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Summary

‘h goal of k work performed under thisgram hasbeenCOdevelop high-qtxvlitytools for
Sinndaung compkix systems that are represented by sohhs to partialdiffererltidequ8-

tims Examples include the simulation of combustiondcviccs and Ofv~ous kinds Ofrk
ufaeturing pr~ses. Soch systems are chammxizd by dw pres=ce of multiple physical
processes, of complex geometries, and of muhiple kngth and time scales. ‘k this end,
we iicvclopid a m,amlxxOfnew methodstha[ aft required to simulate a variety of com-
plex systems. ~ fichxk methods for ~m~@ pr~blems with muhiple ~ Q%M,

WXIXIUCand robust finite diffitretu discmxizalio~ mehods fw adaptively concentrating
coqutaticml effor%whereiris most iwedea and general, kxib]c merhods for representing
complex gcometdes.

I-iigh+est)lutim mdmds for stiffl cmstmined systems of PDE%

A standard problem in WE4epcn dent fluiddynamics is the need for cfkient methods for
probkm with multiple time scales. ‘Thec]a~ic ~ample IS the case of fluid ftovvsac low
Mach number, for which acoustic waves dax to til~liiWitm very rapidly relative to the
time scales for the advecrive rnotbns and contributehle ro the dynamic%.A principal goal
in this area has been to develop numerical metitic for Wse probkm in which the f=
[irne $de does not need to be resdwed. ~n~ ~pr~~h is co U= &e mef&od of lines. in
which the solution is tlhererized first h space, with a sfiff c)I)E or ME solver employed
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towlvet~~wltingw~-dixfete problem. Hwet’ti, m0ha0bt4im amom corr@-
tion#ly efficient meth~ by exploitingproblem-dependentknowkxige. TwkzNy, this is
done either by disczetking the a limiting set of eqdons fhn which the fast SCa]CShave
txxn removed IIsirIgasyn]ptotics [29. 23], or by qarriting the f~ ad $lOWdes kI the .
original equitationsand developing appropriatestableandwehmdirioned discredzatkms
for each [8, 7]-

We have ma&a rwmber of conrriburionsin this area for probkms involving low Mach
numbq flows including combustion, and for chargai-fluid models of plasmas. In [1l],
we developed a new merhod Rx computing r$medepentknt cqmx$ibk flows that is uni-
formly stable andwelIax@ionM aTall Mach numbersbetweenzxo and one, andwcs a
time step based on the adve&ve (XL eonstint only.The methodis based on splkrkg [be
momenI~ tquarion into two quati(msx eorresp(mdingto a Hedge decomposition of the
fluid velocity into soknoidal arid imotationaleomponenta. I’%ae is ak a Cxxre.spending
@itting of @ presske fores and of the wloeity advection terns. This splitting p=rmits
a nurncricd method in which the acotisticwavesare treated implicjzly, while the ak.etive
mm.ionsare tr-ted txpkitly. In particular, the only linear systems thatneedto be SOIVW
correspond to Well-behaveddiscretizationsof Wiptic PIE’s with variable coefficients. In
+dition, the method reducesto a second+rder aewmze projection method d a type dis-
cussed above in the limit of vanishingMachnumber.

Therem a rmmber of advarmtge$of using rhk method over ones based on low Mach
number asymptotic quations. It k capable of handling transient conditions h) MM eom-
pressibilhy cffem arc sis@fkant, such as choking of a flowjust as a valve is opened or
CIOSW.‘I’We are also advantages to this appnMchin formulating AMR algorithms. For
exarnp~ for low Mach nwnk combustion in closed cc@ainem, it is not obvious how to
apply the eonslrairit thar the thermodynamic pressure is a constant in space, but depends
on time in the ease when there is refinement in time. The present approach embeds tit

eonsuzdnt in a timedipmiempmcess whichcanbe d.kxetizd stably and acc~rrttelyus!ng
AMR. I%ally, WISfo:mdation provicks a slightlydifferemteoneepwal fzamewoxkfor dk
creriziag low Mach number Iimitingequations fh~ has led to new algorithmic approaches)..~

: including a second-orderaccuratealgmkhrn for immmpressibk kw in domains W-thde-
formingboun- [12], aswell asnew algorithms for low Mach mmber reactingflows
[16, 171-

.

We have also developed new wh.niqoes for dealing wish the redundant quatioris that
rypicdly arise in this selling. For example, in &e zerdkfach mkrnberlimi~ the lknnOdy-
namic equation of state reduees to a constraint CM the thermodynamic pressure pRT k a
consum as a function of spat+ wherep is the fluiddensi~, T is the tempwarum,andR
is thegas constant. At the level of tlwPIEs diis constraint is compatible with the conser-
vation equations for mass and energx bOWCVer, thti cxm~ibiliy is M pH=s=ved W~~II
the system Mdiscretiti In [2Q, we developeda methodfor simuhKousIy conserving
mass and enek~ in such systems. analoEousto tic dune discrepancy approach used to

,. deal with a similar probkm in prow media flows [1, 31]. In the present ease, we usc.:
‘*
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con~wti= &~etiatiens of&e ~aden~y qmtions, atiaM apendty termto
the divergence constraint for the velocity that generatesadditional !CXAI%idcmnpfessions
and exp&XiOnsthat Ax (he thermodynamic variables Wwarda solution th8t W&&s tie
constraint- A simihr method @n be used to obtain amass and energy consming version
of the mtihod in [11].

We have developed a new method for salving the kid-phsrna q@ms that arise in
ltMdeIingan inc?uctively-coupkxlpktsipa reactor [9]. In this pdl~ the chargai iluid rep-
resenting the eketrorzs satisfies a driftdifimion equation, while the ions satisfy the com-
pressibk flowequations. The stiff timescak is rhcdkicctr.ic rehu(ationtime scale cmwIJi&
rhe plasma rel~es to quasi-neutrality. This time scale is typically several orders of ma@i-
Tudesmakr than the next dynamically Signiflcsnttime scale. Howev&,one cannot simply

eliminate the fast scale by assuming the plasma is quasi-neutral, since thareis significant
chafge separation in the plasma sheaIh n- the rimctorwall. We developed a method that
eliminates I& dielectrk relaxation time scale and conserves ions andelectmm his based
on difkentiating Poisson’sequationfor the ekctrostatic foizza with respeet to time m ob-
tain anew equation for the ekztic llel~ combined wim accounting ccxreetiy for the strong
coopling berween the forces induced by the net charge and the propagation of sound in
the ions. W resulting melhod elimkatcs the stiff time scdq while permitting the Useof

exilieil high-rtx+olutionfinite difference methods for the ckc.trtm and ion transport.Ag$’@
the only impIicit solution required is that ofm elliptic PDE.

AMR for Non-HyperbolicProbkms

Cker thclastthree ye-. we have extemkd the bbek-strucr.uredAMR approach to a vtiety
of applied PIE problems.‘Ike include methods fix tirndeperxient problems in incom-
_bJe flow [z 30, 24], bv-?+kh numbercmnhisthn [26], ~dtive md ~m~ln~.
trde hem transfer IMsd on tha disertxe ordinate method [20, 19], porotlS?tWditttiw
[2S, 27], and fluid plasma modeling [10]. We have also applied the mexhodto compute
steady-state 60WSin tran!ionic aerodynamics [14, 13] and the sohxicms to the nonlinear
system of ciilipricPIEs that describe the &taiIed behavior of semiconductor&vices [~.

In earryjng our rhis wodq one of the principal teclmiea.1hurdles that bad to be over-
come were in the development of suitable understanding of the weLposedness of these
probletns as botmdaty-due and initial-boundary-valueprolkrns, d the tsansktion of
thatunderstanding into algorithmic design decisions. StM iss~ em bepacticukrly SUbde
for tim+dependent prolkns invoking eonsmaints.For wmpk, it is nontrivial to &velop.
an appropriate di.screti2arionof Imnogmeous and inhotmgermus constraints orI the di-
weru% of Ck velocity fiekk pactimkdy when the grid is mtined in time as well as in
space.OIher problems aasociared with coupiing al coarse-he boundaries include redv-
ing the conflicting m@rernents of frcesna.m preservation and conservation in advedve
rransporz by an inco~psesSbIe, rirne-vqhg ve.tocityfield. or of ccmervation of energy
and algoribie stability for combined-male heat transfer in the optically thin limi~ and
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Rgurc 1: Solution (~) values are Ioeated at the fiUedcticlcs in b kft figure. @e.rater
(L(#)) wh=s are bxted at the crossedpohs. At reguhwcells, these hcations coincide.
The figure on zheright shows in(erpoIatiorIbetweenfiuxesatceH faecs to get fluxes at face
centroids.

*C development of srableextensions to the adaptivecase of the splitting merbods in [9] for
rbe chargd-fluid models of plasmas.

!
Vihume-Of-Fhid Methods

#~
!

One of the main aecomplishmcnw in this area has been the &YebpmcrIt of secund-order
Iaccurate finite difference methods for SOMOIZof classicalPDE’s using Cartesian grid emb-

edded boundary representations of irregular geometriesBl, 22]. Our methods are based
cmanew formaltruncationtxmxanalysis in whkhthedkcretizedsolutionis -tcrcd on I
the rccxtigular Cartesian mes~ while the various opefator discredzations arc centered on
the appropriate centids of the imcrsectionof the ceil with the domain (figure l). Wehave I
cotnbincd.this Meawirh ROWAdiscmizatimx of the PDEs that eliminate thestability pro~
lems assrxia~d with small celi VOIVM For elliptic and parabolic PI)E*s with DiticMt [.

boundasy cxrnditions,this is amomplished by Mxoking Specidze.d stetxiIs for the flux
at the irregular boundary rhat havea minimum stend width comparable to the rectanguhr I
g.ridmesh spacing. This kids to lincarsys~ms lhathave conditionmnberscomparatdc to
those for the ree-guku @d method withoutthe body”prcseIz llie resulting snexhodshave
sceond-order aeeuratc solution arors in max norm, and gcometrie multigrid mdtods work
as vdl as for the rectanguhr@d case. Weappliedtheseidt%iszosimulatemelth&ktaion
processingof ceramic-matrix composites [25]. In thisprold~ liquid sihon is &awn into [

a porous aubon / silicon esrbii preform by capillwy brces. The silicon reacts with the
carbon, fixining b composite. Tlds p~ is reprcsenti numerically as a s@le-pbse
fiow in a porous medium with time-varying porosity (the Specific volume of the product 1
silicon abide is kss that that of the mactinta). ?he elliptic p~ equation for Da@y”s
law is solved on the time-depcmknt domain cxsveringthe liquid silicon, with the mcmting -
fke bomkuy represented by a Yohme-of-fluiddescription, and the dkcreti~tion of the
pressute poflunned using [21].
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software Saqqwt for High-l?md &h&ic Corn~Wng

W have btxn COMMHKMS in the Titanium kuqymge pxojecr [32], in which a rnodcm
object-oriented langwgeis tig~velo~fm ~entificampumtion. Using tbe3wa
Ianguagc as a s~wtingpoim, w- have added WVerrJucwfeatures to make it easier to ilIIple-
menclarge-scale parallel scientific qplkations. Tke inchde an explicitmm execution
model,osi~ga global addzess space to cxprcs communication at a high level; a muM-
dimenskmal army synmx, based on some of the ideas in [18]; and werdefmed primitive
qtpes, called immutable type% to ehminaxc object overhead for ktw-~e~l domain-specific
ribstractkms. Chr contribution in this work has been to bring to the languagedesignpm
eess the experien~ of designing abstractions fm advanc~ scientific applicathms, and ro
impktnerkt spdic paralle~ applicationssuch as the high-resolutionandAMR a@xMnzs

described ekwhereinthis proposal- ~Tlmniwcon~~ti=slawspro~= into ANSI
mmdafd C, and is supporkd on a vari~ of pkufwrns,inchding wodwitkms andnetworks
of WOd(S(NiORS theGay T3E the IBM SP,andlhe Tkra.

WChave developed a new domain decomposition algorithm for computing in para?lcl
finite difference sohtiom to Pois@n*sequation[5], It is kctxi on the methcd of hd

mmdions algorithm(l@X] of Andtzwm [4, 3},a fast methodfor computing the field in-
duced by a COkCtion of charged particles, We represent tke solution on the whole grid as
a linear su~qmsitiori of finitc diffkmxe solutions computed using infinite domain bound-
ay Conditions on S&domains, which are computed in paralld far eaeh Wdomdn- W

gbbd coupling berwxn ?he sdxiomaixzs is mediated rlmugh a single salve on a coarse
grid covering the entira pmbkrn domain. Unlikemosrdomaindexmmposiricamethods, the
W method does noi iteratebezween the coarse and fine levels- In addition, we exp!oit the
~xial pqertiea of Mehmelkm diacredzmionsof the Laplaeian to obtain a method that
is scalable the size of he mane grid scaks Me the size of a single fine SIIMcmu& and
the size of the overlap bemen fine patches is a sr@ fkactionof that of the support of the
charge on a single pauh. W net molt is an algorithm”tha!has a iower cmnrnIJnications

cost th$n more tmditional i&rarive methods, A@ it is builtfromfamiliar and easily hn-
pknentd algorhhmic ccnnponems. i~ nmM@idadvezs and ecmvcdutioointegrators thti
need not be 8Yzum”(in the sense of [1S]). 13em3se &its low COmmmicationsrequirements,
it is more toleram of the high-latency communications dxut the more traditional itmtke
methods,
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