
x

F
φ

φ−+= 1
(B20)

Eqn. 20 is particularly useful for determining F when channel porosity is measured.

The φ - R/Rw Relationship Re-defined in Three Porosity Regions

At very low porosities, there exists a porosity limit, known as the percolation

threshold φp, below which the pore space is no longer connected and the electrical

resistivity approaches the mineral resistivity. Also, at porosities between 0.30 and 0.40,

the range in critical porosities φc of sands and sphere packs (Wyllie and Gregory, 1953;

Mavko et al, 1998), resistivity values in cemented and uncemented sands and glass

spheres converge near the lower HS bound (Figure B8).  The critical porosity and

percolation threshold define three porosity regions in which the F – φ relationship is

defined (Table B3 and Figure B10).  Region I is defined for φ < φp where the pore space

is no longer connected (φch = 0) and the resistivity theoretically approaches the bulk

mineral resistivity value; this region may be approximated by the upper HS bound (Eqn.

B2), however we have not come across published data in this low porosity region.

Region II is defined for φp ≤ φ ≤ φc where resistivity and porosity are linearly related on a

log-log plot and where the pore space is connected but not all is available for flow

(trapped porosity φtr exists). This region, where most data in sediments and rocks fall

(Figure B8), can be modeled well by the Humble equation (Eqn. B12) and is bounded by

the lower HS bound and an empirical upper bound F+.  Region III is defined for φ > φc

where the mineral constituents are suspended and all of the pore space is available for

flow (φtr = 0); resistivity in this region is approximated by the lower HS bound (Figures

B1, B3 and B8).



71

For φp < φ < φc, we suggest that φ - R/Rw data converge at φc because φtr decreases and

φch increases as φ increases within this porosity region, making it easier for electrical

currents to flow through the pore space.  At φ > φc, we suggest that φ - R/Rw data fall

along a single curve because all of the pore space is available for flow (m = 1, so φch = φ)

and the tortuosity is low (aH ≈ 1) in this porosity region.
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Figure B10:  Three regions of the φ - R/Rw relationship defined by the percolation threshold φp and
critical porosity φc. The φ - R/Rw relationship is defined by (1) the upper HS bound for φ < φp, (2)
the Humble equation for φp ≤ φ ≤ φc, and (3) the lower HS bound for φ > φc.
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Re

gion

Porosity

Range

Total

Porosity

Channel

Porosity

Normalized

Resistivity

I 0 < φ < φp φ = φtr φch = 0  RHS+/Rw (Eqn. 2)

II φp ≤ φ ≤ φc φ = φch + φtr
m

pch A )( φφφ −= ( )mpHa φφ − (Eqn.

B13)

III φc < φ ≤ 1 φ = φch φch = φ
wHS RR − (Eqn. 1)

Table B3: Regions of the φ - R/Rw relationship defined by the percolation threshold φp and critical

porosity φc.

New Upper φ - R/Rw Bound

The upper HS bound immediately approaches the bulk mineral constituent resistivity

at the onset of adding resistive minerals to a fluid (Figure B10).  This behavior is not

observed in granular media; in fact, data in granular media do not plot near the upper HS

bound regardless of the pore space characteristics. Perhaps, this is because the upper HS

bound represents isolated conductive spheres covered by a resistive shell (Figure B1), a

valid scenario in few rocks (i.e. basalts where the pore space is defined by trapped air

bubbles).  It is an unlikely scenario in sediments where the resistive grains make up the

ellipsoidal component of the system.  The upper HS bound therefore is of limited use in

sediments and most rocks.

We define an empirical upper bound +R  that is lower than the upper HS bound and is

defined by a line that connects the points (φp, *
+HSR /Rw) and (φc, *

−HSR /Rw) on a log-log

plot. The first point corresponds to the upper HS bound evaluated at the percolation

threshold φp; the second point corresponds to the lower HS bound evaluated at the critical

porosity φc.  This idea stems from work done by Nur et al (1995) on modifying the upper

bound for the acoustic velocity – porosity relationship.  This linear upper bound

corresponds to the Humble equation (Eqn. B12), where
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where                                     φp ≤ φ ≤ φc and
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The empirical upper bound and lower HS bound are narrow for porosities near φc and

wide for porosities near φp (Figure B10).  φ - R/Rw data in unconsolidated glass sphere

packs fall just above the lower HS bound for φ < φc and on the lower HS bound for φ > φc

(Figures B8 and B11).  Data in artificially cemented glass spheres plot just below the

empirical upper φ - R/Rw bound (Figure B11).

The maximum a+ is 1.5, the aH of the lower bound for φ < φc, since one end member

is defined by the lower HS bound.  Small variations in φp and φc significantly influence

the log intercept a+ and slightly influence the slope -m of the empirical upper bound. For

example, for Rm = 1014 Ω-m and Rw = 1 Ω-m, φp = 0.035 ± 0.01 (28% uncertainty) and φc

= 0.40 ± 0.05 (28% uncertainty) leads to a+ = 2.75.10-5 ± 2.31.10-4 (843% uncertainty) and

m+ = 12.75 ± 0.73  (5.7% uncertainty).  The uncertainty of a+ is statistically very

significant because of the log dependence of aH, however, as seen in Figure B10, it has

nominal influence on the upper bound on a log-log plot.

A modified upper HS bound RMHS+ (Figure B11) can be defined by evaluating the

upper HS bound for φ*  = φ/φc, where 0 ≤ φ* ≤ 1 and 0 ≤ φ ≤ φc and the end members are

defined by (0, 
mR /Rw) and (φc, 

*
−HSR /Rw).  However, like the upper HS bound, the

modified upper HS bound immediately approaches the mineral resistivity at the onset of

adding the resistive mineral constituent to the fluid constituent. As shown in Figure B11,

data do not plot near the modified upper HS bound, regardless of the pore space

characteristics.
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Figure B11: The empirical upper φ - R/Rw bound. R/Rw – φ lab data for loose glass spheres (circles)
and artificially cemented glass spheres (stars) from Wyllie and Gregory (1953); the HS bounds
(solid and dashed lines), the modified upper HS bound (short dashed line), and the empirical upper
bound (dotted line), where φc = 0.40, φp = 0.035, Rm = 1014 Ω - m and Rw = 1 Ω - m.  Data is also
plotted in Figure B8.
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Conclusions

• F values published as F = R/Rw do not describe the material’s flow characteristics

unless in a clay-free and fully saturated systems.

• Increasing clay content increases F, however there are two competing effects on

R: (1) the conductivity effect: the high conductivity of clays decreases the bulk

mineral resistivity (Eqn. B8), which contributes to a decrease in R, and (2) the

tortuosity effect: the presence of dispersed clays increases F, which contributes to

an increase in R.

• The lower Hashin-Shtrikman bound is independent of the mineral resistivities and

volume fractions if Rm/Rw is greater than approximately 103.

•  In systems of resistive and conductive constituents, it is the conductive

constituent’s resistivity and volume, not the resistive constituent’s resistivity and

volume, that define the behavior of the lower HS bound, the MG equation, and

the empirical relationships.

• In a given formation, the formation resistivity factor may increase and porosity

may decrease from an increase in clay content, compaction, or cementation or a

decrease in grain ellipticity or sorting; the data trends (aH and m) on a F – φ plot

can help diagnose the property causing the change.

•  According to MG theory, grain ellipticity influences aH significantly and m

insignificantly in grain-supported unconsolidated composites (φ  < 0.20).

•  Adding clay to the pore space of a sand system will result in an increased

formation factor and decreased porosity, regardless of the clay structure; however,

depending on the clay structure and the ratio Rcl/Rw, it will result in either an

increase or decrease in the measured resistivity.

•  F – φ data in unconsolidated glass sphere packs fall just above the lower HS

bound for φ < φc and on the lower HS bound for φ > φc.
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• The HS bounds and MG theory are approximately linear for φ < 0.20.

• SC theory predicts that resistivity converges at φ ≈ 0.70, regardless of the pore

shape and constituent resistivity in a two-component system.

• The φ R/Rw data in sands and sphere packs tend to converge near the lower HS

bound at porosities between approximately 0.30 and 0.40, which correspond to

the critical porosities of sands and spheres.

• The φ - R/Rw relationship can be defined by three regions: (1) for φ ≤ φp , R/Rw  ≈

RHS+/Rw, (2) for φp < φ < φc , R/Rw = a/φm, and (3) for φ ≥ φc, R/Rw ≈ RHS-/Rw.

•  For φp < φ  < φc, φ  - R/Rw data converge at the critical porosity because φtr

decreases and φch increases as φ increases within this porosity region.

• At φ > φc, φ - R/Rw data fall along a single curve because all of the pore space is

available for flow (m  = 1, so φch = φ) and the tortuosity is low (aH ≈ 1) in this

porosity region.

•  An empirical upper bound on the R/Rw relationship can be defined by the line

+
++ = maF φ , where a+ and m+ are the y-intercept and negative slope of a line that

connects the points (φp, 
*

+HSR /Rw) and (φc, 
*

−HSR /Rw) on a log-log plot.

•  The aH – m  relationship can be expressed as a function of the primary

constituent’s critical porosity and grain shape.
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C.  DEVELOPMENTS IN THE ELECTRICAL RESISTIVITY –

ACOUSTIC VELOCITY RELATIONSHIP

Introduction

Up until approximately 10 years ago, the use of seismic methods for environmental

groundwater investigation had been nearly non-existent. The advantages of using seismic

methods for delineating hydrostratigraphic units have been recently recognized by the

environmental community and significant advances have been made in shallow seismic

acquisition techniques and processing.  Not only is the environmental community using

compressional wave data more frequently, but also the geotechnical community is using

surface and VSP shear wave data more frequently to study ground stability.  Electrical

resistivity techniques, on the other hand, have been used for decades to qualitatively

interpret changes in fluid properties and locate clay-rich formations.  For the most part,

the environmental community qualitatively analyzes seismic and resistivity data

independently.

As explained earlier, a system’s percolation threshold φp and critical porosity φc

together define three distinct porosity regions, within which the formation resistivity

factor – channel porosity and the moduli – total porosity relationships are defined. The

porosities of most natural materials fall within the second porosity region (Region II),

where φp ≤ φ ≤ φc.  In this region, the abilities for electrical currents and acoustic waves to
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be transmitted through the system are influenced by changes in various pore space

characteristics, such as pore structure (amount, texture and content), grain contacts

(shape, sorting and cement degree and type) and clays (amount, type and distribution).

These pore space characteristics define the relationship between the channel porosity

available for electrical flow and the total porosity through which a seismic wave travels.

Therefore, seismic and electrical techniques can be used jointly to constrain porosity, a

required parameter for fluid flow modeling.

This section focuses on theoretically and empirically exploring the relationship

between electrical resistivity and seismic velocity. The most significant contributions of

this work are the development of resistivity – velocity bounds and insight into

determining formation pore space characteristics using resistivity – velocity data. The

real significance of these results, however, is the potential for using known relationships

between resistivity and material properties to explain velocity trends and vice versa.

Both the petroleum and environmental industries would benefit from these results

because of the potential for using electrical logs to better constrain seismic interpretations

and develop more accurate maps of flow properties.

Background

Theoretical Velocity Background

Elastic Properties

The compressional and shear velocities, Vp and Vs, at which an acoustic wave travels

through an isotropic, homogeneous, elastic system, are functions of the system’s bulk

density ρ and elastic moduli K and µ (Mavko et al, 1998).

V
K

p = +
( )

4
3

1
2

µ
ρ

(C1)

Vs = ( )
µ
ρ

1
2 (C2)

The system’s bulk density ρ is equal to the geometric mean of the individual

constituent’s densities ρi.
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The system’s effective bulk K and shear µ moduli are controlled by the system’s pore

space characteristics and the individual constituent’s elastic properties and volume

fractions.  Most mineral constituents (excluding clay) are stiff and rigid, whereas clays

and fluids (gas and/or liquid) are compressible (low K) and lack rigidity (µ = 0) (Table

C1).  Because the moduli of minerals and fluids are so different, the amount of pore-

filling fluid φ strongly influences the system’s effective moduli and velocities. Changes

in a system’s pore space characteristics can cause changes in the constituent volume

fractions and the type and number of granular contacts, thus changing the system’s

effective elastic moduli and density.

A system’s Poisson’s ratio ν is a function of the system’s effective bulk and shear

moduli, not of the density.
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where –1 ≤  ν  ≤ 0.5. In fluids, ν = 0.5 since µ = 0 GPa.  Therefore, materials with

Poisson’s ratios near 0.5 have fluid-like behavior. ν  characterizes the ability for a

composite to deform horizontally when compressed vertically.  Most natural composites

expand horizontally (positive ν) under vertical compression, as opposed to contracting

(negative ν); therefore, it is safe to assume ν is between 0 and 0.5 in rocks and sediments

(Table C1).  ν is high in unconsolidated systems, regardless of the mineral constituents

since the grains move freely when compressed; however, in cemented systems, ν depends

on the system’s mineral moduli and porosity.
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Constitu

ent

K

(GPa)

µ

(GPa)

ρ

(g/cc)

Vp

(km/s)

Vs

(km/s)

_

water 2.2 0 1 1.48 0 0.5

quartz 36.5 –

37.9

44.0 –

45.6

2.65 6.04 –

6.06

4.09 –

4.15

0.06 –

0.08

calcite 63.7 –

76.8

28.4 –

32.0

2.70 –

2.71

6.26 –

6.64

3.24 –

3.44

0.29 –

0.32

clay 1.5 –

25.0

1.4 –

9.0

1.58 –

2.60

1.44 –

4.32

0.93 –

2.54

0.14 –

0.35

Table C1:  Elastic moduli and density of a few common constituents.  Values from Mavko et al

(1998).

Hashin-Shtrikman Bounds

The Hashin-Shtrikman (HS) bounds (Hashin and Shtrikman, 1963) are the narrowest

theoretical moduli - porosity bounds that don’t take the geometry of each constituent into

account. For a two-constituent system, the bounds on bulk KHS± and shear µHS± moduli are
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where f is the constituent fraction (Mavko et al, 1998).  In a fluid – mineral system, the

fraction of the fluid is equal to the total porosity φ and the fraction of the mineral is (1-φ).

The upper bounds are typically found when the mineral is the first constituent and the

fluid is the second, whereas the lower bounds are typically found when the fluid is the

first constituent and the mineral is the second.  The velocity – porosity bounds and

Poisson’s ratio – porosity bounds are found by evaluating Eqns. C5 & C6 at specific

porosities and plugging the results into Eqns. C1 – C4, respectively.  The bounds are

wide when the constituent moduli are significantly different, such as a quartz – water
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system, and tight when the constituent moduli are similar, such as a clay – water system

(Figure C1).

The upper HS bound corresponds to isolated soft spheres (pores) covered by a stiff

and rigid shell (mineral), a likely scenario in pumice and some basalts, but an unlikely

one for granular materials.  The lower HS bound corresponds to isolated stiff and rigid

spheres (mineral) covered by a soft shell (water and/or clay), a more likely model for

sediments. This is schematically shown in Figure C1; the black regions represent the stiff

constituent and the white region the compliant one. Like the resistivity lower HS bound,

the elastic lower HS bounds are controlled by the fluid constituent, not the mineral

constituent, therefore the lower bounds are nearly the same for clays and quartz systems.
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Figure C1:  Upper and lower HS bounds for P-wave velocity Vp and  S-wave velocity Vs. The
upper (dashed lines) and lower (solid lines) HS bounds are found for two different saturated, two-
constituent systems where the fluid constituent is water (Kw = 2.2 GPa, µw = 0 GPa, and ρw = 1
g/cc) and the mineral constituent is (1) quartz (Kqz = 37.0 GPa, µqz = 44.0 GPa, and ρqz = 2.65 g/cc)
and (2) clay (Kcl = 25 GPa, µcl = 9 GPa, and ρcl = 2.55 g/cc). Also shown are empirical upper
bounds (dotted lines) evaluated between 0 ≤ φ ≤ φc; φc = 0.40. The black regions in the schematic
packs represent the rigid and stiff constituent and the white represents the compressible and
compliant one.

Empirical Velocity Background

Empirical Upper Moduli – Porosity Bounds

In granular materials, there is a critical porosity φc that separates both the mechanical

and acoustical behaviors into two distinct domains (Nur et al, 1995).  At φ < φc the grain-

supported material is rigid and stiff, whereas at φ > φc the fluid-supported material is

compliant and is highly compressible.  Velocity – porosity data converge near the lower

HS bound evaluated at the formation’s φc. Nur et al (1995) defined empirical upper K – φ

and µ – φ bounds that are tighter than the upper HS bound by a line that connects the

points (0, Km) and (φc, *
−HSK ) and the points (0, µm) and (φc, *

−HSµ ), respectively. The first

point corresponds to the mineral moduli (Km and µm) when the mineral fraction is 100%

(φ = 0); the second point corresponds to the lower HS bound ( *
−HSK  and *

−HSµ ) evaluated

at the critical porosity φc.  In a two-constituent fluid-mineral system, the upper moduli

bounds M+ (Mavko et al, 1998) for the bulk and shear modulus are defined by
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where *
mM  is the mineral modulus and *

−HSM  is the modulus of the HS lower bound

evaluate at the system’s critical porosity. Eqn. C7 is essentially the Voigt upper bound of

the modulus for porosities normalized by the critical porosity. Empirical upper bounds on

Vp – φ and Vs – φ can be created using the empirical upper K+ and µ+ bounds  (Figures

C1).  Since Vp and Vs are functions of the square root of the moduli, the upper bounds

aren’t linear on velocity – porosity plots.

Influence of Pore Space Characteristics on P-wave Velocity and Porosity

A formation’s stiffness, rigidity, density and porosity can all change from changes in

pore space characteristics (i.e. cementation, compaction, sorting, clay volume, and fluid

saturation).  The influences of pore space characteristics on total and channel porosities

are discussed later.  The influences of evolution of a formation’s pore space on electrical

resistivity - porosity data were discussed earlier.  As shown in Figure C2, the observed

influences on P-wave velocity – porosity data are quite similar; i.e. sorting influences the

seismic response less than cementation does. Each pore space characteristic has a

different effect on porosity and elastic moduli, therefore the location of P-wave velocity –

porosity data with respect to the upper and lower bounds can provide insight into the

formation’s pore space characteristics (Figure C2). Since Vs data is collected less

commonly than Vp data, the observed influences of pore space characteristics on Vs and ν

are not as well known, therefore not discussed.

Vp – φ data values of loose, unconsolidated materials tend to fall along lower HS

bounds (Figure 3) as a result of changes in sorting (Avseth et al, 1998). Vp – φ data values

in rock and artificially consolidated materials plot near the empirical upper bound defined

by Nur (1995) as a result of increased cementation (Dvorkin and Nur, 1996). Increased

compaction (Mindlin, 1949) results in increased Vp and decreased φ.  Vp increases and φ

decreases when dispersed clay (Han, 1986) is added to a sand matrix, whereas Vp

decreases and φ increases when dispersed clay is added to a clay matrix (Marion, 1990).

For a given formation, the velocity is higher if it is fully saturated than if it is partially
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saturated; the degree of influence is controlled by the pore-filling fluid properties and the

distribution, uniform (Gassmann, 1951) or patchy (Hill, 1963).
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Figure C2:  Schematic of the influence of pore space characteristics on Vp and φ.  The arrows
indicate direction of increased change in material property and the slopes indicate the degree of
influence on Vp and φ.  The solid lines are the upper and lower HS bounds and the dashed lines are
the empirical upper bounds; φc = 0.40.
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New Developments on the Electrical Resistivity – Acoustic Velocity

Relationship

New Concept of Creating Resistivity –Velocity Bounds

A formation’s characteristic P-wave velocity Vp, S-wave velocity Vs, and normalized

resistivity R/Rw increase with decreasing total porosity φ (Figures C1 a and b).  For

suspended granular systems (φ > φc), the R/Rw – V relationships are all simply defined by

the lower HS bounds for resistivity and moduli (Eqns. B2, C5 and C6; Figures B1 and

C1). For grain-supported systems (φ  < φc), the R/Rw  – V relationships are confined by

upper and lower resistivity – moduli bounds (Figure C3).  The R/Rw  – Vp bounds are

created by combining the lower HS bounds (Eqns. B2, C5 and C6) and the empirical

upper bounds (Eqns. B20 and C7) for R and the moduli at equal porosities.  The same

concept can be used to create Vs – φ bounds (Figure C3 b). The following parameters

need to be specified to create the bounds: each constituent’s R, K, µ, and ρ and the

system’s porosity limits φp and φc.

The lines in Figure C3 are example bounds for a quartz-water system.  The bold solid

line results from combining the lower HS R/Rw and Vp bounds; the bold dotted line results

from combining the empirical upper R/Rw and Vp bounds; the dashed lines result from

combining the empirical upper R/Rw bound with the lower HS Vp bound and vice versa.

Strictly speaking, R/Rw – Vp data can fall anywhere between the dashed lines, however,

these lines correspond to the special case of a material property influencing Vp and

without influencing R at a given porosity and vice versa.  Values along the bounds in

Figure C3 represent porosity values in 0.1 increments: from 0% porosity at the upper

limit and 100% porosity at the lower limit.

A significant observation in Figure C3a is that the upper and lower R/Rw – Vp bound

are very similar.  If the elastic and electrical properties of a formation change in a similar

manner from a change in porosity, then R/Rw – Vp data is restricted to the narrow region

between the bounds. If an R/Rw – Vp data pair plots within the region between the upper

and lower R/Rw – φ bounds (solid and dotted lines in Figure C3a), then the formation
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properties are electrically and elastically similar.  However, if the elastic properties

change without the electrical properties changing in a similar way, the R/Rw – Vp data pair

will plot outside the inner-most bounds, but still between the upper-lower bounds (dashed

lines in Figure C3a).

The range in R/Rw – V p value pairs at a given porosity is restricted to the region

defined by the box in Figure C4. The range in possible R/Rw – Vp data pairs is narrow at

porosities near φc since the bounds converge at φc.  The R/Rw  – Vp data pairs are not

uniquely defined for a given porosity; the range R/Rw – Vp data defined by the box in

Figure C4 can occur at porosities between φmin and φmax.

Even though an R/Rw – Vp data pair plots as a single point on a R/Rw – Vp plot, it is not

defined uniquely by porosity; the data pair represents a range in possible porosities

(Figure C5). For a given R/Rw – Vp data pair, the porosity range is improved if the range

limits are different for the R – φ bounds and the Vp – φ bounds.

A significant observation in Figure C5c is that the upper and lower R/Rw – Vp bound

are very similar.  This means that the resistivity and velocity bounds have similar

functional form.  If the elastic and electrical properties of a formation change in a similar

manner from a change in porosity, then R/Rw – Vp data is restricted to the narrow region

between the bounds. If an R/Rw – Vp data pair plots within the region between the upper

and lower R/Rw – φ bounds (solid and dotted lines in Figure C5c), then the formation

properties are electrically and elastically similar.  However, if the elastic properties

change without the electrical properties changing in a similar way, the R/Rw – Vp data pair

will plot outside the inner-most bounds, but still between the upper-lower bounds (dashed

lines in Figure C5c).
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Figure C3:  Bounds on the velocity – normalized resistivity. Upper and lower bounds in a water –
quartz sand system for (a) Vp – R/Rw and (b) Vs – R/Rw. The lower HS bound (solid lines), the
empirical upper bound (dotted lines), the upper empirical and lower HS bounds (dashed lines); φc

= 0.40.
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Figure C4: Constraining velocity – resistivity pairs using porosity data.   Constraining porosity
estimates using velocity – resistivity data.  φc = 0.40
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Figure C5:  Constraining porosity estimates using velocity – resistivity data.  φc = 0.40

Evaluating Pore Space Characteristics using Velocity - Resistivity Data

Increasing the compaction, cementation, sorting or clay content in a formation

increases both R and Vp and decreases porosity.  Trends in data on an R/Rw – Vp plot differ

because of changes in the pore space characteristics and/or the mineral constituents,

which may or may not influence the pore space.  Since electrical currents and acoustic

waves are both influenced by similar pore space characteristics, location of data on an

R/Rw  – Vp plot can be used to (1) identify changes in a formation’s properties and (2)

delineate individual formations with different characteristic properties. Because the R/Rw
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– Vp bounds are so narrow, it could be difficult to distinguish different formation

properties (Figure C6a); however, since the R/Rw – Vs bounds (Figure C6b) are wide, R/Rw

– Vs data might provide more insight into the formation pore space characteristics.

Strictly speaking, the upper and lower bounds are defined for a specific fluid-mineral

system.  However, R/Rw and Vp values in a particular formation can vary from changes in

the volumes of mineral constituents as well as changes in pore space characteristics.  For

example, in a quartz sand system, the HS and empirical upper bound is lower for a clay-

cemented system than a quartz-cemented one since Rcl  < Rqz, Vp-cl < Vp-qz and φc-cl > φc-qz-sa.

The influence of mineral constituents is particularly important to understand when

interpreting the location of R/Rw – φ and Vp – φ data with respect to the bounds since the

bounds themselves must be adjusted for changes in mineralogy.

By adding a cementing mineral with similar electrical and elastic properties as the

granular constituent, the system’s stiffness increases and porosity decreases resulting in

increased in Vp and R. Such cemented data tend to plot near the empirical upper R/Rw –φ

and Vp – φ bounds, therefore plot near the upper R/Rw – Vp bound (dotted line in Figure

C6a).

The lower HS bounds on R/Rw and Vp characterize systems of resistive and stiff

spheres in suspension, respectively, a likely model for many sediments. Consequently,

data in clean sands and spheres fall on the lower HS R/Rw and Vp bounds when in

suspension and just above when loosely packed. Therefore, data that plot near the lower

HS bounds (bold dashed line in Figure C6a) are likely from unconsolidated and

uncompacted sediments.

If the system’s mineralogy doesn’t change, decreasing the sorting (increasing the

grain size distribution) decreases porosity and slightly increases the system’s stiffness

and tortuosity, leading to a slight increase in Vp and R.  R/Rw – Vp data should plot up the

lower HS bound as a result of decreased sorting. In many clastic depositional

environments, however, sorting decreases from increasing clay content; the influence of

sorting in such a case is the same as the clay influence.

The effects of clays on R and Vp are quite complex because of the unique electrical,

elastic and pore space properties of clays. The influence of clays on the R and Vp of a

system depends on the distribution of clays (dispersed, structural or cementing), the
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method of adding the clays to the system (replacing pore space or grains), the properties

of the other constituents (Rw, Km and µm), and the compaction history.  For example,

consider the case where dispersed clays are added to the pore space of brine-saturated

sand. In such a case, total porosity decreases because it is replaced by the clay volume.  R

increases because the channel porosity decreases and the tortuosity effect dominates over

the conductivity effect. Vp also increases because the clays stiffen the pore space.
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Figure C6: Using the velocity – resistivity bounds to evaluate formation properties. The arrows
indicate the direction of increased change in pore space characteristic.
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Conclusions

• For materials in suspension (φ > φc), the R/Rw – Vp relationship is simply defined

by the lower HS bounds on R and Vp.

• For grain-supported materials (φ < φc), the R/Rw – Vp relationship is constrained by

R/Rw – Vp bounds, which are defined by the lower HS bounds for R and Vp and

modified upper bounds for R/Rw and Vp.

•  R/Rw  – V p data in unconsolidated systems fall along the lower HS R/Rw  – Vp

bound.

•  R/Rw   – Vp data in cemented systems fall along the empirical upper R/Rw  – Vp

bound.

• The R/Rw – Vp bounds can be used to (1) constrain porosity estimates given R/Rw –

Vp data, (2) forward model R/Rw – Vp data pairs given φ data.

• The trends of R/Rw – Vs data with respect to the bounds may provide insight into

changes in a formation’s pore space characteristics.
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