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Abstract

Gyrocenter-gauge kinetic theory is developed as an extension of the existing

gyrokinetic theories. In essence, the formalism introduced here is a kinetic de-

scription of magnetized plasmas in the gyrocenter coordinates which is fully

equivalent to the Vlasov-Maxwell system in the particle coordinates. In partic-

ular, provided the gyroradius is smaller than the scale-length of the magnetic

field, it can treat high frequency range as well as the usual low frequency range

normally associated with gyrokinetic approaches. A significant advantage of

this formalism is that it enables the direct particle-in-cell simulations of com-

pressional Alfvén waves for MHD applications and of RF waves relevant to

plasma heating in space and laboratory plasmas. The gyrocenter-gauge kinetic

susceptibility for arbitrary wavelength and arbitrary frequency electromag-

netic perturbations in a homogeneous magnetized plasma is shown to recover

exactly the classical result obtained by integrating the Vlasov-Maxwell system

in the particle coordinates. This demonstrates that all the waves supported by

the Vlasov-Maxwell system can be studied using the gyrocenter-gauge kinetic

model in the gyrocenter coordinates. This theoretical approach is so named to

distinguish it from the existing gyrokinetic theory, which has been successfully

developed and applied to many important low-frequency and long parallel

wavelength problems, where the conventional meaning of “gyrokinetic” has

been standardized. Besides the usual gyrokinetic distribution function, the

gyrocenter-gauge kinetic theory emphasizes as well the gyrocenter-gauge dis-

tribution function, which sometimes contains all the physics of the problems

being studied, and whose importance has not been realized previously. The
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gyrocenter-gauge distribution function enters Maxwell’s equations through the

pull-back transformation of the gyrocenter transformation, which depends on

the perturbed fields. The efficacy of the gyrocenter-gauge kinetic approach is

largely due to the fact that it directly decouples particle’s gyromotion from

its gyrocenter motion in the gyrocenter coordinates. As in the case of kinetic

theories using guiding center coordinates, obtaining solutions for this kinetic

system involves only following particles along their gyrocenter orbits. How-

ever, an added advantage here is that unlike the guiding center formalism, the

gyrocenter coordinates used in this theory involves both the equilibrium and

the perturbed components of the electromagnetic field. In terms of solving

the kinetic system using particle simulation methods, the gyrocenter-gauge

kinetic approach enables the reduction of computational complexity without

the loss of important physical content.

I. INTRODUCTION

Most of the interesting plasmas in the laboratory and space are magnetized plasmas.

Particle’s motion in magnetized equilibrium plasmas consist of the fast gyromotion and the

slow guiding center motion. Fast gyromotion puts a restrict constrain on the time step if par-

ticle simulations in the particle coordinates are used to simulate the magnetized plasmas. In

the past twenty years, gyrokinetic theory has been developed to remove the fast gyromotion

from the kinetic system for low frequency and long parallel wavelength phenomena.1–15,23,24

Gyrokinetic particle simulations, which use much larger time step than the time scale of

gyromotion,4,25–31 have been successfully applied to the transport problem of fusion plas-

mas. Recently, gyrokinetic perpendicular dynamics14,15 is identified and developed as an

3



important component of the kinetic theory in the gyrocenter coordinates. The gyrokinetic

perpendicular dynamics, which has not been systematically considered in the conventional

gyrokinetic theories,1–5,8–12 enables us to elegantly recover the compressional Aflvén wave,

which is missing in the previous gyrokinetic description for waves with characteristic frequen-

cies smaller than the gyrofrequency. Introducing the gyrokinetic perpendicular dynamics also

extends the gyrokinetic model to arbitrary frequency modes. Since novel mathematical tech-

niques, Lie perturbation and pull-back transformation, are utilized, the analytical formalism

is much more general and transparent compared with previous attempts of gyrokinetic model

for high frequency modes.6,7

In this paper, we further extend the gyrokinetic perpendicular dynamics into a kinetic

description in the gyrocenter coordinates which includes all the magnetized plasma responses

that are contained in the Vlasov-Maxwell system in the particle coordinates. In essence, the

formalism introduced here is a kinetic description of magnetized plasmas in the gyrocenter

coordinates which is fully equivalent to the Vlasov-Maxwell system in the particle coordi-

nates. In particular, provided the gyroradius is smaller than the scale-length of the magnetic

field, it can treat high frequency range as well as the usual low frequency range normally

associated with gyrokinetic approaches. A significant advantage of this formalism is that it

enables the direct particle-in-cell simulations of compressional Alfvén waves for MHD ap-

plications and of RF waves relevant to plasma heating in space and laboratory plasmas.

The gyrocenter-gauge kinetic susceptibility for arbitrary wavelength and arbitrary frequency

electromagnetic perturbations in a homogeneous magnetized plasma is shown to recover ex-

actly the classical result obtained by integrating the Vlasov-Maxwell system in the particle

coordinates. This demonstrates that all the waves supported by the Vlasov-Maxwell system

can be studied using the gyrocenter-gauge kinetic model in the gyrocenter coordinates. We
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will refer this formalism as gyrocenter-gauge kinetic theory to distinguish it from the existing

gyrokinetic theory, which has been successfully developed and applied to many important

low-frequency and long parallel wavelength problems,4,25–31 where the conventional mean-

ing of “gyrokinetic” has been standardized. In this new theoretical approach, besides the

usual gyrokinetic distribution function f , another indispensable distribution function S on

the phase space and the corresponding governing equation is introduced. As shown in Sec.

II, S sometimes plays an even more important role. The word “gyrocenter-gauge kinetic”

reflects the fact that S is actually a gauge function associated with the symplectic gyrocenter

transformation.

Before formally introducing the mathematical formalism, let’s look at the basic concepts

of the gyrocenter-gauge kinetic theory. As pointed out in Ref. 15, the absence of the compres-

sional Aflvén wave and the difficulties of treating arbitrary frequency modes in the previous

gyrokinetic models are fundamentally due to the lack of a systematic treatment for the

plasma perpendicular response in these models. For a kinetic system, the kinetic equation

can be viewed as a theoretical description for the response of the plasma, in terms of charge

and current densities, to the electromagnetic field. It is not necessary to determine charge

density independently, because we can solve for it from the continuity equation after knowing

the current density. We can therefore infer that the reason that the compressional Aflvén

wave is not recoverable from the previous gyrokinetic models must be the lack of complete

information about the plasma response provided in these models. In the gyrocenter-gauge

kinetic theory, all the information about the magnetized plasma response contained in the

Vlasov-Maxwell system is kept by a complete description of the gyrocenter-gauge distribu-

tion function. The special features that particularly distinguish the gyrocenter-gauge kinetic

theory in the gyrocenter coordinates from other gyrokinetic theories are the systematic treat-
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ment of the gyrocenter-gauge distribution function and the pull-back transformation. Since

the construction of the gyrocenter coordinates involves the perturbed fields, the pull-back

transformations of functions from the gyrocenter coordinates back to the particle coordinates

must depend on the perturbed fields. This dependence shows up directly through the per-

turbed potential φ1 and A1, as well as indirectly through the gyrocenter-gauge distribution

function. The spirit of gyrocenter-gauge kinetic simplification is to decouple the gyromotion

(the gyration due to the Lorentz force) from the gyrocenter motion (the orbit motion of

gyrocenter due to the inhomogeneity of the magnetic field), instead of averaging out the

gyromotion. This procedure can only be done rigorously and systematically using the Lie

perturbation method. What gyrocenter-gauge kinetic theory offers is a simplified version of

the Vlasov-Maxwell system by utilizing the fact that the particle’s gyroradius is much smaller

than the scale length of the magnetic field: εB0+B1 ≡ ∣∣ρ/LB0+B1

∣∣ � 1. As long as εB0+B1 is

small, we are able to construct a gyrocenter coordinate system in which the particle’s gyro-

motion is decoupled from the rest of the particle dynamics. It is important to notice that

the existence of the gyrocenter coordinates does not depend on the mode frequency directly.

Therefore even when the mode frequency is comparable to or larger than the cyclotron fre-

quency, we can still take advantage of the gyrocenter coordinates and simplify the kinetic

system.14,15 Three different coordinate systems appear in our formalism. (x, v) is the par-

ticle ‘physical’ coordinate system. Z = (X, V‖, µ, ξ, w, t) is the (extended) ‘guiding center’

coordinate system in an equilibrium magnetic field. When the time-dependent electromag-

netic field are introduced, we use the ‘gyrocenter’ coordinate system Z̄ = (X̄, V̄‖, µ̄, ξ̄, w̄, t̄)

to describe the gyrocenter motion. Among other things, the most well-known difference be-

tween the guiding center motion and the gyrocenter motion is the polarization drift motion

due to the time-dependent electrical perturbation, responsible for the finite Larmor radius
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correction to drift waves4 and the compressional Alfvén wave.15 We are following Brizard11

and recent conventions15 in using the terms ‘gyrocenter’ and ‘guiding center’ to distinguish

these two different coordinate systems.

Recasting the Vlasov-Maxwell equations in the gyrocenter coordinates should not lose

any physics content of the original system, if the mathematical procedure is carried out

correctly while the simplification is achieved. In the gyrocenter-gauge kinetic theory, the

information of the kinetic system is split into two parts, the usual gyrokinetic distribution

f and the gyrocenter-gauge distribution function S. While f is gyrophase independent and

mainly responsible for the shear Aflvén wave and drift waves, S is gyrophase dependent

and solely responsible for the compressional Aflvén wave. We note that f and S is not a

simple algebraic split of the full distribution function in the particle coordinates, but rather

a geometric split of the information carried by it. In the gyrocenter-gauge kinetic system,

the dynamics of f and S are governed by different kinetic equations in the gyrocenter phase

space. Physics on the phase space should not depend on the choice of coordinate system. The

guiding center coordinate system Z = (X, V‖, µ, ξ) and the gyrocenter coordinate system

Z̄ = (X̄, V̄‖, µ̄, ξ̄) are equivalent to the usual particle coordinate system z = (x, v) in terms

of describing the physics contained in the Vlasov-Maxwell equation system. We will show

in Sec. III that the magnetized plasma linear response, expressed in the susceptibility, from

the the gyrocenter-gauge kinetic theory recovers exactly the conventional magnetized plasma

susceptibility derived from the Vlasov-Maxwell equations in the particle coordinate system.

Recovering the classical plasma susceptibility completely from the gyrocenter-gauge kinetic

theory guarantees the recovery, in the gyrocenter coordinate system, all the interesting waves

that we have known from the classical theory, including the compressional Alfvén wave and

the Bernstein wave, previously recovered by the gyrokinetic perpendicular dynamics15.
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Even though all coordinate systems are geometrically equivalent, the computational com-

plexity involved and are different depending on the specific problems under investigation.

For applications in magnetized plasmas, the advantage of the gyrocenter coordinate system

lies at the fact that in and only in this coordinate system the fast time scale gyromotion

is decoupled from the particle’s gyrocenter orbit dynamics. For low frequency electrostatic

and the shear Alfvén modes, the gyromotion is not important and is naturally decoupled

from the system as if it is completely “averaged out”. On the other hand, general frequency

modes and the compressional Alfvén mode can be easily recovered by including the decoupled

gyrocenter-gauge kinetic equation in the gyrocenter coordinate system, since the gyrocenter

orbit motion is independent of the gyromotion. The current numerical codes and particle

simulation codes based on gyrocenter orbit integration for low frequency electrostatic and

shear Alvén modes can be extended to general frequency by appropriately adding in the

gyrocenter-gauge component.

An interesting fact seldom discussed before is that the classical magnetized plasma sus-

ceptibility is actually gyro-phase independent. All the physics contained does not depend on

the distribution over gyrophase. It is therefore natural and straightforward to work in the

gyrocenter coordinates. As we will see later, it does not take too much calculation to obtain

the plasma susceptibility after the basic formalism is rigorously set up.

The paper is organized as follows. In Sec. II, we introduce the basic analytical formalism

of the gyrocenter-gauge kinetic theory. Then, the susceptibility of a magnetized plasma is

derived from the gyrocenter-gauge kinetic theory in Sec. III. We show that this gyrocenter-

gauge kinetic susceptibility recovers exactly the classical one. In the last section, we discuss

the particle simulation method for the gyrocenter-gauge kinetic model and several related

issues.

8



II. BASIC FORMALISM

A. Littlejohn’s Standard Guiding Center Coordinates

We assume the equilibrium plasma is magnetostatic and magnetized, which means, by

definition,

εB0 ≡
∣∣ ρ

LB0

∣∣ � 1. (1)

Here, ρ ≡ −v×b0/Ω is the gyroradius, and LB0 ≡ |B0/∇B0| is the scale length of the equi-

librium magnetic field B0. For magnetized plasmas, we can construct a set of non-canonical

phase space coordinates in which the gyromotion is decoupled from the rest of the particle

dynamics to any order in εB0. This special set of coordinates is called “standard guiding

center variables” by Littlejohn.3 The underlying method is to look at the perturbation of

the phase space Lagrangian when εB0 is small, and introduce a near identity coordinate

transformation such that, in the new coordinate system, the gyromotion is decoupled. The

guiding center transformation TGC : z = (x, v) 7−→ Z = (X, V‖, µ, ξ), which transfers par-

ticle coordinates z = (x, v) into the standard guiding center coordinates Z = (X, V‖, µ, ξ)

can be found in Refs. 1–3, 11. Here, X is the configuration component of the guiding center

coordinate, V‖ is the parallel velocity, µ is the magnetic moment, and ξ is the gyrophase

angle. For the present purpose, we do not need to display the expression except for the

familiar

X = x − ρ0. (2)

The regular phase space is extended to include the time coordinate t and its conju-

gate coordinate energy w such that time-dependent Hamiltonians can be treated on an
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equal footing with the time-independent ones. In the extended guiding center coordinates

(X, V‖, µ, ξ, w, t), the extended phase space Lagrangian is2,3,11,12

γE =γ̂E − HEdτ

=(
e

c
A + mV‖b − µ

mc

e
W ) · dX +

mc

e
µdξ −wdt − (H − w)dτ,

(3)

where species subscripts are temporarily suppressed, and

W = R +
b

2
(b · ∇ × b), R = (∇e1) · e2, b = B/B. (4)

e1 and e2 are unit vectors in two arbitrarily chosen perpendicular directions, and e1 and e2

are perpendicular to each other. All quantities are evaluated in the guiding center coordinates

now. γ̂E gives the extended symplectic structure, HE = H −w is the extended Hamiltonian,

and H is the regular Hamiltonian defined as

H =
mV 2

‖
2

+ µB.

The corresponding Poisson bracket is obtained by inverting the matrix γ̂Eij, which is the

coefficient of the differential of the symplectic structure dγ̂E = γ̂EijdZ
idZj,2,3,11

{F, G} =
e

mc
(
∂F

∂ξ

∂G

∂µ
− ∂F

∂µ

∂G

∂ξ
) − cb

eB∗
‖
· [(∇F + W

∂F

∂ξ
) × (∇G + W

∂G

∂ξ
)]

+
B∗

mB∗
‖
· [(∇F + W

∂F

∂ξ
)
∂G

∂V‖
− (∇G + W

∂G

∂ξ
)
∂F

∂V‖
] + (

∂F

∂w

∂G

∂t
− ∂F

∂t

∂G

∂w
),

(5)

where

B∗ = B +
cmV‖

e
∇× b, B∗

‖ = b · B∗. (6)

B. Symplectic Gyrocenter Transformation

When the time dependent perturbed electromagnetic field is introduced, the extended

phase space Lagrangian still gives the dynamics of particles. However, it is perturbed
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accordingly,10,11

γE = γE0 + γE1,

γE1 = [
e

c
A1(T

−1
GCX, t) · d(T−1

GCX)] − eφ1(T
−1
GCX, t)dτ,

(7)

where T−1
GC is the inverse of the guiding center transformation,

T−1
GCX = X + ρ0 + O(εB). (8)

Expanding d(T−1
GCX), we obtain:

γE1 =
e

c
A1(X + ρ0, t) · [(1 + ∇ρ0) · dX +

∂ρ0

∂µ
dµ +

∂ρ0

∂ξ
dξ] − eφ1(X + ρ0, t)dτ. (9)

The essence of the Lie perturbation method is to introduce a near identity transforma-

tion from the equilibrium guiding center coordinates Z = (X, V‖, µ, ξ, w, t) to the gyrocenter

coordinates Z̄ = (X̄, V̄‖, µ̄, ξ̄, w̄, t̄) when the perturbed field is present such that the trans-

formed extended phase space Lagrangian γ̄ can be gyrophase independent.

For the transformation

Z̄ i = ( eG Z)i ≈ Z i + Gi(Z), (10)

the leading order transformed extended phase space Lagrangian is:

γ̄E1 = γE1 − iGωE0 + dS = ̂̄γE1 − H̄E1dτ, (11)

where ωE0 = dγE0, S is an arbitrary gauge function, and iGωE0 is the interior product be-

tween the vector field G and the two-form ωE0. The fact that dS is a gauge transformation

was pointed out by Littlejohn in Ref. 16, where the Lie perturbation method for Hamiltonian

system in noncanonical coordinates was systematically introduced. It was also pointed out

by Hahm in Ref. 9, where this method was first applied to the gyrokinetic theory. This
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point of view was subsequently adopted by Brizard.11,12,17 In this paper, we refer S as the

gyrocenter-gauge to reflect the fact that dS is the gauge transformation in the process of con-

structing the gyrocenter coordinates from the equilibrium guiding center coordinates and the

perturbed fields.18 We note that the Hamiltonian Lie perturbation procedure in noncanonical

coordinates is different from the conventional canonical coordinate transformation, which can

be characterized as those transformations (q, p) −→ (Q, P ) which satisfy pdq = P dQ + dS

for some scalar S.19,20,16,17 In the canonical limit, S serves as the scalar generating function

which generates the canonical transformation. However, in the noncanonical cases, it is the

vector field G that directly gives the transformation. The extra freedom associated with

S allows us to pick the gauge which is computationally or analytically beneficial. There

are several different ways to make ̂̄γE and H̄Edτ gyrophase independent. We will choose G

and S such that the transformation is symplectic, that is, there is no perturbation on the

symplectic structure,

̂̄γE1 = 0. (12)

Other non-symplectic transformations are also possible. Generally non-symplectic transfor-

mations are more algebraically involved.

Since we choose not to change the time variable t, Gt = 0. Other components of G are
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solved for from ̂̄γE1 = 0.

GX = − c

eB∗
‖
b × (

e

c
A1 + ∇S) − B∗

mB∗
‖

∂S

∂V‖
+ O(εB),

GV‖ =
B∗

mB∗
‖
· (e

c
A1 + ∇S) + O(εB),

Gµ =
e

mc
(
e

c
A1 · ∂ρ0

∂ξ
+

∂S

∂ξ
),

Gξ = − e

mc
(
e

c
A1 · ∂ρ0

∂µ
+

∂S

∂µ
) + O(εB),

Gw = −∂S

∂t
.

(13)

The transformed Hamiltonian is thus uniquely determined by the choice of ̂̄γE1 = 0.

H̄E1 = HE1 − Gi ∂HE0

∂xi
+ Gw = eφ1(X̄ + ρ0, t)−

e

c
A1(X̄ + ρ0, t) · {X̄ + ρ0, HE0} − {S, HE0},

(14)

in which

{X̄ + ρ0, HE0} = V̄ + vd, (15)

where

V̄ = V̄ ⊥ + V̄‖b, V̄ ⊥ = {ρ0, HE0}. (16)

In the calculation related to the gyrocenter transformation, we will only keep the lowest

order in terms of εB, because the background FLR effects normally are not important.

H̄E1 has to be gyrophase independent as well. There is another freedom here. We choose

H̄E1 = 〈eφ1(X̄ + ρ0, t) − V̄ · e

c
A1(X̄ + ρ0, t)〉, (17)

where 〈 〉 ≡ 1/2π
∫ 2π

0
dξ represents the gyrophase averaging operation. This leads to the

equation determining the gauge function S:

{S, HE0} = Ω
∂S

∂ξ
+

∂S

∂t
+

∂S

∂X̄
· {X, HE0} +

∂S

∂V‖
{V‖, HE0}

= eφ̃1(X̄ + ρ0, t)−
e

c
˜̄V · A1(X̄ + ρ0, t),

(18)
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where φ̃1(X̄+ρ0, t) and ˜̄V · A1(X̄+ρ0, t) are the gyrophase dependent parts of φ1(X̄+ρ0, t)

and V̄ · A1(X̄ + ρ0, t) respectively.

φ̃1(X̄ + ρ0, t) = φ1(X̄ + ρ0, t)− 〈φ1(X̄ + ρ0, t)〉
˜̄V · A1(X̄ + ρ0, t) = V̄ · A1(X̄ + ρ0, t)− 〈V̄ · A1(X̄ + ρ0, t)〉.

(19)

Here, we only carry out the analysis to the first order, we therefore study linear theory

in this paper. Second order nonlinear theory is readily available by carrying out the analysis

to the second order, but the algebra is somewhat tedious.

Since the transformation we have chosen is symplectic, ̂̄γE1 = 0, the Poisson bracket in

the gyrocenter coordinates is the same as that in the guiding center coordinates, which is

given by Eq. (5). After obtaining the desired gyrocenter coordinates, we will “push forward”

objects on the original particle coordinates onto the new coordinates. The objects of physical

interest here are Maxwell’s equations and the Vlasov equation.

We will use A and φ to notate the perturbed field hereafter; the subscript “1” will be

dropped. Unless clarity requires us to use the barred notation, we will also drop the bars for

the gyrocenter coordinates hereafter.

C. Kinetic Equations, Pull-Back, and Push-Forward

In its geometric (coordinate independent) form, the Vlasov equation is {F, HE} = 0. In

the gyrocenter coordinates, F̄ and F̃ can be decoupled because { } and HE are gyrophase

independent.

{F̄ , HE} = 0, {F̃ , HE} = 0, (20)
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where F̄ = 〈F 〉, and F̃ = F − F̄ . Let F = F0 + f , where F0 is the equilibrium distribution,

and f is the perturbed distribution, we have

∂f̄

∂t
+ Ẋ

∂f̄

∂X
+ V̇‖

∂f̄

∂V‖
= −{F̄0, H1},

∂f̃

∂t
+ Ẋ

∂f̃

∂X
+ V̇‖

∂f̃

∂V‖
+ ξ̇

∂f̃

∂ξ
= −{F̃0, H1}.

(21)

However, f̄ and f̃ can not provide all the information about the distribution function in the

phase space. The third kinetic equation in the gyrocenter-gauge kinetic theory is

∂S

∂t
+ Ẋ

∂S

∂X
+ V̇‖

∂S

∂V‖
+ ξ̇

∂S

∂ξ
= eφ̃(X + ρ0, t)−

e

c
Ṽ · A(X + ρ0, t). (22)

In the gyrocenter-gauge kinetic theory, the gyrocenter-gauge function S plays a significant

role. S is not only a gauge, but more importantly, S is identified as the distribution function

over the phase space which carries valuable physical information about the kinetic system.

In many applications, such as the compressional Alfvén wave and the Bernstein wave, all the

physics is hidden in S instead of the gyrokinetic distribution function f . Eq. (22) may look

similar in form and dimension to Eq. (7) for a scalar field S1 in Ref. 21 in the context of free

energy method.22 The scalar field S1 in Ref. 21 is a first order generating function, which

generates a canonical coordinate transformation, and therefore induces a transformation from

the perturbed particle distribution to the unperturbed particle distribution f . Clearly, our

gyro-center gauge function and Eq. (22) are different from the generating function S1 and

Eq. (7) in Ref. 21. First of all, S in our formalism is the gauge function for the noncanonical

gyrocenter coordinate transformation, while S1 in Ref. 21 is a generating function for a

canonical transformation. Secondly, S1 in Ref. 21 in the context of free energy method exists

before the construction of gyrocenter coordinates or even when the gyrocenter coordinate

system does not exist at all. Of course, after the gyrocenter coordinates are constructed,
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one can try to express S1 and Eq. (7) in Ref. 21 in the gyrocenter coordinates with the

purpose of developing a free energy method for the low-frequency gyrokinetic system,21 a goal

different from ours. As usual, Maxwell’s equations are used to complete the gyrocenter-gauge

kinetic system. It is not clear how to write Maxwell’s equations directly in the gyrocenter

coordinates. But the straightforward solution is to write Maxwell’s equations in the particle

coordinates first, then relate the charge and current densities to the distribution functions

in the gyrocenter coordinates, i.e., f̄ , f̃ , and S.

The Poisson equation is

−∇2φ(r, t) = 4π
∑

j

e

∫
d3vf(r, v, t) +

1

c

∂

∂t
∇ · A(r, t), (23)

where ∫
d3v f(r, v, t) =

∫
d6Z [T ∗

GY f ](Z, t)δ(T−1
GCX − r). (24)

Ampere’s law is

∇× (∇× A(r, t)) =
4π

c

∑
j

e

∫
d3v vf(r, v, t), (25)

where ∫
d3vvf(r, v, t) =

∫
d6Z V GC(Z)[T ∗

GY f ](Z, t)δ(T−1
GCX − r). (26)

In the above equations, d6Z is understood to be (B∗
‖/m) d3XdV‖dµdξ. T ∗

GY is the pull-

back transformation, which transforms the perturbed distribution f in the gyrocenter coordi-

nates into that in the guiding center coordinates. T−1
GC is the inverse of TGC that transforms

the particle physical coordinates (r, v, t) into the guiding center coordinates. We assume

the guiding center transformation TGC and the corresponding pull-back transformation T ∗
GC,

and the gyrocenter transformation TGY and the corresponding pull-back transformation T ∗
GY
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are one-one onto (bijective). Generally, for a macroscopic quantity Q(r) in the particle

coordinates and its microscopic counterpart in phase space q(r, v), we have5,9–11

Q(r) =

∫
q(r, v)fP (r, v, t) d3v =

∫
δ(x− r)q(r, v)fP (z, t) d6z. (27)

In the guiding center coordinates Z = (X, V‖, µ, ξ),

Q(r) =

∫
[T ∗ −1

GC q](Z)fGC(Z, t)δ(T−1
GCX − r) d6Z. (28)

Replacing fGC(Z, t) by its pull-back from the gyrocenter coordinates, we get,

Q(r) =

∫
[T ∗ −1

GC q](Z)[T ∗
GY fGY ](Z, t)δ(T−1

GCX − r) d6Z. (29)

The pull-back transformation from the gyrocenter coordinates to the guiding center co-

ordinates is easily obtained from the expression for G given by Eq. (13),

T ∗
GY F = F + LGF = F − b

B∗
‖
× [A(X + ρ0, t) +

c

e
∇S] · ∇F − B∗

mB∗
‖

∂S

∂V‖
· ∇F

+
e

mc

B∗

B∗
‖
· [A(X + ρ0, t) +

c

e
∇S]

∂F

∂V‖
+

e

mc
[
e

c
A(X + ρ0, t) ·

∂ρ0

∂ξ
+

∂S

∂ξ
]
∂F

∂µ

− [
e

c
A(X + ρ0, t) ·

∂ρ0

∂µ
+

∂S

∂µ
]
∂F

∂ξ
+ O(εB),

(30)

where LGF represents the Lie derivative of F with respect to the vector field G. As we will

see in the next section, the pull-back transformation T ∗
GY and therefore the gyrocenter-gauge

distribution S lie at the center of the gyrocenter-gauge kinetic theory.

After the pull-back of f into the particle coordinates, the configuration variable r of the

particle coordinates in Maxwell’s equations can be viewed as a dummy variable, and can

be replaced by the configuration variable X of the gyrocenter coordinates. As a result, we

effectively obtain the push-forward of Maxwell’s equation on the gyrocenter coordinates.

−∇2φ(X ′, t) = 4π
∑

j

e

∫
d6Z [T ∗

GY f ](Z, t)δ(T−1
GCX − X ′) +

1

c

∂

∂t
∇ · A(X ′, t), (31)
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∇× (∇× A(X ′, t)) =
4π

c

∑
j

e

∫
d6Z V GC(Z)[T ∗

GY f ](Z, t)δ(T−1
GCX − X ′). (32)

III. SUSCEPTIBILITY

As an electromagnetic medium, a plasma can be faithfully characterized by its suscep-

tibility. For example, all the waves supported by plasmas can be derived from the plasma

susceptibility. To a large degree, a theoretical model for plasmas can be characterized by

the susceptibility it predicts. In this section, we derive the susceptibility for a magnetized

plasma from the gyrocenter-gauge kinetic model, and prove that it recovers exactly the well-

known result derived from the Vlasov-Maxwell system in the particle coordinates. By this

recovery, we show that gyrocenter-gauge kinetic theory, as an extension of the gyrokinetic

theory, includes all the physics that can be described by the Vlasov-Maxwell system in the

particle coordinates.

We consider a homogeneous magnetized plasma with a constant magnetic field in the ez

direction. For a linear perturbation of the form exp(ik · r − iωt), we can always choose the

coordinate system such that ky = 0, k⊥ = kx, and k‖ = kz . By definition,

j = − iω

4π
χ · E. (33)

To find out χ, we only need to express j in terms of E. Our starting point is the pull-back

formula

j1 =

{
e

∫
(V ⊥ + V‖b)[T ∗

GY (F0 + f)](Z)δ(X + ρ0 − r) d6Z

}
1

, (34)

where j1 is the first order current flow in the laboratory frame. { }1 represents the first

order of the expression inside { }. In addition, we have used the relationship

T ∗−1
GC v = V ⊥ + V‖b. (35)
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As usual, it is reasonable to assume F̃0 = 0. Then, the kinetic equation for f̃ is homoge-

neous and does not depend on the perturbed field.

∂f̃

∂t
+ Ẋ

∂f̃

∂X
+ V̇‖

∂f̃

∂V‖
+ ξ̇

∂f̃

∂ξ
= 0. (36)

For the initial value problem, f̃ is purely a residual of the gyrophase dependent part of the

initial f̃ . If we assume f̃ = 0 initially, then f̃ vanishes all the time. The physics for the

linear susceptibility does not depend on initial condition. We can therefore let f̃ = 0 and

f = f̄ for the current purpose. Useful information about the gyrophase dependent part of

the distribution function is carried by S.

The integral in Eq. (34) is related to F0, f , and S through:

[T ∗
GY (F0 + f)]1 = f +

e

mc
b · [A(X + ρ0) +

c

e
∇S]

∂F0

∂V‖
+

e

mc
[
e

c
A(X + ρ0) ·

∂ρ0

∂ξ
+

∂S

∂ξ
]
∂F0

∂µ
.

(37)

To solve for f and S, we first calculate the linear drive H1 and eφ̃(X + ρ0, t) −
e/cṼ ·A(X + ρ0, t). Choosing the coordinate system for ξ such that

V ⊥ = −V⊥[ex sin ξ + ey cos ξ],

ρ0 =
V⊥
Ω

[ex cos ξ − ey sin ξ],
(38)

We have:

φ(X + ρ0) = eρ0 · ∇ φ(X),

〈φ(X + ρ0)〉 = 〈 eρ0 · ∇ 〉φ(X) = J0φ(X),

φ̃(X + ρ0) = ( eρ0 · ∇ − J0)φ(X),

J0 = J0(
V⊥k⊥

Ω
).

(39)

19



Similarly,

V · A(X + ρ0) = V‖A‖(X + ρ0) + V ⊥ ·A⊥(X + ρ0),

〈V ⊥ · A⊥(X + ρ0)〉 = −V⊥J1Ay,

˜V ⊥ · A⊥(X + ρ0) = − e iλ cos ξ V⊥ sin ξAx − ( e iλ cos ξ cos ξ + J1)V⊥Ay,

J1 = J1(
V⊥k⊥

Ω
),

λ = ρ0k⊥ = ρ0kx.

(40)

The expression for H1 and eφ̃(X + ρ0) − e/cṼ · A(X + ρ0) are

H1 = e[J0(φ − V‖
c

A‖) +
V⊥
c

J1Ay],

eφ̃(X + ρ0) −
e

c
Ṽ · A(X + ρ0) = e[( e iλ cos ξ − J0)(φ − V‖

c
Az) + e iλ cos ξ sin ξ

V⊥
c

Ax

+( e iλ cos ξ cos ξ + J1)
V⊥
c

Ay].

(41)

From the kinetic equation for f

∂f

∂t
+ V‖b · ∇f =

1

m
b · ∇H1

∂F0

∂V‖
, (42)

we easily know the solution for f ,

f =
−ekz

m(ω − kzV‖)
[J0(φ − V‖/cA‖) +

V⊥
c

J1Ay]
∂F0

∂V‖
. (43)

One quickly notices that for those modes with kz = 0, such as the compressional Alfvén

wave and the Bernstein wave, f = 0, all the physics must be inside the gyrocenter-gauge

distribution function S.

Introducing S∗ defined by

S∗ = S − eH1

i(ω − kzV‖)
, (44)
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we have the kinetic equation for S∗ from that for S,

Ω
∂S∗

∂ξ
− i(ω − kzV‖)S∗ = e e iλ cos ξ [φ(X) − 1

c
V · A(X)]

= e e iλ cos ξ [(φ− 1

c
VzAz) +

V⊥
c

Ax sin ξ +
V⊥
c

Ay cos ξ].

(45)

The pull-back transformation depends only on S∗ due to a cancellation,

[T ∗
GY (F0 + f)]1 =

e

mc
Az(X + ρ0)

∂F0

∂V‖
+

ikz

m
S∗∂F0

∂V‖

+
e

mc
[
e

c
A(X + ρ0) ·

∂ρ0

∂ξ
+

∂S∗

∂ξ
]
∂F0

∂µ
.

(46)

As a consequence, all the physics is included in S∗. Using (A9) to expand exp(iλ cos ξ), we

can solve Eq. (45) for S∗,

S∗ =
e

Ω

n=∞∑
n=−∞

{ In(iλ) e inξ

i(n − ω + kzV‖)
(φ − V‖

c
Az)

+ [
In(iλ) e i(n + 1)ξ

−2(n + 1 − ω + kzV‖)
− In(iλ) e i(n − 1)ξ

−2(n − 1 − ω + kzV‖)
]
V⊥
c

Ax

+ [
In(iλ) e i(n + 1)ξ

2i(n + 1 − ω + kzV‖)
+

In(iλ) e i(n− 1)ξ

2i(n − 1 − ω + kzV‖)
]
V⊥
c

Ay},

(47)

where ω = ω/Ω and kzV‖ = kzV‖/Ω. We can re-arrange
∑n=∞

n=−∞ using (A16), (A17), and

(A18) to get

S∗ =
e

Ω

n=∞∑
n=−∞

{ In(λ) e inξ

i(n − ω + kzV‖)
(φ − V‖

c
Az)

+
nIn(iλ) e inξ

−iλ(n − ω + kzV‖)

V⊥
c

Ax +
I ′
n(iλ) e inξ

i(n − ω + kzV‖)

V⊥
c

Ay},
(48)

∂S∗

∂ξ
=

e

Ω

n=∞∑
n=−∞

{ nIn(λ) e inξ

i(n − ω + kzV‖)
(φ − V‖

c
Az)

+
n2In(iλ) e inξ

−iλ(n − ω + kzV‖)

V⊥
c

Ax +
nI ′

n(iλ) e inξ

i(n− ω + kzV‖)

V⊥
c

Ay}.
(49)
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Our strategy here is to calculate the current through the pull-back formula in terms of

potentials φ and A, and find out the susceptibility χp defined by

j = − iω

4π
χp ·




Ax

Ay

Az

φ




. (50)

Here, subscript “p” refers to the fact that χp is the susceptibility matrix connecting j and

potentials φ and A, while χ is reserved for the susceptibility connecting j and electric field

E. χp and χ are simply related by

χp = iχ ·




ω

c
0 0 −kx

0
ω

c
0 0

0 0
ω

c
−kz


 . (51)

Furthermore, to break the expression into manageable pieces, we split χp into two parts,

χp = χ‖
p + χ⊥

p , (52)

where χ
‖
p and χ⊥

p are terms proportional to ∂F0/∂V‖ and ∂F0/∂V⊥ respectively.

Let’s start from the complete expression for j1,

j1(r) = e

∫
δ(X + ρ0 − r) d6Z(V ⊥ + V‖b){ e

mc
Az(X + ρ0)

∂F0

∂V‖
+

ikz

m
S∗∂F0

∂V‖

+
e

mc
[
e

c
A(X + ρ0) ·

∂ρ0

∂ξ
+

∂S∗

∂ξ
]
∂F0

∂µ
}

= e

∫
d3V e−ρ0 · ∇ (V ⊥ + V‖b){ e

mc
Az(X + ρ0)

∂F0

∂V‖
+

ikz

m
S∗∂F0

∂V‖

+
e

mc
[
e

c
A(X + ρ0) ·

∂ρ0

∂ξ
+

∂S∗

∂ξ
]
∂F0

∂µ
}
∣∣∣
X 7−→r

,

(53)
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where “|X 7−→r” means replacing X by r after the velocity integral is finished. The expressions

for S∗ and ∂S∗/∂ξ, Eqs. (48) and (49), can be substituted into the above equation to express

j1(r) in terms of the potentials φ and A exclusively.

First, we look at the ∂F0/∂V‖ term in j1(r) · b,

e

∫ ∞

0

V⊥dV⊥

∫ ∞

−∞
dV‖

∫ 2π

0

dξV‖
∂F0

∂V‖

n′=∞∑
n′=−∞

In′(−iλ) e in′ξ

{ e iλ cos ξ e

mc
Az +

ikze

mΩ

n=∞∑
n=−∞

[
In(iλ) e inξ

i(n − ω + kzV‖)
(φ − V‖

c
Az)

+
n e inξ In(iλ)

−iλ(n − ω + kzV‖)

V⊥
c

Ax +
e inξ I ′

n(iλ)

i(n − ω + kzV‖)

V⊥
c

Ay]}

= e2π

∫ ∞

0

V⊥dV⊥

∫ ∞

−∞
dV‖V‖

∂F0

∂V‖

n=∞∑
n=−∞

[
nJ2

n(λ)

−(n− ω + kzV‖)

kze

kxmc
Ax

+
iJ ′

n(λ)Jn(λ)

−(n − ω + kzV‖)

kzV⊥e

Ωmc
Ay +

J2
n(λ)(n − ω)

(n − ω + kzV‖)

e

mc
Az +

J2
n(λ)

(n − ω + kzV‖)

kze

mΩ
φ].

(54)

In the above derivation, we have used identity (A12) for the Ax and φ terms, (A13) for the

Ay term, and (A5) for the Az term. This equation gives the third row of χ
‖
p.

For the ∂F0/∂V⊥ term in j1(r) · b, we have

e

∫ ∞

0

V⊥dV⊥

∫ ∞

−∞
dV‖

∫ 2π

0

dξV‖
∂F0

∂V⊥

B

mV⊥

n′=∞∑
n′=−∞

In′(−iλ) e in′ξ e

mc

{e

c
e iλ cos ξ V⊥

Ω
(−Ax sin ξ − Ay cos ξ) +

e

Ω

n=∞∑
n=−∞

[
nIn(iλ) e inξ

(n− ω + kzV‖)
(φ − V‖

c
Az)

+
n2In(iλ) e inξ

−λ(n − ω + kzV‖)

V⊥
c

Ax +
nI ′

n(iλ) e inξ

(n − ω + kzV‖)

V⊥
c

Ay]}

=
e2

m
2π

∫ ∞

0

V⊥dV⊥

∫ ∞

−∞
dV‖

∂F0

∂V⊥

V‖
V⊥

n=∞∑
n=−∞

[
J2

n(λ)

(n − ω + kzV‖)
(φ − V‖

c
Az)

+
ω − kzV‖

−(n − ω + kzV‖)

nJ2
n(λ)V⊥
λc

Ax +
i(ω − kzV‖)

−(n − ω + kzV‖)

Jn(λ)J ′
n(λ)V⊥
c

Ay],

(55)
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where we have used identity (A12) for the φ and Az terms, (A12) and (A3) for the Ax term,

and (A13) and (A4) for the Ay term. The third row of χ⊥
p can be easily read off from the

above equation.

The algebra involved for the perpendicular component of j1 is a little bit more compli-

cated. For the ∂F0/∂V‖ term in j1(r) · ex, we have

e

∫ ∞

0

V⊥dV⊥

∫ ∞

−∞
dV‖

∫ 2π

0

dξV‖
∂F0

∂V⊥

n′=∞∑
n′=−∞

−In′(−iλ) e in′ξ sin ξ

{ e iλ cos ξ e

mc
Az +

ikze

mΩ

n=∞∑
n=−∞

[
In(iλ) e inξ

i(n− ω + kzV‖)
(φ − V‖

c
Az)

+
n e inξ In(iλ)

−iλ(n − ω + kzV‖)

V⊥
c

Ax +
e inξ I ′

n(iλ)

i(n − ω + kzV‖)

V⊥
c

Ay]}

= e2π

∫ ∞

0

V⊥dV⊥

∫ ∞

−∞
dV‖V⊥

∂F0

∂V‖

n=∞∑
n=−∞

[
n2J2

n(λ)

−(n− ω + kzV‖)

kzeΩ

k2
xV⊥mc

Ax

+
inJ ′

n(λ)Jn(λ)

−(n− ω + kzV‖)

kze

kxmc
Ay +

nJ2
n(λ)(n − ω)

(n − ω + kzV‖)

eΩ

kxV⊥mc
Az +

nJ2
n(λ)

(n − ω + kzV‖)

kze

kxV⊥m
φ].

(56)

To derive this expression, we have first used the following identity

n=∞∑
n=−∞

In(−iλ) e inξ sin ξ =
n=∞∑

n=−∞

nIn(−iλ)

λ
e inξ , (57)

and then (A12) for the Ax term, (A13) for the Ay term, (A12) and (A3) for the Az term,

and (A13) for the φ term. This result gives the first row of χ
‖
p.
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For the ∂F0/∂V⊥ component in j1(r) · ex, we have

e

∫ ∞

0

V⊥dV⊥

∫ ∞

−∞
dV‖

∫ 2π

0

dξV⊥
∂F0

∂V⊥

B

mV⊥

n′=∞∑
n′=−∞

−in′In′(−iλ)

λ
e in′ξ e

mc

{e

c
e iλ cos ξ V⊥

Ω
(−Ax sin ξ − Ay cos ξ) +

e

Ω

n=∞∑
n=−∞

[
nIn(iλ) e inξ

(n− ω + kzV‖)
(φ − V‖

c
Az)

+
n2In(iλ) e inξ

−λ(n − ω + kzV‖)

V⊥
c

Ax +
nI ′

n(iλ) e inξ

(n − ω + kzV‖)

V⊥
c

Ay]}

=
e2

m
2π

∫ ∞

0

V⊥dV⊥

∫ ∞

−∞
dV‖

∂F0

∂V⊥

n=∞∑
n=−∞

[
n2J2

n(λ)

λ(n − ω + kzV‖)
(φ − V‖

c
Az)

+
ω − kzV‖

−(n − ω + kzV‖)

n2J2
n(λ)V⊥
λ2c

Ax +
i(ω − kzV‖)

−(n − ω + kzV‖)

nJn(λ)J ′
n(λ)V⊥

λc
Ay],

(58)

where we have used (A12) and (A6) for the Ax term, (A13) and (A4) for the Ay term, (A12)

for the φ and Az terms. What we get from this equation is the first row of χ⊥
p .

To obtain the equation for j1 · ey, we first invoke

e−iλ cos ξ cos ξ =
n=∞∑

n=−∞
I ′
n(−iλ) e inξ . (59)

Then, for the ∂F0/∂V‖ term,

e

∫ ∞

0

V⊥dV⊥

∫ ∞

−∞
dV‖

∫ 2π

0

dξV⊥
∂F0

∂V‖

n′=∞∑
n′=−∞

−In′(−iλ) e in′ξ

{ e iλ cos ξ e

mc
Az +

ikze

mΩ

n=∞∑
n=−∞

[
In(iλ) e inξ

i(n − ω + kzV‖)
(φ − V‖

c
Az)

+
n e inξ In(iλ)

−iλ(n − ω + kzV‖)

V⊥
c

Ax +
e inξ I ′

n(iλ)

i(n − ω + kzV‖)

V⊥
c

Ay]}

= e2π

∫ ∞

0

V⊥dV⊥

∫ ∞

−∞
dV‖V⊥

∂F0

∂V‖

n=∞∑
n=−∞

[
inJn(λ)J ′

n(λ)

(n − ω + kzV‖)

kzV⊥e

λΩmc
Ax

− J ′2
n (λ)

(n − ω + kzV‖)

kzV⊥e

Ωmc
Ay − iJn(λ)J ′

n(λ)(n − ω)

(n − ω + kzV‖)

e

mc
Az − iJn(λ)J ′

n(λ)

(n − ω + kzV‖)

kze

Ωm
φ],

(60)
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where we have used (A14) for the φ and Ax terms, (A15) for the Ay term, (A14) and (A4)

for the Az term. This result gives the second row of χ
‖
p.

For the ∂F0/∂V⊥ component,

e

∫ ∞

0

V⊥dV⊥

∫ ∞

−∞
dV‖

∫ 2π

0

dξV⊥
∂F0

∂V⊥

B

mV⊥

n′=∞∑
n′=−∞

−n′In′(−iλ) e in′ξ e

mc

{e

c
e iλ cos ξ V⊥

Ω
(−Ax sin ξ − Ay cos ξ) +

e

Ω

n=∞∑
n=−∞

[
nIn(iλ) e inξ

(n− ω + kzV‖)
(φ − V‖

c
Az)

+
n2In(iλ) e inξ

−λ(n − ω + kzV‖)

V⊥
c

Ax +
nI ′

n(iλ) e inξ

(n − ω + kzV‖)

V⊥
c

Ay]}

=
e2

m
2π

∫ ∞

0

V⊥dV⊥

∫ ∞

−∞
dV‖

∂F0

∂V⊥

n=∞∑
n=−∞

[− inJn(λ)J ′
n(λ)

(n − ω + kzV‖)
(φ − V‖

c
Az)

+
i(ω − kzV‖)

(n − ω + kzV‖)

nJn(λ)J ′
n(λ)V⊥

λc
Ax − ω − kzV‖

(n − ω + kzV‖)

J ′2
n (λ)V⊥

c
Ay],

(61)

where we have used (A14) and (A7) for the Ax term, (A15) and (A8) for the Ay term, (A14)

for the φ and Az terms. What we get from this equation is the second row of χ⊥
p .

Assembling the above results together, we obtain the following result for the susceptibility

in the gyrocenter-gauge kinetic theory.

χp = χ‖
p + χ⊥

p , (62)
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χ‖
p =

4πe2

iωmΩ

n=∞∑
n=−∞

2π

∫ ∞

0

V⊥dV⊥

∫ ∞

−∞
dV‖

1

(n − ω + kzV‖)

∂F0

∂V‖
×




n2J2
n(λ)kz

λ2c
V 2
⊥

inJn(λ)J ′
n(λ)kz

λc
V 2
⊥

−nJ2
n(λ)(n − ω)Ω

λc
V⊥

−nJ2
n(λ)kzΩ

kx

− inJn(λ)J ′
n(λ)kz

λc
V 2
⊥

J ′2
n (λ)kz

c
V 2
⊥

Jn(λ)J ′
n(λ)(n − ω)Ω

c
V⊥ iJn(λ)J ′

n(λ)kzV⊥

nJ2
n(λ)kz

λc
V⊥V‖

iJn(λ)J ′
n(λ)kz

c
V⊥V‖

−J2
n(λ)(n − ω)Ω

c
V‖ −J2

n(λ)kzV‖




,

(63)

χ⊥
p =

4πe2

iωmΩ

n=∞∑
n=−∞

2π

∫ ∞

0

V⊥dV⊥

∫ ∞

−∞
dV‖

1

(n − ω + kzV‖)

∂F0

∂V⊥
×




n2J2
n(λ)(ω − kzV‖)

λ2c
V⊥

inJn(λ)J ′
n(λ)(ω − kzV‖)

λc
V⊥

n2J2
n(λ)Ω

λc
V‖

−n2J2
n(λ)Ω

λ

−inJn(λ)J ′
n(λ)(ω − kzV‖)
λc

V⊥
J ′2

n (λ)(ω − kzV‖)
c

V⊥
−inJn(λ)J ′

n(λ)Ω

c
V‖ inJn(λ)J ′

n(λ)Ω

nJ2
n(λ)(ω − kzV‖)

λc
V‖

iJn(λ)J ′
n(λ)(ω − kzV‖)

c
V‖

nJ2
n(λ)ΩV 2

‖
cV⊥

−nJ2
n(λ)ΩV‖
V⊥




.

(64)

Finally, Eq. (62) recovers the classical result derived by integrating the Vlasov-Maxwell

equations in the particle coordinates along unperturbed orbit. To see this, we take the result
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for χs from the Eq. (10.45) of Ref. 32, and transform it into χs,p by

χs,p = iχs ·




ω

c
0 0 −kx

0
ω

c
0 0

0 0
ω

c
−kz


 . (65)

This χs,p is exactly the same as the result we have obtained in Eq. (62) from the gyrocenter-

gauge kinetic theory.

IV. DISCUSSION

Gyrocenter-gauge kinetic theory is developed as a kinetic theory in the gyrocenter co-

ordinates, fully equivalent to the Vlasov-Maxwell system in the particle coordinates. Tak-

ing advantage of the existence of the gyrocenter coordinates in magnetized plasmas, the

gyrocenter-gauge kinetic theory simplifies the Vlasov equation by geometrically decoupling

the gyrophase-independent part of the distribution function from the gyrophase-dependent

part. Maxwell’s equations in the particle coordinates can be easily pushed forward onto the

gyrocenter coordinates by using the pull-back formula, which relates the charge and cur-

rent densities to the distribution functions in the gyrocenter coordinates. As an extension

of previous gyrokinetic models, the gyrocenter-gauge kinetic theory emphasizes the decou-

pling of the gyrophase dependent and independent informations, and the importance of the

gyrocenter-gauge distribution function. Gyrocenter-gauge kinetic susceptibility is derived

for homogeneous magnetized plasmas, and it recovers exactly the classical result derived

by integrating the Vlasov-Maxwell equations in the particle coordinates along unperturbed

orbit.

Even though only the susceptibility for homogeneous magnetized plasmas is derived

here, the equation system in Sec. II is valid in general geometry. We expect that the
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gyrocenter-gauge kinetic equation system to bring substantial simplification compared with

the usual Vlasov-Maxwell approach in treating inhomogeneous magnetized plasmas, while

all the physics are kept intact. This is because the unperturbed orbit in the gyrocenter-

gauge kinetic system is much simpler. It consists of two components, the gyromotion and

the decoupled gyrocenter motion. The fact that gyrocenter motion is decoupled from the

gyromotion enable us to eliminate the gyrophase variable ξ in the kinetic equations for f

and Sn. In this sense, the gyrocenter-gauge kinetic model enjoys the same simplification and

benefit as the conventional low frequency gyrokinetic models do, and further more, extends

this benefit and simplification to arbitrary frequency modes.

For example, let’s consider the case where ∂/∂y = 0 for the perturbed field. We use

this example to illustrate the basic feature of particle simulation method for the gyrocenter-

gauge kinetic system. In the paper, we do not intent to give a comprehensive account on the

gyrocenter-gauge particle simulation method, which will be the subject of future publications.

For the current case, the kinetic equation for S is

∂S

∂t
+ Ẋ

∂S

∂X
+ V̇‖

∂S

∂V‖
+ Ω

∂S

∂ξ
=

e[( e iλ cos ξ − J0)(φ − V‖
c

Az) + e iλ cos ξ sin ξ
V⊥
c

Ax + ( e iλ cos ξ cos ξ + J1)
V⊥
c

Ay],

(66)

where kx is understood to be −i∂/∂x. Since in (and only in) the gyrocenter coordinates Ẋ

and V̇‖ are gyrophase independent, different gyrophase harmonics for S are decoupled. Let

S =
n=∞∑

n=−∞
Sn e inξ . (67)
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Using

e iλ cos ξ =
n=∞∑

n=−∞
In(iλ) e inξ ,

e iλ cos ξ sin ξ =
n=∞∑

n=−∞

−nIn(iλ)

λ
e inξ ,

e iλ cos ξ cos ξ =
n=∞∑

n=−∞
I ′
n(iλ) e inξ ,

(68)

we easily have the decoupled equations for Sn

S0 = 0,

dSn

dt
+ inΩSn = e[In(iλ)(φ − V‖

c
Az) − nIn(iλ)

λ

V⊥
c

Ax + I ′
n(iλ)

V⊥
c

Ay], n 6= 0,

d

dt
≡ ∂

∂t
+ Ẋ

∂

∂X
+ V̇‖

∂

∂V‖
.

(69)

The above kinetic equations for Sn do not involve the gyrophase variable ξ, and the char-

acteristics of the equations are particles’ gyrocenter orbits. However, to solve these kinetic

equations using particle simulation method, the time step ∆T for advancing Sn has to satisfy

∆T < 1/nΩ, even though the gyrocenter orbit motions are slower and satisfy

Ẋ
∂

∂X
+ V̇‖

∂

∂V‖
� nΩ. (70)

This is because term inΩSn and the terms depending on φ and Az are fast varying. Then, in

terms of particle simulation for arbitrary frequency modes, what is the simplification brought

by the gyrocenter-gauge kinetic system compared with the Vlasov-Maxwell system in the

particle coordinates? To solve the kinetic equations for f and Sn, we truncate the equa-

tion system for Sn and keep those important harmonics for the problem under investigation.

Along its gyrocenter orbit, each particle carries those Sn kept in the system, as well as the

usual distribution f . For high frequency mode (ω ∼ nΩ, for some integer n), we have to use
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small time step (∆T < 1/nΩ) to advance f and Sn along particles’ gyrocenter orbits. Since

the gyrocenter motions themselves are slower motions with larger scale length, it is not nec-

essary to use small time step to advance particles’ gyrocenters in the gyrocenter phase space.

Particularly, we can us an adiabatic gyrocenter pusher, which advances particles’ phase-space

coordinates in larger gyrocenter time step, and between gyrocenter time steps, f and Sn are

advanced many time steps in smaller gyrofrequency time step while particles’ phase space

coordinates are kept constant. The slower gyrocenter time step is determined by the gyrocen-

ter orbit motion, whereas the faster gyrofrequency time step is determined by the harmonics

number n. In principle, we can use different gyrofrequency time steps for different harmonics

Sn. In each gyrofrequency time step, Maxwell’s equations in the gyrocenter coordinates has

to be solved to update the field. f and Sn enter Maxwell’s equations through the pull-back

formula, which can be numerically implemented by the well-known multi-point averaging

technique.25 The computational simplification brought by the gyrocenter-gauge kinetic sys-

tem is twofold. First, the gyrophase coordinate ξ is explicitly removed from the dynamic

equation for particles. The gyrophase-dependent information is efficiently described by the

harmonics Sn kept in the system, without increasing the number of simulation particles. If

using the straightforward particle simulation for Vlasov-Maxwell system in the particle coor-

dinates, we have to increase the number of simulation particles many times to achieve desired

resolution in the gyrophase coordinate ξ. Obviously, the gyrocenter-gauge kinetic particle

simulation requires less memory usage and computing time. Secondly, the gyrocenter-gauge

kinetic particle simulation only advances particles’ phase space coordinates along their gy-

rocenter motions, which are much slower motions with larger scale length compared with

particles’ motions in the particle coordinates, which each simulation particle has to follow

if the simulation is carried out for the Vlasov-Maxwell system in the particle coordinates.
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Therefore, gyrocenter-gauge kinetic particle simulation requires much less computing time

to advance simulation particles.

The formalism presented in this manuscript can be easily extended to nonlinear case by

carrying out the transformation between the (equilibrium) guiding center coordinates and

the (perturbed) gyrocenter coordinates to the 2nd or higher order. The basic procedure

is similar to those in Ref 9–12. In fact, the non-canonical Lie perturbation methods used

here was originally introduced as an efficient and systematic approach for the nonlinear

gyrokinetic systems. In the nonlinear case, the kinetic equations and the push-forward

of Maxwell’s equations keep the same forms, except that in the pull-back of distribution

function, nonlinear perturbed fields appear. This is a direct result of the construction of the

gyrocenter coordinates up to the 2nd or higher order.

So far, we have not considered collisions in our system. The gyrocenter-gauge kinetic sys-

tem in the gyrocenter coordinates developed here is thus parallel to the collisionless Vlasov-

Maxwell system in the particle coordinates. For many problems of wave-particle interactions

and instabilities, collisions are not important, especially for the high frequency range. How-

ever, for applications such as neoclassical transport, it is necessary to include collisions in the

gyrocenter-gauge kinetic system. The exact expressions of collision operators in the gyrocen-

ter coordinates should be rigorously derived by pushing forward the corresponding collision

operators in the particle coordinates. Compared with the collision operators in the particle

coordinates, one distinguish feature of the collision operators in the gyrocenter coordinates is

their explicit dependences on the perturbed fields and background inhomogeneities through

the pull-back transformation. Since the collision operators normally involve high order dif-

ferential in the phase space, the construction of the gyrocenter-gauge collision operators will

be in the high order jet space. In terms of particle simulation, once the expression of the col-
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lision operators are obtained, they can be simulated by the usual Monte Carlo method.33–35

Work in this direction will be reported in the future publications.
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APPENDIX A: IDENTITIES FOR JN AND IN

The following identities for Jn and In are used.

For Jn,

J−n(x) = Jn(−x) = (−1)nJn(x), (A1)

J ′
n(−x) = (−1)n+1J ′

n(x), (A2)

n=∞∑
n=−∞

nJ2
n = 0, (A3)

n=∞∑
n=−∞

JnJ
′
n = 0, (A4)

n=∞∑
n=−∞

J2
n = 1, (A5)

n=∞∑
n=−∞

n2J2
n(x) =

x2

2
, (A6)

n=∞∑
n=−∞

nJnJ ′
n = 0, (A7)

n=∞∑
n=−∞

J ′2
n =

1

2
, (A8)
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For In,

eλ cos ξ =

n=∞∑
n=−∞

In(λ) e inξ , (A9)

In(x) = i−nJn(ix), (A10)

I ′
n(x) = i−n+1J ′

n(ix), (A11)

In(ix)I−n(−ix) = J2
n(x), (A12)

I ′
n(ix)I−n(−ix) = −iJn(x)J ′

n(x), (A13)

I ′
−n(−ix)In(ix) = iJn(x)J ′

n(x), (A14)

I ′
n(−ix)I ′

n(ix) = J ′2
n (x), (A15)

In−1(x) − In+1(x) =
2n

x
In(x), (A16)

In−1(x) + In+1(x) = 2I ′
n(x), (A17)

I ′
n(x) = In−1(x)− n

x
In(x) = In+1(x) +

n

2
In(x). (A18)
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