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Task 1

Research efforts in Task 1 are focused on the problem in one-dimensional geometry and
development of basic ideas of functionalization and homogenization procedures. The spatial
homogenization procedure must preserve the averaged reaction rates, surface-averaged group
currents, and eigenvalue [1]. The homogenization fits naturally into the framework of the
quasidiffusion (QD) method [2, 3] that is based on the idea of successive averaging of the
transport equation over angular and energy variable. The averaging over spatial variable is
the next logical step [3].

We formulated an approach for spatial assembly homegenezation which is based on the
idea of consistent discretization of spatially averaged QD low-order equations and their fine-
mesh discretization. Below is the description of the proposed method of the consistent

coarse-mesh discretization of the QD low-order equations. This is a basis for thc proposed
homcgcnw~ation procedure. These results were submitted for the ANS 2000 International
Winter Meeting.

1. The Quasi-Diffusion Method

Wc consider the k-eigenvaluc transport problem for lD slab geometry (a < x < b,

The low-order QD equations [2] for the scalar flux

iia,p)lw,o= o,

@ and the current
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J(a) = C.@(a) , J(b) = C~cj(b) ,

where the functional
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are calculated by the transport solution.

2. Fine-Mesh Discretization

We discretize spatially the low-order QD equations using a second-order difference scheme
[4]. A spatial mesh is defined so that X;+ll, (1 < z < N) correspond to the mesh edges,
where xlp = a and xjV+l/z = b. The mesh widths are given by hi = Xi+l/2 – zi_l/2.

Integer zt ~ subscripts refer to cell-edge quantities, and integer subscripts refer to cell-average
quantities. The difference scheme for the low-order equations of the QD method is defined
by (i= 1,...,0/)

Ji+l/z– Ji-1/2 +
( )

Xa,i – ~v.Ef,i hi~i = O, (7)

Di@i – Di_112@i_112+ ~Et,ihiJi_l/2 = O, (8)

Di+l/2@i+1/2– Di@i + ~Et,ihiJi+l/2 = O, (9)

J1/z= ca@~/2, JNh112= cb~N~~/2. (lo)

Hereafter wc assume that the transport solution is found by means of some method, and,
thus, we can calculate all necessary functional.

3. Consistent Coarse-Mesh Discretization

Let us consider a two-zone problem: a < x S g (a-zone) , g S x S b (P-zone). We
introduce xM+l/z = g, two sets of indices Ia = {i:l<i< J4}and IP={i:IM+l<i<N},
and a coarse mesh consisting of just one cell per zone. The coarse-mesh solution is defined

bY ~<, @~, a;, ~R, and JL~ , where & is the index of a zone and the corresponding coarse

cell (~ = o+ P), @t is the cell-average scalar flux, and the superscripts L and R indicate
rcspcctivcly the left and right cell-edge values in the <-th coarse CCI1. The coarse-mesh
discretization of the QD low-order equations consistent with the difference scheme (7)-(10)
is given by the following set of equations:

(11)

(12)
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(22)

The coarse-cell balance equations (11) were obtained by spatial averaging of fine-mesh equa-

tions (7) over each zone and introducing average cross sections (19). To get Eqs. (12) and
(13), in each of coarse cells we approximated the first-moment QD equation (3) relating cell-
edge and cell-average values of the coarse-mesh solution in a way that is similar to one used

to obtain the difference equations (8) and (9). To accomplish this, we derived the definition
of cell-average QD functional D [Eqs. (20)] which is based on special factors F~ and FCR
[Eqs. (21) and (22)]. We note that these quantities are similar to discontinuity factors [11.
However, the proposed consistent coarse-mesh discretization preserves the continuity of the
scalar flux and the current on cell interfaces [Eqs. (14)] .homegenezation

The coarse-mesh discrete QD low-order equations (11)-(22) are consistent with the fine-
mesh dkicrete QD low-order equstions (7)-(10) and the coarse-mesh solution has the following

form in terms of the fine-mesh transport solution of Eqs. (7)-(10):

/
~e=~~ihi ~hi, ~=~,~, (23)

iEI~ iCI~

J: = J112, J? = J; = JM+Ij2 , J; = JN+I/2 , (24)

@’: = 41/2 > @: = +; = 45M+l/2 , +; = 4N+l/2 > (25)

and k-cigcnvalue is the same.
The coarse-mesh equations (11 )-(22) were derived by means of equivalent manipulations.

No approximations were made. If one substitutes the solution (23)-(25) into (11)-(22), then
it easy to sce that it meets these coarse-mesh discretized equations.

To develop a coarse-mesh solution that contains more details about the solution inside a
zone, one can define in each zone a mesh consisted of three cells: (a) two original fine-mesh
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boundary cells in the given zone, (b) one central cell that covers the rest area in the zone.

Then, the described procedure of coarse-mesh discretization is applied to the central cell.

4. Spatial Decomposion

It is possible to reformulate equivalently the derived above two-cell problem (11)-(15) in

the form of two one-cell problems each of which will reproduce the corresponding part of the
original solution. To perform such decomposition, we replace two interface equations (14)
by special boundary conditions. These conditions can be presented in different forms. We
consider the albedo form:

(26)

~:= * I
* *

/
*

J%(-W(91 P)@JJ7N(9> P)4.J, q = /%J(9> PM J%(91 /J)@,
0

(27)
where n = O,1,& = a,P, p; = 1, p; = –1, and ~(p) is the albedo. The albedo and any of
these functional [Eqs. (27)] can be calculated by the known fine-mesh transport solution.

5. Conclusion

We have developed an approach for spatial averaging the discretized QD low-order equa-

tions and generating a coarse-mesh discretization which is consistent with the given fine-mesh
discretization. The proposed procedure was demonstrated on a two-zone problem. The de-
veloped method also implements the idea of discontinuity factors, however does it rather nat-

urally and in theoretically sound manner. The resulting solution preserves continuity both
of the scalar flux and the current. The procedure of spatial decomposition based on albedo
boundary conditions was formulated. The presented approaches to coarse-mesh consistent
discrctization and spatial decomposition can be extended to multidimensional problems and
nodal discrctization methods. The proposed methodology creates a theoretical background
for homogenization of spatial regions and parametrization of group constants using assembly

transport solution.



Task 2

Our efforts are currently focused on continued development of the 2D nodal QD code
with “extra” leakage terms lagged at the previous iteration step (similar to the standard
transverse leakages), Fourier analyses of this iterative technique, investigation of another
solution strategy which treats all the terms in the QD equations implicitly, and adaptation

of a traditional “marching” method to the solution of nodal QD equations.
The results from the Fourier analysis of our “ lagged QD leakage” approach will be pivot al

in determining the strategy used to solve the QD equations. The general idea is to try to
make the QD nodal equations look as much like standard nodal diffusion as possible. In the
QD method, we find that the current in a direction u, where u = x, g, can be written as

(28)

where the fractional functional, D, are computed from the solution of a transport equation.
To make our QD equations look like standard diffusion equations, we move the second term
in the brackets in the above equation to the right hand side of our iterative system (calculate
it from previously obtained solutions). After discretization, we now have a slightly modified
transverse integrated leakage term. The overall iterative system has the form:

@(l+l) = A-lF#) , (29)

where A is a 2 x 2 block matrix, each block containing a 20NU,Vx 20NU,Vsystem, NU,Ubeing
the number of nodes in either the u or v direction, F is a matrix operator which computes
transverseintegrated leakages from flux moments, and #is a vector containing 20NU + 201VV
flux moment unknowns. A Fourier analysis of this iterative scheme involves approximating

the system as an infinite homogeneous medium, performing a Fourier series expansion of
the unknowns in the spatial variable, and solving the resulting eigensystem for the iteration

eigcnvalues. If the technique is stable, all the cigenvalues will be less than 1 in magnit udc.
We have constructed the eigensystem, and arc currently implementing a Fortran code to
solve it.

In our new implicit strategy, the complete QD leakage operator is treated with a nodal

discrctization, which means that wc keep all of the terms in Eq. (28) on the left-hand
side of the matrix equation. This means that the right-hand side of the matrix equation
contains terms which are completely analogous to standard diffusion. We expect that this

technique will converge much more quickly than our first technique; however, it may not be
as seamlessly incorporated into existing nodal diffusion codes.

We have also digressed briefly to gain an understanding of the marching technique used
to solve the finite volume discretization of the QD equations developed by [9]. Ultimately,
we intend to implement this method for the QD low-order equations; however, at this time,
we are applying it just to the finite volume difference diffusion equation described in [10].
In csscncc, this method is very similar to an alternating direction implicit tcchniquc, with
the interesting twist that the unknowns which exist in the problem (4, J) are replace by
quantities (p, ~ and a) which are less sensitive to iteration errors. In this way, ~ and -r can
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be converged very quickly (independent of u), and then the iteration on CTcan be completed

with these converged values of p and ~. This iteration procedure has been shown to converge
very rapidly for a wide variety of physical situations. At this time, we are coding the solution
technique for the finite volume diffusion equation, but we will be evaluating the suitability

of this marching method for the solution of more sophisticated differencing schemes applied
to both the diffusion and QD equations.
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Status Summary of NERI Tasks - Phase 1

Task 1

The development of the following methods in ID slab geometry:

1. Homogenization and definition of discontinuity factors,

2. Group constants functionalization using assembly transport solution of multigroup
eigenvalue problem with albedo boundary conditions,

3. Solving coarse-mesh effective few-group lD QD moment equations using tables of data+
parametrized with respect to the ratio ii . ~G/~G on boundaries.

Planned completion date: August 14, 2000

Task 2

Development of a numerical method for solving the 2D few-group moment QD equations:

1. Development of a nodal discretization method for 2D moment QD equations,

2. Development of an efficient iteration method for solving the system of equations of the
nodal discretiiiation method for 2D moment QD equations.

Planned completion date: August 14, 2000
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