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A Theoretical Description of Inhomogeneous Turbulence

Leaf Turner*, Mark S. Ulitsky (T-3)
Jane L. Pratt (T-3 UGS and Harvey Mudd College)

Timothy T. Clark (T-13),
Ari M. Turner (Princeton University)

Abstract
This is the final report of a three-year, Laboratory-Directed Research and
Development (LDRD) project at the Los Alamos National Laboratory
(LANL). In this LDRD, we have developed a highly compact and descriptive
formalism that allows us to broach the theoretically formidable morass of
inhomogeneous turbulence. Our formalism has two novel aspects: (a) an
adaptation of helicity basis functions to represent an arbitrary incompressible
channel flow and (b) the invocation of a hypothesis of random phase. A result
of this compact formalism is that the mathematical description of
inhomogeneous turbulence looks much like that of homogeneous turbulence --
at the moment, the most rigorously explored terrain in turbulence research.
As a result, we can explore the effect of boundaries on such important
quantities as the gradients of mean flow, mean pressure, triple-velocity
correlations and pressure velocity correlations, all of which vanish under the
conventional, but artificial, assumption that the turbulence is statistically
spatially uniform. Under suitable conditions, we have predicted that a mean
flow gradient can develop even when none is initially present.

Background and Research Objectives

Turbulence is pervasive on all scales in the natural world from the tempest in a pot of

tea, to storms on Jupiter, to cataclysmic events in galaxies. Feynman termed fluid turbulence

the last and greatest problem of classical physics. Nevertheless, since the close of the 19th

century, the elucidation of turbulence has remained’ among the most challenging of physics

problems because, for the most part, it has been relegated to stagnation with only

phenomenological patching. Instead, physicists turned their attention to the new and exciting

physics of the very small and the very large, setting aside the old and severe difficulties of

classical mesoscopic matter. Most of the existing theoretical research on fluid turbulence

starts out with the simplifying assumptions of statistical homogeneity and isotropy, and even

of spatial periodicity, although they provide only a naive semblance of physical reality. The

justification for this emphasis has been falling back on the old lamppost saw: “In search of a

solution, one might as well start looking where there is some light, even if the relevant
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solution lies elsewhere.” Homogeneity has lit up the theoretical realm where simple diagonal

Fourier representations hold sway.

A whole collection of calculational techniques, each with its own strengths and

weaknesses have been developed, principally by Kraichnan, but also by many others such as

‘2] Promising initial steps were first presented by Kraichnan whoEdwards[l]and Orszag .

formulated the Direct Interaction Approximation (DIA) for bounded buoyancy-driven

turbulence[3] and again by Kraichnan who formulated the Test-Field Model (TFM) for

‘4]The consequentarbitrary orthogonal basis vectors in somewhat more general geometries .

complexities of the Test-Field Model led Kraichnan[5] to a truncation of the expression for the

evolution of the eddy-damping (time-scale), thus leading to a final, simplified model that

resembled Orszag’s eddy-damped quasinormal Markovian (EDQNM) model[2].

Our own interest in turbulence was triggered by the intriguing configuration of a

mean reversed-toroidal magnetic field that was turbulently generated in a pinch fusion

device. The reversed nature persisted on time scales much greater than what would be

expected on the basis of classical resistive diffusion. Analogous persistent magnetic field

structures occur also in astrophysical environments. The explanation for such persistent mean

field structures requires the incorporation of the effect of a geometry’s boundedness,

certainly a hallmark of any earth-based fusion device. A statistical theory can account for

many of the mean properties of an ideal “reversed-field pinch.” But in any purely statistical

treatment of an ideal continuous medium, lurks the ultraviolet catastrophe of Rayleigh and

Jeans; resistive and viscous dissipation are vital to avoiding this pathology. Aside from two

seminal papers of Robert Kraichnan[5>6]providing formalism that does not lead to tractable

numerical computations with even contemporary computers, there has been virtually no

theoretical attempt to treat inhomogeneous turbulence from the bottom up.

Importance to LANL’s Science and Technology Base and National R&D Need

Historically, theoretical effort to understand fluid turbulence has been focused on

regimes of greatest aesthetic and mathematical simplicity, regimes having a high symmetry;

such as the regime of statistically homogeneous and isotropic turbulence. The advantage of

such investigations is, of course, the utility of Fourier analysis. The disadvantage is their

obvious lack of physical realism; i.e., their inapplicability to inhomogeneous turbulence
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whose mean parameters have spatial gradients, the hallmark of all relevant problems. These

problems extend from drag forces on transportation vehicles, combustion in automotive

engines, and flow through turbines, to meteorological and astrophysical phenomena,

eruptions of volcanoes and forest fires, and weapons physics. All of these examples are

germane to LANL and relevant to a science and technology base able to provide solutions to

critical national problems: such as environmental pollution, natural disasters, climate, energy

efficiency, weapons and weapons monitoring, biological and chemical warfare.

With the Laboratory’s current research mandate regarding science-based stockpile

stewardship and the concomitant concern to maintain technical leadership in the associated

areas of science, the results of our inhomogeneous research provides a tool with much

potential to solve and understand heretofore intractable problems.

The applications of this turbulence research to magnetohydrodynamics has direct

relevance to the reversed-field pinch and spheromaks, ingredients of this nation’s innovative

confinement concepts in magnetic fusion energy that receives theoretical support from Los

Alamos.

Scientific Approach and Accomplishments

During the past 3 years, we developed a treatment of bounded turbulence. We

utilized a theoretical closure that has been used extensively by others to describe

homogeneous fluid turbulence to obtain a quantitative first principles’ treatment of a viscous

channel flow bounded by two parallel, free-slip planar boundaries. We implemented this

closure in the context of a helicity-based representation of a channel flow of an

incompressible fluid.

The basis used for representation of the bounded incompressible flow is a simple

linear combination of the clockwise and counter-clockwise polarization vectors well known

in optics for the representation of a (homogeneous) beam of light. These polarization

vectors have been generalized in a seminal paper of Chandrasekhar and Kendall to a

‘7] With Montgomery, Vahala, we used the Chandrasekhar-Kendallspherical geometry .

technique to analyze the statistics of the magnetohydrodynamic turbulence in a cylinde~g].

We introduced these mathematical techniques to the statistical treatment of inhomogeneous

turbulence employing the well-known closures of DIA, TFM, and EDQNM3’4. (In the realm
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of homogeneous turbulence, we had already demonstrated that EDQNM could specify the

evolution of an arbitrary, anisotropic, and mirror-symmetry-violating turbulence with only

four coupled equations involving four scalar functions. Heretofore, the only literature on the

‘9] Clearly there were 5 linear dependencies thatsubject utilized 9 equations with 9 functions .

had not been removed!)

We next introduced a hypothesis of random phase3 in order to obtain the same

simplification provided by the naive, but often-used, assumption of spatial uniformity of the

statistics of the turbulence. The non-linearity of the equations motivates the idea that the

phases of different solenoidal components will be random. If no approximation like this were

to be valid, there would be scant hope of developing a theory of spatially non-uniform

turbulence based on our existing concepts. By means of a hypothesis of random-phase, we

demonstrated calculations of the evolution of macroscopic mean fluid structures of

inhomogeneous turbulence, pressure gradients, for example, and quantities that either had

been previously assumed to be negligible (e.g., gradient of the pressure-velocity correlation)

or had been previously modeled ad hoc, such as the gradient of the triple-velocity correlation,

which we find to be negligible (see Figs. 1 and 2)5. Another significant new result is the

prediction that mean flow gradients can emerge out of the interaction of turbulent eddies

even when no such gradients are initially present5. In direct numerical simulations of a

Navier-Stokes fluid in a free-slip channel, we have demonstrated the excellence of the

random-phase hypothesis for fully developed turbulence in the absence of mean flows (see

Fig. 3)6. This work received further clarification through reference 7.

We have started to extend this analysis to the two-fluid-like case of MHD turbulence.

In this case, more demands are placed on the closure than are placed on the closure for

ordinary fluid turbulence. The turbulent fluid energy spectrum must remain positive at all

times; the turbulent magnetic energy spectrum must remain positive at all times; and the

cross-helicity spectrum (whose integral yields the spatial integral of the scalar product of the

velocity field with the magnetic field) critical to the turbulent MHD dynamo must satisfy a

Schwarz inequality. Thus, one must show that the three evolution equations of the three

spectra obtained from the closure yield evolving spectra that always satisfy these three

“realizability” conditions. In the absence of mean fields, we have done so using the Elsasser

field variables, v~B.



This research has been published in Physical Review Letters, Physics ofFluids,

Physical Review E, and has been accepted for publishing in the Journal of Fluid Mechanics

with supporting documentation to be archived in their Editorial Office. This research has

formed the basis for numerous invited talks over the past several years. Most recently, this

research will be a principal focus of an international turbulence workshop to take place in

Lyon, France in May of 2000.
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Figures

Figure 1 Example of non-vanishing elements of the normalized anisotropy tensor, bti, as a
function of y. The free-slip channel boundaries are located at y=O and at y =25.

Figure 2 Example of the rate of change of mean turbulent kinetic energy and its
contributory quantities: the gradient of the mean pressure-velocity correlation, the
mean viscous damping term, and the gradient of the mean triple velocity
correlation.

Figure 3 Comparison of two probability density functions of the correlation between two
spectral coefficients: one calculation based on random-phase, the other based on
an ensemble of direct numerical simulations of the Navier-Stokes equation of a
freely decaying turbulence. The slight discrepancy is due to the presence of a
finite viscosity.
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Figure 1.
Example of non-vanishing elements of the normalized anisotropy tensor, bti, as a function

of y. The free-slip channel boundaries are located at y=O and at y =25.
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Figure 2.
Example of the rate of change of mean turbulent kinetic energy and its contributory
quantities: the gradient of the mean pressure-velocity correlation, the mean viscous

damping term, and the gradient of the mean triple velocity correlation.
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Figure 3.
Comparison of two probability density functions of the correlation between two spectral
coefficients: one calculation based on random-phase, the other based on an ensemble of

direct numerical simulations of the Navier-Stokes equation of a freely decaying
turbulence. The slight discrepancy is due to the presence of a finite viscosity


