
‘,.
,,

-=%/N----v’

.. -

SANDIA REPORT.,./ (
SAND99:2470’:”,, ;--”
U’51~mitedRelease’
PyinJe<March~OO y [_

}?? ~%$$ 2! =..(

Construction of File Database

/

Prepared by /
Sandia National Laboratories /
Albuquerque, New,~exico 87185 and Liv$rrnore, California 94550

/’ {Sandia is a myl Iprogram laboratory ope{ated by Sandia Corporation,
a Lockheed,Martin Company, for t~e’thited States Department of
Energy ugder Contract DE-AC04794AL85000.

/’
/

Approved for publiG7elease;’(urther dissemination unlimited.

/
/

(ill‘‘ Sandia National laboratories

//

/

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Government,
nor any agency thereof, nor any of their employees, nor any of their contractors,

subcontractors, or their employees, make any warraniy, express ‘or implied, or
assume any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein
to any speciilc commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government,
any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessmily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly
from the best available copy.

Available to DOE and DOE contractors horn
Office of Scientific and TechnicaI Information
P.O. BOX 62
Oak Ridge, TN 37831

Prices available from (703) 605-6000
Web site: http: //www.ntis.gov/ ordering.htm

Available to the public from
National Technical Information Service

U.S. Department of Commerce
5285 port Royal Rd
Springfield, VA 22161

.!

.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

I

I

SAND99-2470
Unlimited Release

Printed March 2000

Construction of File Database Management

Kyle Merrill
Materials Aging and Reliability Interfaces

Sandia National Laboratories
P.O. f30x5800

Albuquerque, NM 87185-0340

Abstract
K

This work created a database for tracking data analysis files from multiple lab
techniques and equipment stored on a central file server. Experimental details
appropriate for each file type are pulled from the file header and stored in a searchable#
database. The database also stores specific location and self-directory structure for
each data file. Queries can be run on the database according to file type, sample type
or other experimental parameters. The database was constructed in Microsoft Access
and Visual Basic was used for extraction of information from the file header.

Table of Contents

c

f,

.

.

Paqe Numbers

Problem .. 1

Solution ... 1

Data Description ... 2

Software Development ..2

Database Management ... 4

Conclusion .. 6

Future Modifications .. 6

Appendix A ...7

FormGroup.frm ..7

FormGetFile.frm .. 8

Appendix B ... 10

ModAes.bas .. 10

ModPCExplorer.bas .. 12

ModPin.bas ... 14

ModProbe.bas ... 15

ModProf.bas .. 16

ModQuadstar.bas -.. 17

ModResistance.bas ... 18

ModSem.bas ... 20

ModVVyko.bas.. 22

Table 1

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Ficwres and Tables

Experiment types, perspective File Formats, and Module Filenames2

First Form seen when Retrieve Data Macro is Run .. 3

Form seen when any of nine command buttons selected on Fig 13

MS Access Import Wizard’s Advanced Specifications ... 5

Macro design time showing the Transfer Text Action and Arguments5

FileDateSize Table from the HeaderDataStorage Database 5

I

#_._, ,., ,.,, ...,, ,-, .,.,,~, ,,,..,.. ~,,, ,,,. .,..— - ~_. —... -

z
,

Title: Construction of File Database Management

Problem

There was a need for a database that would keep track of all the files from
[
I

different lab experiments. This was important because the vast amount of data files I~
would be able to be better managed. One sample would have multiple experiments
performed on it and through performing a query the different data files associated with
the specific sample could be found.

~

\
As the experiments were performed and the data recorded the files were saved

on the server. Many experiments were performed with d“tierent kinds of software and
equipment. This resulted in enormous amounts of data files being saved on the server
throughout the years. The problem was trying to remember where the files were, when
information was needed on a certain experiment sample. Also those that performed the
experiments would like to be able to compare a sample that had difFerent kinds of
experiments performed on it. The Find File method, contained within windows, took
huge amounts of time to look throughthe server for files. Also with this method the
ability to narrow down the search criteria was limited.

One problem was the programming skills that were needed to accomplish this i
I

task were lacking. In counseling with the managers the database developer decided to I
learn Visual Basic 6.0. This was accomplished through buying some books and taking a
one-week course taught by a Microsoft certified teacher. This gave the needed basic i
skills to start programming source code that would convert the file header into a format t
that could be imported into the database tables. I

Solution 1
I

The header information is extracted from the data files and then recorded in the }

database. The information in the file header contains the parameters used during the I

experiment. This will help recall what data file is needed. The user can run a query in
the database, searching for the different parameters that tell the user what data file they I
are looking for.

i
A program is written to convert the header format into a format that can be

imported into the database. This involves different source code in the program, because
each set of software and equipment has a different type of file header. The source code
needs to read the header information from the data files and then write it to a temporary

~

file in the correct format. The correct format consists of text all on one line separated by !
semicolons. Some of the files are in ASCII format and some are in Binary format. This
requires different techniques of reading the file header from the data file. I

I
This database needs to be easy to use so that one, it will be used, and two, it will

save time in finding the needed file information. As this is accomplished, time will be
saved and the information obtained from the experiments will be better utilized. The
program extracts the needed file header information from the data files so it can be
imported into the database. The database is user-friendly which means there is no data
entry from the keyboard. This is extremely important, because in order for the database
to get used, it has to be efficient and worthwhile to use.

1 I

.— - -.-—- - ,—.-—~.. . _l I

Data Description

Microsoft Access was the database that was chosen for this project. It was
chosen because it is fairly simple to use and is already on all the computers at Sandia.
At the first of the project when trying to import the files directly into the database it was
found that the files needed to be in an Access specific format. There were nine different
file formats and none of them could be imported directly into Access. In discussing the
solution, it was decided a program needed to be written to convert the file header
information into a format that could be imported into Access. As Table 1 shows most of
the file headers are in ASCII format which made it easy to read the information in the
data file headers.

Table 1 Experiment types, perspective File Formats, and Module Filenames

Type of Experiment Header Format Data Format Module Filename

Resistance ASCII ASCII ModResistance.bas
PC Explorer ASCII Binary ModPCExplorer.bas
Profilometer ASCII ASCII ModProf.bas
Quadstar ASCII ASCII ModQuadstar.bas
SEM ASCII Binary ModSem.bas
AES ASCII Binary ModAes.bas
Wyko Binary Binary ModWyko.bas
Pin-on-Disk ASCII ASCII ModPin.bas
Probe ASCII ASCII ModProbe.bas

The header started at the beginning of the data file for the experiments that had
an ASCII header format. This made it easy to read the file information since all that
needed to happen was to start reading the file a line at a time, starting at the beginning.
The files that had an ASCII header and Binary data were not a problem, because this
project dealt with only importing the header information into the database.

The Wyko experiment created more of a problem because both the header and
data were in Binary format. Also the header was at the end of the data file. The
company that wrote the software was contacted and they provided detailed information
about the file and its format. This included what kind of variables the file header
contained and how many bytes were associated with each variable. To help know at
what byte location the variable from the binary file needed to be read at, a Hex Editor
was used, along with the information obtained from the company. The Hex Editor was
freeware obtained from the Internet.

Software Development

There were many different tasks that needed to be accomplished through
programming. One of the tasks was to be able to select the correct drive, folder, and
file. The first form, (see Fig. 1), had command buttons that when selected source code
would load the second form onto the screen. The second form, (see Fig. 2), looked like
a file open dialog box. Also there was programming code that calls a specific sub
procedure related to the command button selected on the first form. Each sub
procedure reads the necessary information from the lab experiment file associated with
the sub procedure and then writes the information to temporary files that were created.

2

- .. —- .-—--.——

●

.

●✎

!

EiE’ ‘:EEZZ-r@!E!d
LE!izlGEl“Tni!cl
!EE?l‘rzE!j(m’

,“,

,.,
,.

Fig. 1 First Form seen when Retrieve Data
Macro is Run

D&l&tBox

i.q~ WmQ7~T4~L.1” _m
m

.._—_ .. ---- . ..___.__.

“. Dtiox MC19SS_l_l_10QlVN.txt A
@A MC2SSS1327PCB.OPJ
~PRDJECTS ~ MC2S63Jll_l_SOL20N.txt

‘. ~Rekblity
,. ~Contacts MC29&9_1332_3_60Q20N.I:

MC2S63_1332_4_6tQ20N.1
MC2S63_1332_5_6&20N.L. .—.- ___ ______..—..——..——.—- .—-.—-. — - Mc296_1332_6_soQ20N.14

Mc2ss9-1332_2_sOg_20N.tXt

+__.-.~.-=~ ..-___-=-.= -._..-__~__.=~-._.._.---.~. - --.-.=...

Fig. 2 Form seen when any of nine
command buttons selected on Fig 1

The FormGroup.frm, (see Appendix A), was the first code to be executed when
the program was run. The nine command buttons, (see Fig. 1), were created into a
control array by naming them the same name in the property window of the design form.
When this occured each button was assigned an index number starting with zero. The
index numbers were used in a Select Case Function, which executes the code under the
certain index number corresponding to the command button that was selected.
FormGroup.frm also executed the FormGetFile.Show, which let the user see the form in
Fig. 2. Also three temporary files were either created or the data in these files was
erased when any one of the command buttons was selected.

Next in the program was the FromGetFile.frm code, (see Appendix A), which was
the code from the form in Fig. 2. This code let the user navigate through the different
drives, directories, folders, and files that were on the computer. Once a file was selected
that was when the main part of the code executed. There was an “If Then Elself
Function” that calls a certain module if the specific Boolean variable was true. This
specific variable was set to true corresponding to the command button selected at the
beginning. This code also set up the variables necessary to read and write the data
from the data file to the temporary file

All of the modules accomplished the basic goal of reading the data from the
correct file and writing the formatted information to the temporary files. Because the
data files had differences in the header format there was the need to write code for each
type of experiment. To see the actual code written in the modules, refer to Appendix B.
In order to read the files that were in ASCII format, the program read the file a line at a
time and then extracted the needed information from the line of text. The information
was then written to the temporary files. One of the problems experienced was that the
file headers were not of the same length.

.

.

ModAes.has, ModPCExplorer.bas, and ModSem.bas all had extremely similar
code because the file headers all were comparable. There were a few differences that
required code to be written for each file. The differences were one file would be missing
a line or have more lines in the header than the other file type. All of these files had the
possibility of having multiple parameters in the header, therefore the code wrote those
parameters to the third temporary file. ModSem.bas and ModAes.bas read in the
header information differently, but the way the code wrote the information to the
temporary file was adjusted so they both could be imported into the same tables in the
database.

ModQuadstar.bas and ModResistance.bas were also similar to the previous
modules in that they also wrote to three temporary files. The Quadstar data file was
separated by tabs instead of spaces so the Split Function had to spec”~ to Split the text
that was separated by tabs. The Resistance data file had fourteen lines of text and also
had the possibility of having multiple lines after them, depending on the file. The
ModResistance.bas code read in the lines of text and then could tell whether or not there
were multiple lines after the original fourteen.

The ModPin.has, ModProbe.basj and ModProf.bas modules all wrote to only two
temporary files. One of the problems experienced by the Pin data was that some of the
text lines contained a quotation mark. Access did not like importing this data, even
though semicolons separated it, when it had a quotation mark in it. Code was written to
replace the quotation mark with a blank space. The Probe data file had two lines of text,
which did not have a space after the semicolon while all the other lines had one space.

, This required two lines of code to be written specifically dealing with those two lines.

In the ModWyko.bas module it was necessary to read the data file as a random
access file. With knowledge obtained from the company that produced the Wyko
software and a Hex Editor the data file could be read. Source code could be written to
read a certain number of bytes for the specific type of variable, pointed at a specific
location in the file. Then the binary variables were converted to ASCII a variable at a
time, with CStr Function, and then were written to the temporaiy files.

Database Management

The program enabled the database user to input all of the data by using the
mouse. This accomplished one of the objectives of making the database easy to use by
having no keyboard data entry. The source code was created into an executable file,
which was then used in a macro in Access by stating the path and filename of the
executable. When the Retrieve Data macro ran it called the executable file which
started the program. Once a command button on the first form was selected, (Fig.1)
another form opens, (Fig. 2) which was similar to an open file form and had an exit
button. The file or files to be input into the database could be found by going to the
correct directory and folder and then clicking on the filename. The program then read
the necessary information from the file and wrote it to the temporary files in the correct
format. Now that the temporaty files contained the file information in the correct format
they could be imported into the Access database.

4

●

.

pco*]Wmkw$[Am]
I

:- _ .=.__.
._ __..

[-?’

FddWcim%

~ FJ!_m$-3 Tekl
_ Q&g____

!ile
TYwE!d
Location

*

.
.. —. —-—- .-—— ———---—_-—---_-.d

Fig. 3 MS Access Import Wizard’s
Advanced Specifications

-.

Rc&-

_ @@uT+.~.j ‘., ..’..” . . “.

t. ----+
... ...,

.
,

,.. --
.

. . . .
-+.. -— --- .. —- .._. -.___ -__G— . . . d....

~
——..

Trm?faTyps “i?F’?ww______
S@ldklMu=e !I&ww5@+m.. . ___

/

‘~J@afmatiB>b*o ~

lb Ualm tlx CurectKmsdt Mus

,“F15W.
&?w, c~u .$** fmj &,: ;~i@:-@: --;---.:. - --- -

Ha5miums
.- -–. kuntin:y;ft:g:~:.:

.mr*m ~------------

1

Wm.sblha?ramrtdc—— -.—
AacssdSti-. ti. CCFTkS %

+@WCxm!t UWdf<r

\ Jg:&$&&:& :

l-,------- .- ————--.——. .—
.

--—-—-- ---- . . .

Fig. 4 Macro design time showing the Transfer
Text Action and Arguments

Once all the files from a specific experiment had been selected the Exit button
could be clicked to leave the program and macro. There were import macros for each
different kind of file type and experiment. Indicating the Specification Name, Table
Name, and File Name (See Fig. 4) was how the import macro was created. [n order to
produce the Specification Name the developer had to use Access’ import features.
Under the file menu was a Get External Data command, and then the Import option was
selected. As the developer went through the different steps the computer asked for,
there was an advanced button that when selected, the Field Names and Data Type
could then be entered in to correspond to the matching table fields (See Fig. 3). This
import specification was then saved and the name was placed in the transfer text macro
settings corresponding to the correct temporary file and table (See Fig. 4). Under File
Name the developer inputed the path and name of the specific temporary file being
imported. This needed to correspond to the table entered in the Table Name category
where the temporary file data was going to be imported.

Filename I Date { Size I Type:Extl Location !
..

980702 17c rotor a hi.o@16/30/99 &4&46AM :449176.opd ‘ C\documentsW0702 17c rotor a hi.opd ‘“ i..— .— ,.—— ...,-.—.—. -.-.—. :—-——
990403 1O.sem rii~iil;i~%~fi” “104949 sem

.—---- <.. - _-. —
\AW90403 10.sem !

.-.—.-.....- .-. .-. .—.. ,-. .- . -. .+....+- - ,—.-—-—. —...-——-.
990405_3.spe ~6/6B91 l:3i149 AM ;l~09 ,spe ‘A!990405 3.spe
990407f dat “-@jofl~~o~3~4-~- ;2141~dJ–- --+-—--- ________ -,-- .,.l:\USERSUcyleVilesfor KyleW90407f.dat !..—_._.L ---- ——--— —.-- .—..——-— .-. ________ ————— - —.—----- --. ,
a&b.txt. @30f19 IO:0742AM 544 !~~ -.... -: l:\USERSUcyleUlesfor_Kyle\a&b,txt ,
D91i2 SPE - .- ;j4/ljj&9 11:4334 AM’ ‘17970” ;SPE..— . . . ---- . . . ------- !li0ATAwPSq1199u)9122. sPE

_ FILEFRM2.ASC
. -. - .-—

17/7/99 9w/47 AM ,2894 ~ASC ‘ lWSERSVcyleWLEFRM2.ASC.-.. -.-. —.._.. -.. -L .-- L.l. __.__-_-, _ . _;-__ -_.,&_____ ——--. -. —.-..
~ I .1 ;.:,,;$pq,:,,:,,... . . +‘;j$’,:,’;..’
Fig. 5 FileDateSize Table from the HeaderDataStorage Database

When the specific import macro ran, the information in the temporary files were
written to the corresponding tables in the database, resulting in something similar to Fig
5. This particular table contained every data file regardless of its type. The main
advantage of this table was the Location field, which helped the user locate a specific file
on the server or wherever the file was located. The other tables contained Fields
equivalent to the specific experiments data file header. Some of the experiments had
one table and some had two, depending on what the data was like in the file header.

Conclusion

The time to input the data into the database is insignificant compared to the time
that will be saved in finding the experiment information that is needed. One can learn
how to input the data into the database in minutes. The process is extremely easy and
as stated previously requires no keyboard entry.

This project will better utilize the experiments performed on the samples in many
ways. One sample will be tested and go through d“fierent experiments. By doing a
query in the database, the different files associated with the specific sample or with
related samples can be found. Large sets of data will be managed and the data can be
cross-referenced from multiple analysis. This will result in time saved in trying to find the
needed information on the samples tested and will better utilize all the experiments
performed.

Future Modifications

The Visual Basic program is setup in a way that if a new experiment type needs
to be added to the database, this can be accomplished with little change to the program.
One experiment type is not included in the database because the data file is in a binary
format and sufficient, information couldn’t be obtained from the company that produced
the software.

The Quadstar data files also are in binary format and the company does not
supply the needed information to read the files. This software has the ability to convert
the data and header information into an ASCII file. The ASCII data file can then be read
and put into the correct format to be imported into the database. If the knowledge to
read these files is obtained through the information that is supplied from these
companies then these files in their binary format can also be imported into the database.

Appendix A
FormGroup.frm

.

.

●✎

.

.

‘ This is the first form that you see. When you click on one of the command buttons
‘ it opens the Get File form and also assigns the specific boolean variable to true which is
‘ used in the if then statements
Option Explicit

‘ Declares variables as Public which means they are shared from form to form

Public blnResistance As Boolean, blnAes As Boolean
Public blnProf As Boolean
Public blnSem As Boolean, blnWyko As Boolean
Public blnPCExplorer As Boolean
Public blnProbe As Boolean, blnPin As Boolean
Public blnQuadstar As Boolean
Public mfso As New FileSystemObject ‘ In using this type of variable one must go to

‘ Project menu and then References and then
‘ check Microsoft Scripting Runtime

Private Sub cmdMain_Click(lndex As Integer)
Call EraseTempFiles ‘ Creates temp files or erases data in them
frmGetFile.Show

Select Case Index ‘ A control array which sets the boolean value
Case O ‘to true depending on which button is selected

blnResistance = True
Case 1

blnPCExplorer = True
Case 2

blnProf = True
Case 3

binQuadstar = True
Case 4

binSem = True
Case 5

blnAes = True
Case 6

blnWyko = True
Case 7

blnPin = True
Case 8

blnProbe = True
End Select

End Sub

‘ Creates three temporary files to write the converted header into
Public Sub EraseTempFileso

Call mfso.CreateTextFile(’’c:\temp.txt”, True)
Call mfso.CreateTextFile(’’c\temp2.txt”, True)
Call mfso.CreateTextFile(’’c:\temp3.txt”, True)

End Sub

7

-- ,-—.. - ---r?... . ..-—7,e-.:.t7,-. ,. -.m-r,r----.—--------—.-.—-——---------. - ..

.

FormGetFile.frm

‘ This form lets you select the specific file that you want from a file open type form
Option Explicit

‘ This correlates to Exit command button and ends the program when clicked
Private Sub cmdExit_Clicko

End
End Sub

‘ These next two Sub Procedures makes it so you can select the specific file you want
‘ from the correct directory and folder

Private Sub dirDirBox_Changeo
‘ Update the file path to the directory path
filFileBox.Path = dirDirBox.Path

End Sub

Private Sub drvDriveBox_Changeo

On Error GoTo errorhandler

‘ Update the directory path to the drive
dirDirBox.Path = drvDriveBox.Drive
Exit Sub

errorhandler:
Dim message As String

‘ Check for device unavailable error
If Err.Number = 68 Then

Dim r As Integer
message = “Drive is not available.”
r = MsgBox(message, vbRetryCancel + vbCritical, _

“VBHTP: Chapter 14“)

‘ Determine where control should resume
If r = vbRetry Then

Resume
Else ‘ Cancel was pressed.

Exit Sub
End If

Else
Call MsgBox(Err.Description, vbOKOnly + vbExclamation)
Exit Sub

End [f
End Sub

Public Sub filFileBox_Click
Dim theFile As File
Dim mFile As File, mFile2 As File, mFile3 As File

8

.———... .-

.

.

Dim mTxtStream As TextStream
Dim mts As TextStream, mts2 As TextStream, mts3 As TextStream

‘ This code assigns the variable of type file to the 3 temp files
‘ Then assigns the variable of type TextStream to the file for Appending

Set mFile = FormMain.mfso.GetFile(’’c:\temp.txt”)
Set mts = mFiie.OpenAsTextStream(ForAppending)
Set mFile2 = FormMain.mfso.GetFile(’’c:\temp2.txt”)
Set mts2 = mFile2.0penAsTextStream(ForAppending)
Set mFile3 = FormMain.mfso.GetFile(’’c:\temp3.txt”)
Set mts3 = mFile3.0penAsTextStream(ForAppending)

‘ Assigns the variable of type file to the file that is clicked with mouse
‘ Then assigns the TextStream variable to Open for Reading from clicked file

Set theFile = FormMain.mfso.GetFile(filFileBox.Path & l“ & _
filFileBox.List(filFileBox.Listlndex))

Set mTxtStream = theFile.OpenAsTextStream(ForReading)

‘This statement writes the information in the parenthesis to the file temp.txt
mts.WriteLine (theFile.Name & “;” & _

theFile.DateCreated & “;” & _
theFile.Size & “;” & _
Right$(theFile. Name, 3) & “;” &_
theFile.Path)

mts.Close
txtDisplay.Text = theFile.Name

‘ These if statements call the correct procedure depending on
‘ what command button was clicked in the very first form

If FormMain.blnAes = True Then
Call AesData(mTxtStream, mts2, mts3, theFiIe)

Elself FormMain.blnResistance = True Then
Call ResistanceData(mTxtStream, mts2, mts3, theFile)

Elself FormMain.blnPCExplorer = True Then
Call PCExplorerData(mTxtStream, mts2, mts3, theFile)

Elself FormMain.blnProf = True Then
Call ProfData(mTxtStream, mts2, mts3, theFile)

Elself FormMain.blnSem = True Then
Call SemData(mTxtStream, mts2, mts3, theFile)

Elself FormMain.blnWyko = True Then
Call WykoData(mts2, theFile)

Elself FormMain.blnProbe = True Then
Call ProbeData(mTxtStream, mts2, theFile)

Elself FormMain.blnPin = True Then
Call PinData(mTxtStream, mts2, theFile)

Elself FormMain.blnQuadstar = True Then
Call QuadstarData(mTxtStream, mts2, mts3, theFile)

End [f
End Sub

.

Appendix B

ModAes.bas

‘ Variables in parenthesis are passed to and from the get file form

Public Sub AesData(mTxtStream As TextStream, mts2 As TextStream, _
mts3 As TextStream, theFile As File)

Dim c As String
Dim aa(6O) As String, bbo As String
Dim z As Integer, blankposition As Integer
Dim j As Integer, i As Integer
Dim mark(60) As Integer

On Error GoTo ErrorhandlerAes

‘ Loops until EOFH is read which is at the end of the Header, blankposition makes
‘ certain that the array aa(z) has no blank lines

Z=l
Do Until aa(z) = “EOFH”

blankposition = lnStr(l, aa(z), “”)
[f blankposition = OThen

Z=z-1
End If
Z=z+l
aa(z) = mTxtStream.ReadLine
mark(z) = inStr(l, aa(z), “:”) + 2
[f Left$(aa(z), 15) = “SpectralRegDef:” Then

i=z
End If ‘If there is just one line starting with SpectralRegDef

Loop ‘ then i will equal 25 so the j loop will just loop once 9

‘ This loop writes the parameters that may have more than one line to the 3rd temp file

Forj=25 Toi ‘ line 25 is where the multiple parameters
c = Trim$(Mid$(aa(j), mark(j))) ‘in the header start
bb = Split(c)
mts3.WriteLine (theFile.Name & “;” & _

bb(l) & “;” & bb(2) & “;” & bb(4) & “;”&_
bb(5) & “;” & bb(6) & “;” & bb(7) & “;” & _
bb(l O)& “;” & bb(l 1))

Next j
mts3.Close

‘ Trim Function trims any spaces around text stream and Mid Function writes
‘ the text stream of aao array starting at position marko

mts2.WriteLine (theFile.Name & “;” & _
Trim(Mid(aa(l), mark(l)))& “;” & Trim(Mid(aa(2), mark(2))) & “;” &_
Trim(Mid(aa(3), mark(3)))& “;” & Ttim(Mid(aa(4), mark(4))) & “;” & _
Trim(Mid(aa(5), mark(5)))& “;” & ““ & “;” & _

10

-.. -.—.—-——.. .

.

Trim(Mid(aa(8), mark(8)))& “;” & _
Trim(Mid(aa(9), mark(9)))& “;” & Trim(Mid(aa(lO), mark(lO))) & “;” & _
Trim(Mid(aa(l 1), mark(l 1))) & “;”& Trim(Mid(aa(12), mark(12))) & “;” & _
Trim(Mid(aa(13), mark(13))) & “;” & Trim(Mid(aa(14), mark(14))) & “;” & _
Trim(Mid(aa(15), mark(l 5))) & “;”& Trim(Mid(aa(l 6), mark(l 6)))& “;”&_
Trim(Mid(aa(l 7), mark(l~))) & “;” & Trim(Mid(aa(l 8), mark(l 8)))& “;”&_
Trim(Mid(aa(l 9), mark(l 9)))& “;”& Trim(Mid(aa(20), mark(20))) & “;” & _
Trim(Mid(aa(21), mark(21))) & “;” & Trim(Mid(aa(22), mark(22))) & “;” & _
Trim(Mid(aa(23), mark(23))) & “;” & Trim(Mid(aa(24), mark(24))) & “;” & _
,!,,&,!.,,

, &–
Trim(Mid(aa(z - 4), mark(z - 4)))& “;”&_
Trim(Mid(aa(z - 3), mark(z - 3)))& “;”&_
Trim(Mid(aa(z - 2), mark(z - 2)))& “;”&_
Trim(Mid(aa(z - I)j mark(z - l)))) ‘ the aa(z-1to4) writes the four lines

mts2.Close ‘ after the line that may have
‘ multiple parameters

Exit Sub ‘ The blank from the ““ five lines up makes this module compatible
‘ with the Sem module for input into the database

ErrorhandlerAes:
MsgBox “This file cannot be processed please try again. ”,_

vbOKOnly, “Bad File”
End Sub

.

●
.

.

.

ModPCExplorer.bas

] Variables in parenthesis are passed to and from frmGetFile code and this module

Public Sub PCExplorerData(mTxtStream As TextStream, mts2 As TextStream, _
mts3 As TextStream, theFile As File)

Dim c As String
Dim aa(60) As String, bbo As String
Dim z As Integer, blankposition As Integer, i As Integer
Dim j As Integer
Dim mark(60) As Integer
Dim markz3 As Integer, markz2 As Integer, markzl As Integer

‘ If an error is experienced at anytime, then this line of code executes
On Error GoTo ErrorhandlerPCExplorer

‘ Loops until text EOFH is read which is at the end of file header
2=1
Do Until aa(z) = “EOFH”

blankposition = lnStr(l, aa(z), “ “) ‘If there are any blank lines z will
[f blankposition = OThen ‘ not increment

2=2-1
End If
2=2+1
aa(z) = mTxtStream.ReadLine ‘ Reads one line of text
mark(z) = lnStr(l, aa(z), “:”) + 2 ‘ Marks position 2 places after:
If Left$(aa(z), 15) = “SpectralRegDeff’ Then

i=z ‘ Multiple lines may start with this text
End [f

Loop ‘ i records last value of z which starts with this text

markz3 = lnStr(l, aa(z - 3), “:”) + 2
markz2 = lnStr(l, aa(z - 2), “:”)+ 2
markzl = lnStr(l, aa(z - 1), “:”)+ 2

mts2.WriteLine (theFile.Name & “;” & _
Trim(Mid(aa(2), mark(2)))& “;” & _
Trim(Mid(aa(3), mark(3)))& “;” & _
Trim(Mid(aa(4), mark(4)))& “;” & _
Trim(Mid(aa(5), mark(5)))& “;” & _
Trim(Mid(aa(9), mark(9)))& “;” & _
Trim(Mid(aa(l 1), mark(l l))) & “;”&_
Trim(Mid(aa(20), mark(20))) & “;” & _
Trim(Mid(aa(21), mark(21))) & “;” & _
Trim(Mid(aa(25), mark(25))) & “;” & _
Trim(Mid(aa(26), mark(26))) & “;” & _
Trim(Mid(aa(27), mark(27))) & “;” & _
Trim(Mid(aa(28), mark(28))) & “;” & _
Trim(Mid(aa(30), mark(30))) & “;” & _
Trim(Mid(aa(33), mark(33))) & “;” & _
Trim(Mid(aa(34), mark(34))) & “;” & _
Trim(Mid(aa(35), mark(35))) & “;” & _

12

------------- ---—.—-——— __

●
.

Trim(Mid(aa(36), mark(36))) & “;” & _
Trim(Mid(aa(37), mark(37))) & “;” & _
Trim(Mid(aa(38), mark(38))) & “;” & _
Trim(Mid(aa(39), mark(39))) & “;” & _
Trim(Mid(aa(z - 3), markz3)) & “;” & _
Trim(Mid(aa(z - 2), markz2)) & “;” & _
Trim(Mid(aa(z - 1), markzl)))

.
mts2.Close ‘Trims any blank spaces around the text

‘ and Mid starts text aao at position marko
Forj=40 Toi

c = Trim$(Mid$(aa~), mark(40)))
bb = Split(c)
mts3.WriteLine (theFile.Name & “;” & _

Trim$(Mid$(aa(4), mark(4))) & “;” & _
bb(l) & “;” & bb(2) & “;” & _
bb(4) & “;”& bb(5) & “;” & _
bb(6) & “;” & bb(7) & “;” & _
bb(l O)& “;” & bb(l 1))

Next j
mts3.Close
Exit Sub ‘ Exits Sub since no error occured so error message does not appear

ErrorhandlerPCExplorer:
MsgBox “This file cannot be processed please try again. ”,_

vbOKOnly, “Bad File”
End Sub

.

ModPin.bas

.

Public Sub PinData(mTxtStream As TextStream, mts2 As TextStream, theFiIe As File)
Dim aa(60) As String
Dim z As Integer, blankposition As Integer
Dim mark(60) As Integer
Dim position As Integer
Dim Pointer As Integer
Dim (Mote As String

On Error GoTo Errorhandler2
Z=l
Do Until Left(aa(z), 10) = “Processing”

blankposition = lnStr(l, aa(z), “”)
If blankposition = OThen

Z=z-1
End If
Z=z+l
aa(z) = mTxtStream.ReadLine
mark(z) = lnStr(l, aa(z), “:”) + 2

For position = 1 To Len(aa(z)) ‘ Access had trouble importing text
Quote = Mid(aa(z), position, 1) ‘ because it had a quote” in the line
Pointer = lnStr(position, aa(z), “’’’’”) ‘ this code gets ride of the quote and
If Quote= “’’’’”Then ‘ replaces it with a blank space

Mid(aa(z), Pointer, 2) =””
End If ‘ Mid(Source text, Starting character position,

Next position ‘ #of characters to select)
Loop

‘ inStr(Starting search position, string to search,
mark(2) = lnStr(l, aa(2), “,”)+ 2 ‘ what to search for) this returns position in string

‘ of what searching for
mts2.WriteLine (theFile.Name & “;” & _

Trim(Mid(aa(2), mark(2))) & “;” &_
Trim(Mid(aa(3), mark(3)))& “;” & _
Trim(Mid(aa(4), mark(4))) & “;”&_
Trim(Mid(aa(5), mark(5))) & “;”&_
Trim(Mid(aa(6), mark(6))) & “;”&_
Trim(Mid(aa(7), mark(7))) & “;”&_
Trim(Mid(aa(8), mark(8)))& “;” & _
Trim(Mid(aa(9), mark(9)))& “;” & _
Trim(Mid(aa(lO), mark(lo))) & “;” & _
Trim(Mid(aa(l 3), mark(l 3)))& “;”&_
Trim(Mid(aa(14), mark(l 4)))& “;”&_
Trim(Mid(aa(l 5), mark(l 5)))& “;”&_
Trim(Mid(aa(16), mark(l 6))))

mts2.Close
Exit Sub
Errorhandler2:

MsgBox “This file cannot be processed please try again.”, vbOKOnly, “Bad File”
End Sub

14

. ..== —r.-----.- . ---—.,-. n----- ----

I

ModProbe.bas

●

.

Public Sub ProbeData(mTxtStream AS TextStream, _
mts2 As TextStream, theFile As File)

Dim aa(2O) As String
Dim z As Integer
Dim mark(20) As Integer

On Error GoTo ErrorhandlerProbe

Forz=l To14 ‘ Reads 14 lines
aa(z) = mTxtStream.ReadLine
mark(z) = lnStr(l, aa(z), “:”) + 2

Next z

mark(l O)= lnStr(l, aa(l O), “:”) + 1 ‘ No space after the semicolon in data file is
mark(l 3) = lnStr(l, aa(l 3), “:”)+ 1 ‘ why these lines are needed

‘ Writes text pulled from theFile onto one line separated by semicolons and puts it into a
‘ temp file

mts2.WriteLine (theFile.Name & “;” & _
Trim$(Mid$(aa(3), mark(3))) & “;” & _
Trim$(Mid$(aa(4), mark(4))) & “;” & _
Trim$(Mid$(aa(5), mark(5))) & “;” & _
Trim$(Mid$(aa(6), mark(6))) & “;” & _
Trim$(Mid$(aa(7), mark(7))) & “;” & _
Trim$(Mid$(aa(8), mark(8))) & “;” & _
Trim$(Mid$(aa(9), mark(9))) & “;” & _
Trim$(Mid$(aa(l O),mark(l O)))& “;”&_
Trim$(Mid$(aa(l 1), mark(l l)))& “;”&_
Trim$(Mid$(aa(12), mark(12))) & “;” & _
Trim$(Mid$(aa(l 3), mark(l 3))) & “;”&_
Trim$(Mid$(aa(14), mark)))

mts2.Close

Exit Sub
ErrorhandlerProbe:

MsgBox “This file cannot be processed please try again. ”,_
vbOKOnly, “Bad File”

End Sub

.

ModProf.bas

@.

.

‘ Variables are passed from the get file form to be used in this module
‘ and then they are passed back

Public Sub ProfData(mTxtStream As TextStream, mts2 As TextStream, _
mts3 As TextStream, theFile As File)

Dim aa(5O) As String, bb(50) As String
Dim mark(50) As Integer
Dim z As Integer, blankposition As Integer

On Error GoTo ErrorhandlerProf

Forz=l To45 ‘ Loops 45 times reads text into array aao
aa(z) = mTxtStream.ReadLine ‘ and marks where colon occurs, then array
mark(z) = lnStr(l, aa(z), “:”) + 2 ‘ bbo contains text starting at position marko
bb(z) = Trim(Mid(aa(z), mark(z)))

Next z

mts2.WriteLine (theFiIe.Name & “;” & _
bb(l) & “;” & bb(2) & “;” & _
bb(3) & “;”& bb(4) & “;” & _
bb(5) & “;” & bb(6) & “;”&_
bb(7) & “;”& bb(8) & “;” & _
bb(9) & “;” & bb(l O)& “;” & _
bb(l 1) & “;” & bb(12) & “;” & _
bb(13) & “;” & bb(14) & “;” & _
bb(15) & “;” & bb(16) & “;”&_
bb(17) & “;” & bb(18) & “;”&_
bb(19) & “;” & bb(20) & “;” & _
bb(21) & “;” & bb(22) & “;” & _
bb(23) & “;” & bb(24) & “;” & _
bb(25) & “;” & bb(26) & “;”&_
bb(27) & “;” & bb(28) & “;”&_
bb(29) & “;” & bb(30) & “;”&_
bb(31) & “;” & bb(32) & “;”&_
bb(33) & “;” & bb(34) & “;”&_
bb(35) & “;” & bb(36) & “;” & _
bb(37) & “;” & bb(38) & “;”&_
bb(39) & “;” & bb(40) & “;”&_
bb(41) & “;” & bb(42) & “;” & _
bb(43) & “;” & bb(44))

mts2.Close

Exit Sub
ErrorhandlerProfi

MsgBox “This file cannot be processed please try again. ”,_
vbOKOnly, “Bad File”

End Sub “

ModQuadstar.bas

o

.

.

Public Sub QuadstarData(mTxtStream ASTextStream,_
mts2 As TextStream, mts3 As TextStream, _
theFile As File)

Dim j As Integer
Dim aa As String, bbo As String
Dim ccl As String, CC3As String, CC5As String .

On Error GoTo ErrorhandlerQuadstar

aa = mTxtStream.ReadLine ‘ Data File contains all the text on one line

bb = Split(aa, vbTab) ‘ Splits text seperated by a tab assigns to bbo
For j =25 To 101 Step 6

CCj = bb(j) ‘ Assigns to ccl ,3,and 5 every other value
CC3= bb(j + 2) ‘ in that particular text line
CC5= bb(j + 4)
If ccl = “Date” Then

GoTo Continue
Else

mts3.WriteLine (theFile.Name & “;” & _
ccl & “;” & CC3& “;” & CC5)

End If
Next j
mts3.Close

Continue: ‘ Trim Function trims line of text starting at position Length of text
‘ minus length of standard text at beginning of text line

mts2.WriteLine (theFile.Name & “;” & bb(0) & “;” & _
Trim(Mid(bb(3), 1, Len(bb(3)) - 7))& “;”&_
bb(4) & “;” & Trim(Mid(bb(9)j 1, Len(bb(9)) - 25))_
& “;”& Trim(Mid(bb(12), 1, Len(bb(12)) - 20)) _
& “;”& Trim(Mid(bb(15), 1, Len(bb(15)) - 18))_
& “;”& Trim(Mid(bb(18), 1, Len(bb(18)) - 28))_ .
& “;”& Trim(Mid(bb(21), 1, Len(bb(21)) - 13)))

mts2.Close

Exit Sub

ErrorhandlerQuadstar:
MsgBox “This file cannot be processed please try again. ”,_

vbOKOnly, “Bad File”

End Sub

17

..— — .—.- —-.. ..-,. -—. — -.=—...-._. —— --- --- .- ,-

.

.

ModResistance.bas

Public Sub ResistanceData(mTxtStream As TextStream, mts2 As TextStream, _
mts3 As TextStream, theFile As File)

Dim aa(4O) As String, bbo As String
Dim c As String
Dim mark(40) As Integer
Dim blankposition As Integer
Dim z As Integer, i As Integer, j As Integer
Dim Answer As Integer

On Error GoTo Errorhandler2

Forz=l To14 ‘ Reads a line at a time from one to fourteen
aa(z) = mTxtStream.ReadLine ‘ and also marks the position 2 places after:
mark(z) = lnStr(l, aa(z), “:”)+ 2

Next z

Do Until Left(aa(z), 4) = “Load”
blankposition = lnStr(l, aa(z), ““)
[f blankposition = OThen ‘If there is a blank line then z doesn’t increment

Z= z-1
End [f
Z=z+l
aa(z) = mTxtStream.ReadLine
mark(z) = lnStr(l, aa(z), “:”) + 2
If z = 16 And aa(z) = ““ Then ‘ Data file contains no data so skips the

GoTo Continue ‘j For Next Loop
End If
i= z-1

Loop

Forj=16Toi ‘ Splits line of text separated by tab
c = aa(j) ‘ and puts text in array bbo
bb = Split(c, vbTab)
mts3.WriteLine (theFile.Name & “;” & _

bb(o) & “;” & bb(l) & “;” & _
bb(2) & “;” & bb(3))

Next j
mts3.Close

Continue: ‘ Trims text at marked position
mts2.WriteLine (theFile.Name & “;” & _

Trim(Mid(aa(l), mark(l)))& “;” & _
Trim(Mid(aa(2), mark(2)))& “;” & _
Trim(Mid(aa(3), mark(3)))& “;” & _
Trim(Mid(aa(4), mark(4))) & “;”&_
Trim(Mid(aa(5), mark(5)))& “;” & _
Trim(Mid(aa(6), mark(6)))& “;” & _
Trim(Mid(aa(7), mark(7)))& “;” & _
Trim(Mid(aa(8), mark(8))) & “;”&_

18

.-. — —-.—......

.

Trim(Mid(aa(9), mark(9))) & “;”&_
Trim(Mid(aa(l O),mark(lo))) & “;” & _
Trim(Mid(aa(l 1), mark(l 1))) & “;”&_
Trim(Mid(aa(l 2), mark(l 2)))& “;”&_
Trim(Mid(aa(13), mark(13))) & “;” & _
Trim(Mid(aa(14), mark)))

mts2.Close

Exit Sub ‘[f data file contains header only and no data
“ Errorhandler2: ‘ Then error message 62 occurs

[f Err.Number = 62 Then
Answer = MsgBox(’’This file contains no data.” & vbCrLf & –

“Do you want to save in Database.”, vbYesNo, “Bad File”)
[f Answer= vbYes Then

Resume Next
Else

Exit Sub
End If

Else
MsgBox “This file cannot be processed please try again. ”,_

vbOKOnly, “Bad File”
End If

End Sub

.1

e

19

.“..-.-...—-...,.-—---.—.—- .-— ------- ... --- ..--/r-.—-T.- ..- .-. —— .,. ,.

.

.

ModSem.bas

‘ For comments on code see Aes Module

Public Sub SemData(mTxtStream As TextStream, mts2 As TextStream, _
mts3 As TextStream, theFile As File)

Dim aa(60) As String, bbo As String, c As String
Dim z As Integer, blankposition As Integer, i As Integer
Dim j As Integer
Dim mark(60) As Integer

On Error GoTo Errorhandler2

Z=l
Do Until aa(z) = “EOFH”

blankposition = lnStr(l, aa(z), “”)
If blankposition = OThen

Z= z-1
End If
Z=z+l
aa(z) = mTxtStream.ReadLine
mark(z) = lnStr(l, aa(z), “:”) + 2
If Left$(aa(z), 15) = “SpectralRegDef:” Then

i=z
End [f

Loop

Forj=26Toi
c = Trim$(Mid$(aa(j), mark(j)))
bb = Split(c)
mts3.WriteLine (theFile.Name & “;” & _

bb(l) & “;”& bb(2) & “;” & _
bb(4) & “;”& bb(5) & “;” & _
bb(6) & “;” & bb(7) & “;” & _
bb(l O)& “;” & bb(l 1))

Next j
mts3.Close

mts2.WriteLine (theFile.Name & “;” & _
Trim(Mid(aa(l), mark(l))) & “;”& Trim(Mid(aa(2), mark(2))) & “;”&_
Trim(Mid(aa(3), mark(3)))& “;” & Trim(Mid(aa(4), mark(4))) & “;” & _
Trim(Mid(aa(5), mark(5)))& “;” & Trim(Mid(aa(8), mark(8))) & “;” & _
Trim(Mid(aa(9), mark(9)))& “;” & Trim(Mid(aa(l O),mark(lO))) & “;” & _
Trim(Mid(aa(l 1), mark(l 1))) & “;”& Trim(Mid(aa(12), mark(l2)))&“;”&_
Trim(Mid(aa(13), mark(13))) & “;” & Trim(Mid(aa(14), mark(14))) & “;” & _
Trim(Mid(aa(15), mark(15))) & “;” & Trim(Mid(aa(16), mark(16))) & “;” & _
Trim(Mid(aa(17), mark(17))) & “;” & Trim(Mid(aa(18), mark(18))) & “;” & _
Trim(Mid(aa(l 9), mark(l 9)))& “;”& Trim(Mid(aa(20), mark(20))) & “;” & _
Trim(Mid(aa(21), mark(21))) & “;” & Trim(Mid(aa(22), mark(22))) & “;” & _
Trim(Mid(aa(23), mark(23))) & “;” & Trim(Mid(aa(24), mark(24))) & “;” & _
Trim(Mid(aa(25), mark(25))) & “;” & _

20

—..

Trim(Mid(aa(z - 5), mark(z - 5)))& “;”&_
Trim(Mid(aa(z - 4), mark(z - 4)))& “;”&_
Trim(Mid(aa(z - 3), mark(z - 3)))& “;”&_

. Trim(Mid(aa(z - 2), mark(z - 2)))& “;”&_
Trim(Mid(aa(z - 1), mark(z - 1))))

mts2.Close
Exit Sub.
Errorhandler2:

MsgBox “This file cannot be processed please try again.”,_
vbOKOnly, “Bad File”

End Sub

I

I

!’

I

1

I

1

!

I
1

I

I

)

!

i

I

I

!
I

~

I
[

21 I

I,. -T, =,-—., —---—-—...——....--—-—-----

.

.

.

.

ModWyko.bas

Public Sub WykoData(mts2 As TextStream, theFile As File)

Dim strTime As String * 9 ‘ All string variables need to
Dim strDate As String * 9 ‘be assigned a specific number of bytes
Dim OffsetDac As Single
Dim SpareADC As Single ‘ Single variables 4 bytes
Dim MeasMode As String * 10 ‘ Single precision floating-point
Dim Vibration As Single
Dim Pixel_size As Single
Dim MeasSlope As Single
Dim Magnification As Single
Dim Wavelength As Single
Dim GlobalOriginX As Single, GlobalOriginY As Single
Dim StageX As Single, StageY As Single
Dim Pupil As Single
Dim TiltX As Single, TiltY As Single
Dim Use_XYR_cent As Integer ‘ Integer variables 2 bytes
Dim Use_XYR_spac As integer
Dim Pupil_diam As Single
Dim XYR_x_spac As Single
Dim Terms_String As String *40
Dim Data_Restore As String * 10
Dim Data_lnvett As String * 10
Dim Filt_Type As String *40
Dim Vol_opt_String As String *40
Dim UseApodization As integer
Dim Aspect As Single
Dim Title As String* 20
Dim Note As String* 60

On Error GoTo ErrorhandlerWyko

Open theFile For Binary Access Read As #1 ‘ Reads specific number of bytes
Get #1, 447614, strTime ‘at position indicated, number of
Open theFile For Binary Access Read As #2 ‘ bytes corresponds to the variable
Get #2, 447624, strDate
Open theFile For Binary Access Read As #3
Get #3, 447633, OffsetDac
Open theFile For Binary Access Read As #4
Get #4, 447637, SpareADC
Open theFile For Binary Access Read As #5
Get #5, 447641, MeasMode
Open theFile For Binary Access Read As #6
Get #6, 447651, Vibration
Open theFile For Binary Access Read As #7
Get #7, 447655, Pixel_size
Open theFile For Binary Access Read As #8
Get #8, 447659, MeasSlope
Open theFile For Binary Access Read As #9
Get #9, 447663, Wavelength , .

.

.

.

.

Open theFile For Binary Access Read As #10
Get #1O,447667, Magnification
Open theFile For Binaty Access ReadAs#11
Get #11, 447671, GlobalOriginX
Open theFile For Binary Access ReadAs#12
Get #12, 447675, GlobalOriginY
Open theFile For Binary Access ReadAs#13
Get #13, 447679, StageX
Open theFile For Binary Access Read As #14
Get #14, 447683, StageY
Open theFile For Binary Access ReadAs#15
Get #15, 448887, Pupil
Open theFile For Binary Access Read As #16
Get #16, 448891, TiltX
Open theFile For Binary Access Read As #17
Get #17, 448895, TiltY
Open theFile For Binary Access ReadAs#18
Get #18, 448899, Use_XYR_cent
Open theFile For Binary Access ReadAs#19
Get #l 9,448901, Use_XYR_spac
Open theFile For Binary Access Read As #20
Get #20, 448903, Pupil_diam
Open theFile For Binary Access Read As #21
Get #21, 448907, XYR_x_spac
Open theFile For Binary Access Read As #22
Get #22, 448911, Terms_String
Open theFile For Binary Access Read As #23
Get #23, 448951, Data_Restore
Open theFile For Binary Access Read As #24
Get #24j 448961, Data_lnvert
Open theFile For Binary Access Read As #25
Get #25, 448971, Filt_Type
Open theFile For Binaty Access Read As #26
Get #26, 449011, Vol_opt_String
Open theFile For Binary Access Read As #27
Get #27, 449051, UseApodization
Open theFile For Binary Access Read As #31
Get #31, 449053, MaskingString
Open theFile For Binary Access Read As #28
Get #28, 449093, Aspect
Open theFile For Binary Access Read As #29
Get #29, 449097, Title
Open theFile For Binary Access Read As #30
Get #30, 449117, Note

‘ CStr converts the variable in parenthesis to String variable

mts2.WriteLine (theFile.Name & “;” & Trim(strDate) & “;” & _
Trim(Title) & “;” &_
Trim(Note) & “;” & CStr(OffsetDac) & “;”&_
CStr(SpareADC) &“;” & Trim(MeasMode) & “;”&_
CStr(Vibration) & “;” & CStr(Pixel_size) &_

“;” & CStr(MeasSlope) & “;” & _
CStr(Wavelength) & “;” & CStr(Magnification) & ‘;”&_
CStr(GlobalOriginX) & “;” & CStr(GlobalOriginY) & “;” & _
CStr(StageX) & “;” & CStr(StageY) & “;” & _
CStr(Pupil) & “;” & CStr(TiltX) & “;” & _
CStr(TiltY) & “;” & CStr(Use_XYR_cent) & “;” & _
CStr(Use_XYR_spac) & “;” & CStr(Pupil_diam) & “;” & _
CStr(XYR_x_spac) & “;” & Trim(Terms_String) & “;” & _
Trim(Data_Restore) & “;” & Trim(DakMwt) & “;” & _
Trim(Filt_Type) & “;” &_
Trim(Vol_opt_String) & “;”&_
CStr(UseApodization) & “;”&_
Trim(MaskingString) & “;” &_
CStr(Aspect))

mts2.Close

Exit Sub

ErrorhandlerWyko
MsgBox “This file cannot be processed please try again. ”,_

vbOKOnly, “Bad File”

End Sub

I
#

+

I

I
II
i
I
\
I

I
(

Ii

1

i/
[
i
1

I

i[

24
+
I

..-— .-.— -Tr7TT?-,.-, - ,. ..-.,,.-, ——.--7=—. — . .-—. —. ...

Distribution:

L 1 MS 0340
1 MS 0340
1 MS 0340.
1 MS 0340
1 MS 0340
1 MS 0340
1 MS 0340
1 MS 9018
2 MS 0899
1 MS 0612

Wendy Cieslak, 1832
Michael Dugger, 1832
~7~~ M@J-a, 1832

James Ohlhausen, 1832
Diane Peebles, 1832
Greg Poulter, 1832
Elizabeth Sorroche, 1832
Central Technical Files, 8940-2
Technical Library, 4916
Review & Approval Desk, 4912
For DOE/OSTI

