
0 
DOE/BC/I 521 3-1 

(OSTI ID: 760868) 

ADVANCED TECHNIQUES FOR RESERVOIR SIMULATION AND 
MODELING OF NON-CONVENTIONAL WELLS 

Annual Report 
September 1, 1999-August 31, 2000 

BY 
Louis J. Durlofsky 

Date Published: August 2000 

Work Performed Under Contract No. DE-AC26-99BC15213 

Stanford University 
Stanford, California 

National Petroleum Technology Office 
US.  DEPARTMENT OF ENERGY 

Tulsa, Oklahoma 



DISC LA1 MER 

This report was prepared as an account of work sponsored by an agency of the 
United States Government. Neither the United States Government nor any agency 
thereof, nor any of their employees, makes any warranty, expressed or imphed, or 
assumes any legal liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process disclosed, or 
represents that i ts  use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency 
thereof. The views and opinions of authors expressed herein do not necessarily 
state or reflect those of the United States Government. 

This report has been reproduced directly from the best avaiIable copy. 



DOE/BC/15213-1 
Distribution Category UC-122 

Advanced Techniques for Reservoir Simulation and Modeling of 
Non-Conventional Wells 

BY 
Louis J. Durlofsky 

August 2000 

Work Performed Under Contract No .DE-AC26-99BC 152 13 

Prepared €or 
U.S. Department of Energy 

Assistant Secretary for Fossil Energy 

Thomas B. Reid, Project Manager 
National Petroleum Technology Office 

P.O. Box 3628 
Tulsa, OK 741 01 

Prepared by 
Department of Petroleum Engineering 

School of Earth Sciences 
Stanford University 

Stanford, CA 943 05-2220 



Contents 

1 . General Introduction ............................................................................... 1 

Part I . Development of Advanced Reservoir Simulation Techniques for 
Modeling Non-Conventional Wells ..................................................... 5 

2 . Modular Gridding and Discretization for Reservoir Simulation ........ 5 
2.1 Description of Numerical Issues and Overall Work Plan .................... 5 
2.2 Modular Grid Generation ..................................................................... 7 

2.2.1 Algebraic Grid Generation ....................................................... 7 
2.2.2 Elliptic Grid Generation .......................................................... -8 
2.2.3 Flow Based Grid Generation .................................................... 8 

2.3 Discretization ..................................................................................... 12 
2.3.1 Flow Equations ....................................................................... 12 
2.3.2 Finite Volume Schemes .......................................................... 13 
2.3.3 Two Dimensional Formulation .............................................. 15 
2.3.4 Three Dimensional Hexahedral Approximations ................... 18 
2.3.5 Flux Continuous Schemes ...................................................... 19 
2.3.6 Split Tensor Flux on a Structured Grid .................................. 23 
2.3.7 Unstructured Grids ................................................................. 25 

2.4 Simulation Results .............................................................................. 25 
2.5 Future Directions ................................................................................ 27 
2.6 References .......................................................................................... 33 

Part I1 . Coupling of the Reservoir and Non-Conventional Wells in 
Simulators ........................................................................................ -35 

3 . Semi-Analytical Calculation of Productivity Index and Well Index . 35 
3.1 Semi-Analytical Solution Technique ................................................. 39 
3.2 Incorporation of Skin in Semianalytical Solution .............................. 43 
3.3 Representation of Heterogeneity with s and k* .................................. 44 
3.4 Examples ............................................................................................ 48 

3 -4.1 Anisotropic Reference Case ................................................... 49 
3.4.2 Fixed Flow Rate Cases ........................................................... 5~ 
3.4.3 Fixed Pressure Cases .............................................................. 55 
3.4.4 Multilateral Case .................................................................. 3 7  
3.4.5 Complex Trajectory with Wellbore Hydraulics ..................... 59 

Wellbore Pressure Drop ..................................................................... 61 
3.5.1 Calculation of Well Productivity ............................................ 61 

3.4 Numerical Examples .......................................................................... 63 
3.6.1 Long Horizontal Wells ........................................................... 64 
3.6.2 Short Horizontal Wells ........................................................... 67 
3 6 3  Dual-lateral Wells .................................................................. 69 

3.7 Discussion and Conclusions ............................................................... 71 
3.8 Future Directions ................................................................................ 72 
3.9 References .......................................................................................... 73 

3.5 Assessment of the Combined Effects of Heterogeneity and 

... 
111 



4 . Pressure Drop in the Wellbore .............................................................. 77 

Pressure Drop Calculation ...................................................... 79 

4.3 Experimental Data .............................................................................. 81 

Norsk Hydro Experiments ...................................................... 83 

4.4 Comparison of Correlations with Experimental Data ........................ 84 

4.5 Conclusions and Future Directions .................................................... 91 
4.6 References .......................................................................................... 91 

4.1 Introduction ........................................................................................ 77 
4.2 Modeling Results for Single Phase Flow in Horizontal Wells ........... 78 

4.2.1 
4.2.2 Friction Factor with Wall  flow ............................................ 79 

4.3.1 StanfordMarathon Experiments ............................................ 82 
4.3.2 
4.3.3 Tulsa University Experiments ................................................ 83 

4.4.1 Effect of Perforation Density ................................................. 87 

Part III . Novel Approaches to Account for Heterogeneities in the 
93 Vicinity of Non-Conventional Wells .............................................. 

5 . Accurate Course Scaie Simulation of Horizontal Wells in 
Heterogeneous Reservoirs .................................................................... 
5.1 Introduction ....................................................................................... 93 
5.2 Near-Well Upscaling Methodology 95 

5.2.1 Local Fine Grid Flow Problem .............................................. 95 
5.2.2 Local Course Grid Flow Problem ......................................... 99 

5.3 Numerical Results for Flow Driven by Horizontal Wells ................ 103 
5 -3.1 Single Phase Flow Results ................................................... 104 
5.3.2 Three Phase Flow Results .................................................... 1 11 

5.4 Conclusions and Future Directions .................................................. 114 

93 

.................................................. 

115 5.5 References ........................................................................................ 

6 . Approximate Finite Difference Modeling of the Performance of 
Horizontal Wells in Heterogeneous Reservoirs ................................. 1 17 
6.1 Introduction ...................................................................................... 118 
6.2 Permeability Representation with s and k* ...................................... 119 
6.3 Simplified Finite Difference Modeling of Horizontal Wells 

............................................................ in Heterogeneous Reservoirs 120 
6.3.1 Fixed Total Liquid Rate Cases ............................................. 123 
6.3.2 Fixed Oil Rate Cases with BHP Constraint ......................... 129 
6.3.3 
6.3.4 Use of s-k* Representation on Coarser Grids ...................... 133 

6.5 References ........................................................................................ 139 

Unfavorable Mobility Ratio Displacements ......................... 132 

6.4 Discussion and Conclusions ............................................................. 138 

7 . Potential Application of New Modeling Approaches to Simulation 
While Drilling ....................................................................................... 141 



Executive Summary 

The use of non-conventional wells, which include horizontal, deviated, multilateral and 
“smart” wells, is essential for the efficient management of oil and gas reservoirs. These 
wells are able to contact larger regions of the reservoir than vertical wells and can also be 
used to target isolated hydrocarbon accumulations. Because non-conventional wells can 
be very expensive to drill and complete, it is important to be able to accurately model 
their performance. However, predictions of non-conventional well performance are often 
inaccurate. This is likely due in part to inadequacies in many of the reservoir engineering 
and reservoir simulation tools used to model non-conventional wells. 

Several complexities arise in non-conventional well modeling that do not exist, or exist to 
a much lesser extent, with vertical wells. For example, non-conventional wells, due to 
their geometric complexity, intersect reservoir features non-orthogonal1 y. Accurate reser- 
voir simulation models of non-conventional wells therefore require the use of more ad- 
vanced gridding and discretization techniques. In some cases, however, the construction 
of a detailed finite difference simulation model is not warranted and the use of an alter- 
native, more approximate technique is appropriate. One such approach is the use of a 
semi-analytical model based on Green’s functions. These models are highly efficient but 
are limited because they do not include all of the important effects that may influence 
well performance. Extensions of existing methods to approximate additional physics, 
such as the effects reservoir heterogeneity, would improve their usefulness considerably. 

The effects of pressure losses in the wellbore, which are generally negligible for vertical 
wells, can be important for non-conventional wells and therefore must be modeled. Sev- 
eral correlations for pressure drop in horizontal wells exist, though these were generally 
developed independently and with reference to limited experimental data. The unification 
and extension of the existing correlations to model all of the available data are therefore 
needed. Another important aspect of non-conventional well modeling is the accurate rep- 
resentation of the reservoir heterogeneity in finite difference simulation models. The ef- 
fects of near-well permeability variation on well performance can be very substantial, and 
the use of standard techniques for upscaling may lead to inaccurate simulation models. 

The research proposed in our five year project addresses all of the areas dscussed above. 
The work is divided into three main categories: (1) advanced reservoir simulation tech- 
niques for modeling non-conventional wells; (2) improved techniques for computing well 
productivity (for use in reservoir engineering calculations) and well index (for use in 
simulation models); and (3) accurate approaches to account for heterogeneity in the near- 
well region. Our progress through the first year of funding in each of these main areas is 
as follows. 

We are actively developing new gridding and discretization techniques for the accurate 
representation of non-conventional wells and other geometrically complex reservoir fea- 
tures. We are emphasizing a so-called modular approach, in which different regions of 
the reservoir can be gridded using different grid systems. Improved discretization tech- 
niques are also required because the simulation grids are in general non-orthogonal and 
permeability is in general a full tensor quantity. To date, we have developed and imple- 
mented techniques for efficiently simulating such systems when the local grids (i.e., each 
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grid module) are structured. Detailed simulation results for two phase systems, illustrat- 
ing the significant improvement in accuracy and efficiency offered by our new techniques 
relative to standard approaches, are presented. In the future, we plan to extend our ap- 
proaches to unstructured modules and to develop improved strategies for gridding. 

We next present the development and application of a new semi-analytical method for the 
approximate modeling of non-conventional wells in heterogeneous reservoirs. The ap- 
proach is based on a new representation of reservoir heterogeneity that is in a form sim- 
ple enough for use in the semi-analytical technique but that captures some essential 
physics. Comparisons of semi-analytical results with detailed finite difference simula- 
tions illustrate the generally high level of accuracy attainable using our new procedure. 
We then apply the semi-analytical methodology to a detailed study of the combined ef- 
fects of reservoir heterogeneity and wellbore hydraulics on the performance of non- 
conventional wells. In the future, we plan to extend these approaches to model more 
compIex (“smart”) wells and to use our semi-analytical results to determine accurate well 
indexes for use in finite difference reservoir simulation. 

The development and testing of a new correlation for pressure drop in horizontal wells is 
described next. This correlation models the frictional component of the wellbore pressure 
drop, accounting for the effects of inflow into the well through the perforations. The ef- 
fects of fluid acceleration are modeled separately. Using the new correlation, improved. 
agreement with experimental data from three different sources is obtained. In the future, 
we intend to model two and three phase wellbore flows and to investigate ways to effi- 
ciently introduce our wellbore flow models into finite difference reservoir simulators. 

The third portion of this report describes the development of new approaches for captur- 
ing the effects of reservoir heterogeneity on well performance in coarse scale finite dif- 
ference models. We present two such approaches. The first method is appropriate for use 
in finite difference models generated via a detailed upscaling of the fine grid permeability 
field. This method, which is a general near-well upscaling technique, is shown to provide 
coarse scale simulation results in close agreement with reference fine scale results for 
horizontal well problems. Results for both single phase and three phase flow problems 
are presented. The second method is more approximate (though it is easier to apply) and 
entails the use of the simplified permeability representation referred to above. Despite its 
simplicity, this method is shown to provide reasonable coarse scale simulation results for 
many flow quantities of interest. Future work will be geared toward extending these ap- 
proaches to treat general non-conventional wells and to implementing the near-well up- 
scaling technique within the context of modular gridding. 

Finally, we briefly discuss the eventual incorporation of many of the methodologies de- 
scribed in this report into a Simulation While Drilling modeling tool. Such a tool would 
allow for the optimization of the well length and trajectory during the actual dnlling op- 
eration. In the future, we plan to begin applying some of our new methods to this chal- 
lenging and important problem. 
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Abstract 

Research results for the first year of a five year project on the development of improved 
modeling techniques for non-conventional (e.g., horizontal, deviated or multilateral) 
wells are presented. New reservoir simulation techniques, able to provide accurate geo- 
metric representations of non-conventional wells, are developed and applied. Simulation 
results demonstrate significant improvements in accuracy relative to current techniques. 
A new and efficient semi-analytical technique based on Green’s functions for the ap- 
proximate modeling of non-conventional well performance is also developed. This 
method, appropriate under single phase flow conditions, includes an approximate treat- 
ment of the effects of reservoir heterogeneity. Results using this model compare well to 
reference finite difference simulations. A new correlation for wellbore pressure drop is 
developed. This correlation is able to accurately model a wider variety of experimental 
data than previous correlations. New methods for modeling the effects of near-well reser- 
voir heterogeneity on well performance in coarse scale finite difference models are pre- 
sented. These methods are shown to provide considerably more accurate results than 
standard techniques. Future work will be directed toward the extension of the methods to 
more general cases involving unstructured simulation grids, more complex wells and 
multiphase wellbore flow. 
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1 General Introduction 

Reservoir simulation and related technologies (e. g., geologic modeling, data integration? 

and upscaling) have advanced considerably in recent years. As a result, reservoir simula- 

tion now represents the primary tool for reservoir management. However, significant 

challenges still remain in several key areas. One of the most important of these is in the 

modeling of non-conventional wells, which include horizontal, multilateral and other 

highly complex wells. Accurate tools for modeling such wells are extremely important, as 

the costs for drilling and completing wells of this type are very high. However, many of 

the existing simulation approaches, which are adequate for the modeling of vertical wells, 

are not suitable for non-conventional wells. 

Significant complexities appear in non-conventional well modeling for several 

reasons. These wells, due to their geometric complexity, intersect reservoir features non- 

orthogonally. Therefore, more general gridding, discretization and solution techniques are 
required to accurately describe their performance. In addition, existing tools for coupling 

the well to the reservoir may not be adequate for non-conventional wells. The well index, 

which is the specific quantity that couples the well to the reservoir in simulation models, 

is closely related to the productivity index, a basic reservoir engineering quantity. Both 

quantities relate the well production rate to an imposed pressure drop. The determination 

of improved well indexes for non-conventional wells in simulation models is therefore 

closely linked to the determination of an accurate productivity index for non- 

conventional wells. In addition, effects due to pressure losses in the wellbore, which are 

generally negligible for vertical wells, can be important for non-conventional wells and 

therefore must be modeled. Another important aspect of non-conventional well modeling 

is the accurate representation of the effects of near-well heterogeneity in the simulation 

model. These effects can be very substantial, and existing techniques for near-well het- 

erogeneity representation may be inaccurate or overly time consuming. 

Our work in this project is directed toward significantly improving modeling ap- 

proaches in the three main areas discussed above. Specifically, this project targets the de- 

velopment of (1) advanced reservoir simulation techniques for modeling non- 



conventional wells; (2)  improved techniques for computing well productivity (for use in 

reservoir engineering calculations) and well index (for use in simulation models), in- 

cluding the effects of wellbore flow; and (3) accurate approaches to account for hetero- 

geneity in the near-well region. We now discuss each of these issues in more detail. 

Because non-conventional wells introduce significant geometric complexity into 

the simulation model, standard Cartesian approaches or simple comer point models may 

not be appropriate. In the vicinity of the well, more general gnd systems, locally aligned 

with the well, may be required. Because the type of grid appropriate for the near-we11 re- 

gion may not be the grid type most suitable for the bulk of the reservoir, we are develop- 

ing a so-called multi-block or modular gridding approach. Modular gridding allows for 

the use of different grid types in different regions of the reservoir. For example, around a 

deviated or horizontal well the grid might be radal (or nearly so); in the vicinity of a 

complex multilateral well the grid could be fully unstructured. Examples of fully un- 

structured grid systems include grids based on tetrahedral, pyramid, or prismatic ele- 

ments. 

Our work on multi-block grids is described in Part 1 (Chapter 2) of this report. 

The development and use of a modular approach to grid generation and simulation is 

compIicated for several reasons. For example, griddmg and discretization techniques 

must be developed for each of the grid types included. We describe in detail our recent 

work directed toward the development of simulation models based on modular grids. 

Methods for the accurate treatment of full tensor penneabilities and non-orthogonal (and 

non-K-orthogonal) grids are described. The significant errors inherent in existing ap- 

proaches, and the improved results attainable using our new methodology, are clearly 

demonstrated through a variety of two and three dimensional examples. 

The use of semi-analytical techniques (based on Green’s functions) for modeling 

the performance of non-conventional wells operating under single phase flow conditions 

represents an alternative to the use of detailed finite difference simulation in some cases. 

Such models are appropriate both for the estimation of productivity index and well index. 

We recently extended existing semi-analytical methods to approximately account for the 

effects of near-well heterogeneity. In Part I1 (Chapter 3) of this report we describe the 
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development and application of our new methods to the modeling of non-conventional 

wells in heterogeneous reservoirs. We first present the basic approach and illustrate its 

level of accuracy relative to reference finite difference solutions. We then apply the ap- 

proach to a detailed study of the combined effects of wellbore hydraulics and reservoir 

heterogeneity. Our results illustrate the importance of reservoir heterogeneity and, in 

some cases, wellbore hydraulics. These results further demonstrate the large amount of 

variation in well performance that is observed between different geostatistical realiza- 

tions. 

In Part II (Chapter 4) we also describe the development of a new correlation for 

pressure drop in a horizontal well. This correlation represents the pressure drop due to 
friction and accounts for the effects of inflow (flow into the well through perforations). 

Improved agreement between the correlation and experimental data from a variety of 

sources (Stanford / Marathon, Norsk Hydro and Tulsa University), relative to that attain- 

able using existing correlations, is clearly demonstrated. 

The third important area we are targeting is the improved representation of the ef- 

fects of near-well heterogeneity in coarse scale finite dfference models. Geostatistical 

modeling approaches are capable of providing finely gridded geological characteriza- 

tions, though these models are often too detailed to be practically useful for reservoir 

simulation. Some type of averaging, or upscaling, is therefore required. Many such ap- 

proaches have been developed and existing methods are capable of providing accurate 

coarse scale reservoir descriptions in regions away from wells. In the near-well region, 

however, standard upscaling approaches can yield significant inaccuracies and improved 

coarse scale descriptions are necessary. 

In Part 111 (Chapters 5 and 6) we present methods capable of providing coarse 

scale finite difference models of horizontal wells. The method described in Chapter 5 is a 

general approach, appropriate for use in finite difference models generated via the de- 

tailed upscaling of the fine grid permeability description. This method is demonstrated to 

provide accurate coarse scale flow results for single phase and three phase flow problems 
involving horizontal wells in highly complex heterogeneity fields. The method described 

in Chapter 6 is much simpler and easier to apply, though it is also more approximate. 
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This method entails the representation of the reservoir in terms of a constant (anisotropic) 

permeability and a near-well effective “skin,” which accounts for near-well heterogene- 

ity. Despite its simplicity, this method is shown to provide reasonably accurate coarse 

scale simulation results for many flow quantities of interest. 

Finally, in Chapter 7, we describe how several of the approaches described in the 

preceding chapters can be combined to provide a Simulation While DriIling capability. 

This capability would allow for the real time optimization of the well length and trajec- 

tory during the actual dnlling operation and could result in significant cost savings. 

We note that some of the work presented in this report was performed prior to the 

official start of the funding period (September, 1999). This work represents research pro- 

posed in our original proposal (submitted April, 1998) but begun prior to September, 

1999. This work was funded under our industrial affiliates programs (SUPRI-B, SUPRI- 

HW) and is included in this report because it represents a portion of the work originally 

proposed to DOE. 
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Part I. Development of Advanced Reservoir Simulation Techniques for 
Modeling Non-Conventional Wells 

A key aspect of our overall research is the development of general simulation approaches 

for the modeling of complex reservoirs. Our work in this area involves the development 

of a modular reservoir simulator with general gridding and discretization capabilities. 

Here we describe our approaches for gridding and discretization and present results 

illustrating the powerful capabilities of the modular approach. 

2 Modular Gridding and Discretization for Reservoir Simulation 

by Michael G. Edwards 

2.1 Description of Numerical Issues and Overall Work Plan 

The goals of this work are to develop numerical methods and grid generation techniques 

for reservoir simulation that can accommodate general three chmensional deviated wells 

and complex reservoir geometry and geology. Both the development of grid generation 

techniques and numerical methods that can reliably compute the physically correct 

solution to complex simulation problems on three dimensional flexible grids are under 

study. Structured and unstructured grid generation techniques are being developed. The 

aim here is to retain a structured grid whenever possible while allowing for unstructured 

grids when necessary. The need for unstructured grids can arise locally when faithfully 

modeling complex deviated wells, faults, pinchouts or when increasing local grid 

resolution (Local Grid Refinement). In addition, for other more complex reservoir 

boundaries, the task of generating a grid can sometimes be simplified by employing 

direct triangulation. To allow general flexibility a multiblock method is being developed, 

where the reservoir domain can be decomposed into a structured or unstructured set of 

subdomains. In the work presented here, each subdomain grid is structured (logically 

Cartesian). Future work will include the development of interfaces that will allow a 

discontinuous change in logical coordinate density so that locally unstructured grids can 

be used for specific regions or subdomains of the reservoir. 
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A major assumption in most of today’s commercial simulators is that the pressure 

equation always has a &agonal tensor. The design and efficiency of such codes is 

intrinsically linked to the diagonal tensor assumption. However, this assumption is only 

true if the computational grid is aligned with the principal axes of the tensor. In general a 

full tensor pressure equation arises in reservoir simulation whenever (a) the medium is 

anisotropic and non-aligned with the local coordinate drections, (b) upscaling (with 

cross-flow effects included) is used to compute the grid block permeability tensors or (c) 

non-K-orthogonal structured and unstructured grids are employed. Consequently, in 

general, all diagonal tensor simulators will suffer from O( 1) errors in flux (Aavatsmark et 

al., 1997; Arbogast et al., 1995; Edwards, 1997, 1998; Edwards and Rogers, 1998) when 

applied to cases involving these major features. For example, while these simulators 

appear to allow for non-K-orthogonal grids through the definition of comer point 

geometry, only the diagonal tensor pemeability-geometry contribution to the flux is 

included, thus leadmg to an O(1) error in flux (even for the Laplace equation) on a non- 

orthogonal grid (Edwards, 1998). 

Consistent full tensor schemes are being developed for modeling problems with 

generally discontinuous full tensor coefficient fields in three dimensions. However, the 

introduction of a full tensor typically increases the support of the standard scheme on a 

logically Cartesian grid from 5 to 9 nodes in 2-D and from 7 to 27 nodes in 3-D. This 

represents a potentially large increase in computational cost, as the pressure field is 

recalculated at every time step of the simulation. 

In addition to developing full tensor discretization schemes, the efficiency of the 

solution process is also being addressed. A general operator splitting formulation is under 

development which enables full tensor solutions to be computed while using reduced 

operator matrices that generally reduce computation time compared to full matrix 

inversion. In addition, full tensor operators can be included with minimal code changes. 

A summary of the properties of the finite volume schemes is presented. The schemes are 

applied to a number of problems involving strong cross-flow due either to the local or 

global orientation of the grid relative to the problem. Benefits of the method are clearly 

demonstrated. 
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2.2 Modular Grid Generation 

Generation of a grid via a single technique such as an algebraic method (Gordon and 

Hall, 1973), Thompson mapping (Thompson et al., 1985), conformal mapping or even 

streamlines and equipotentials may prove to be adequate for certain reservoir types. 

While such possibilities are not disregarded, methods of gnd generation are sought that 

will allow greater flexibility for general purpose reservoir simulation. Rather than 

generate problem specific gnds, the approach adopted here is to build the reservoir grid 

from a set of modular grids, where each local grid is appropriately chosen according to 

the local geometry, geology andor mean (representative) flow conditions. Accordingly, 

the reservoir is decomposed into a set of subdomains. Let us assume that for each well in 

the reservoir an appropriate well module can be defined which resolves the local 

heterogeneities. It then remains to define the grids for subdomains without wells. We 

shall call the latter grids field modules. Since the well modules will occupy a relatively 

small volume of the reservoir the larger component of grid generation will be performed 

using BeEd modules. The advantages of this strategy are that the field modules can be 

generated independently using the most appropriate grid generation method locally. 

Thus far a basic three dimensional multiblock algorithm has been developed. The 

reservoir domain is decomposed into either a structured or unstructured set of 

subdomains where each subdomain grid (or field module) is currently structured 

(logically Cartesian). The subdomain grid generation techniques employed include the 

algebraic transfinite interpolant method (Gordon and Hall, 1973), elliptic grid generation 

(Thompson et al., 1985) and flow based grid generation (Castellini et al., 2000; Durlofsky 

et al., 1997; Edwards et al., 1998; Edwards et al., 1999; Portella and Hewett, 1998; Tran, 

1995). 

2.2.1 Algebraic Grid Generation. The default grid is defined by the transfinite 

interpolant method which is illustrated in two dimensions below: 
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where r = (x, y )  and (&, &) are the transform variables. An example is given in Fig. 2- 

1. Subdomain decomposition is illustrated in Fig. 2-2 where the logical subdomain 

comers are indicated with nodes. Note that the right hand subdomain 3 has two 

neighboring surfaces that are parallel; this enables a singularity to be treated with a 

quadrilateral grid. After domain subdivision the algebraic interpolant grid generation 

method is used to generate a local grid in each subdomain (Fig. 2-3). A major benefit of 

this technique is that the grid generation for each subdomain is performed independently 

and is almost instantaneous due to the use of interpolants. 

2.2.2 Elliptic Grid Generation. The term “elliptic grid generation” is used here to 

denote a class of grid generation techniques that involve solving a coupled set of elliptic 

partial differential equations to generate grid coordinates. Many variants have been 

proposed with various fonns of grid control functions. One of the most well known 

approaches is the Thompson mapping (Thompson et al., 1985). The Laplacian system is 

one of the simplest members of the above class and is also used here. The Laplacian 

system is given by 

and is solved directly for the position vector coordinates r = ( x , y , z ) .  The Laplacian 

smoothing technique provides a means of globally or locally generating a grid directly by 

solving the system of Eq. 2-2 subject to boundary coordinate constraints. The method can 

also be used to smooth a grid (Laplacian smoothing) generated by an alternative method. 

The smoothing process involves applying an iterative relaxation method to solve the 

system of Eq. 2-2 and performing an “incomplete solve” with just a small number of 

iterations. For example, after smoothing the grid of Fig. 2-3, the final grid is shown in 

Fig. 2-4. 

2.2.3 Flow Based Grid Generation. The term “flow based grid generation” is used here 

to denote grids that are generated by using streamline or flow field information to 
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determine local grid node density and coordinate line orientation. When heterogeneity is 

present key requirements of an optimal subdomain module are that the grid be dense in 

high flow regions so as to resolve connected flow paths of the reservoir or subdomain. 

In this work the flow field infomation used for modular grid generation is 

determined via a local single phase flow response obtained by solving the pressure 

equation over a subdomain subject to mean flow boundary conditions. The choice of 

boundary conditions is not unique and their effects are currently being studied. 

Streamlines that result from a local flow response are naturally clustered in high 

velocity regions and flow paths of the module, This streamline information is used to 

automatically concentrate fine grid cells in important flow regions. For example, a flow 

based grid can be built from the streamlines and equipotentials of the mean flow problem. 

Such grids have been proven to be K-Orthogonal (Edwards, 1999), meaning that the local 

general geometry-permeability tensor is always strictly diagonal. Thus K-Orthogonality, 

together with the natural clustering properties of streamlines, provides strong motivation 

for developing flow modules based on local streamline information. 

The modular strategy allows flow based gnds to be generated locally and 

independently while only requiring that the pressure equation be solved over the local 

subdomain (Castellini et al., 2000; Edwards, 1999). Flow based modules are of prime 

importance for generally heterogeneous regions and fluvial and channeled subdomains. 

The flow based strategy is currently under development and will be discussed in more 

detail in a future report. 
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Fig. 2-1: Algebraic Grid 

3 

Fig. 2-2: Multiblock: 3 subdomains 
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Fig. 2-3: Algebraic multiblock grid 
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2.3 Discretization 

2.3.1 Flow Equations. Without loss of generality, the schemes presented here are 

illustrated with respect to two phase flow models, with unit porosity and with capillary 

pressure neglected. The continuity equation for each phase j = I , . . . N ~  (here N ,  = 2 ) is 

written as 

where the integral is taken over domain Q and V = (d,,a,). Here sp and mp are the pth 

phase saturation and specified phase flux respectively. Since the pore volume must 

always be filled by the fluids present, this gives rise to the volume balance 

z;&Yp =1 , (2-4) 

The momentum equations are defined through Darcy 's law where 

v P  = -ApK(V@ -pgVh) , (2-5) 

is the pth phase velocity,Kis the (diagonal) absolute permeability tensor, 4 is the 

pressure and the pth phase mobility is given by 

where ,up and k ,  are the respective phase viscosity and relative permeability. Neumann 

boundary conditions apply on the boundary 6sZ and require zero flux on boundaries 

together with reflection conditions for saturation. Inflow-outflow conditions apply at 

wells where fluxes are prescribed together with Dirichlet conditions €or saturation. 

Pressure must be specified at least once for incompressible flow. Initial data in terms of 

saturation and pressure fields are also prescribed. Further details can be found in Aziz 
and Settari (1979). 
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The conservation laws of Eq. 2-3 are now formulated in general curvilinear 

coordinates (&,&,&). First the system is integrated over a control volume with surface 

aB,, using the Gauss flux theorem to yield 

In order to simplify notation gravity will be omitted from the forrnalism. However, once 

the discrete flux is defined, gravity can be included immediately. The closed surface 

integral of phase velocity can now be expressed as the sum of the outward normal fluxes 

Fi over the surfaces of a cuvilinear control volume, viz 

where Nd is the spatial dimension. The outward noma1 flux is given by 

where 

(2-10) 

is the general tensor which is function of the Cartesian permeability tensor and geometry, 

and Ji, = axi / is Jacobian of the curvilinear coordinate transformation. 

2.3.2 Finite Volume Schemes. The most common reservoir simulation schemes are cell 

(block) centered or point distributed where flow variables and rock properties are 

assumed to have piecewise constant variations with respect to the control-volumes of the 

mesh. The penneability tensor is assumed to be diagonal and control-volume face fluxes 

are proportional to the harmonic mean of adjacent cell permeabilities multiplying their 

corresponding discrete pressure differences; e.g., at face (i + 1/2, j , k )  the flux takes the 

well known form 
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(2-1 1) 

This approximation gives rise to a five point scheme in two dimensions and a seven point 

scheme in three dimensions. In this work a fully implicit formulation (Aziz and Settari, 

1979) is employed to solve Eq. 2-3 and is written in the locally conservative integral 

form: 

(2- 12) 

for a logically Cartesian grid where z i  is the control volume. The system is solved with 

respect to the aqueous phase saturation and pressure (sl, #) ; the oleic phase saturation $2 

is deduced from Eq. 2-4. The hyperbolic flux contribution is upwinded according to the 

wave direction across each edge; e.g., at edge ( i  + l / 2 , j , k )  the direction is a function of 
n+l n+l n+l - n+l 

and for a positive outward wave, s ~ ~ + ~ ~ ~ , ~ , ~  - spi , j ,k ,  ' p  ( s P i + l / 2 , j , k  )Fr+l/Z,j,k (@ ) 7 

n+l - n+l otherwise SPi+l12, j ,k  - s ~ ~ + ~ , ~ , ~  . This method is known as the single point upstream 

weighting scheme in reservoir simulation and is a function of four points of the seven 

point stencil, where the four points vary according to the local upwind direction. In this 

case the net fluxes of Eq. 2-12 are comprised of cell edge based quantities. 

Several new schemes have been proposed and developed for full tensor 

simulation in recent years (e.g., Aavatsmark et al., 1997; Arbogast et al., 1997; Edwards 

and Rogers, 1998; Edwards, 1995, 2000; Lee et al., 1998; Verma and Aziz, 1997). These 

schemes all employ nine point operators for the pressure equation on logically Cartesian 

grids in two dimensions. In this work cell vertedpoint distributed schemes are 

considered. 
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2.3.3 Two Dimensional Formulation. Finite volume discretizations will be defined with 

respect to grid vertex control volumes. For vertex i, j the control volume is defined by 

joining cell centers to the cell edge mid-points of those edges that are attached to the 

( i ,  j ) th  vertex (see Figs. 2-5a and 2-5b). As a result, each quadrilateral is subdivided into 

four quadrants with each quadrant forming part of the control-volume associated with the 

corresponding cell vertex. Consequently, each control-volume is generally comprised of a 
polygon. The methods presented also apply to cell centered formulations by translating 

the operations onto a grid that is essentially the dual mesh (Edwards and Rogers, 1998). 

A systematic procedure for deriving and coding full stencil schemes is to build the 

fluxes in a cell-wise fashion. For a given cell (i + 1/2, j + 1/2) , a flux is calculated along 

the normal to each control volume face inside the cell (Figs. 2-5a and 2-5b), leading to 

the four fluxes 

N = 1...4 

per quadrilateral where suffices N = L.4  are the local edge numbers of the quadrilateral. 

The fluxes are distributed to their adjacent cell edges that are intersected by the control 

volume faces. In this way the finite volume scheme net edge fluxes are assembled via 

summation of fluxes that correspond to common edges and 

(2-13) 

For the discrete fully implicit formulation the net edge based fluxes of Eq. 2-13 are 

substituted directly into Eq. 2-12 to yield a block banded Jacobian with a nine node 

discrete operator for pressure and a five node operator for saturation, where the upwind 

directions are now functions of the local full tensor fluxes. 

For cell-wise constant spatial coefficients a general family of nine-point full (or 

diagonal) tensor schemes can be defined (Edwards, 1995) where the flux takes the form 
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(2- 14) 

and At,#i+1/2,j = @i+l,j - @i, j  ? * < 2 4 i , j + l / 2  - - @i, j+~ - & . j .  The family is parameterized by 

the quadrature point 17. For discrete ellipticity, where (T&)T I T,Zb in each cell, the 

discrete matrix corresponding to the scheme with flux given by Eq. 2-14 is symmetric 

positive definite for all quadrature points 17 such that 0 I q < 1/2. Conditional diagonal 

dominance results for 7 > 0 .  Further details and properties of the schemes are presented 

in Edwards (1995, 1998) and Edwards and Rogers (1998). 
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i,j+ 1 
i+l j +  1 

2-5a: Dashed line = surface of control-volume i,j 

Cell vertex flow variable, Cell-wise constant tensor (shaded) 

i,j+1 
i+ 1 j +  1 

Cell i+1/2,j+1/2 

2-5b: Cell-edge flux locations 1,2,3,4 

Fig. 2-5: Dual variable scheme, control-volume and flux calculation 
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2.3.4 Three Dimensional Hexahedral Approximations. The procedure for building full 

tensor schemes in three dimensions follows a similar cell-wise construction. For vertex 

i, j , k  the control volume is defined by joining cell centers to the cell face mid-points and 

then joining the cell face mid-points to the cell edge mid-points (see Fig. 2-6). As a 

result, each hexahedral is subdivided into eight sub-cells, where each sub-cell is attached 

to a unique vertex of the hexahedra. The union of all sub-cells that share a common 

vertex defines the control-volume for the cell vertex scheme. 

In three dimensions, 12 fluxes are defined with respect to each cell, where as in 

two dimensions, one flux is associated with each edge of the cell. For a given cell 

(i + 1/2, j + 1/2, k + 1/2) , the fluxes are calculated along the normals to each of the control 

volume faces inside the cell, as shown in Fig. 2-6, leading to twelve fluxes 

iv = 1...12 FN i+1/2, j+l/2,k+J / 2  

per hexahedral where suffices N = I  ..A2 are the local edge numbers of the hexahedra. 

The fluxes are distributed to their adjacent cell edges and the finite volume scheme net 

edge fluxes are assembled via summation of fluxes that correspond to a common edge. 

For a structured hexahedral mesh the net edge based flux at surface ( i  + 1/2, j , k )  

of the cell is given by 

. (2-15) - 
5'+1/2 ,  j , k  - Fli+l /2 ,  j+1/2,k+1/2 + F3i+1/2, j - l /2 ,k+1/2 + '1 l i+I /2 ,  j - l / 2 , k - l / 2  + F9i+l/2,  j+1/2,k-1/2 

For a fully implicit formulation the net edge based fluxes of Eq. 2-15 are substituted 

directly into Eq. 2-12 and yield a block banded system with a 27 node discrete operator 

acting for pressure and a 7 node operator for saturation. The upwind directions are now 
functions of the local full tensor fluxes. Refening to edge (i + 1/2, j , k )  , the upwind 

direction is determined via & ( s ~ ~ + ~ , ~ ,  j , k  )Fi+,,2,j,k ( # n + l )  
n+l 

For cell-wise constant coefficients a three dimensional generalization of the 
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family of schemes of Eq. 2-14 is defined below where, e.g., the flux associated with edge 

1 takes the form 

(2-16) 

The family is parameterized by (q,(  ) , where 0 5 7 < 1/2 and 0 5 5 < 1/2.  

2.3.5 Flux Continuous Schemes. When rock and flow variables are chosen to be control- 

volume distributed (i .e., point distributed or cell centered), the permeability tensor can be 

discontinuous across the control-volume faces and flux continuity must be enforced. Flux 

continuous full tensor discretization operators are presented in Edwards and Rogers 

(1 998). In two dimensions, four auxiliary continuous control-volume interface pressures 

are introduced per cell (Figs. 2-7 and 2-8) and sub-cell normal fluxes are defined (two 

fluxes per triangle). Equating fluxes on the left and right hand sides of each of the 

interfaces (1,2,3,4) leads to a local 4x4 linear system of equations for the four interface 

pressures (determined by linear combinations of the four cell vertex pressures). An 

equivalent scheme was developed independently by Aavatsmark et al. (1997). For a 

diagonal tensor the methods reduce to the standard two point flux approximation with the 

coefficient defined by the harmonic mean. A family of schemes is also presented in 

Edwards and Rogers (1998) which ensures that flux continuous approximations are 

obtained for both nine-point diagonal and full tensor operators. In general the local cell 

edge fluxes can be expressed in terms of the algebraic coefficients that are derived from 

the continuity conditions. The flux at edge e then takes the form 

(2-17) 
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where summation is over the total. number of cell edges. If permeability is locally 

constant over the four sub control-volume elements then for an appropriate choice of flux 

quadrature the coefficients reduce to those of Eq. 2-14; e.g., with e = 1, 

(2-18) 

The generalization of flux continuous schemes to three dimensions involves the 

introduction of 12 auxiliary interface pressures that are eliminated via local flux 

continuity conditions in an analogous procedure to that described by Aavatsrnark et al. 

(1997). Development of these schemes is currently being considered for general 

structured and unstructured three dimensional grids. 
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,k+l 

i,j ,k+ 1 

i+l ,j,k 

Fig. 2-6: Hexahedral cell vertex indicies and local cell edge numbers 

21 



2-7a: Dashed line = surface of control-volume i,j 

i,j+ 1 

2-7b: Cell-wise fluxes N,S,E,W 2-7c: Sub-cell triangle basis 
for flux continuity 

Cell vertex flow variable, constant tensor per control-volume (shaded) 

Fig. 2-7: Control-volume distributed scheme, control-volume and flux calculation 
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2.3.6 Split Tensor Flux on a Structured Grid. In the previous section discrete full 

tensor operators were introduced which increase the stencil size and thus the bandwidth 

of the Jacobian matrix from 7 to 27 row entries in three dimensions. While the above 

approximations of the full tensor pressure equation are symmetric positive definite, they 

are also conditionally diagonally dominant (Edwards and Rogers, 1998). When coupled 

with the non-symmetric diagonally dominant upwind approximation for the essentialIy 

hyperbolic phase equations, the resulting enlarged block Jacobian of the fully implicit full 

tensor system of Eqs. 2-15 and 2-12 is neither symmetric positive definite nor diagonally 

dominant. This is in contrast to the standard diagonal tensor fully implicit formulation, 

which maintains a smaller Jacobian bandwidth and an underlying diagonal dominance. 

Motivated by the above observations the aim here is to develop a consistent 

scheme for multiphase flow with a full tensor velocity field that maintains the benefits of 

a fully implicit formulation while only requiring inversion of the standard seven-point 

Jacobian matrix of the system. This development extends the two dimensional deferred 

correction (Edwards, 1998) and split operator semi-implicit formulations (Edwards, 

2000) to a fully implicit formulation in three dimensions. On a logically rectangular grid 

the essence of the approach involves calculating the seven point operator (arising from 

two-point flux assembly) at the new time level n + l  while the remainder terms are 

calculated at the old time level n, resulting in a reduced Jacobian matrix of standard size. 

A split time level discretization operator can be defined for general tensor 

schemes by splitting at the flux level (Edwards, 2000). Flux splitting enables semi- 

implicit schemes to be defined for evolutionary problems that avoid the additional 

iterations that would otherwise be required by splitting at the matrix level, while 

maintaining local conservation, consistency and stability of the formulation (Edwards, 

2000). The split flux is defined by approximating the full stencil flux at the old time level 

and adding the leading two point flux at the new time level while subtracting the two 

point flux at the old time level. The general split flux takes the form 
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(2-19) 
(#"+') S n+l n 2 P  

FNi+llZ, j+1 /2 ,k+1 /2  (# '# = FNi+1/2. j+1/2,kt1/2 

2P (#") N = 17...12 + F  * i+ l /2 ,  j + l /  2 , k + l / 2  (4" - F ~ i + 1 / 2 , j + 1 / 2 , k + 1 / 2  

Referring to the fluxes of Eqs. 2-17 and 2-18, the two-point flux contribution from cell 

i + 1 / 2 , j + 1 / 2 , k + 1 / 2  canbewrittenas 

where T:' = a: + ai in two dimensions and T:' = a{ + ai + ai + a:, in three 

dimensions? and is proportional to a h m o n i c  approximation of the general tensor 

coefficient Til; c.f. Eqs. 2-17 and 2-18. The single phase split edge based flux at 

(i + 1 / 2, j ,  k )  is given by 

A semi implicit formulation for multiphase flow is obtained by replacing each of 

the fluxes in Eq. 2-12 with edge based time split fluxes. The upwind direction at edge 

(Qn+', #" ) . In the computations (i + I /  2, j ,  k )  is now detennined via / zp  (spi+l12, j , k  )F,Sl,2,j,k n+l 

performed here the previous time level solution is used on the right hand side. Thus the 

method effectively recovers the full tensor solution from the diagonal tensor solution. By 

using the consistent split time level flux (with respect to pressure) diagonal dominance is 

gained and the Jacobian to be inverted always retains an underlying M-matrix with 

standard minimal band width (seven-point) structure. A possible alternative strategy is to 

perform a fully implicit inexact Newton iteration using the Jacobian assembled from the 

two-point fluxes as the driver. The scheme could then be used semi-irnplicitly or in an 

inner iterative loop such as deferred correction (Edwards, 1998). Further discussion on 

splitting strategies and types of iteration is given in Edwards (2000). 
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The leading discretization error due to the split operator can be shown to be 

O ( A t ) .  This has been confirmed with computed convergence rates (Edwards, 2000). 

Stability of the split scheme is also proven in Edwards (2000) for the case of constant 

elliptic coefficients. 

2.3.7 Unstructured Grids. A semi-implicit split finite volume formulation (Edwards, 

2000) for solving Eq. 2-3 on a structured or unstructured grid can be written in the 

general locally conservative integral form 

where summation is over all edges e(k , i )  passing through the ith grid vertex. The net 

edge based flux is now comprised of all adjacent (conforming) cell edge fluxes including 

local grid cells of different type (e.g. triangle and/or quadrilateral cells in 2-D). As before, 

cell edge saturations are upwinded, the upstream direction being a function of the local 

net edge flux. 

2.4 Simulation Results 

In the results below, saturation contour plots are used to illustrate the differences between 

the various numerical procedures. The advantage of mixed structured-unstructured grids 

is demonstrated for a two dimensional problem involving a fault crossed by a high 

permeability streak with pinchouts as shown in Figs. 2-8a and 2-8b. The geometry of the 

problem is faithfully represented by the grid of Fig 2-8b. The boundary conditions are 

those of the standard quarter five spot problem, with an injector at the bottom left comer 

and a producer in the upper right comer. The strong effects of the complex heterogeneity 

are clearly evident in the solution (Fig. 2-8d), which contrasts with Fig. 2-8c, computed 

on the same grid and at the same time (0.5 PVI) for a homogeneous (constant) 

permeability field. The split operator solution (Fig. 2-8e), compares favorably with full 

matrix inversion while reducing computation time substantially. This illustrates the 

benefit of the new method on general grids in two dimensions. 
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The next case involves a three dimensional non-K-orthogonal hexahedral grid 

with a resolution of only 5 ~ 5 x 9  nodes (Fig. 2-9a). An injector and producer are placed at 

the near bottom left and far upper right hand comers of a square domain. A homogeneous 

full Cartesian tensor is imposed on the domain with maximum principal component 

aligned with the maximum flow gradient of the problem. In this case both the grid and 

the Cartesian tensor contribute strong cross flow effects. 

Standard simulators only allow diagonal tensor coefficients and include geometry 

effects by modifying these coefficients via so-called transmissibility modifiers. The 

saturation field computed by a standard implicit scheme with diagonal tensor (corner- 

point) geometry is shown in Fig. 2-9b. In contrast, the results computed with the full 

tensor schemes, using either full matrix inversion (Fig. 2-9c) or the split tensor operator 

(Fig. 2-9d), are in excellent agreement and clearly capture the elongated shock front 

caused by the dominant principal permeability tensor component. There is a large 

discrepancy between the results, due to the O(1) error in flux that is incurred when using 

the diagonal tensor on a non-K-orthogonal grid. This problem illustrates the importance 

of full tensor computation in three dimensions. The split-flux operator reduces the 

computation time by nearly a factor of two when compared with the full tensor, full 

Jacobian matrix inverse computation, while obtaining a comparable result. 

The last test case illustrates the methods on unstructured hexahedral grids. The 

reservoir consists of a rectangular box shaped domain with a horizontal injector and 

producer inserted in the middle of the left and right hand side faces of the domain (Fig. 2- 

loa). The Cartesian permeability tensor is isotropic and constant throughout the 

reservoir. 

An unstructured hexahedral grid is now used to model the problem (Fig. 2-lob). 
A planar cross section of the grid is shown in Fig. 2-4. The saturation field computed by a 

standard implicit scheme with a two point flux and diagonal tensor geometry is shown in 

Fig. 2-1Oc. The effect of the O(1) error in flux is severe in this case, resulting in a 

complete buckling of the shock front. The discrepancy in results is entirely due to non- 

orthogonal grid effects as the Cartesian tensor is isotropic. In contrast, the results 

computed with the full tensor schemes, using either full matrix inversion (Fig. 2-loa) or 
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the split tensor operator (Fig. 2-10e), are again in excellent agreement and clearly remove 

the predominant error caused by the standard two-point flux approximation. This problem 

illustrates the importance of full tensor computation in three hmensions on unstructured 

grids. The split-flux operator again reduces the computation time by a factor of two when 

compared with the full tensor, full Jacobian matrix inverse computation. 

2.5 Future Directions 

Currently the reservoir domain can be decomposed into a structured or unstructured set of 

subdomains where each subdomain grid is structured (logically Cartesian) with a 

continuous logical coordinate density between subdomains. Future work will include the 

development of interface regions that will allow a discontinuous change in logical 

coordinate density so that locally unstructured grids can be introduced when necessary; 

e.g., at faults, pinchouts or when increasing local grid resolution by local grid refinement. 

A two dimensional example involving faults and pinchouts was presented which 

demonstrates the advantages of mixed grids for more complex reservoir problems. In two 

dimensions there are only two cell types (quadrilaterals and triangles) and the interface 

between cell types is relatively unambiguous. In 3-D there are four cell types, namely 

hexahedra, tetrahedra, prisms and pyramids, as shown in Fig. 2-11. An interface between 

a structured hexahedral grid and an unstructured gnd can take many different forms in 

three dimensions and can be comprised of all four cell types. Interfaces will be explored 

and dscretization schemes for all of the cell types will be developed. Operator splitting 

will also continue to be studied and developed for general grids. 

Flow based gridding will also be developed along with appropriate well modules. 

A robust upscaling technique is an important ingredient here, as the flow based grids can 

differ significantly from an underlying geological grid. Upscaling to general grid blocks 

and cell shapes will be an important aspect of this project. Large sensitivities in flow 

results have been observed when using different upscaling algorithms on curvilinear grids 

(Castellini et al., 2000) and serve to emphasize the importance of upscaling when 

developing general gridding techniques. Currently, state of the art flow response based 

upscaling algorithms, even with simple pressure-flux or periodic boundary conditions, 
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cannot be applied directly. The main difficulty here is that flow based grids do not 

generally conform to their underlying geological grids and therefore a consistent flow 

response upscaling technique involves development of appropriate fine to coarse grid 

operators. Techniques to address this problem are currently under development in two 
dimensions (He, 2000; Wen et al., 2000). The extension to three dimensions will be 

performed in a future project. We anticipate further scope for improvement in flow 

resolution when a more robust and general coarse grid to fine grid three dimensional 

upscaling algorithm is available. 

2-Sa: Unstructured grid 

" n .* 'm .̂ I- .- 
2-8b: Unstructured grid and heterogeneity 

2-8c: Homogeneous 2-Sd: Full tensor full matrix inverse 2-Se: Full tensor - split flux 

Fig. 2-8: Fault crossed by a high permeability streak with pinchouts 
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2-9a: Non-orthogonal grid 2-9b: Diagonal tensor 
fully implicit 

2-9c: Full tensor, full matrix inverse 
fully implicit 

X 

9d:Full Tensor, Split Flux 
Semi-Implicit 

Fig. 2-9: Structured non-orthogonal hexahedral grid with full Cartesian tensor 
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2-loa: Horizontal injection and productiop 

2-lob: Unstructured multiblock grid 

Fig. 2-10: Unstructured hexahedral grid and horizontal injector and producer 
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Hexahedra (Brick) 

Flow variable 

Rock Property 

Pyramid 

Tetrahedra 

All 4 cell types CVFE based 

Fig. 2-1 1: Structured - unstructured grid cell interfaces 
Disretization schemes (future work) 
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Part 11. Coupling of the Reservoir and Non-Conventional Wells in 

Simulators 

As discussed in Chapter I, existing approaches for coupling the well to the reservoir may 

lose accuracy in problems involving non-conventional weils. The well is coupled to the 

reservoir through the well index, which is closely related to the productivity index, com- 
monly used in reservoir engineering analyses. The calculation of productivity index for 

non-conventional wells is considered in detail in Chapter 3. New semi-analytical methods 

based on Green’s functions, capable of approximating the effects of reservoir heteroge- 

neity and wellbore flow, are presented. The extension of these methods for the calcula- 

tion of well index is dscussed. Much of the work described in this chapter was presented 

in papers by Durlofsky (2000) and Wolsteiner et al. (2000a, 2000b). 

Modeling of flow in the wellbore itself, which is generally not necessary in the case 

of vertical wells, can be important in non-conventional wells. This is because pressure 

losses can be much more substantial in the case of non-conventional wells due to their 

much greater length. Calculation of pressure losses in the wellbore is complicated be- 

cause there is inflow along the well (due to production) and because the flow often in- 

volves more than a single phase. In Chapter 4 we present models for wellbore pressure 

loss that account for the effects of wellbore friction and acceleration. New correlations, 

capable of modeling data from a variety of experimental systems, are presented for single 

phase flow. Extension of these correlations for multiphase flow will be the subject of fu- 

ture work. 

3 Semi-Analytical CaIculation of Productivity Index and Well Index 

by Christian Wolfsteiner, Louis J. Durlofsky and Khalid Aziz 

In reservoir simulation models, the wellbore is not modeled explicitly but is rather linked 

to the reservoir through use of a so-called well model. Well models, such as those due to 

Peaceman (1983), represent the well production (or injection) from grid block i,j,k in 
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terms of a well index (WQ the wellbore pressure ( p w b )  and the pressure of the grid block 

@i,j ,k) via: 

(3-1) qi, j , k  = w'(Pwb - P i ,  j , k  1 
where qi , j ,k  represents the flow rate from the well into block (i,j,k). The form of Eq. 3-1 is 

very similar to the general expression for well productivity index (PI): 

where q is now total well production and <p> is the average reservoir pressure. The 

similarity between Eqs. 3-1 and 3-2 illustrates why techniques developed for the calcula- 

tion of PI can also be applied to the calculation of WI. Thus, though our emphasis here 

will be on the development and application of efficient semi-analytical approaches for the 

calculation of PI for non-conventional wells, these techniques also lend themselves to the 

calculation of WI. The detailed calculation and application of well indexes for complex 

non-conventional wells will be the subject of our future work. 

One approach for determining the well productivity is to simulate the reservoir 

performance using a finite difference simulator. This is the most rigorous approach 

available, though it is also the most demanding in terms of time and data requirements. 

An alternate approach for modeling the productivity of non-conventional wells operating 

under primary production is to employ a semi-analytical solution technique. Early work 

along these lines included single horizontal wells (of infinite conductivity) aligned paral- 

lel to one side of a box shaped reservoir. Solution methods were successive integral 

transforms (Goode and Thambynayagam, 1987; Kuchuk et al., 1990) and the use of in- 

stantaneous Green's functions (Daviau et al., 1985; Clonts and Ramey, 1986; Ozkan et 

al., 1989; Babu and Odeh, 1989), resulting in infinite series expressions. More complex 

geometries were considered later (Economides et al., 1996; Maizeret, 1996; Ouyang, 

1998) as numerical integration became more feasible. A number of works (see Ouyang 

( 1998) and citations therein) include coupling of wellbore hydraulics (i.e., finite conduc- 

tivity wells) with reservoir flow. The method we apply in this study is that of Ouyang 

(1998). 
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All of the semi-analytical techniques mentioned above have the advantage of lim- 

ited data requirements and high degrees of computational efficiency. These techniques 

are, however, limited to homogeneous systems or at most strictly layered systems (Lee 

and Milliken, 1993; Basquet et a]., 1998). This represents a substantial limitation because 

the productivity of non-conventional wells can be significantly impacted by fine scale 

heterogeneities in the near-well region. Fine scale heterogeneity can be incorporated into 

detailed simulation models, though the resulting models are complex to build and require 

substantial computation time to run. 

In this work we extend an existing semi-analytical approach to approximately ac- 

count for heterogeneity in the near-well region. This enables us to apply the semi- 

analytical approach to more realistic heterogeneous systems. We accomplish this by in- 

troducing an effective slun s into the semi-analytical model and then estimating this ef- 

fective skin as a function of position along the wellbore. The slun is computed via local, 

weighted integrations of the permeability field in the near-well region. This skin differs 

significantly from skin in the usual sense, as it is here due to intrinsic heterogeneity in the 
permeability field rather than from formation damage or stimulation. Away from the 

wellbore, the reservoir is modeled in terms of the large-scale effective permeability, k*. 
The overall method is highly efficient and approximates both near-well effects (through 

s) and global effects (through k*) with reasonable accuracy. 

The approach presented here combines and extends formulations developed in 

two separate earlier studies. These studies addressed the development of a semi-analytical 

well model (Ouyang, 1998) and the approximation of the effects of heterogeneity in the 

region near a vertical well (Durlofsky, 2000). The semi-analytical well model is applica- 

ble for very general well configurations and also accounts for pressure drop in the well- 

bore due to friction, gravitational and acceleration effects. These can be important in long 

horizontal wells. 

The approximate heterogeneity model applied here was originally developed for 

the modeling of vertical wells in heterogeneous, two dimensional areal systems. Both 

single well and two well systems were considered. The basic approach was shown to 

provide accurate estimates for well productivity, relative to fine grid simulation results, 
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for many geostatistical realizations over a range of geostatistical parameters (Durlofsky, 

2000). As will be shown below, our new method successfully builds upon both the semi- 

analytical well model and the approximate heterogeneity model. 

Another technique for approximately modeling the effects of heterogeneity on 
horizontal wells was previously developed by Brekke and Thompson (1996). This 

method, based on a network modeling type of approach, differs considerabIy from the 

procedure presented here in that our methodology has as its basis a semi-analytical solu- 

tion technique. The earlier method does, however, display accurate results for a range of 

problems similar to those considered here. 

In this chapter we first describe the overall method in detail. Then, we present 

numerical results for horizontal and multilateral wells in heterogeneous three dimensional 

systems. These results are in many cases compared with detailed finite difference calcu- 

lations to assess their level of accuracy. Our new description is shown to provide an ac- 

curate estimate of production rate, as a function of position along the wellbore, for a vari- 

ety of well configurations and for different heterogeneous permeability fields. 

Next, we apply our general semi-analytical method to an investigation of the 

combined effects of reservoir heterogeneity and wellbore hydraulics on the productivity 

of non-conventional wells. We consider multiple realizations of permeability fields of 

prescribed statistics and compute the productivity of the well in each case. For each re- 

alization, we compute the well productivity both with and without the effects of wellbore 

hydraulics included. We then determine the (ensemble) average and the variation in well 

performance and also gauge the impact of wellbore hydraulics on well productivity. We 

additionally compare the ensemble-averaged productivity with the productivity computed 

using an “average” homogeneous reservoir description. We show that the productivity of 

the averaged reservoir description generally deviates somewhat from the ensemble- 

averaged productivity. However, we find that the averaged reservoir description is quite 

useful for determining the magnitude of the effect of the wellbore hydraulics. 
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3.1 Semi- Analytical Solution Technique 

The basic semi-analytical approach we employ for the solution of the coupled wellbore- 

reservoir problem is described in detail by Ouyang and Aziz (1998). The reservoir is 

modeled as a parallelepiped with any combination of constant potential or no-flow 

boundary conditions on the six bounding faces. Isothermal flow in the reservoir is de- 

scribed by the single phase pressure equation for slightly compressible flow, with proper 

initial and boundary conditions, 

Equation 3-3 is fonnulated using potential Q, = p+(g/gc)pz rather than pressure p to ac- 

count for gravity effects, which can be significant. The permeability k is assumed to be a 

diagonal tensor. In the actual numerical solution, the problem is rescaled to the isotropic 

equivalent. 

Wells can have an arbitrary configuration and trajectory (see Fig. 3-1). Each well 

iw (of a total of nw wells) can have n&w) laterals which in turn consist of ns(iw, i ~ )  seg- 

ments. The total number of segments NS is then given by 

The inner boundary condition is either constant rate or constant pressure for each indi- 

vidual well. The basic method, as previously implemented, does not account for skin. 

Wellbore hydraulics are also included in the model. For the flow of a single 

phase liquid in a wellbore, the wellbore pressure gradient consists in general of frictional, 

gravitational and accelerational contributions. Employing the potential we can suppress 

the gravitational term; this now lets us express the potential gradient in the wellbore as 
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where 5 designates the coordinate along the wellbore. The last term in Eq. (3-5) is due to 

wellbore inflow and fluid expansion. Detailed correlations for calculation of these terns 

are provided by Ouyang (1998). 

2 n d  

Fig. 3-1: Arbitrary well configuration (see Ouyang and Aziz, 1998) 

The frictional pressure loss is expressed in dimensionless fonn via the friction 

factor f. Many correlations exist for f for closed pipe (no influx); these require some 

modfication for the general case with influx. For the case of turbulent flow with influx 

(producing well), we apply the following correlation, developed by Ouyang et al. (1998), 

where fo is the friction factor in the absence of wall influx and Re, is the wall Reynolds 

number (Reynolds number based on influx). The friction factorfo depends only on the 

axial Reynolds number and the pipe roughness and is available from standard correla- 
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tions. Note that the frictional pressure losses in wellbores with influx are less than those 

in closed pipe (evident from the minus sign in Eq. 3-6). However, because of the accel- 

erational pressure losses, the total pressure drop is higher in the case with influx. We 

note also that different correlations forfare required if the flow is laminar or if the well is 

an injector rather than a producer (Ouyang et al., 1998). 

The method of solution for this coupled reservoir-well problem is referred to as 

Instantaneous Point Source/Sink Solution (Economides et al., 1996; Maizeret, 1996; 

Ouyang, 1998). We solve for the dimensionless potential drawdown @D in any point M of 

the bounded reservoir given an arbitrarily oriented well sink/source segment S. The ap- 

proach entails the use of Green’s functions, with superposition of image wells, applica- 

tion of Neumann’s product rule (Gringarten and Ramey, 1973) and integration over space 

and time. 

Free-space Green’s functions for instantaneous sinks/sources satisfying Eq. 3-3 in 

one dimension are well known (Carslaw and Jaeger, 1959). An infinite series of image 

sinks/sources is superimposed to model a sinldsource point between two boundaries, each 

with either constant pressure or no-flow boundary conditions. As an example for the case 

of no-flow boundaries at dimensionless locations 0 and 1, the potential drawdown at 

point x at time t caused by the instantaneous source with unit strength at xo and initial 

time is given by 

ca 

ly (x, x, , t )  = 1 + 2 xexp(-k 2n2t) cos km cos k m o  

These two expressions are equivalent as shown by application of Poison’s formula. Both 

involve infinite series, but the exponential form converges faster for small t ,  while the 

trigonometric representation is advantageous for large t .  In this case, the sources are all 

of the same strength at the locations x&k for all integer k. Similar fonns can be obtained 

for mixed or constant potential boundaries. 

A solution for the three dimensional problem is achieved by multiplying linear 

solutions of the form of Eq. 3-7 (Neuman’s product rule). Following this, we integrate 
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over time to account for a continuous rather than an instantaneous sinklsource. Finally, an 

integration of the point sinkskources over the well segment yields the drawdown expres- 

sion for M; i.e., @&W,S). 

Our coupled reservoir-wellbore system has 2Ns unknowns: the dimensionless in- 

flow (or outflow) qD(iw, iL, is) and potential drawdown @w~>(iw, i ~ ,  is )  at the midpoint 

M(iw, iL, is) of each segment (see Fig. 3-1). The method yields Ns potential drawdown 

equations, NS - nw equations for wellbore hydraulics (of the form of Eq. 3-5) relating the 

potential of a segment to that of its neighbors, and nw mass balance equations of the 

form 

for a total of 2Ns equations. 

The wellbore hydraulics relate the pressure of each segment to that of its neighbor, so 

it is possible to reduce the number of unknown drawdowns to a single CPm(iw, i ~ ,  1) per 

lateral by inserting Eq. 3-5 into the potential drawdown equations. Because the starting 

segments at the heel of each lateral are close together, we can assume @m(iw ,  1,  1) - 
@m(iw, iL, 1). The number of potential drawdown unknowns is then reduced to nw. 

This problem is nonlinear as described and would call for a method such as Newton- 

Raphson, involving the formation of a Jacobian matrix which would lead to larger com- 

putational times. However, it was previously observed that the wellbore hydraulics 

equations can be decoupled from the system without much loss of accuracy (Ouyang, 

1998). As a first step, the linear system of nw mass balance and NS potential drawdown 

equations is solved neglecting the wellbore hydraulics. The solution obtained under these 

simplifying assumptions (uniform potential or infinite conductivity well condition) gives 

a first estimate for the irdoutflow distribution along each lateral. The wellbore hydraulics 

can then be calculated and included in the original system. We iterate in this manner until 

our unknowns are sufficiently accurate. This loosely coupled scheme is efficient and has 

proven sufficiently robust for the examples considered. 
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3.2 Incorporation of Skin in Semi-analytical Solution 

The mechanical skin effect is generally used to account for altered permeability in the 

near wellbore region for an otherwise homogeneous reservoir. This concept is commonly 

extended to account for non-Darcy flow effects, partial completions, completions differ- 

ent from open hole (Thomas et al., 1996) and slanted wells. 

Here we will introduce a skin that accounts for the effects of near well heteroge- 

neity on wellbore flow. Before describing how we actually compute this skin, we will 

first review the skin concept and then describe how skin effects are incorporated into the 

semi-analytical approach described above. Our actual approach for the calculation of 

skin is described in the next section. 

Hawluns (1956) gave an expression for a dimensionless skin in radial system, 

This form is obtained by solving for steady state flow in a cylindrical system (resistances 

in series) as depicted in Fig. 3-2 for a reservoir of thickness h. The scalar permeability of 

the unaltered reservoir is k and ka is a different permeability over the region rw e r < r,; 

Le., in a ring around the wellbore. 

Fig. 3-2: Flow in series in a radial system 

We now describe how skin is introduced into the semi-analytical formulation de- 

scribed in the previous section. Consider a lateral with four segments (Fig. 3-3) where 

the fourth segment 54 has a skin s4 associated with it. The Mi are the equivalent pressure 

43 



points located at a distance rw from the segment axis (in the isotropic case). A potential 

drawdown calculated at such a point is taken as the well drawdown at that segment. As 

an example, the potential drawdown @wD in SI given itself and all other segments is, by 

superposition: 

(3-10) 

where @D(M,S) is the Green's function from the IPSS solution and q ~ ( s )  is the dimen- 

sionless idout flow rate of segment S. However, the drawdown in S4 is changed due to 

its slun, 

(3-1 1) 
i=l 

Note that Eq. 3-10 still implicitly accounts for the skin s4 because all of the segment 

drawdowns are coupled through the wellbore hydraulics. In the case of an infinitely 

conductive well, the drawdown along the lateral is constant. In the Examples section 

below, we show a clear validation of this skm implementation (cf. Fig. 3-4 below). 

skin 
s4 

M2 

s2 

Fig. 3-3: Superposition of segment drawdowns with skin 

3.3 Representation of Heterogeneity with s and k* 

We have described our basic semi-analytical approach for the representation of non- 
conventional wells in homogeneous reservoirs and the way in which we incorporate skin 

into this solution. We now discuss how we represent reservoir heterogeneity in terms of 
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a background effective permeability k* and a local skin along the wellbore, We note 

that additional skin effects, due to near-well damage or stimulation, could also be in- 

cluded in the overall s-k* approach. These skin effects would simply be added to the skin 

we compute below and the total skin would then be used in the serni-analytical solu- 

tion. 

We will assume that our reservoir models are realizations drawn from an ensem- 

ble of known statistics. We will require that the correlation structure; i.e., the correlation 

lengths in three principal directions, are known. These may not be known a priori, but 

they can be readily determined via ordinary variogram modeling. We generate our un- 

conditioned Permeability realizations on a dense regular grid through use of the geosta- 

tistical toolbox GSLB (Deutsch and Journel, 1998). 

As indicated above, the s-k* approach requires us to estimate both an average or 
background permeability and a locally varying skin defined along the wellbore. We first 

consider the calculation of the skin, s. We can compute this skin with reference to Eq. 3- 
9. We need to estimate the size and shape of the “altered” zone, the permeability ka in 

this altered zone, and the scalar background permeability which will be denoted as ks*. 

The scalar k,*, to be used in the skin equations in place of k, will be derived from the di- 

agonal tensor k*. Therefore, we will defer the description of how k,* is computed until 

after our description of the calculation of k*. 

The size and shape of the altered permeability zone (referred to as the search re- 

gion) is determined from the correlation structure of the permeability field. For a gener- 

ally anisotropic correlation structure, we use an elliptical cylinder around each segment. 

The half axes are aligned with the directions of anisotropy of the variogram and are of 
length one half of the corresponding correlation length. In Eq. 3-9, r, is computed as the 

geometric mean of the two half axes forrning the search region. Other choices for r, are 

possible though we did not observe much sensitivity to this parameter. 

The altered permeability ka in Eq. 3-9 is computed as a weighted power average 

of the permeabilities in the search region. Following previous studies in two (Durlofsky, 

2000) and three (Desbarats, 1994) dimensions, we represent this average as follows: 
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(3-12) 

where m designates the averaging exponent (power), r indicates radial distance, n is the 

distance weighting, and the integral is evaluated over the search region a. The nonnali- 

zation ra is computed via r, = ?dx. We evaluate Eq. 3-12 through use of a Monte 

Carlo type of integration (Press et al., 1993) which randomly samples data points within 

the search area, excluding the wellbore itself. 

The parameters o and n, and even the size and shape of theaveraging region, 

could be tuned through some type of parameter fit. However, in the examples presented 

below, we do not introduce any tuning of these parameters. For the log-normally distrib- 

uted cases considered, we determine a and rz through physical considerations alone. 

Specifically, we take cf) = 0 (logarithmic weighting) and n = 2. This corresponds to a 

generalized geometric average (strictly applicable for log-normally distributed perme- 

ability fields and reasonable for more general cases) weighted appropriately for radial 

flow. 

The global (or background) permeability k* is simply computed as the effective 

permeability for linear flow, as was done previously by Durlofsky (2000). This can be 

computed most accurately by solving the single phase incompressible pressure equation 

numerically on the geostatistical fine grid. This calculation must be performed with a 

prescribed global pressure drop in each of the three coordinate directions to determine 

the diagonal components of k*. This calculation is relatively inexpensive as it involves 

only single phase flow and needs to be done only once for a given realization. However, 

with very finely gridded permeability fields this calculation can become somewhat de- 

manding. 

As an alternative, approximations employing the statistics of the permeability 

field can be used. We found the approach suggested by Ababou (1990) to be reasonably 

accurate for our calculations. In three dimensions the diagonal entry of the tensor in co- 

ordinate direction d= x,y ,z  is 
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(3- 13) 

This formula was developed for log-normally distributed permeability fields which have 

a geometric mean kg and correlation lengths Zd (Zh is the harmonic average of the three 

correlation lengths). Note that this equation uses ( c Q ~ ~ ) ~ ,  the variance of the log- 

permeability. In the examples below we specify the lognormal permeability fields in 

terms of the mean m and the coefficient of variation (standard deviation divided by mean) 

c, rather than in terms of (Thk. 

As indicated above, although our effective permeability (computed in either 

manner) is a diagonal tensor, the skin formula is in terms of a scalar k. We therefore set 

k = ks* = (kxx kyu kzz in Eq. 3-9 (Le., k = k,* is the geometric average of the k* per- 

meability components). 

* * *  

Our s-k* approach provides a varying slun distribution along the laterals of the 

wells. Using this skin, the semi-analytical tool computes a flow and pressure response 

(or productivity) for each well segment. Comparisons between these results and those of 

a standard finite difference numerical simulation will be discussed in the next section. 

We note here, however, that given a “true” flow and pressure response from the finite 

difference simulator, it is possible to determine a skin distribution that matches this ref- 

erence solution up to an arbitrarily small error. We refer to this skin as the true skin. 

Due to the relatively weak coupling of the system, we can compute the true skin using a 

simple perturbation method rather than a general optimization procedure. Though this 

true skin is computed for a given time, it appears to provide an accurate approximation 

for other times, including the early transient period. 

The concept of true skin is useful for several reasons. Most notably, it estab- 

lishes the existence (in a numerical sense) of an s-k* type of solution for the types of per- 

meability fields considered. Further, in tuning the method, the skin distribution can be 

matched rather than the inflow profile, saving computation time. Finally, a true skin 

computed for single phase flow can be applied for more general cases, such as in a gen- 

eral multiphase flow problem in a finite difference simulator. 
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Although the overall semi-analytical approach is only appropriate for single phase 

flow, it might be possible to use the technique to qualitatively represent some effects due 

to multiphase flow. For example, the method might be used to model the effects of 

trapped water or gas within the wellbore, which can occur in wells of undulating trajec- 

tory. Assuming the locations of these regions are known or can be estimated, the well 

perfonnance could be modeled by prescribing high skin in the affected regions (to mini- 

mize local inflow) and by modifying the wellbore friction model (to capture the effects of 

the additional phase on the wellbore pressure loss). Such a treatment would of course be 

very approximate, but it might be useful in some cases for a qualitative evaluation of well 

performance. 

3.4 Examples 

The examples presented in this section demonstrate the capabilities of the proposed 

method. Most of these results are compared with those from a finite difference numeri- 

cal simulator (Eclipse Reservoir Simulator, 1996). This reference solution was computed 

using the detailed geostatistical model (45x45~35 celIs) and the default well model of 

Peaceman (1983). 

The s-k* semi-analytical solution approach was implemented in a C++ code. The 
code is quite efficient computationally and requires only about 2 minutes of computation 

time on a single 400 MHz processor for a 50 segment model at a given report time. The 

code is not fully optimized, so these timings could be improved. The computation time is 

independent of the orientations of the wells and segments and depends largely on the 

number of actual segments. The code has been parallelized and the increase in speed is 

nearly linear with the number of processors. This high degree of parallel efficiency re- 

sults because the computation time is dominated by the formation of the matrix, which 

parallelizes very naturally. The time requirements for the semi-analytical solution 

method are essentially independent of the level of detail in the geostatistical permeability 

description (though the numerical calculation of k* will scale with the size of the fine grid 

model). Therefore, the efficiency advantage of the method over a finite difference tech- 

nique will increase as the model size increases. It is also important to note that the extra 
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overhead of the s-k* method compared to the base semi-analytical method is insignifi- 

cant; the calculation of skin along the wellbore requires only about 5 seconds for an ex- 

ample with 50 segments. 

In the calculations below, we consider slightly compressible single phase flow. In 

most cases, we use only straight well laterals, which are aligned with the grid in the fi- 

nite difference simulator. We do not include wellbore hydraulics except when otherwise 

stated. Gravitational effects are included in all of the calculations. Ten logarithmically 

spaced time steps were taken in the finite difference runs out to a final time of 100 

days. 

Tables 3-1 to 3-3 provide the basic reservoir description, the statistics of four dif- 

ferent log-normally distributed permeability realizations (referred to as permX), and 

schematics of the various well geometries (well0 respectively. The examples involve 

different well geometries coupled with the different permeability realizations. In Table 

3-2, Zx, I,, I ,  refer to dimensionless correlation lengths; Le., the actual correlation length 

non-dimensionalized by the reservoir length in the appropriate coordinate direction. 

Spherical variogram models with no sill were used in all cases. Note that in Table 3-3 

only the black well sections are perforated; the gray lines indicate the location of the 

vertical pilot hole (the heel of lateral). 

3.4.1 Anisotropic Reference Case. Our first example serves to demonstrate that skin is 

implemented correctly in the semi-analytical solution. The reservoir is homogeneous but 

anisotropic with permeability prescribed as kx,=200, kyy =loo, kzz =50 md. This example 

follows geometry wellA of Table 3-3: the well is fully penetrating and produces at 

10,000 STB/d. Five different skin values (s=O,-2,0,1,3, see Table 3-3) are specified along 

the well. In the semi-analytical solution, the well is modeled with 45 segments. 

The semi-analytical (solid curve) and finite difference (dashed curve) solutions 

for inflow as a function of position along the well 5 are presented in Fig. 3-4. The curves 

represent the total inflow into each segment (solid curve) or grid block (dashed curve). 

The agreement between the two curves is clearly very close, indicating that skin is prop- 

erly implemented into the semi-analytical solution technique. As is evident from Fig. 3- 
4, the inflow is reduced in sections of positive skin, as would be expected. End effects 
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at the boundaries of the skin zones are also apparent; e.g., segments of low skin draw 

additional fluid from adjacent higher skin regions. 

Table 3-1: Reservoir, Fluid and Well Properties 

drainage area 
thickness 175 ft 
vert. bounds sealing (no flow) 
horiz. bounds sealing (no flow)* 
porosity 4 0.25 
compress. c, 
density p 60 1bJft 

3000 psi 
10,000 STB/d (primary*) 
2800 psi (secondary*) 
2.4 in. 

4500 x 4500 ft2 

3.0~10-~ si-' at phi P 
viscosity p 1 CP 
form. fac. B 1.05 FWSTB 
initial potential qhi 

total rate Q 
min. bhp pw,min 
well radius r, 
report time 40 days 

*these specifications differ for the fixed pressure example ' 

Table 3-2: Statistics of the Permeability Fields 

realization permA p e d  / B2 permC 
mean rn 100 md 103 / 101 md 109 md 

coefficient of 1 1.8 / 1.6 1.4 
variation Cy 

con, structure 0.3,0.3 0.3,O.l 0.5,0.05 

background 79 md 67 / 67 md 136 md 
Ux=l, ,  1,) 

perm. k,* 

Table 3-3: Well Configurations of the Examples Presented 

wellA wellB 

m= wellC wellD 
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0 1000 2000 3000 4000 
coordinate along the well, ft 

Fig. 3-4: Production profile for wellA in a homogeneous, anisotropic reservoir with skin 

prescribed 

Because wellbore hydraulics are not included in these calculations, pressure is 

constant from the heel (k=O) to the toe (5 =4500 ft) of the well in both calculations. The 

difference in the wellbore pressures for the two cases is only 0.7 psi, indicated as Ap in 

the figure. In this and all subsequent production plots, a measure of the difference be- 

tween the inflow profiles for the semi-analytical and the finite difference results is also 

provided. This quantity, designated Aq, is simply the L1 norm of the differences between 

the two solutions; i.e., Aq = (l/ns)zj ]qfd - qS+li. 

We now consider several heterogeneous cases and apply the procedures 

described above to determine the skin profile along the well and k*. 

3.4.2 Fixed Flow Rate Cases. Our next example involves the heterogeneous permeabil- 

ity realization permA and well configuration wellA. A horizontal cross section of this 

permeability field, through the plane containing the well, is shown in Fig. 3-5. Darker 
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regions correspond to higher pemeabilities. The well is indicated in the figure by the 

dashed line. The typical “radius” of the correlated regions of permeability is about 30% 

of the system size (recall that I,= 2,=0.3 in this case). For this permeability field, the di- 

agonal components of k*, obtained from a single phase simulation (Deutsch and Journel, 

1998) on the fine grid, are 93.0,91.6 and 57.2 md. This compares to 97.5, 97.5 and 52.6 

obtained by the approximate homogenization method of Ababou (1990) (Es. 3-13). 

Fig. 3-6 displays the production profiles for this case for the semi-analytical and 

finite difference computations. The agreement between the two methods is quite good, 

though there are clearly larger differences between these two results than was observed 

in the previous example. In this example, Aq=25.3 STB/d and Ap=1.7 psi. The average 

inflow per segment in this case is 10,000/45=222 STB/d, so a Aq of 25.3 STB/d indicates 

that the enor in local inflow is typically about 10%. The wellbore pressure is even more 

accurate; the total drawdown (defined here as the difference between the initial wellbore 

pressure and the wellbore pressure at a given time) is about 168 psi. Therefore, the error 

in pressure is only about 1%. 
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Fig. 3-6: Production profile for wellA in a heterogeneous reservoir (permA) 

The variation in inflow with position along the wellbore is quite significant in 

this case. As is evident from Fig. 3-5, the well intersects a broad distribution of perrne- 

ability values. Two major peaks can be observed at 5 - 1400 and 5 - 3800 ft. These 

peaks clearly correspond to high values of the permeability field (compare Figs. 3-5 and 

3-6). In general the peaks in inflow are captured with reasonable accuracy by the s-k* ap- 

proach, though the higher peak at 5 - 1400 ft is somewhat overestimated. We note that 

these large variations in inflow with position could well lead to the early breakthrough of 

water or gas. That is of course not modeled with our method, however. 

As discussed above, it is possible to determine a true skin which provides, per 

definition, an exact match between the finite difference and s-k* productivity results. We 

computed this true skin for the case considered above (wellA in permeability field 

permA). The true skin distribution, as well as the estimated skin (which was used for the 

results presented in Fig. 3-6), are shown in Fig. 3-7. The estimated skin tracks the true 
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skin relatively closely, though there are clearly some differences. These differences are 

most important in regions of high negative skin (e.g., at 5 - 1400 ft). 

Our next example (Fig. 3-8) is for the same well geometry but a different perme- 

ability field (perrnC). The agreement for the inflow distribution, Ap and Aq are again 

quite good for the most part. The inflow estimation deviates considerably from the finite 

difference result at the toe of the well (4  = 4500 ft), however, which is where the major 

contribution to Aq originates. This error is due to an inaccurate estimate of skin (relative 

to the true skin) in this region. Specifically, the skin estimate is negative while the true 

skin is positive. It may be possible to improve the skzn estimate through some tuning of 

the parameters in Eq. 3-12. 
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Fig. 3-7: Estimated and true skin distributions along the well (permA, wellA) 
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Fig. 3-8: Production profile for a different permeability field (permC, wellA) 

3.4.3 Fixed Pressure Cases. For the following cases, we consider a 2100 ft partially 

penetrating horizontal well (wellB of Table 3-3) operating at a fixed pressure of 

pw=2800 psi. The well is modeled using 21 segments in the s-k* calculations. An aquifer 

located below the reservoir (z=175 ft) maintains the pressure at the initial value of 3000 

psi. In the results presented below, we consider two different realizations of the same 

geostatistical model, perml3 and perrnB2. Due to finite size effects, these two realiza- 

tions do not have identical statistics (cf. Table 3-2). 

In Fig. 3-9 we show the well production profile using p e d .  Because pw is 

specified, Ap is identically zero. The total inflow rates are, however, different between 

the various models. For the finite difference results, Qfd = 19,900 STB/d, while the s-k* 

method gives Qs-k* =17,300 STB/d, an error of about 13%. On a per segment basis, the 

error in inflow rate is about the same. An additional curve is also shown in the figure 
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(denoted as “k” only”); this corresponds to the semi-analytical result using k* but setting 

s=O everywhere. Such a result might be obtained with previous semi-analytical methods 

that are unable to account for heterogeneity. This result is clearly unable to track the 

finite difference result, though it does provide an accurate estimate of the total flow (&* 

=18,700 STB/d, an error of only 6% relative to the finite difference result). 
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Fig. 3-9: Production profile for fixed pressure example (pennB, wellB) 

2100 

The next case involves permeability field pemB2 (Fig. 3-10). Here, the agree- 

ment of the s-k* results and the finite difference results is quite close. The total inflow 

rates are &fa =10,300 and Qs-p =10,200 STB/d, respectively, an error of about 1%. On a 

per segment basis, this error is also only 1%. The semi-analytical result using k* with s=O 

is again shown. In this case the results for total inflow using this method are poor; &k* 

=18,500 STB/d, an error of 80% relative to the finite difference result. The results for Q k *  

are quite similar for both permB and permB2 because k* is close for the two cases. 
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However, because the permeabilities along the well path are quite dfferent between the 

two realizations, the well productivities differ considerably. The use of k* alone is un- 

able to capture this effect. This is consistent with earlier results for two dimensional 

systems, where the well productivity was seen to vary by orders of magnitude between 

realizations of the same statistics, even though k* was the same between realizations 

(Durlofsky, 2000). 
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Fig. 3-10: Same as Fig. 3-9 but with a different permeability realization (permB2) 

3.4.4 Multilateral Case. We now consider the multilateral configuration wellC in Table 

3-3. The two horizontal sections are perforated and have a total production constraint of 

10,000 STB/d. Each lateral is modeled using 18 segments. The production profiles for 

the upper lateral are shown in Fig. 3-11 and those for the lower in Fig. 3-12. The inflow 

profile computed using s-k* is in close agreement with the finite difference results for 
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both laterals. As indicated in the figures, the differences in pressure between the finite 

difference and s-k* calculations are 4.6 psi for both laterals. The finite difference result 

for the total production from the upper lateral is Qfd =2900 STB/d, while the s-k* result 

gives Qs-k* =2600 STB/d7 representing a difference of 10%. For the lower lateral, Qfd 

=7100 STB/d and Qs-k* =7400 STB/d; an error of 4%. Differences in the contributions of 

the two laterals to total well inflow are likely due to gravitational effects and permeabil- 

it y heterogeneity . 

The close agreement between the finite difference and s-k* results in this case 
suggests that both approaches are reasonably accurate. However, in some cases, such as 

when the heels of the two laterals are relatively close together, the finite difference re- 

sults may begin to lose accuracy. This is because the finite difference results rely on the 

simplified Peaceman (1983) model to compute the well index. The assumptions of that 

model (two dimensional radial flow due to an isolated well) are clearly violated when 

there is strong communication between the two laterals. In such cases, the s-k* ap- 

proach might well provide more accurate results than the finite difference method. 
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Fig. 3-1 1: Production profile for the upper lateral of multilateral (pemC, wellC) 
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Fig. 3-12: Production profile for the lower lateral of multilateral (pemC, wellC) 

3.4.5 Complex Trajectory with Wellbore Hydraulics. Our final example involves 

wellD in a reservoir with pemC. In this example, we consider the effects of wellbore 

hydraulics on the production profile. We do not compare our results for this case with 

the finite difference results because deviated wells are somewhat difficult to model using 

finite difference methods. The well is modeled using 23 segments and operates at a 

fixed total inflow rate of 10,000 STB/d. Wellbore hydraulic effects due to friction (with 

pipe roughness set to 0.0001 ft) and acceleration are included in the model. 

We present results for both wellbore pressure (right vertical axis) and inflow rate 

(left vertical axis) as a function of position for this case. The solid curves in Fig. 3-13 

show the s-k* results with no wellbore hydraulics and the dashed curves show results 

with wellbore hydraulics included. Note that, even when pressure drop due to friction 

and acceleration is neglected, the wellbore pressure profile is no longer uniform because 

59 



the well dips in the middle section. There are clearly some differences between the 

wellbore pressure profiles. Differences in the inflow profile are, however, relatively 

slight. 

This example serves to illustrate the potentiaIly complex interplay between well- 

bore hydraulics and the local permeability heterogeneity. Even though the effects of 

wellbore hydraulics are not dominant here, in some cases both effects must be included 

in the model to obtain accurate results. In the next section, we apply the s-k* approach to 

study the combined effects of wellbore hydraulics and permeability heterogeneity on the 

performance of non-conventional wells. 
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Fig. 3-13: Effect of hydraulics on production and pressure profiles of a complex trajec- 

tory well (permC, wellD) 
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3.5 Assessment of the Combined Effects of Heterogeneity and Wellbore Pressure 
Drop 

In this section we apply our semi-analytical solution methodology to assess the perform- 

ance of horizontal wells in heterogeneous reservoirs with wellbore pressure effects in- 

cluded. We consider many realizations of heterogeneous reservoirs of prescribed statis- 

tics to enable us to draw conclusions regarding average behavior and the degree of varia- 

tion. We first describe our assessment procedure and then present detailed numerical re- 

sults. 

3.5.1 Calculation of weil productivity. Well productivity, designated PI, is defined as 

the ratio of the total well production Q to the difference in pressure between the reservoir 

and the well Ap. At a given time, we take the reservoir pressure to be the average reser- 

voir pressure <p> and the well pressure to be the pressure at the heel of the well, 

pw(C=O). The expression for PI is then 

where <p> is determined from the material balance for a closed, slightly compressible 

system: 

(3-15) 

Here, @o is evaluated at the midpoint of the reservoir, Bo is the oil formation volume 

factor, ct is the total system compressibility and V' is the total pore volume. The accuracy 

of Eq. 3-15 was verified through comparison to detailed simulation results. 

These expressions define the productivity of a well in a single realization of the 

heterogeneous permeability field. We refer to the productivity for a single realization k 

as Pf. The expected productivity for an ensemble of N such realizations of identical sta- 

tistics, designated E, is given by the average of the N productivities; i.e., 
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l N  I_ 

P I = - Z P I k  h7 . (3-16) 

Similarly, the standard deviation (designated Q) around PI can be computed. 

This “average” productivity can be contrasted with another measure of productiv- 

ity, namely the productivity computed for a single permeability field with “average” 

(homogeneous) permeability k*. This k* represents the effective permeability of all of the 

realizations of the same prescribed statistics. We designate the productivity for a system 

of constant permeability k* as PZ*, in contrast to the defined above. The quantity PI* 

in a sense describes the productivity for an averaged system, as opposed to P I ,  which 

describes the average productivity for an ensemble of permeability fields of prescribed 

statistics. For systems of finite size, the effective permeabilities for the various realiza- 

tions will differ slightly. In the results for PI* below, the k* used in the calculation is the 

average of the k*’s for each of the N realizations. 

In addition to heterogeneity, we wish to study the effects of wellbore pressure 

loss. We consider systems both with and without wellbore pressure losses in order to 

gauge the magnitude of the effect. We introduce the subscripts 1 and 00 to designate cal- 

culations for wellbores of finite conductivity (wellbore losses are included) and for well- 

bores of infinite conductivity (no wellbore pressure losses), respectively. With this nota- 

tion, the quantity PZIk designates the productivity for a single realization with wellbore 

losses included in the calculation, while PI,“ designates the productivity for the same re- 

alization with no wellbore losses. Similarly, the quantity designates the ensemble- 

average productivity for a well in a heterogeneous system with wellbore losses included, 

while E, designates the ensemble-average productivity for the well in a heterogeneous 

system with no wellbore losses. The quantities PIl* and PIw* are defined analogously for 

a system of constant permeability k*. 

Another quantity of interest is the ratio of the well productivity with wellbore 

pressure losses included to the productivity without pressure losses. If this ratio is very 

close to unity for a particular scenario, this indicates that wellbore pressure effects are not 
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significant in that case. We designate this productivity ratio, for a particular realization, 

2; i.e., Rk = PIlk/PImk . The average and standard deviation of R over N realizations are 

designated E and OR. Comparison of E to the quantity R* = PZl*/PZa* will indicate 

whether or not a single calculation (using averaged properties) gives an accurate indica- 

tion of the ensemble-average effect of wellbore pressure losses. The usefulness of this 

quantity will also depend on the magnitude of CJR relative to E .  The applicability of 

these definitions and comparisons will become clear below when we consider results for 

actual systems. 

3.6 Numerical Examples 

We consider three different systems. Each system corresponds to a particular well ge- 
ometry and a particular geostatistical correlation structure for the permeability field (Ta- 

bles 3-1 to 3-3). The permeability field is specified in terms of the dimensionless corre- 

lation lengths in each coordinate direction. For each case, we generate 30 unconditioned 

geostatistical realizations using GSLIB (Deutsch and Journel, 1998). This corresponds to 

the case in which a new well is drilled in a region away from hard data, though the per- 

meability variogram is assumed to be known. By rescaling these realizations under the 

assumption of log-normality, we generate systems of different overall C,,. We consider 0 

I Cv I 2; due to the finite data size of the permeability realizations, the back-calculated 

values of Cv differ slighly from the prescribed values. 

Productivities for each realization k, both with (PI:) and without (PZMk) wellbore 

hydraulics included, are computed using our semi-analytical method. In addition, we 

compute productivity for a single homogeneous case, with and without wellbore hydrau- 

lics, using the average k* from the corresponding 30 realizations (this gives PIl* and 

PI-*). All other system parameters are fixed and do not vary between realizations. In all 

cases, the well is specified to produce at a constant rate of Q=20,000 STB/d. Productivity 

values are presented at t=lOO days. 
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3.6.1 Long horizontal well. The first example involves a fully penetrating well (wellA in 

Table 3-3) and permeability model permA. The well length is large compared to the areal 

correlation length of the system (EX=Z~0.3). Fig. 3-14 shows the F-(dark diamonds) 

and the corresponding PZ* (white squares) as a function of the coefficient of variation of 

the permeability field. Error bars corresponding to one standard deviation OP are drawn 

along with the Em data. From the figure we see that, for Cv > 0.1, both E, and PI=* 

decrease with increasing Cv. This is because k* decreases with increasing Cv due to our 

method for rescaling permeabiIity. The variation from realization to realization, quanti- 

fied via o p  (error bars), increases with increasing Cv up to Cv - I, after which it is ap- 

proximately constant. At the highest value of Cv, the productivities computed for the 30 
realizations vary by a factor of about 2.8 (Le., PZm‘?/PI m min - 2.8). 

Also of interest is the location of the PZm* results (white squares) relative to the 

PZ- results. The PIm* results consistently exceed the Em results, demonstrating that the 

results for the “averaged” system do not necessarily agree with the ensemble-averaged 

results. The overprediction in this case is fairly consistent at about one standard devia- 

tion. 

- 

We next consider the same system (and the same 30 realizations) but now include 

the effects of wellbore hydraulics. The results for this case are shown in Fig. 3-15. The 

symbols here are the same as in Fig. 3-14. The results in Fig. 3-15 are quite analogous to 

those in Fig. 3-14 and the same trends are evident. However, the and PIl* data in 

Fig. 3-15 are consistently less than the Em and PIm* data in Fig. 3-14. This is as ex- 

pected and demonstrates the effect of wellbore losses on well productivity. 

We quantify the effect of wellbore hydraulics on productivity in Fig. 3-16, where 

we plot the productivity ratios and R* versus Cv. There are several interesting features 

toFig. 3-16. First, we note that the general magnitude of both and R* varies from 

about 0.78 at low Cv to about 0.87 at high Cv (this trend may be due to k* decreasing with 

increasing Cy). This indicates that wellbore hydraulics reduce productivity by 13-22% on 

average for these cases. Further, we see very close agreement between and R* and 
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relatively small error bars (low OR) around the results. This indicates that the impact 

of wellbore hydraulics on the productivity ratio is accurately represented by the homoge- 

neous case. This suggests that a single simulation (of a homogeneous system) can 

be used to gauge the effect of wellbore hydraulics on productivity for a set of heteroge- 

neous realizations of the same k* (and other system parameters). This is an interesting 

observation, because as we saw above (Figs. 3-14 and 3-15), the homogeneous case does 

not provide a very accurate estimate for the ensemble-averaged productivity in either 

case. However, it does provide an accurate estimate for PI I / PI o) . 
- -  

0 0.5 1 1.5 2 
coefficient of variation 

Fig. 3-14: Productivity plot ( p e d ,  wellA, infinite conductivity) 
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Fig. 3-15: Productivity plot (permA, wellA, finite conductivity) 
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Fig. 3-16: Productivity ratio plot (pennA, wellA) 
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3.6.2 Short horizontal well. We next consider a partially penetrating well (wellB in Ta- 

ble 3-3) in a permeability field ( p e d )  of smaller vertical correlation length (Ez=O.l) 

than in the previous case. The well length is now only about 1.5 x I,. We show produc- 

tivity results in Fig. 3-17 for theinfinitely conductive case; Fig. 3-18 displays analo- 

gous results for the case of finite conductivity. Results for the productivity ratio are 

shown in Fig. 3-19. The values for productivity in this case are about one half of the val- 

ues obtained in the previous case, presumably because the well is considerably shorter 

here. As in the previous case, the error bars in Figs. 3-17 and 3-18 increase with in- 

creasing Cv up to C, - 1. The ratio of the maximum to minimum productivity computed 

for the 30 realizations is about 8 in both figures at the maximum value of Cv. This high 

value probably results because the well length is comparable to the correlation length, 

which would be expected to lead to high variability in productivity results. 

In this case, however, the average (homogeneous) realization provides an accurate 

estimate of the ensemble averaged results; i.e., PIm* is very close to and PII* is close 

to El. This is in contrast to the results for the previous system. The effects of wellbore 

hydraulics on productivity are relatively small in this case, as indicated in Fig. 3-19 (PZ 

ratio - 0.95 or greater). Again, E is well approximated by R*, inhcating that a single 

simulation of a homogeneous system can be used to assess the effect of well- 

bore hydraulics on productivity. 

67 



120 

100 

20 

0 
0 0.5 1 1.5 2 

coefficient of variation 

Fig. 3-17: Productivity plot ( p e d ,  wellB, infinite conductivity) 
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Fig. 3-18: Productivity pIot (permI3, wellB, finite conductivity) 
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Fig. 3-19: Productivity ratio plot (pennB, wellB) 

3.6.3 Dual-lateral wells. Our last example involves a dual-lateral well (wellC in Table 3- 

3) in a permeability fieldof correlation structure I ,  = 1,=0.5, I ,  =0.05 (pen&). In 

this case, the length of each lateral is slightly less than I , .  Productivity results for the 

dual-lateral system are shown in Fig. 3-20 and 3-21; productivity ratios are displayed in 

Fig. 3-22. These results again demonstrate increasing variation among the 30 realizations 

as Cv is increased up to Cv - 1. The ratio of the maximum to minimum productivity com- 

puted for the 30realizations is about 3.4 in both cases at the maximum value of Cv. 

Even larger error bars would be expected if only one lateral were producing. 

In this case, the PIw* and PI,* results overestimate their respective E.. and 

results, though the deviation is less than one OP in all cases. As in the two previous cases, 

the productivity ratio is accurately represented by the homogeneous case. These results, 

along with the results for the previous two examples, demonstrate the applicability of the 

overall s-k* approach for studying the combined effects of wellbore hydraulics and reser- 

voir heterogeneity on the productivity of non-conventional wells. 
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Fig. 3-20: Productivity plot (permC, wellC, infinite conductivity) 
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Fig. 3-21 : Productivity plot (permC, wellC, finite conductivity) 
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Fig. 3-22: Productivity ratio plot (permC, wellC) 

3.7 Discussion and Conclusions 

In this chapter, we presented an approximate method, referred to as the s-k* approach, 

capable of providing estimates of productivity for complex wells in heterogeneous reser- 

voirs. The method extends a previous semi-analytical approach through the introduction 

of a position dependent skin along the wellbore. This skin, which accounts for near-well 

heterogeneity, is computed from the local penneability field in the vicinity of each well 

segment. The background effective permeability k* applied in the method accurately 

captures global effects. Wellbore hydraulics can also be included in the s-k* model. For 
highly detailed permeability descriptions, the s-k* approach is considerably more effi- 

cient computationally than more general methods, such as a full finite difference simula- 

tion. 

The method was applied to several example cases involving various heterogene- 

ous permeability descriptions and well geometries. Results using the new approach were 

shown to be of good accuracy, in terrns of predicting wellbore pressure and inflow pro- 
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files, in comparison to reference finite difference simulation results. In addition, results 

using the s-k* approach were seen to be considerably more accurate than those using the 

semi-analytical method with no skin (Le., k* only). 

We applied the overall solution methodology to a study of the productivity of 

non-conventional wells in heterogeneous reservoirs. We computed well productivity for 

many realizations for a given correlation structure, enabling us to determine ensemble- 

averaged quantities as well as variations around these averages. Comparisons of ensem- 

ble-averaged productivities with the productivity computed from a single homogeneous 

field of “average” permeability k* enabled us to assess the applicability of a single cal- 

culation for the determination of expected well performance. For the cases considered, 

this result generally overestimated the ensemble-averaged result. In some cases this over- 

estimation was slight and in other cases it was more significant. The homogeneous per- 

meability fields were found to be quite useful for assessing the productivity ratio of the 

heterogeneous realizations, where productivity ratio is defined as the productivity in the 

finite wellbore conductivity case to the infinite conductivity case. This indicates that a 
single homogeneous simulation can be used to determine the relative effect of wellbore 

hydraulics for multiple heterogeneous realizations. 

Our data clearly show that a large variation in perfomance prediction is possible 

for the multiple realizations, even when the large scale effective permeability k* is essen- 

tially the same for each realization. This finding is consistent with earlier work, particu- 

larly the study of Brekke and Thompson (1996) who additionally presented probability 

distributions for well performance. As has also been demonstrated in previous work, our 

study shows that in some cases the effects of wellbore pressure losses are significant (> 

20%) while in other cases they are small (< 5%). Taken in total, our methodology and 

results demonstrate a clear approach for estimating the effects of wellbore pressure losses 

on the performance of non-conventional wells in heterogeneous reservoirs. 

3.8 Future Directions 

The approaches and results presented in this chapter can be extended in several important 

directions. Because the general method provides an efficient, semi-analytical means of 
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estimating well productivity, it may be well suited for use in a Simulation While Drilling 

capability. Simulation While Drilling, discussed in more detail in Chapter 7, requires the 

real time (Le., during the actual dnlling operation) estimation of well performance. Be- 

cause many possible scenarios must be evaluated in order to optimize the well path and 

trajectory, the evaluation tool must be fast and efficient. The s-k* approach is therefore a 

candidate for such a computation. 

A second area in which the approaches described here could be applied is for the 

calculation of well index (Wa, as discussed at the beginning of this chapter. This will re- 

quire the linkage of the semi-analytical results with a simple single phase finite difference 

simulator in order to determine WZ for each block in which the well is completed. This 

would then allow the direct use of the semi-analytical results in finite difference reservoir 

simulators. 

Finally, the general approach described here can be extended to model complex 

wells with downhole chokes (so-called “Smart Wells”). Such wells are used to control 

inflow from the various zones in which the well is completed and are useful for produc- 

ing from multiple reservoirs or for efficiently producing highly heterogeneous reservoirs. 

The extension of our method to this type of model will provide a tool capable of effi- 

ciently assessing the potential of these complex wells. 
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4 Pressure Drop in the Wellbore 

by Jaydeep Muhashabde, Khalid Aziz and h u i s  J. DurlofsQ 

4.1 Introduction 

In many horizontal wells, particularly in high permeability reservoirs, pressure drop in 

the well can be important in controlhg flow into the wellbore. Generally this results in 

higher production from zones near the heel of the well than those near the toe. In such 

situations it is important to be able to predict the pressure drop accurately. 

This problem is different from the problem of flow in a pipe where there is no in- 

flux through the pipe wall. In horizontal and other advanced wells, fluid enters the well 

along its entire completed length. The well can be open-hole or it can be completed with 

a liner. Furthermore, the liners may or may not be cemented. The wells can have single or 

multiple laterals and each lateral can be several hlometers in length. 

While flow in the wellbore is not always single-phase, the solution of the multi- 

phase flow problem cannot be accomplished without first tackling the problem of single- 

phase flow. Almost all multiphase flow correlations employ the single-phase friction 

factor in one way or another. 

Ouyang et al. (1998) showed that inflow causes the wall friction to increase in the 

laminar flow regime and decrease in the turbulent flow regime. Also, accelerational ef- 

fects, which are generally neglected in pipe flow, can be significant. 

A considerable amount of experimental work has been performed to study the in- 

fluence of radial inflow during single-phase production. The experimental data are gener- 

ally obtained by injecting fluids through perforations along the pipe wall and measuring 

the pressure drop at different locations along its length. 

Stanford University’s Horizontal Well Research Group (SUPRI-HW) has con- 

ducted experiments in collaboration with Marathon Oil Company. These experiments 

were carried out to study single-phase as well as two-phase flow and were performed 

primarily with air and water (Ouyang et al., 1998) in a 6 inch pipe with and without a 

liner. 



Significant experimental work has also been performed at Norsk Hydro’s Re- 

search Center in Porsgrunn, Norway (Schulkes and Utvik, 1998; Schulkes et al., 1999). 
They colIected data for air, oil and water flow. 

Tulsa University has also conducted a series of single-phase experiments with 

water as the working fluid (Yuan et al., 1999). In these experiments, pipes with different 

numbers of perforations were used to study the effect of perforation density. 

We have previously proposed correlations based on our own and existing pub- 

lished data. Our objective here is to compare existing models with all available data and 

to improve, if necessary, the proposed models so they are in agreement with all the data. 

We focus here just on single-phase wellbore flow. Available models are first tested 

against the data. Based on these tests we have developed a simple new model which is 

able to provide improved predictions. 

Some of this work was performed by our student, Jaydeep Mahashabde, during a 

summer internship at Norsk Hydro with Dr. Ruben Schulkes. The results reported in the 

next section are taken from the Master’s report of Mahashabde (2000). 

4.2 Modeling Results for Single Phase Flow in Horizontal Wells 

Here we discuss the applicability of several correlations developed for single-phase well- 

bore flow. We first describe how pressure drop is evaluated for wellbore flow. An essen- 

tial part of this calculation is the determination of friction factor for flow without influx 

through the pipe wall. Next we d~scuss friction factor correlations for pipe flow with ra- 

dial influx. 

The single-phase experiments conducted to collect the data used in this work are 

described after the calculation procedure is outlined. Then, comparisons of existing cor- 

relations with the experimental data are presented. Finally modifications to the correla- 

tions are proposed to capture the effect of perforation density. 



4.2.1 Pressure Drop Calculation. For pipe flow with radial inflow, the total pressure 

drop along the pipe can be split into three parts, namely, gravitational, accelerational and 

frictional components: 

The three terms on the right hand side represent hydrostatic head, accelerational and fric- 

tional components of total pressure drop. 

For the case of a horizontal pipe, the gravitational pressure drop is zero. The ac- 

celerational pressure drop arises due to wall inflow. As a result of radial inflow, the ve- 

locity of the fluid varies along the pipe length. This causes a change in the axial momen- 

tum of the fluid and the associated pressure drop is recognized as the accelerational pres- 

sure drop. For single-phase flow, Ouyang et al. (1998) suggested the following equation 

to calculate the accelerational pressure gradient: 

( $ ) A = 2 . i ,  dU 7 

(4-2) 

where U is the axial velocity and p is the density of the fluid. This equation needs to be 

integrated over the length of pipe to obtain the accelerational pressure drop. 

The frictional pressure drop is caused by shear stress at the pipe wall. It can be 

obtained by integrating the following equation 

where D is the diameter of the pipe. The friction factor fo in the above equation is a di- 

mensionless pressure drop. If there is no inflow, this friction factor depends only on the 

Reynolds Number (Re) and the relative roughness (dD) of the internal pipe wall. This 

friction factor will be referred to as the no wall inflow friction factor, denoted byf,. Vari- 

ous correlations to calculate f, are discussed by Ouyang and Aziz (1996). 

4.2.2 Friction factor with wall inflow. When steady flow in a pipe is disturbed by in- 

flow through the pipe wall, the friction factor is altered. Furthermore, the acceleration of 

fluid entering the pipe requires additional energy that translates into additional pressure 



drop. Additional parameters needed are the wall Reynolds Number (Rew) and a Perfora- 

tion Density Pararneter (a): 

P4 
n;u 

Re, =- , (4-4) 

where q is the volumetric inflow rate per unit length of pipe. 

Since for a given inflow rate the inflow velocity wiIl depend on the number of 

perforations, a perforation density parameter is defined as 

where w is the number of perforations per unit length and Ape$ is the cross sectional area 

of an individual perforation. 

Various investigators have represented data using various types of corelations. 

Three fonns of these correlations are presented below. 

Type M Correlations 

Two of the correlations developed by Ouyang et al. (1998) and one developed by 

Schulkes et al. (1999) are similar in form. They are referred to as M-Type correlations: 

Comelation M1 by Ouyang et al. (1998): 

f = fu[1-0.0153Re~3978] 

Correlation M2 by Ouyang et al. (1998): 

f = f, [ 1-29.03 (%TI - 

Correlation M3 by Schulkes et al. (1999): 

(4-6) 

(4-7) 

The last two correlations are surprisingly similar, even though they were developed inde- 

pendent1 y . 



Type H Correlations 

Arif (1999) used a commercial computational fluid dynamics (CFD) code to model flow 

with perforations. He used the results of detailed calculations to obtain friction factor cor- 

relations from regression. These correlations are presented below: 

Correlation HI developed by Arif (1999): 

f = f, [ 1.9598 Re:.’642] 

Correlation H2 developed by Arif (1999): 

f = f, [ 1 - 3.34 x 10’’’ Re:f642] 

Correlation H3 developed by Arif (1999): 

f = f, [1-{-1.822+0.22461ogRe+O.l5SlogRe,,,}] 

(4-9) 

(4- 10) 

(4- 1 1) 

Type T Correlation 

This correlation was developed by Yuan et al. (1999) based on experiments conducted at 

Tulsa University. They define a total friction factor (f~) that includes the effects of fric- 

tion and fluid acceleration: 

(4- 12) 

The expression they obtain through regression forfT is a polynomial of many parameters. 

The original reference should be consulted for details. 

4.3 Experimental Data 

We have used our own data (Ouyang et al., 1998) and available data from other sources. 

Table 4-1 summarizes the characteristics of the data used. Table 4-2 gives the range over 

which Re and Re, vary in the dfferent data sets. 



Table 4-1: Sources of Data 

Pipe Length (m) 1 Source 
Facility Diameter (m) 

Liner 

PVC Pipe 

S tanfordhlarathon 

(1996) 

S t anford/Marathon 

(1997a) 

Source 

S tanford/Marathon 

Norsk Hydro 

Tulsa University 

1 Halliburton Liner 

Re Re, 

4x 1 04-4Ox 1 O4 0-200 

4x 1O4-4Ox lo4 0-250 

4x 1 O3 -6x 1 O4 0.4-40 

Conslot Liner 1 Hydro 
Model (Steel) Pipe I Norsk Hydro 

PVC Pipe I Tulsa University 

30 1 0.1 143 

30 0.1574 

6.37 1 0.16 

I OS6 
8.322 

14.03 I 0.15 

1.219 I 0.024 

Table 4-2: Range of Flow Rates 

4.3.1 StanfordMarathon Experiments. Stanford and Marathon Oil designed and 

Marathon conducted a series of experiments during the period 1993 through 1997. These 

experiments are described in detail by Ouyang et al. (1998). The experiments were car- 

ried out in a 100-ft long pipe at the Marathon Oil Petroleum Technology Center in 

Littleton, Colorado. Different combinations of axial flow and radial inflow, wellbore 

types, perforation types and densities, fluid types and wellbore inclination angles were 

considered. For comparison purposes, here we use data from 1996 and 1997 experiments 

(referred to as “Marathon Data” hereafter) only. The pipe used for the 1996 experiments 

contains twenty 5-ft sections. It contains three acrylic window sections, each about 4 ft 



long, and three stainless steel pre-packed wire wrapped screen sections, each about 21 ft 

long. It is important to note that inflow occurs only in the liner sections so that the total 

inflow length is about 63 ft. The 1997 experiments were carried out using an acrylic pipe 

with perforation densities of 0.5, 1, 4 and 8 shots/ft. All of the perforations were aligned 

for experiments with perforation densities of 0.5 shots/ft and 1 shotlft; for the other two 

perforation densities they were phased. 

4.3.2 Norsk Hydro Experiments. Norsk Hydro has conducted wellbore flow experi- 

ments at their research center at Porsgrunn, Norway. Schulkes and Utvik (1998) and 

Schulkes et al. (1999) describe these experiments. The range of Reynolds numbers for 

these experiments is about the same as that for the StanforcUMarathon experiments. As 
shown in Table 4-1, three types of pipes were used. 

The pipe with the Halliburton liner is a steel pipe with 64 perforations per meter. 

The diameter of each perforation is 9.5 rnm. This yields a perforated area equal to 0.91% 

of the pipe surface area. In order to have uniform flow through each of the perforations in 

the liner, a ceramic insulation mat was wrapped tightly around the outside of the liner. 

The pipe with the Conslot liner is constructed by wrapping a triangular wire 

around supporting rods which lie in a circular formation along the axis of the pipe. The 

base of the triangular wire is directed outwards and is typically about 3-4 mm wide. This 

specialized geometry imparts a very high wall roughness to the pipe and also prevents a 

precise estimate of the perforation density. 

The model pipe has 54 radal inlets, each with a diameter of 9 mm. The spacing 

between adjacent inlets is 0.5 m. These radial inlets are positioned in two rows (28 inlets 

in each row), diagonally opposite from each other, along the length of the pipe. 

4.3.3 Tulsa University Experiments. A PVC-R-4000 pipe was used in the experiments 

conducted at Tulsa University. The perforation densities used were 5,  IO and 20 shots/ft. 

The diameter of all the perforations was 3.17 mm. The perforations were uniformly dis- 

tributed along the pipes with phasing of 360°, 180' and 90' respectively. Experiments 

were conducted for various local inflow to main flow rate ratios, ranging from M O O  to 

1/2000. More details can be found in Yuan et al. (1999). 



4.4 Comparison of Correlations with Experimental Data 

Figs. 4-1 to 4-6 show comparisons of the correlations presented earlier with Norsk Hydro 

data. Correlation T does not compare well against this data set, and hence we do not 

show the corresponding plots. This is probably because the range of Reynolds number of 

the Tulsa data, from which this correlation was developed, is very different from that of 

the Norsk Hydro data (see Table 4-2). M-Type correlations predict the pressure drop 

quite accurately (Figs. 4-1,4-3 and 4-5). For all three pipes the data points fall within the 

10% error bound using any of the three M-type correlations. 

H-type correlations also do a good job for the model pipe (Fig. 4-2). In this case 

predictions fall within an error bound of 8%. A probable reason for this good match may 

be that these con-elations were based on CFD calculations for a similar pipe. The match is 

not as good for the Conslot and Halliburton liners (Figs. 4-4 and 4-6). We can see that 

most of the predicted values are in error by about 40% for the Conslot liner and by about 

80% for the Halliburton liner. 
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Fig. 4-1: Comparison of M-Type Correlations with Norsk Hydro Data for Model Pipe 
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Fig 4-4: Comparison of H-Type Correlations with Norsk Hydro Data for Halliburton 
Liner 

Fig. 4-5: Comparison of M-Type Conrelations with Norsk Hydro Data for Conslot Liner 
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Fig. 4-6: Comparison of H-Type Correlations with Norsk Hydro Data for Conslot Liner 

4.4.3. Effect of Perforation density (a). From the comparisons shown in the last sec- 

tion, we can see that correlations M2 and M3 compare best against the Norsk Hydro data. 

As stated before, these correlations represent f in  the form: f = fo x g(Re, Re,). In fact g is 

a function of the ratio, R e f i e ,  referred to as yhereafter. It was observed from Marathon 

and Norsk Hydro experiments that in the turbulent flow regime, f < fo. This is because, 

with wall inflow, the time averaged velocity profile for turbulent pipe flow is altered, as 
discussed by Ouyang (1998). Wall inflow lifts and expands the turbulent boundary layer 

and thus increases the axial velocity beyond the layer, but decreases the velocity within 

the layer to honor mass conservation. As a consequence, the axial velocity grahent near 

the pipe wall, and therefore the shear stress, decrease. From this argument, we expect g to 

be always less than 1. Correlations M2 and M3, though developed independently, are 

consistent with this observation. We note, however, that the correlations of M-Type do 



not account for the perforation density. Because the Tulsa data show a strong depend- 

ency of fr on @, Ml and M2 do not compare well against Tulsa data. 

In order to account for perforation density, we stuled the Tulsa University data in 

more detail and found that a correlation of the following type would be appropriate: 

f = f * ( l - a Q b y C )  9 (4- 13) 

where 

We see (Fig. 4-7) that, as expected, for all of the data from the Marathon experiments and 

much of the Norsk Hydro data, f c fo. This condition is also satisfied for the 20 shotsift 

Tulsa data. The Tulsa 10 shotdft data showf, -5 though the 5 shotdft data show f >f,. 
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So, the Tulsa data for 5 shotdft appear to be inconsistent with the other data and with 

theory. For this reason we only used the 10 and 20 shotdft Tulsa data (as well as the 

Norsk Hydro and Stanford / Marathon data) to fit the parameters of Eq. 4-13. A very 

good fit was obtained with a = 24.9, b = 6.5 and c = 0.8. 

It can be seen from Fig. 4-8 through Fig. 4-10 that the modified correlation com- 

pares well against the experimental data, including Marathon data. It accounts for perfo- 

ration density and matches the experimental data (other than 5 shotdft data) reasonably 

well. It is based on the argument that f < fo and requires only three parameters. Finally, 

we note that the values of parameters a and c are quite similar to the correspondmg pa- 

rameters in correlations M2 and M3. 
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4.5 Conclusions and Future Directions 

Data from three different sources have been used to test existing correlations for single- 

phase friction factor for pipe flow with influx. Existing correlations did not fit all of the 

available data. A new correlation was developed. The effect of perforation density is in- 

cluded in the new correlation. This correlation should be suitable for calculating pressure 

drop in wells with influx. The correlation will be particularly useful for flow in long hori- 

zontal wells. 

In the future, we plan to develop better methods for modeling two and three phase 

flow in horizontal and inclined wells. These approaches will be based on both mechanis- 

tic and drift-flux modeling approaches. The implementation of suitable models (Le., ac- 

curate and computationally efficient) into a general reservoir simulator will also be ad- 

dressed. 
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Nomenclature 

A Cross sectional area of pipe, m2 

~~~d 

Apipe I Surface area of the pipe, mL 

Cross sectional area of a single perforation, rn2 

d 

P 

Re 

Re, 

I Diameter of a single perforation, m 

Pressure, kg/m-sec2 

Axial Reynolds number 

Wall Reynolds number 

1 Diameter of pipe, m 

q 

qper 

Q 
U 

ApHH 

f 1 Friction factor 

Radial inflow-rate per unit length of the pipe, m3/m-sec 

Radial inflow-rate through a single perforation, m3/sec 

Volumetric flow rate, m3/sec 

Axial velocity, d s e c  

Pressure change due to hydrostatic head 

fo 

ApA 

A p  

Y 

I NO wall inflow friction factor 

Pressure change due to acceleration 

Pressure drop due to friction 

Ratio of inflow and axial Reynolds Numbers 

fT I Total friction factor 
- 
L /Pipelength, m 



Part 111. Novel Approaches to Account for Heterogeneities in the Vicinity of 
Non-Conventional Wells 

Reservoir heterogeneity can significantly affect the performance of non-conventional wells. The 

effects of near-well heterogeneity were clearly demonstrated for single phase flow problems 

(within the context of semi-analytical modeling) in the results presented in Chapter 3. To effi- 

ciently simulate general reservoir flow (e.g., multiphase flow), however, modeling approaches 

within a finite difference context are required. 

In Chapter 5 ,  we present a general technique for upscaling in the vicinity of horizontal 

wells (this work also appeared in Mascarenhas and Durlofsky, 2000). This technique is applica- 

ble to finite dfference reservoir simulators and provides accurate coarse scale models that can be 

used to simulate one, two and three phase flow. In Chapter 6, we present a simplified approach, 

still within a finite difference context, for modeling the effects of near-well heterogeneity in two 

phase flow problems. 

5 Accurate Coarse Scale Simulation of Horizontal Wells in Heterogeneous Reservoirs 

by Oscar Mascarenhas and Louis J. Dudofsky 

5.1 Introduction 

The accurate finite difference modeling of flow due to horizontal wells continues to pose 

several challenges. One important aspect of horizontal well modeling is the accurate representa- 

tion of fine scale reservoir heterogeneity in the near-well region in flow models. This issue arises 

because geological/geostatistical models typically include far more detail than can be accomrno- 

dated in conventional reservoir simulation models. The disparity between the geological model 

(which may include 0(107) cells or more) and the simulation model (which can handle 0(105) 

cells) requires the use of coarsening (or upscaling) techniques. 

The objective of this work is to develop and apply an upscaling approach appropriate for the 

generation of coarse scale simulation models of horizontal wells. This will allow for the accurate 

coarse scale simulation of horizontal well performance in heterogeneous reservoirs. To accom- 



plish this upscaling, an appropriate local (Le., limited domain) flow problem and boundary con- 

ditions are clearly defined. The solution of this local fine grid problem, coupled with an appro- 

priate post-processing (averaging) of the fine grid results, provides coarse scale equivalent grid 

block parameters for use in the global, coarse scale simulation model. In some cases the accu- 

racy of the coarse scale description can be further improved by ‘optimizing’ the coarse grid pa- 

rameters. This is accomplished by applying an optimization procedure to minimize the differ- 

ence between the local fine scale solution and the solution of the analogous coarse grid problem. 

This work complements earlier studies directed toward the calculation of equivalent grid 

block permeability tensors for heterogeneous systems in regions away from flowing wells (see 

e.g., Durlofsky, 1991; Pickup et al., 1994 and reviews by Wen and Gomez-Hernandez, 1996 and 

Renard and de Marsily, 1997). Aziz et al. (1999) demonstrated the inaccuracies that can be ob- 

served when these standard coarsening techniques (i.e., no specialized upscaling in the near-well 

region) are applied to horizontal well problems. Specifically, they observed significant differ- 

ences in primary production results between fine and coarsened simulation models of three phase 

flow in complex, heterogeneous reservoirs. Their work demonstrates that the use of standard up- 

scaling procedures can be inappropriate for problems involving horizontal wells. 

Previous papers addressing upscaling in the region near vertical wells (Ding, 1995; Durlof- 

sky et al., 1999) and recent work by Muggeridge et al. (1999) on upscaling with horizontal or de- 

viated wells, are also relevant to this study. In all of these papers, coarse grid flow models in the 

near-well region were developed through solution of well-dnven flow problems on the fine scale 

and the subsequent calculation of well indexes and modified well-block transmissibilities. The 

details of the methods differ, though they all display significant improvement over standard tech- 

niques. Soeriawinata et al. (1997) presented an analytical approach for computing well block ef- 

fective pemeabilities. This approach is highly efficient, though it would be expected to be less 

accurate than the numerically based techniques for highly heterogeneous systems. 

The present work differs somewhat from that of Ding (1995) and Ding and Urgelli (1997). 

Here, specific local flow problems involving a single well are defined and solved to determine 

the coarse grid near-well parameters. In Ding’s work, by contrast, the specific local problem (or 
set of such problems) to be solved is not explicitly specified. In practice, the local problem would 

likely include the well in question and some number of neighboring wells (Lemouzy, 1997). In 



this case, the method presented here specifies a smaller local problem in general, which renders 

the method more efficient computationally. 

The local problems solved here, and the subsequent optimization, differ from the approach 

taken by Durlofsky et al. (1999), who considered only vertical wells and could therefore solve 

more limited local problems without parameter optimization. In fact, none of the earlier ap- 

proaches force the detailed agreement between the local fine and coarse grid solutions as is done 

in the current method. Muggeridge et al. (1999) consider the solution of global fine grid prob- 

lems as well as the solution of local flow problems for the calculation of the near-well parame- 

ters. Their local solution approach shares some similarities with the methodology presented here. 

The two approaches will be further compared following the description of the new method. 

This chapter proceeds as follows. In section 5.2 the general approach for upscaling in the 

vicinity of horizontal wells is presented. The solution of the local fine grid problem and the post- 

processing and optimization to obtain coarse scale parameters are described. In section 5.3, re- 

sults from coarse scale simulations of horizontal well performance, for both single and three 

phase flow problems, are compared to the fine scale flow results. The near-well upscaling ap- 

proach is shown to improve the coarse scale models in all cases considered. In some cases, this 

improvement is quite substantial. 

5.2 Near- Well Upscaling Methodology 

The approach for upscaling in the near-well region is presented in this section. The 

starting point is a finely gridded, highly detailed geological model. The intent is to generate a 

coarsened model suitable for flow simulation that maintains the geologic realism of the fine grid 

model to the extent possible. The fine grid model is considered to be a single realization drawn 

from an ensemble of geostatistical realizations. As such, each particular realization is treated as a 

purely deterministic entity; i.e., there is no uncertainty associated with the fine grid permeability 

field. The specific objective here is in generating coarse scale models of the subsurface suitable 

for use in models involving horizontal wells. 

5.2.1 Local Fine Grid Flow Problem. The method is developed through a consideration of sin- 

gle phase incompressible flow, although the approach will be applicable to more general multi- 



phase problems. The governing fine scale equation is the single phase pressure equation formed 

by combining Darcy' s law with conservation of mass (with all quantities dimensionless): 

V*(k*Vp)=-q . (5-1) 

Here, p is pressure, k is the permeability tensor which is typically highly variable in space, and q 

is the source term. Equation 5-1 can be solved for pressure once boundary conditions and the 

source term are specified. From this solution the Darcy velocity (u) is determined: 

Standard upscaling procedures @urlofsky, 1991; Pickup et al., 1994; Wen and Gomez- 

Hernandez, 1996; Renard and de Marsily, 1997) retain the form of Eqs. 5-1 and 5-2 on the coarse 

grid but introduce coarse scale equivalent grid block permeability tensors (k*) in place of k. The 

k* for each coarse scale block is computed through the solution of a local flow problem over the 

fine scale region corresponding to the coarse grid block. This problem is usually solved subject 

to boundary conditions that are essentially linear in pressure (e.g., periodic or constant pressure - 

no flux boundary conditions). This type of approach is generally adequate in regions away from 

the well. 

Near flowing wells, particularly when the permeability field is highly variable over small 

distances, the loca1 pressure field will not be linear. Therefore, the imposition of boundary con- 

drtions linear in pressure could introduce significant inaccuracy in the coarse scale description. 

In the near-well region, the coarse scale parameters are, therefore, more accurately determined by 

the solution of a local fine scale problem with flow driven by the actual well. This is the type of 

fine grid problem that will be solved to generate the coarse scale model in the near-well region. 

There is another distinction between the present method and standard approaches for up- 

scaling in regions away from wells. In most upscaling methods, the local problem solved for the 

calculation of k* contains only the fine grid blocks corresponding to the single coarse block. 

However, in the near-well upscaling approach presented here (and in other methods developed 

for this problem), the flow domain is expanded to include neighboring regions around the well. 

This introduces some additional computation, though the overall upscaling method still repre- 



sents a very small overhead relative to the ultimate multiphase, tirne-dependent, global flow 

simulation. 

A cross section (perpendicular to the axis of the horizontal well) of the flow domain for the 

near-well solution is shown schematically in Fig. 5-1. Finer grid lines correspond to the fine grid 

and heavier lines to the coarse grid. The domain actually used is fully three dimensional and 

contains the entire well in addition to surrounding regions. In the figure, the well is completed in 

the central grid block as shown. The domain included in the local fine grid solution includes the 

regions corresponding to the coarse grid well block and some number of surrounding coarse grid 

blocks (in x, y and 2). The fine grid region is referred to as near-well[l], if one ‘ring’ of coarse 

grid cells around the well block is included (the shaded region in the figure corresponds to near- 

well[l]). When two rings of cells around the well block are included the fine grid region is re- 

ferred to as near-well[2] (the full domain in Fig. 5-1). For a horizontal well completed in five 

coarse blocks (5xlxl), each of which is comprised of 3~3x3=27 fine blocks, the local fine grid 

problem to be solved will contain 7~3x3~27=1701 cells for near-well[ 11 and 9 ~ 5 ~ 5 ~ 2 7 = 6 0 7 5  

cells for near-well[2]. Note that, for wells completed in many coarse scale blocks, enhanced effi- 

ciency could be obtained by subdividing the local problem into two or more sub-problems. This 

will result in a reduction in computation but could lead to some degradation in accuracy. 

Fig. 5-1: Schematic showing cross section of the near-well[ 11 (shaded) and near-well[2] fine and 

coarse grid regions. 



Equation 5-1 is solved over the fine scale region defined above. The wellbore pressure (pwb)  

is set to 1 and the pressure on the domain boundaries to zero. This is the source and boundary 

specification used previously for the vertical well case by Durlofsky et al. (1999). Variation of 

these boundary conditions was found to have only a small effect on the coarse scale parameters 

computed from this solution, particularly for near-well[2]. The fine grid solution is accomplished 

using a standard finite difference procedure, with transmissibilities computed using harmonic 

averaging of the appropriate component of permeability; e.g., for the transmissibility (in the x- 

direction) between cells i7j, k and (i+l, j ,k):  

(5-3) 

where k here refers to the x-component of permeability and Ax, Ay, Az are the grid block sizes in 

the x, y ,  and z-directions. Note that transmissibility relates the flow rate, from block i7j?k to block 

i+l, j ,k,  to the discrete pressure difference between the cells; i.e., 

where q i + ~ ~ j , k  is 

block pressures. 

(5-4) - 
q i + l / 2 , j , k  - q + 1 1 2 , j , k ( p i , j , k  - pi+l , j ,k )  7 

the flow rate between blocks i,j,k and i+l, j ,k and pi,j,k and pi+l,j,k are the grid 

Analogous expressions define T i i + l ~ , ~  and Ti,j ,k+l~. The resulting linear system can be written 

as Ap=b, where A is a banded matrix (seven diagonals for the three dimensional problem), p rep- 

resents the unknown pressures and b is the right hand side vector. 

The well flow rate, well block pressure and the wellbore pressure for the local fine grid 

problem are related through the well index WI; i.e., 

4 =W'(P~ ,  - P i , j , k )  9 (5-5) 

where Pi,j,j,k is the well block pressure. In the case of a well flowing at fixed pressure, inserting 

this representation for q in Eq. 5-1 yields a contribution to b and a contribution on the main di- 

agonal of A. The well index for the horizontal well (on the fine grid) is computed using a stan- 

dard procedure (Peaceman, 1983), though alternate procedures could also be used. Following the 



solution of the local fine grid problem, the flow rates through each of the grid block faces are 

computed by Eq. 5-4. 

5.2.2 Local Coarse Grid Flow Problem, The fine grid solution provides pressures at the grid 

block centers and the flow rates through each of the well block faces. The grid block pressures 

are then averaged from this solution over regions corresponding to coarse grid blocks. A bulk 

volume weighting is used in this averaging process. In addition, the flow rates are summed from 

the fine grid solution over regions corresponding to the faces of the coarse blocks. The average 

of the fine grid pressures over a coarse scale well block is designated pc;  the average of the fine 

grid pressures over blocks adjacent to the coarse scale well block is designated as The 

quantity qf represents the total flow rate through the fine grid region corresponding to the face 

between coarse blocks c and c,n and qorepresents the total flow rate from the well into the coarse 

scale well block. 

The coarse scale quantities to be computed are the well index (WI*) and the transmissibilities 

between the well blocks and adjacent coarse grid blocks (referred to as T;) .  From the averaged 

variables defined above, these quantities can be readily calculated through equations of the form 

of Eqs. 5-4 and 5-5: 

(5-7) 

More details on the calculation of Wf and T i ,  for the case of vertical wells, are provided by 

Durlofsky et al. (1999). 

For the case of a horizontal well aligned along a coordinate direction, the following coarse 
grid quantities are calculated. For each coarse block in which the well is completed, a WI* 

(linking the wellbore to the well block) and four or five 7'' (linking the well block to all adjacent 

blocks not containing the well) are computed. For the other connections (which link the well 

block to adjacent well blocks), the appropriate component of k* is used; that is, this transmissi- 

bility is not computed from the solution of the well-driven flow problem. In limited tests, the 



overall coarse scale flow results did not appear to be sensitive to the specific treatment of the 

well block to well block transmissibility. Note that, in all cases (e.g., even when the local fine 

gnd solution is over the near-well[2] region), only the transmissibilities linking well blocks to 

adjacent blocks are modified. All other transmissibilities in the coarse model are computed using 

the k* computed from the solution of linear flow problems. 

The averaging procedure described above provides accurate coarse scale simulation results 

in many cases. In some cases, however, an improvement in the accuracy of the coarse scale 

model can be obtained through use of an optimization procedure. The degradation in accuracy 

observed for the averaging procedure may be due to the high aspect ratios ( M A z  or Ay&) of the 

cell faces intersected by the horizontal well, coupled with the high levels of heterogeneity present 

(high variation over small distances in the z-direction). This can act to reduce the accuracy of the 

procedure used to estimate coarse grid pressures from averages of fine grid pressures. Specifi- 

cally, thep, andp, in Eqs. 5-6 and 5-7, computed from the averaging procedure, may not always 

agree closely with the pressures computed via solution of the corresponding coarse grid problem. 

This in turn can lead to some inaccuracy in the coarse grid quantities of interest, WI* and T i .  

To improve the accuracy of the coarse grid model, an optimization procedure was imple- 

mented to minimize the difference between the local fine and coarse grid solutions. This is ac- 

complished by optimizing the WI* and T,* such that the differences between the coarse grid flow 

rates (through each well block face) and the corresponding integrated fine grid flow rates are 

minimized. These flow rates are indicated by the mows pointing out of the well block in Fig. 5- 

1. The objective function E is defined as: 

where q, designates the coarse grid flow rates, q~ the fine grid flow rates (summed over the ap- 

propriate region), nwbs designates the number of coarse grid blocks in which the well is com- 

pleted and nfaces the number of grid block faces in each block through which flow rate is com- 

puted (nfaces = 4 or 5) .  The objective function E is minimized over a, where a designates the 

WI* and Ti in all coarse scale blocks containing the well and a* represents the set of parameters 



that minimizes Eq. 5-8. The minimum in E will occur when V E  (gradient with respect to a) is 

driven to zero. 

This fully coupled problem is solved by iterating on a using a Gauss Newton optimization 

algorithm. The Gauss Newton method is a gradient based procedure and derives from a Taylor 

series expansion of the objective function E about the previous estimate for a (designated ak). 

At each iteration, an equation of the form 

WGN ACY = -VE , (5-9) 

is solved, where HGN is the Gauss Newton Hessian matrix; Le., the Hessian matrix modified to 

guarantee a direction of descent and eliminate the need for calculating second derivatives, and 

A a  = ak" - ak. The elements of V E  and HGN are computed numerically using a forward differ- 

ence approximation. Each row of HGN , and each element of VE, requires the solution of the 

coarse grid near-well problem with one of the (Wr", 7';) parameters perturbed (for a total of 

about 5 x nwbs coarse grid solutions at each iteration). 

In order to minimize the number of iterations, some additional features are introduced into 

the optimization algorithm. These include the use of a line search to find the optimum a in the 

direction of descent and the use of penalty functions and step length control to constrain pa- 

rameters to physically reasonable values. Scaling is also introduced to prevent HGN from be- 

coming ill-conditioned or singular and the Marquardt method is used to convert a serni-positive 

definite Hessian to one that is positive definite. Using this overall optimization procedure, the 

optimum is usually achieved in about 4-6 iterations of the coupled system. This is not overly time 

consuming (requiring about the same amount of computation time as the solution of the local 

fine grid problem, for the cases considered) because these iterations involve only coarse grid so- 

lutions. For further details on the construction of HGN and the overall Optimization procedure, 

see Gill et al. (1981), Bard (1974), and Mascarenhas (1999). 

The implementation of the overall near-well scale up method can be verified through appli- 

cation of the method to a highly simplified problem involving a fully penetrating vertical well in 

a homogeneous, isotropic system of constant Ax (with Ax = Ay) and constant & on the fine scale. 

In this case, the near-well upscaling should provide coarse scale well indexes and transmissibil- 

ities that closely approximate those computed directly using the appropriate expressions for ho- 



mogeneous systems (using the coarse grid block dimensions). Specifically, the transmissibilities 

should be well approximated by Eq. 5-3 and the well index should be approximately equal to the 

Peaceman (1983) index: 

where k is the homogeneous permeability, Axc and 

(5- 10) 

hzc are the coarse block dimensions, ro - 
0.2Axc and r, is the wellbore radius. Other, more general (e.g., layered) problems can also be 

used to verify the overall implementation. 

Before presenting simulation results using the new near-well upscaling method, it is of inter- 

est to compare this method to the work of Muggeridge et al. (1999). Muggeridge et a1. consider 

two approaches: the more computationally demanding requires the separate solution of the full 

fine grid problem for each flowing well in the reservoir and the subsequent calculation of the 

coarse grid WI* and T, ,  . This procedure is shown to provide quite accurate coarse scale descrip- 

tions, though it is time consuming and may be impractical for very detailed fine gnd descriptions 

(although presumably a smaller, sub-global, computational domain would be used in such cases). 

Their second approach (which they refer to as a “reduced computational domain”) is, using the 

terminology introduced above, a near-well[ I] fine scale solution with averaging @.e., no optimi- 

zation). Using this approach, they obtain results that are better than those using the standard 

coarse grid model (no near-well upscaling) but not as good as those obtained when the coarse 

scale parameters are computed from the full fine grid solution. 

As shown in section 5.3, the findings of Muggeridge et al. are consistent with the results pre- 

sented in this work. Specifically, clear improvement is observed in going from near-well[l] to 

near-well[2] in some cases (particularly in results for wellbore pressure). Further improvement 

can be obtained in more difficult cases through use of the optimization procedure. This suggests 

that most of the benefit derived from solving the full fine grid problem to compute the coarse 

grid parameters can be obtained through use of the near-well[2] (with optimization) procedure. 

This is encouraging, because the near-welI[2] calculation is much more computationally efficient 

than solving the full fine grid model and is practical for use with highly detailed fine grid models. 



5.3 Numerical Results for Flow Driven by Horizontal Wells 

Detailed flow results are now presented for flow dnven by horizontal wells in heterogeneous 

systems. Single and three phase flow scenarios are considered. In all cases, the fine gnd model 

is a geostatistical realization of prescribed statistics. All geostatistical realizations were gener- 

ated using GSLB (Geostatistical Software Library) (Deutsch and Journel, 1998). The flow 
simulations were performed using a commercial reservoir simulator (Eclipse Reservoir Simula- 

tor, GeoQuest , Schlumberger). 

Coarse grid models are generated by uniformly coarsening the fine grid permeability field 

(Le.? coarsening by a fixed factor in each coordinate direction) and computing equivalent grid 

block permeabilities k* for each coarse grid block using the GSLB algorithms (Deutsch and 

Journel, 1998). Uniform coarsening is known to be sub-optimal; e.g., Durlofsky et al. (1997) 

demonstrated significant improvement in coarse scale displacement results when the fine grid is 

nonuniformly coarsened. This nonuniform coarsening is of particular importance when the flow 

is strongly impacted by connected regions of high permeability (e.g., layering), as is often the 

case for displacement processes involving vertical wells in layered systems. For the primary 

production problems considered below, with flow driven by horizontal wells, reservoir perform- 

ance is in general less dominated by connected regions of high permeability than in the vertical 

well case. Therefore, nonuniform coarsening is less essential and a uniformly coarsened grid may 

prove adequate. Nonetheless, nonunifom coarsening would still be expected to provide im- 

proved accuracy in displacement calculations. 

For the single phase flow cases discussed below, results are presented in terms of well pro- 

ductivity (q/Ap) at steady state and flow profiles along the horizontal well (i.e.? inflow versus 

normalized position along the well). In all cases, the fine grid results are compared to the coarse 

grid results with no near-well upscaling (the standard approach) and to coarse grid results with 

the near-well upscaling procedure described above. In computing results using the standard ap- 

proach, k* is calculated for each grid block (includmg well blocks) and then the coarse scale well 

index is computed using the Peaceman (1983) method as applied to the grid block k*. All trans- 

missibilities are computed directly from the k*. In some of the cases discussed below, results are 

presented using both near-well[ 11 and near-well[2] upscaling (see the discussion above for de- 



scriptions of these terms). Unless otherwise stated, the coarse scale models are generated using 

the optimization procedure described above. For clearer comparisons between fine and coarse 

grid results, the fine grid inflow profiles are summed over regions corresponding to the coarse 

grid blocks, 

It is important to note that, in this work, the near-well upscaling method is assessed by com- 

paring coarse scale results to the reference fine grid results. For present purposes, therefore, the 

fine grid results are considered to be “correct.” However, the fine grid model itself may not al- 

ways provide numerical results that are converged (or nearly so). This might be the case when, 

for example, shales are represented by a single grid block. In such instances the coarsened model, 

even if it matches the fine grid result exactly, will still reflect the error inherent in the fine grid 

solution. This potential source of error can be minimized through the use of higher levels of 

resolution in the fine grid model. 

5.3.1 Single Phase Flow Results. In the first two examples, the permeability fields are log- 

normally distributed, with the logarithm of permeability specified to be of a prescribed variance 

(a2) and correlation structure. The correlation structure is specified in terns of the dmensionless 

correlation lengths Zx, Zy and I, ,  where each correlation length is nondimensionalized by the sys- 

tem length in the corresponding direction. A single horizontal well of length 2100 ft centered in 

a formation of physical dimensions 5100 ft x 5100 ft x 225 ft is considered. The total production 

rate is set to 50,000 bbl/d. The top and bottom of the system are maintained at a fixed pressure 

(the average reservoir pressure is about 3000 psi) and there is no flow through the sides. These 

boundary conditions are meant to qualitatively represent a reservoir underlain by a large aquifer 

(and overlain by a large gas cap) that act to approximately maintain pressure above and below the 

oil region. After a brief transient period, the system achieves a steady state and the wellbore pres- 

sure reaches a constant value. 

The fine scale model is of dimension (NX x NY x NZ) 5 1 x 5 1 x 45 (a total of 117045 cells) 

and the coarse grid (coarsened by a factor of 3 in each direction) is of dimension 17 x 17 x 15 

(4335 cells). We first set Ex = Zy = 0.25, Zz = 0.05 and o=l. Inflow profiles for the fine and coars- 

ened models are shown in Fig. 5-2. The standard coarse gnd model shows considerable devia- 

tion from the fine grid results. However, both the near-well[l] and near-well[2] coarse grid re- 



sults are in excellent agreement with the fine grid flow profile. Results for normalized well pro- 

ductivity (q/Ap),-, (normalized by (q/Ap) for the fine grid model), are shown in Fig. 5-3. The 

standard coarse model shows an error of about 13%; the results using near-well[l] (designated 

NW[ 11 in the figure) are in en-or by about 8% while results using near-well[2] (NW[2] in the fig- 

ure) are in error by only 3%. 

The next case considered is for a more highly correlated (in x and y )  permeability field; Zx = 

Zy = 0.5, Zz = 0.05, with more overall variability, 0=2.  This type of permeability field corre- 

sponds to an incompletely layered system. The inflow profiles for this case are shown in Fig. 5-4. 

Results using standard coarsening for this more highly heterogeneous case are in considerable 

error relative to the fine grid results, while those using the near-well upscaling are in very close 

agreement. The productivity results (Fig. 5-5) show that standard coarsening gives an error of 

about 32%; near-well[2] upscaling reduces this error to about 3%. This example illustrates that, 

in some cases, near-well upscaling is necessary both to capture the correct inflow profile and to 

provide the correct wellbore pressure for a prescribed flow rate. For both this and the previous 

case, the near-well upscaling results with averaging (rather than optimization) are very close 

(within a few percent) to the results presented here, so the optimization procedure is not essential 

for these examples. 

The results in Figs. 5-2 to 5-5 are typical of many of the other results obtained (but not 

shown) for single horizontal wells in log-noma1 permeability fields. Specifically, the standard 

coarse grid results show considerable errors in the inflow profile, while the results using near- 

well upscaling (either near-well[ 11 or near-well[2]) show close agreement between the fine and 

coarse models. Results for well productivity using near-well [ 13 upscaling show improvement 

over the coarse grid results; near-well[2] upscaling results in turn display improvement over the 

near-well[ 13 results. 

The next examples are more demanding and involve a single horizontal well in sand-shale 

permeability fields. The reservoir is now of dimensions 10,000 ft x 5000 ft x 100 ft and the well 

(centered in the reservoir) is of length 2000 ft. The Permeability descriptions used here are reali- 

zations previously generated by Aziz et al. (1999). This field, described in detail by Aziz et al. 

(1999), represents a fluvia1 sandstone reservoir with a net to gross ratio of 70%. Sequential indi- 

cator simulation was applied to generate the lithofacies model. Shales typically extend over a 



range of about 100 ft x 100 ft x 10 ft and are of permeability 1 mD. In the sandstone, porosity 

and permeability are correlated over O(2000 ft) areally and O(1-10 ft) vertically. Sandstone per- 

meability is centered at about 500 mD. As discussed in the Introduction, Aziz et al. (1999) ob- 

served significant inaccuracy in coarse scale models generated from these permeability fields. 

The fine scale model is of dimension 100 x 50 x 32 (160,000 cells) and the coarse grid is of 

dimension 20 x 10 x 12 (2400 cells). The coarse grid is generated from the fine grid via a uni- 

form coarsening (by a factor of five in x, five in y and three in z ,  with additional layers at the top 

and bottom of the model to provide pressure support). As in the previous examples, well flow 

rates are specified and the simulations are run until steady state is achieved. In this case, we 

compare the optimization procedure with the averaging approach described in section 5.2. In 

both cases, the near-well[2] region is used in the upscaling procedure. 

Production profiles for the four cases are shown in Fig. 5-6. The standard coarse grid results 

are in considerable error relative to the fine grid results. The near-well[2] scale up results, using 

either averaging or optimization, are in relatively good agreement with the fine grid results, 

though the agreement here is not of the level achieved in the log-noma1 permeability cases. In- 

terestingly, the production peak is captured slightly more accurately using averaging than it is 

using optimization. The normalized well productivity results are shown in Fig. 5-7. The stan- 

dard coarse grid model significantly overpredicts the well productivity; the error in ( ~ / A P ) ~  is 

about 85%. Results using either of the near-well upscaling methods are in closer agreement with 

the fine gnd model. The near-well[2] with optimization results (NW(o) in the figure) are, in this 

case, more accurate than the near-well[2] with averaging results (NW(a) in the figure). Specifi- 

cally, the error in (q/Ap), is reduced from 32% (with averaging) to 18% (with optimization). 

Results using another sandshale realization of the same statistics are shown in Figs. 5-8 and 

5-9. These results display the same trends as observed in Figs. 5-6 and 5-7. In this case, how- 

ever, the productivity computed from the standard coarse model is in enor by over 100%. The 

near-well[2] with averaging upscaled model reduces this error to 9.4%; the near-well[2] with op- 

timization upscaling further reduces the error to only 2.5%. The simulation results using the 

sandshale realizations demonstrate the significant gains in accuracy that can be obtained through 



use of near-well upscaling and the additional advantage that can be derived by using the pararne- 

ter optimization approach. 
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Fig. 5-2: Inflow profiles along the well for Zx= I,, = 0.25, EZ = 0.05, o = 1. 
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Fig. 5.4: Inflow profiles along the well for Zx = Zy = 0.5, I ,  = 0.05, CT = 2. 
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Fig. 5-5: Normalized well productivity for Zx = Zy = 0.5, Zz = 0.05, 0 = 2. 
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Fig. 5-6: Inflow profiles along the well for sandshale system. 
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Fig. 5-8: Inflow profiles along the well for a second realization of the sandshale system. 
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Fig. 5-9: Normalized well productivity for a second realization of the sandshale system. 



5.3.2 Three Phase Flow Results. The final case involves a single horizontal well in the oil zone 

of a sandshale reservoir containing a large aquifer and a large gas cap. This case was previously 

considered by Aziz et al. (1999), who showed that standard upscaling techniques could lead to 

significant error in simulation predictions. The reservoir description here is the same as that in 

the sandshale case considered above (Figs. 5-6 and 5-7). 

The well is prescribed to produce at 5000 bbVd, with a minimum bottom hole pressure con- 

straint of 1500 psi. The reservoir boundaries are all specified to be no-flow (refer to Aziz et al. 

(1999) for a more detailed description of the reservoir and fluid properties). The fine scale model 

is of dimension 100 x 50 x 32 (160,000 cells) and the coarse grid is of dimension 25 x 25 x 12 

(7500 cells). The coarse grid is generated from the fine grid via a uniform coarsening (by a fac- 

tor of four in x, two in y and three in z ,  with an additional layer in both the aquifer and the gas 

cap). 

Simulation results for oil production rate and wellbore pressure, for the fine model, standard 

coarse model, and coarse model with near-well[2] upscaling (with optimization), are shown in 

Figs. 5-10 and 5-11. The well in the fine grid simulation model reaches the minimum bottom 

hole pressure constraint relatively early in the run (after about one year) and the well produces at 

this pressure for the remainder of the simulation. Production clearly declines once the well 

reaches the minimum bottom hole pressure. The standard coarse model is in considerable error, 

continuing to produce at the initial rate for about 3000 days (a factor of nearly ten too long). The 

coarse model with near-well upscaling, by contrast, is in reasonably close agreement with the 

fine scale result, though the differences are clearly greater than in the single phase flow exampIes 

presented above. Nonetheless, the coarse model with near-well upscaling provides results that 

are substantially better than those obtained using the standard coarse grid model. 

The next results, shown in Fig. 5-12, are for water cut (fraction of water in the produced 

fluid) for the three models. Again the results with near-well upscaling track the fine grid results 

much closer than the standard coarse grid results, which show delayed water breakthrough (rela- 

tive to the fine grid model) and an inaccurate post-breakthrough trend. Results for gas-oil ratio 

(GOR) are shown in Fig. 5-13. Here, though the results with near-well upscaling are much 

closer to the fine grid results than the standard coarse grid results, they do overpredct GOR sig- 

nificantly. It is possible that the high gas production in the coarse model with near-well upscaling 



is due to other aspects of the upscaled model, not related to the near-well treatment. It is there- 

fore quite possible that this result could be improved through application of a nonuniform coars- 

ening procedure in conjunction with near-well upscaling. 
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Fig. 5-10: Oil production rate (three phase flow) for sandshale system. 
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Fig. 5-12: Water cut for sandshale system. 
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5.4 Conclusions and Future Directions 

In this chapter, a method was presented for upscaling in the region near flowing horizontal 

wells. The method represents a generalization of previous techniques applicable for vertical 

wells. The approach entails the solution of a local well-dnven flow problem and the subsequent 

calculation of coarse grid parameters (transmissibilities and well indexes). mgher levels of accu- 

racy in the coarse scale model are obtained through an optimization of the near-well parameters. 

The local fine scale problems that were solved to compute the coarse grid parameters include the 

fine scale description of the formation over a region corresponding to one or two 'rings' of coarse 

scale grid blocks around the well blocks. Although this region itself may contain several thou- 

sand grid blocks, it is still much smaller than the full global domain (which may contain @lo7) 
cells). This renders the method more computationally efficient than other methods that require 

the solution of global flow problems to determine the coarse scale description in the near-well 

region. 



Results using the new method were shown to agree much more closely with the reference 

fine grid solutions than results using standard coarse scale models with no near-well upscaling. 

In some cases (e.g., sandshale systems), the parameter optimization was shown to provide im- 

proved coarse scale descriptions compared to those obtained using the near-well averaging pro- 

cedure. The overall near-well upscaling approach should generalize to other, more complicated 

well configurations (e.g., deviated or multilateral), though issues of the size of the local flow 

problem and the appropriate boundary conditions to be imposed must be addressed. The method 

could also be applied to vertical wells and might provide more accurate coarse grid results than 

previous near-well upscaling methods. Finally, the full linkage of this approach to the overall 

nonuniform coarsening methodology can be expected to provide even better accuracy in coarse 

scale simulations of horizontal wells. 

In future work, we plan to extend the approach presented here to handle more complex non- 

conventional wells (e.g., multilaterals). This will entail the use of more complicated gridding and 

discretization approaches (along the lines of those described in Chapter 2) for the solution of the 

local fine scale problem. The coarse models in this case might be either Cartesian (as in the ap- 

proach presented in this chapter) or modular (as in the examples in Chapter 2). Successful devel- 

opments in these directions will provide a very general capability for the accurate coarse scale 

modeling of non-conventional wells in general reservoir simulators. 
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6 Approximate Finite Difference Modeling of the Performance of Horizontal Wells in 
Heterogeneous Reservoirs 

by Burak Yeten, Christian Wolfsteiner, Louis J. Durlofsky and Khalid Aziz 

6.1 Introduction 

The detailed scale up of fine grid heterogeneity fields can be accomplished using the approach 

described in Chapter 5. This approach provides accurate coarse scale descriptions of heterogene- 

ity in the near-well region and is best suited for cases in which detailed reservoir flow predictions 

are required. In cases when many geostatistical realizations and well placement scenarios are to 

be investigated, however, the detailed models generated using the methodology described in 

Chapter 5 may be overly time consuming to generate and run. In such cases, a more efficient and 

more approximate approach may be appropriate. The method described in this chapter falls into 

this category. 

In Chapter 3, we described a semi-analytical technique for modeling non-conventional 

well performance (this work is also described in Ouyang and Aziz, 1998 and Wolfsteiner et al., 

2000a, 2000b). The approach is based on Green’s functions and requires that only the well, rather 

than the reservoir, be discretized. The method accounts approximately for the effects of reservoir 

heterogeneity and wellbore hydraulics. Like other semi-analytical techniques, this method is ap- 

plicable for a limited set of problems; e.g., for single phase flow in slightly compressible sys- 

tems. 

A novel aspect of this semi-analytical approach is the way in which reservoir heterogene- 

ity is represented. Specifically, we model highly variable permeability fields in terms of an ef- 

fective near-well skin s and a constant background permeability k*. The near-well skin varies as 

a function of position along the well and is computed from the permeability field in the vicinity 

of each well segment. The background permeability represents an effective, large scale, linear 

flow effective permeability. We refer to the overall semi-analytical approach as the s-k* method 

because of the way heterogeneity is modeled. The accuracy of this approach was established 

through extensive comparisons with detailed single phase finite difference calculations, as pre- 

sented in Chapter 3. 



In many cases, two phase flow effects can significantly impact the performance of non- 

conventional wells (e.g., aquifer coning). Because these effects are not included in existing semi- 

analytical approaches, some type of finite difference modeling is generally required for problems 

of this type. The approach described in Chapter 5 represents a highly accurate approach for this 

problem. In this chapter, we explore an alternate, simpler and more computationally efficient 

method. We represent reservoir heterogeneity in the finite difference models in terms of s and k*, 
just as in our semi-analytical model of single phase flow. The finite difference model then con- 

tains a homogeneous (but anisotropic) permeability field and a skin specified in each of the well 

blocks. This permeability representation is much simpler and can be simulated on a coarser grid 

than the generally heterogeneous representation. We show that this approach is efficient and rea- 

sonably accurate relative to the reference (heterogeneous) fine grid solution for many (but not all) 

flow quantities of interest. 

Our goal in this work is to incorporate approximately the effects of reservoir heterogene- 

ity into simplified finite difference simulation models of non-conventional wells. Our specific 

interest is in capturing two phase flow effects. We are not aware of any previous studies directly 

along these lines. However, as described in Chapter 3, previous studies have been chrected at the 

development of approximate methods for modeling the effects of heterogeneity on vertical 

(Durlofsky, 2000) and horizontal (Brekke and Thompson, 1996) wells operating under single 

phase flow. Other work targeted the modeling of horizontal or deviated wells in layered forma- 

tions (Lee and Milliken, 1993; Basquet et al., 1998). These studies all applied approximate or 

semi-analytical (based on Green’s functions) solution techniques. Previous work geared toward 

assessing the effects of heterogeneity on horizontal well performance (for one, two and three 

phase flow) has also been performed within a general finite difference context (Yamada and 

Hewett, 1995; Gharbi et al., 1997; Aziz et al., 1999; also see the references in Chapter 5). These 

studies, as well as the results of Chapter 5, highlighted the important effects of reservoir hetero- 

geneity and demonstrated the difficulty of capturing these effects in standard coarse finite differ- 

ence models. 

This chapter proceeds as follows. We first briefly review our simplified representation of 

heterogeneity in terms of s and k*. We then describe our approach for simplified finite difference 

modeling. Next, we present extensive simulation results using this approach and compare these 



results to those obtained from the full heterogeneous permeability field. We demonstrate that 

certain quantities, such as well productivity and the expected water breakthrough time, are well 

approximated by our proposed methodology. Other quantities, such as water cut at late time, are 

less accurately represented. We conclude with a discussion of other possible applications for our 

simplified representation of reservoir heterogeneity. 

6.2 Permeability Representation with s and k* 

Our representation of permeability in terms of a near-well effective skin s and a background ef- 

fective permeability k* was described in detail in Chapter 3 and in previous papers (Durlofsky, 

2000; Wolfsteiner et al., 2000a, 2000b) so our description here will be brief and will be with ref- 

erence to a finite difference simulator. We assume that detailed, heterogeneous permeability re- 

alizations, generated geostatistically, are available. For each particular realization, we compute s 

and k* for use in the finite difference simulator as follows. 

The skin s accounts for near-well heterogeneity and varies with position along the well. 

We designate the slun for the portion of a well in grid block i as si. This skin is a function of the 

local near-well permeability, designated ka,i, the background permeability k* and the effective 

radius of the region over which the near-well permeability is computed, r,. The shn  for each 

well segment is then computed as: 

where r, is the wellbore radius and ks* is the geometric average of the diagonal components of 

k*. This representation derives from the standard definition of skin (Hawluns, 1956), with appro- 

priate modification to account for the heterogeneous permeability field. 

The effective permeability k* can be computed either numerically via steady state single 

phase flow calculations over the entire domain or through the use of approximate analytical ex- 

pressions (Ababou, 1990). In either case this computation represents a minor overhead relative to 

solving the full two phase fine grid problem. The local near-well permeability is a weighted aver- 



age of k in the near-well region a. It is computed by integrating over the region a, an elliptic 

cylinder of size and shape as determined from the correlation structure of the permeability field: 

where Ta is a normalizing factor as defined in Chapter 3. The quantity a is the permeability 

weighting exponent. Values of o = -1, 0, 1 correspond to a hannonic, geometric (i.e.? logarith- 

mic) and arithmetic average respectively and n is a spatial weighting parameter. In this work we 

take o =O and n=2, which corresponds to a generalized geometric weighting. 

The skin for well segment i as computed from Eqs. 6-1 and 6-2 is then input directly into 

the finite difference simulator. All grid block permeabilities are specified to be k*, which is in 

general anisotropic. The usual two phase flow quantities (e.g., relative permeabilities) and other 

parameters must also be input into the simulator. 

Before presenting two phase flow results using this approach, we note that the general 

level of accuracy of the s-k* permeability representation for single phase flow problems was 

demonstrated in Chapter 3. These results demonstrate the strong effect of near-well heterogeneity 

and the ability of the s-k* approach to adequately capture it. 

6.3 Simplified Finite Difference Modeling of Horizontal Wells in Heterogeneous Reser- 

voirs 

We now demonstrate the accuracy and limitations of the s-k* representation of heterogeneity for 

two phase flow problems with horizontal wells. The detailed permeability descriptions (denoted 

as “detailed k ’  or “dk? in the following) were generated using GSLIB (Deutsch and Journel, 

1998). The effective permeability and skin in each well block were computed as described above. 

In all cases, the simplified finite difference results (using the s-k* permeability representation) are 

compared to finite difference results using the detailed heterogeneous permeability fields. We 

also present results using homogeneous models; Le., using only the effective permeability k* with 

no skin. 



The permeability fields and reservoir and production parameters considered are described 

in Table 6-1. In all cases we model a single, fully penetrating horizontal well in the middle of 

the oil zone. The compressibility of the system is dominated by the rock compressibility, c. We 

consider three dfferent statistical permeability descriptions, as indicated in the table. These 

fields differ in terms of their correlation lengths Zx, Zy and I,. The permeability for all three fields 

is log-normally distributed, with a mean of 100 rnd and a coefficient of variation ( o k l r n )  of about 

1. In the results presented below, we simulated 15 realizations of each permeability description. 

Though more realizations would generally be required to obtain converged ensemble statistics, 

this number of realizations is sufficient to illustrate the capabilities and limitations of the s-k* 

heterogeneity representation. Most of the detailed results presented below are for permeability 

field pennB. Results for the other permeability fields are summarized in tables. 

Table 6-1: Reservoir, Fluid and Well Properties 

drainage area 
thickness 175 ft 
porosity # 0.25 
correlation p e d  1,=1,=0.3,1,=0.3 
structure perrnl3 1,=1,=0.3,1, =O. 1 

pemC 1,=IY=0.5, 1,=0.05 
rock compressibility c 3.0~10-~ psi-' 
densities po=pw 

rel. perm kro 

rel. perm k,.,,, 

4500 x 4500 ftz 

63 lbJft3 at 14.7 psi 

1.0 at Swc=0.25 
0.38 cp 
0.13 at S0,=0.25 
0.2 ft 

viscosity p 1.00 cp 

viscosity p 

well radius r, 

In all cases the detailed permeability fields were simulated on a grid of 45~45x35. In the 

first sets of results below, the s-k* and homogeneous (k* only) permeability descriptions were 

also simulated on a grid of the same size. Following these demonstrations of the general capa- 

bilities of the s-k* permeability representation, we present results using s-k* for simulations on 

coarser grids. 

6.3.1 Fixed total liquid rate cases. We first consider a well specified to produce at a fixed total 

liquid flow rate Ql of 20,000 STB/d. The reservoir is underlain by a strong aquifer, with a pore 



volume of about 5000 times the reservoir pore volume and a total compressibility of 3 ~ 1 0 * ~  psi-’, 

which maintains a high degree of pressure support. For this case, we define the productivity in- 

dex PI (based on the total liquid flow rate) as the ratio of Ql to the difference in pressure between 

the reservoir and the wellbore; i.e., 

where <p> is the average reservoir pressure and pw is the wellbore pressure. The productivity 

index changes with time as the reservoir and wellbore pressures change. 

In Fig. 6-1 we plot Pl versus time for the 15 realizations of permeability field p e d .  

There is a fair degree of variation between the realizations, though some consistent trends are 

apparent. The relatively rapid decline at approximately 100 days corresponds to water break- 

through; from this time on, the productivity index declines more slowly as water from the aquifer 

fills the reservoir. We plot productivity index profiles for the same 15 realizations using the s-k* 

permeability representation in Fig. 6-2. The results for each realization are plotted using the 

same line styles in both figures, so a direct comparison for a given realization is possible. From 

the figures, it is apparent that the results using the s-k* representation are in relatively close 

agreement with the results using the detailed permeability field. This is true both in terms of en- 

semble average results (i.e., results averaged over all of the realizations) and variation around this 

average. This is quite encouraging and demonstrates the accuracy of the s-k* permeability repre- 

sentation for the calculation of productivity index. We will further quantify the level of agree- 

ment between the detailed permeability results and the s-k* results below. 

Results using a homogeneous permeability description (k* only, s=O) are shown in Fig. 6- 

3. Because k* varies only slightly from realization to realization, there is very little variation 

between the 15 curves. These results are clearly inferior to the results using the s-k* permeability 

representation, both in terms of “average” results and variation around the average. This demon- 

strates the importance of capturing not onIy the global, overall Permeability k* but also the varia- 

tion of permeability in the near-well region. 



In Table 6-2 we present results for the ensemble average productivity index 2 and the 

variation around this average CTP for the three modeling approaches: detailed k, s-k*, and k* only 

representation. These results were computed at a time of 610 days (this time is well after water 

breakthrough). Results are shown for all three permeability descriptions ( p e d ,  p e d  and 

permC). It is evident from these results that both the average and the variation in the detailed 

results are captured with reasonable accuracy by the s-k* method. The use of k* only, by con- 

trast, shows more error for E and is unable to capture the variation between the realizations. 

These observations are consistent for all three sets of permeability statistics. Qualitatively simi- 

lar results are also obtained at early time (10 days). 

Fig. 6-4 &splays a scatter plot of Pi estimated using the s-k" approach (designated Pt-k*) 

plotted against Pi computed from the detailed k field (designated Pl&). Each point represents the 

productivity index for a particular realization evaluated at a time of 10 days (this time is signifi- 

cantly before water breakthrough). Data from all three permeability descriptions are presented; 

the circles correspond to permeability field permA, the asterisks to pen& and the triangles to 

permC. The clear grouping of the points around the line of unit slope indicates that there is a 

close correspondence between the productivity index estimate using the s-k* approach and the 

detailed finite difference result for any given realization. Taken in total, the results in Figs. 6-1 to 

6-4 and Table 6-2 demonstrate that the s-k* permeability representation is able to accurately 

model the productivity index of a horizontal well, at least for the systems considered. 

The accuracy of the s-k* permeability representation degrades somewhat if we consider a 

more local quantity such as water cut or water breakthrough time. This is illustrated in Figs. 6-5 

to 6-7, where we plot water cut versus time for the detailed k, s-k*, and k* only simulations. 

These results are for the same 15 realizations of permeability field p e d  as presented above. 

These plots show that, although the variation in breakthrough time &, is captured to some extent 

by the s-k* representation, at later time the variation is significantly underestimated. The homo- 

geneous permeability representation captures even less of the variation between realizations, as 

would be expected. 



These observations are quantified in Table 6-3, where we present the average < and 

standard deviation ot of breakthrough time for the three types of models. Results for all three 

sets of permeability statistics are displayed. In these results, breakthrough time is defined as the 

time at which the water cut is 5%. It is clear from the table that the s-k* calculations accurately 

capture the ensemble average breakthrough time. In addition, ot is captured with reasonable ac- 

curacy (particularly for permeability descriptions p e d  and permc), though not as accurately as 
- 
tl, . The homogeneous representation, by contrast, significantly overestimates (by 40% in the 

case of permA) and significantly underestimates q. 

Fig. 6-8 displays a scatter plot of the breakthrough times estimated using s-k* (f-k*) 
against breakthrough times computed using the detailed permeability descriptions. Though some 

degree of correlation is evident, there is significantly more scatter in this plot than in the analo- 

gous plot for productivity index (Fig. 6-4). This illustrates that, although the average and varia- 

tion in fb are captured with reasonable accuracy by the s-k* model, there is less of a one to one 

correspondence between results for a particular realization than was observed for PI.  

Table 6-4 presents statistics for water cut Fw at late time (610 days) for all of the cases. 

As is evident from Figs. 6-5 to 6-7, the variation in this quantity is significantly underestimated 

by the s-k* method. However, average behavior is predicted very well by both the s-k* method 

and by the homogeneous model. These results indicate some of the potential limitations of the s- 

k* permeability representation; namely the tendency to underestimate variability in water cut at 

late times. 

Table 6-2: Productivity Index Summary Statistics (610 Days) 

P e d  P e d  permC 
P! 0, Pl Op Pl Op 

dk 91.8 37.2 86.6 22.7 92.7 35.6 
s-k* 89.6 32.5 90.7 29.6 98.4 46.0 
k* 82.2 2.9 82.5 0.7 84.2 0.4 



Table 6-3: Breakthrough Time Summary Statistics 

P e d  Pe* permC 
tb  4 tb a, t b  G 

dk 104.6 21.3 127.6 14.7 145.5 17.0 
s-k* 110.5 10.4 129.5 14.6 143.2 11.4 
k* 146.2 4.6 160.0 1.6 165.2 1.1 

Table 6-4: Water Cut Summary Statistics (610 Days) 

P e d  Pe- pennC 
F w  O F  F w  O F  F w  O F  

dk 0.625 0.048 0.609 0.037 0.573 0.034 
s-k* 0.623 0.012 0.592 0.013 0.576 0.010 
k* 0.596 0.008 0.571 0.003 0.561 0.003 
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Fig. 6-1: Productivity index profiles (detailed k, pennB) 
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Fig. 6-3: Productivity index profiles (k*, p e d )  
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Fig. 6-4: Scatter plot of Pl estimated from s-k* approach and detailed k descriptions 
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Fig. 6-5: Water cut profiles (detailed k, perrriB) 
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Fig. 6-6: Water cut profiles (s-k*, pennB) 
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Fig. 6-7: Water cut profiles (k*, penmB) 
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Fig. 6-8: Scatter plot of breakthrough times estimated from s-k* and detailed k descriptions 

6.3.2 Fixed oil rate cases with BHP constraint. The next cases involve a horizontal well pro- 

ducing at a fixed oil rate of 30,000 STB/d subject to a minimum bottom hole pressure constraint 

of 1500 psi. The reservoir is again underlain by an aquifer, but in this case the aquifer is much 

weaker (of pore volume about three times that of the reservoir) than in the previous examples. 

As a result, the well produces at the specified oil rate for some time (the plateau period, which is 

on the order of 700-1200 days) and then, once the bottom hole pressure constraint is reached, 

production declines. 

In Figs. 6-9 to 6-11, we present results for oil rate Qo versus time for the 15 pemiI3 reali- 

zations modeled using the detailed permeability fields, s-k* and homogeneous permeability rep- 

resentations. There is significant variation in the period of plateau production tp  in the detailed k 

cases. Both the overall average and variation in tp appear to be captured accurately by the s-k* 

method. The homogeneous runs clearly do not capture this variation. 



Table 6-5 displays results for < and ot for all of the cases considered. These results 

quantify the observations made above. Specifically, the s-k* permeability representation is able 

to capture the average and variation in the plateau production period with good accuracy. This 

finding holds for all three sets of permeability statistics considered. The homogeneous perme- 

ability representation overpredicts slightly the period of plateau production (by about 10%) 

though it significantly underpredicts the variation around the mean. Results for productivity in- 

dex as a function of time, though not shown, display similar levels of accuracy for the s-k* 

method relative to the detailed k representation. 

Table 6-5: Plateau Production Summary Statistics 

permC 
tP t P  0, *P 4 

dk 931.2 141.6 952.6 125.6 1005.9 187.5 
s-k* 945.3 147.0 1004.7 154.8 1032.9 213.6 
k* 1008.0 26.7 1044.5 13.9 1094.3 6.6 
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Fig. 6-9: Oil production profiles (detailed k, p e d )  
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Fig. 6-10: Oil production profiles (s-k*, p e d )  
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6.3.3 Unfavorable mobility ratio displacements. The displacements in the previous examples 

involved a favorable mobility ratio (endpoint water mobility less than endpoint oil mobility). To 

test the accuracy of the s-k* method in more general cases, we also simulated the pemA, p e d  

and permC heterogeneity fields using fluid properties that resulted in an unfavorable mobility 

ratio displacement. For these runs, we set p0=4 cP, pw =0.38 cP, k,,(S,,)=l.O and krw(~0r)=o.4. In 

addition, for these runs we introduced a density difference between oil and water (po =49 lbm/ft3 

and pw =63 lb,,,/ft3). For these simulations, the total liquid rate was fixed at 20,000 STB/d and a 

strong aquifer was present (as in the results presented in Figs. 6-2 to 6-9 and Tables 6-2 to 6-4). 

Results for productivity (at 610 days) and breakthrough time for these unfavorable mo- 

bility ratio calculations are shown in Tables 6-6 and 6-7. From the tables, it is clear that the 

level of accuracy of the s-k* results for these runs is comparable to that achieved in the unfavor- 

able mobility ratio case (Tables 6-2 and 6-3). Specifically, both the average and variation in pro- 

ductivity are generally estimated with good accuracy (the permA results for productivity index 

are, however, less accurate in this case). Inspection of the results for indwidual realizations indi- 

cates that there is a close one to one correspondence between predictions using the detailed per- 

meability and s-k* descriptions. Similarly, the results for breakthrough time are consistent with 

those generated for the favorable mobility ratio case. These results clearly indicate that the s-k* 

permeability description is applicable for a variety of two phase flow scenarios. Further, its accu- 

racy does not appear to be strongly dependent on the details of the fluid and rock-fluid properties. 

Table 6-6: Productivity Index Statistics for Unfavorable Mobility Ratio Runs (610 Days) 

P e d  Pe- pemC 
Pl 0, Pl a, Pl 0, 

dk 200.2 51.4 174.5 40.2 178.1 55.8 
s-k* 169.7 46.1 169.0 43.8 176.5 64.5 
k* 169.8 5.72 166.5 1.1 168.1 0.7 



Table 6-7: Breakthrough Time Statistics for Unfavorable Mobility Ratio Runs 

P e d  P e m  Pemc 
tb 4 tb  a, tb a, 

dk 13.2 2.6 17.0 2.1 18.7 3.3 
s-k* 13.1 1.7 15.7 2.4 17.7 2.6 
k* 20.4 0.6 22.2 0.2 22.9 0.2 

6.3.4 Use of s-k* representation on coarser grids. From the results presented thus far, it is ap- 

parent that the s-k* permeability representation is able to capture many quantities with good ac- 

curacy relative to the detailed permeability models. In general, the s-k* permeability representa- 

tion provides better results for global (integrated) quantities such as productivity index or plateau 

production period. Results for more local quantities such as water breakthrough time or water 

cut are generally less accurate. However, these results are still more accurate, relative to the de- 

tailed simulations, than the homogeneous runs. In the calculation of water breakthrough time, for 

example, the s-k* permeability representation was able to provide estimates for < and ot in rela- 

tively close agreement with the detailed results. 

Our intent in the examples above was to demonstrate the applicability of the basic s-k* 

permeability representation for the calculation of many flow quantities of interest. The s-k* 
model has the advantage of providing a relatively simple finite difference model that might be 

expected to require less CPU time than the finite difference model with the detailed permeability 

field (for models of the same grid dimensions). Interestingly, this was not found to be the case; 

the s-k* models generally required about 30% more CPU time than the detailed k models. This 

is presumably due to the extra complications introduced into the model by the varying skin. It is 

possible that these timings could be improved through some tuning of convergence and solver 

parameters, but this was not attempted. Rather, because the basic s-k* representation lends itself 

quite naturally to application on coarser models, we generated and simulated several coarse grid 

s-k* models, as we now describe. 

Starting with a detailed Permeability field, an s-k* model can be developed for a finite 

difference grid of any dimensions. The effective permeability is computed directly from the de- 

tailed permeability field, so it is unchanged as the model is coarsened. The skin in each well 



block is also computed from the fine grid permeability field, though it will vary as the grid is 

coarsened. This is because the length of the well segment in a given well block increases as the 

grid is coarsened and as a result the integration domain in Eq. 6-2 changes. This in turn modifies 

the altered (near-well) permeability ka,i and thus the skin Si in Eq. 6-1. 

Using coarse grid s-k* models generated in this way, we repeated many of the calcula- 

tions presented above. The first set of results is for the 15 perml3 realizations simulated on a 

23~23x17 grid using the s-k* permeability representation. Results for productivity index Pl for 

the case of fixed total liquid rate and fluid properties indicated in Table 6-1 are shown in Fig. 6- 
12 (compare this figure to Figs. 6-1 and 6-2). The close agreement between this figure and Fig. 

6-2 demonstrates that the s-k* representation does in fact maintain its accuracy on coarsened 

grids. 

This is further demonstrated in Fig. 6-13, where we present results for the difference in 

productivity index (Ml) between the fine grid and s-k* results. Here, APl = F'l& - P:-k*; i.e., APl 

quantifies the error in the s-k* solution relative to the detailed k solution. Similarly, A?'l can be 

defined for the homogeneous case (AP1= Pia - PF). In Fig. 6-13, results for APl are presented 

for three different levels of grid refinement. We refer to these three different grids as the fine 

grid (45x45~35), the medium grid (23~23~17) ,  and the coarse grid (15x15~11). The squares, 

triangles and X'S correspond to APl for the fine, medium and coarse grid s-k* solutions, respec- 

tively. The circles correspond to APl for the fine grid homogeneous case. The results presented 

are for A?$ computed for each of the 15 p e d  realizations at a time of 10 days. 

From the figure, it is clear that there is very little variation in the APl results computed 

using the s-k* permeability representation as the grid is coarsened (i.e.? the squares, triangles and 

x's are quite close together for a given realization). In addition, APl for the s-k* results, even on 

grids as coarse as 15~15x11, is generally less than APl for the homogeneous runs on the fine 

grid. This indicates that the coarse grid s-k* results for Pl are in general more accurate than the 

fine grid homogeneous results. 

In Fig. 6-14 we present results for water cut using the s-k* model on the medium grid 

(compare this figure to Figs. 6-5 and 6-6). Again, it is apparent that curves for the 15 realizations 



vary relatively little as the s-k* model is coarsened from 45~45x35 to 23x23~17. This is further 

illustrated in Fig. 6-15, where results for differences in water breakthrough time (relative to the 

detailed permeability model) are presented for the s-k* model at the three different levels of grid 

refinement and for the fine grid homogeneous model. There is more variation here than in the P1 

results (Fig. 6-13), particularly on the coarse grid. However, the s-k* model continues to provide, 

on average, a better representation of tb than the homogeneous model, even for the coarsest grid 

considered. 

There is also a clear trend in these results, with t<-k* increasing by 5.6 days (on average) 

as we go from the fine grid to the medium grid. Similarly, going from the medium grid to the 

coarse grid increases t<-k* by about 10 days. This suggests that the variation in t<-k* observed 

here is largely due to numerical discretization effects (rather than an inaccurate permeability rep- 

resentation). This was in fact verified through simulations with the homogeneous model, which 

showed a very similar variation in fb with grid dimension. 

The results presented in this section demonstrate that the s-k* permeability representation 

does in fact lend itself to application on coarse grids. Reasonable accuracy relative to the de- 

tailed k fine grid results, and relative to the fine grid s-k* results, is maintained in the coarse grid 

s-k* models. This indicates that the s-k* approach is useful not only because it provides a highly 

simplified model (relative to the detailed permeability description) but also because it can be 

used to generate reasonably accurate (and highly efficient) coarse grid models. 
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6.4 Discussion and Conclusions 

In this work, we assessed the applicability of the s-k* approximate permeability representation 

for modeling the performance of horizontal wells in heterogeneous reservoirs. We considered 

two phase flow problems, with the flow driven by a single horizontal producer. The simplified 

permeability representation entails the use of a constant background permeability k* coupled with 

a near-well shn  s that varies in each simulation well block. The background permeability cap- 

tures large scale (global) flow effects while the variable skin approximates the effects of near- 

well heterogeneity. 

The general level of accuracy of the method was established through extensive compari- 

sons to detailed finite difference results. The method was shown to provide quite accurate results 

for integrated or global quantities, such as productivity index or plateau production period, both 

in terms of ensemble average and variation around this average. The method also provides rea- 

sonably accurate estimates of averages of local quantities such as water breakthrough time and 

water cut. The variation in these quantities, particularly water cut at late time, is however sig- 

nificantly underpredicted by the s-k* permeability representation. 

The method was also shown to provide substantially coarsened models that provide re- 

sults in reasonable agreement with the fine grid s-k* simulations (and thus with the detailed per- 

meability results). Some degradation was observed in watercut predictions, though this was at- 

tributed more to numerical inaccuracies rather than inaccuracies in the permeability representa- 

tion. We reiterate that specialized approaches appropriate for use with horizontal wells, as dis- 

cussed in Chapter 5, do exist to coarsen detailed finite difference representations to coarser scales 

(e.g,, Ding, 1995; Muggeridge et al., 1999; Mascarenhas and Durlofsky, 2000 - see Chapter 5). 

These approaches would be expected to provide more accurate coarse models than would the use 

of the s-k* representation. However, these methods require the use of the full, detailed perme- 

ability field, which the s-k* approach avoids. 

The methodology presented in this work may be applicable to reservoir modeling in cases 

where near-well penneability and large scale (background) permeability can be estimated but a 

full, detailed geostatistical model is not available. Near-well permeability data can be estimated 

from well log and core data; large scale permeability may be available from well tests, from pro- 



duction data, or from other data in nearby regions of the field. Then, given an estimate for k* and 

permeability in the near-well region, skin in the well blocks can be estimated and the well per- 

formance modeled with an s-k* permeability representation. This would represent an efficient 

but reasonably accurate means of simulating a reservoir with limited geological information. 
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7 Potential Application of New Modeling Approaches to Simulation While Drilling 

Many of the approaches presented in this report (e.g., those described in Chapters 3, 5 and 6) rep- 

resent efficient means for estimating the inflow and pressure profiles along a horizontal or other 

non-conventional well. The methods provide varying degrees of accuracy and computational ef- 

ficiency. The appropriate method to use for a given problem will depend on the particular appli- 

cation, available data and required result. For example, if flow is strictly single phase and many 

realizations are to be modeled, the semi-analytical s-k* approach might be the most appropriate 

approach. On the other hand, if the flow is multiphase and only a few scenarios are to be consid- 

ered (and high accuracy is required), the general upscaling approach described in Chapter 5 

might be the most suitable. 

An important optimization problem that represents a significant challenge to the petro- 

leum industry is the determination of the optimum length and trajectory of a non-conventional 

well while it is being drilled. Such a capability is conceivable, because detailed logging while 

drilling (LWD) and measurement while drilling (MWD) data are available during the drilling op- 

eration. In addition, the general geological setting and presumably some estimate of the relevant 

geostatistical pararneters might also be available. Thus, real-time Simulation While Drilling 

(SWD) may be possible, provided sufficiently fast and accurate tools for evaluating well per- 

formance under many different scenarios were available. 

Depending on the particular application, one of the methods presented in this report could 

potentially serve as the well performance model for such an optimization. The methods de- 

scribed in Chapters 3, 5 and 6 are computationally efficient and are capable of providing accurate 

estimates of the inflow and pressure profiles along non-conventional wells for a variety of cases. 

Again, the appropriate method to use will depend on the particular application. Additional com- 

plications, such as effects due to well completion and multiphase flow within the wellbore, may 

also have to be approximated. In subsequent work, we plan to assess the applicability of the 

methods presented in this report to simulation while drilling. More accurate, more computation- 

ally demanding approaches, such as upscaled finite difference models with specialized gridding 

schemes (i.e., models with modular grids), will also be considered. 
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