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Abstract

A procedure is presentedfor calculatingthe equation of state (EOS) of a materialmixture
whose constituents are in pressureequilibriumbut not necessarilyin temperatureequilibrium.
A Newton-Raphson iteration is performed to determine the constituent partial volumes and
energiesthat give equal partial pressuressubject to the constraintsthat the total volume and
energy of the mixture are specified. During each iteration, the changes in EOS quantitiesare
chosen to be fixed (but axbitraxy) linear combinations of their temperatur~equilibrium and
isentropicvalues, so those two extremescan be reproduced as special cases. The changesin the
constituent partial volumes and energiesare limited to prevent the Newton-Raphson iteration
from diverging.

1. Introduction.

In fluid-dynamical systems containing multiple materials, the problem of calculating the equation
of state (EOS) of a material mixture often arises. Various relaxation processes, such as rarefaction-
wave propagation, thermal conduction, and molecular diffusion, tend to drive the constituents of a
mixture toward pressure and temperature equilibrium, a condition which minimizes the Gibbs free
energy and simplifies the calculation of the EOS. However, the relaxation rates depend upon the
degree of contact of the mixture constituents, i.e. the fractions of atomic versus chunk mix and
the distribution of chunk sizes and shapes, so a dynamical mixture can fail to achieve complete
equilibrium. Thus the calculation of the EOS of a nonequilibriurn mixture is sometimes required.

This report describes a procedure for calculating the EOS of a material mixture whose con-
stituents are in pressure equilibrium but not necessarily in temperature equilibrium. A Newton-
Raphson iterationl is performed to determine the constituent partial volumes and energies that
give equal partial pressures subject to the constrair$s that the total volume and energy of the
mixture are specified. During each iteration, the changes in EOS quantities are chosen to be iixed
(but arbitrary) linear combinations of their temperature-equilibrium and isentropic values, so those
two extremes can be reproduced as special cases. Enforcing the constant total volume and energy
constraints at every iteration should enhance the efficiency of the procedure, but the convergence
of the Newton-Raphson iteration still requires that the initial guess be sufficiently close to the final
solution. Since such an accurate initial guess cannot be guaranteed, the changes in the constituent
partial volumes and energies are limited to prevent the Newton-Raphson iteration from diverging.

The system to be considered is a material mixture whose constituents (labeled with the subscript
(o)index j) have masses Mj, initial specific volumes V$), initial specific energies ej , and EOS functions
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for pressure P’ (v, e) and temperature T“(v, e). EOS functions for specific entropy Si(v, e) are alSO

used in the following analysis but never need to be evaluated explicitly. During the iterations
(labeled with the superscript index i) to determine the specific volumes and energies that produce
equal partial pressures, the initial total volume and energy of the mixture are preserved:

(1)

In practice, the complexity of EOS functions often requires that they be presented in tabular
rather than analytic form. The values of the dependent variables for speciiied values of the inde-
pendent variables are then determined by interpolation among the tabulated values. The Sesame
EOS Data Library,2~3created and maintained by T Division at the Los Alamos National Labora-
tory (LANL), is such a tabulation of EOS functions, giving pressure F’ and specific energy e as
functions of mass density p = l/v and temperature 2’ for a wide range of materials. The EOSPAC
subroutine package,4 created and maintained by X Division at LANL, accesses and interpolates the
Sesame EOS data tables to calculate values for EOS functions and their first partial derivatives.
EOSPAC also provides the option to invert the Sesame EOS data tables to replace temperature
2’ with specific energy e as the second independent variable. The MIXPAC subroutine package,5
also created and maintained by X Division at LANL, uses EOSPAC along with a Newton-Raphson
iteration to calculate the EOS of a material mixture whose constituents are in pressure and tem-
perature equilibrium. The purpose of this report is to generalize the MIXPAC procedure to aIlow
the constituents to be out of temperature equilibrium.

The remainder of this report is divided into sections presenting some useful thermodynamic
relations, the temperature-equilibrium and isentropic cases, the generalized procedure, and some
conclusions. An appendix discusses preventing the Newton-Raphson iteration from diverging.

2. Thermodynamic Relations.

This section lists some useful thermodynamic relations among small changes in and first par-
tial derivatives of various EOS functions. These relations are consequences of the first law of
thermodynamics combined with first-order Taylor-series expansions and the chain rule for partial
differentiation applied to functions of two independent variables. Five EOS functions are of inter-
est: the two intensive quantities pressure F’ and temperature !2’, and the three extensive quantities
specific volume v, specific energy e, and specific entropy s. It is assumed that each of these quan-
tities can be expressed as a single-valued function of any two of the others, and small changes in
the quantities are represented by the symbol 6.

The most convenient choice for the two independent variables depends upon the intended ap-
plication: (v, e) is best for preserving total volume and energy; (P, T) is best for forcing pressure
and temperature equilibrium; (F’,s) is best for forcing isentropic pressure equilibriunq (v,s) is best
for applying the first law of thermodynamics; and (v, 2’) is best for using the Sesame EOS data
tables (although (v, e) is best for using the EOSPAC-inverted data tables). The following thermo-
dynamic relations allow easy transformations among these independent-variable choices. Note that
the relations among first partial derivatives are exact consequences of the chain rule for partial dif-
ferentiation, but the relations among changes in the EOS quantities are first-order approximations
that become exact only when those changes are infinitesimal.



Jv = Nyi3v/tv?)T + m(aJ/aT)p = dP(6’v/w)$ + Js(a~/~s)p ,

c$e= JP(i3e/~P)T + &!’(de/OT)p = JP(i3e/~P)~ + ds(~e/8s)p = –Pi$v + 2’6s ,

f&=dP(th/8P)T+ M7(i%/i2T)p=(P/Z’)dv +(1/Z’)de,

(~e/t?v)3 = –P = –T(&/&I)e=(~e/f%))T –T(6’s/i?v)T,

(~e/Eb)V = T = P/(ds/~v)e = (~e/~)V/(i?s/OT)V ,

(&lP/th). = -(8P/ds)v = -T(~P/8e)V = -T(~P/OT)V/(i3e/dT)V ,

(&/fh)T = (~p/~)V = (dP/~e)./(~/~e)V ,

(as/aP)T = (P/T) (tb/dP)T + (1/T)(~e/~p)T ,

(th/dT)p = (P/T) (i?v/dT)P + (1/T) (i3e/~)p ,

O(P, T)/d(v, e) S (OP/&)e(~T/~e)V – (6’T/th9)e(t7P/8e)V S –i3(Z’, P)/d(TJ, e) ,

8(P, e)/tfv, T) = (~p/~V)T(~e/~)V – (~e/~v)~(i?p/i?T)V e –~(e, P)/~(v, T)

(ih/~P)T = (~/~e)u/[~(p, T)/t?(v, e)] = l/(dP/8v)T ,

(6%/6T)p = –(dP/de)V/[c9(P, T)/O(v, e)] = -(OP/dT)V/(aP/6b)T ,

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(lo)

(11)

(12)

(13)

(14)

(~v/~P)$ =l/[(~P/~v)e -P(~P/de)V] =(de/~)V/[~(P, e)/~(v, T)- P(8P/~)V], (15)

(h/fis)p = –Z’(~P/~e)V(~ti/OP). = –T[(8P/tW)./(~e/dT)V] (ih/~P). , (16)

(~e/~p)T = ‘(~/~V)./[~(P, T)/8(V, e)] = (8e/~V)T/(~p/~V)T , (17)

(Oe/LJT)p = (i3P/Eb)e/[~(P, Z’)/i?(v, e)] = [t?(P, e)/i3(v, T)]/(aP/av)T , (18)

(Oe/8P), = -P(8v/ap)s , (19)

(~e/i?s)p = T’ – P(Ov/~s)p . (20)
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3. Temperature-Equilibrium Case.

This section describes the case in which the mixture constituents relax from their initial con-
ditions to equilibrium values of pressure P and temperature 7’ while preserving the initial total
volume V and energy E. Following the MIXPAC procedure,5 a Newton-Raphson iteration is pre-
sented for calculating the changes in the EOS quantities needed to achieve the final equilibrium
state. At the beginning of the i-th iteration, let the values of the EOS quantities for the j-th

(i) (i) (i) P(i) T(t) The two independent variables are chosen to be (o, e), soconstituent be Vj , ej , Sj , ~j~”

‘i)– Sj(V~), e!) ) , F’})=F“(v~),e$)) , T“)=Tj(v~),e!)),‘3 — (21)

and the first partial derivatives ‘of these quantities are also evaluated at (V$), e$) ). Throughout the
remainder of this section, the iteration superscript index i will be suppressed, and changes in the
EOS quantities during the iteration will be denoted by the symbol 6.

The Newton-Raphson approximation uses first-order Taylor-series expansions to relate changes
in the EOS quantities:

6P’ ~ P – Pj - d’l)j (8P/&).j + Jej (f3P/i7e)vj , (22)

These relations can be inverted to give

dVj = (P – Pj)(~v/dP)Tj + (T – ~~)(dv/~)pj > (24)

dej = (.P – ~j)(&/8P)Tj + (~ – T“)(~e/~)Pj , (25)

where expressions for the partial derivatives are given in Section 2. Note that a consistent first-order
approximation for the change in specific entropy during the iteration is

~sj = (Pj/Tj)dvj + (1/~’j)c$e.j = (~ – f’j)(~~/dP)Tj + (T – Tj)(~s/8T)Pj . (26)

The constraints that the total volume and energy be preserved during the iteration then produce
two linear equations for the two unknowns P and 2’:

O= ~jMjdej = A,eP + BeT – C. , (28)

(29)

(30)



(32)

The solutions of Eqs. (27) & (28) give the temperature-equilibrium values:

P = PE~ = (CvBe – BVCJ/(AoB. – BVA&), (33)

T = TEg = (AVCe – CVAe)/(AVBe – BVAe) . (34)

If these new values of P and 5!’ are sufficiently close to the previous values, then the iteration
has converged and can be terminated, and the final values of the EOS quantities for the mixture
constituents are Vj, ej, ~j, P, 2’. Otherwise, the new values of P and T are substituted into Eqs.
(24) & (25), and the results are used to increment Vj and ej to begin the next iteration. AS with
any Newton-Raphson iteration, the convergence of this procedure requires that the initial values
be sufficiently close to the final equilibrium values. Since such accurate initial values cannot be
guaranteed, the changes in vj and ej are limited to prevent the Newton-Raphson iteration from
diverging- Thus the new values to be used for the next iteration are Vj + ~o~vj and ej + ~e~ej, Wkre

expressions for the limit factors pV and p=, which are both ~ (O, 1], are given in the Appendix.

4. Isentropic Case.

This section describes the case in which the mixture constituents relax from their initial condi-
tions to an equilibrium value of pressure P while preserving their initial specific entropies as well as
the initial total volume V and energy E. In parallel with Section 3, a Newton-Raphson iteration is
presented for calculating the changes in the EOS quantities needed to achieve the final equilibrium
state. At the beginning of the i-th iteration, let the values of the EOS quantities for the ~-th

constituent be VP) ‘;) ‘i) P(i), 2“). The two independent variables are chosen to be (v, e), so~,ej, Sj, j

~P)= ‘Tj(Vj ,ej ) >(~)_ (4 (0), p!) = Pj(v$), e$)) , ~.9j — Sj (Vj ,ej
(i) (i) (35)

(~) (i] T~oughout theand the fist partial derivatives of these quantities are also evaluated at (v.~ >ej ).
remainder of this section, the iteration superscript index i will be suppressed, and changes in the
EOS quantities during the iteration will be denoted by the symbol 6.

The Newton-Raphson approximation uses first-order Taylor-series expansions to relate changes
in the EOS quantities:

dSj ~ (P/Z’j)JVj + (1/Tj)dej G O . (37)

These relations can be inverted to give

6Vj = (P – Pj)(th/~P)$j , (38)
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(39). Jej = ‘P6Vj ,

where expressions for the partial derivatives are given in Section 2.

Since P was used instead of Pj in Eqs. (37) & (39), the constraints that the total volume and
energy be preserved during the iteration produce a single linear equation for the unknown P:

(40)

(41)

The solution of Eq. (40) gives the isentropic value

P= P1s GC/A. (42)

If this new value of P is srdiiciently close to the previous value, then the iteration has converged
and can be terminated, and the final values of the EOS quantities for the mixture constituents are
vj, ej, ~j, P, Tj. Otherwise, the new value of P is substituted into Eqs. (38) & (39), and the
results are used to increment vj and ej to begin the next iteration. As with any Newton-Raphson
iteration, the convergence of this procedure requires that the initial values be suiliciently close to
the final equilibrium values. Since such accurate initial values cannot be guaranteed, the changes
in Vj and ej are limited to prevent the Newton-Raphson iteration from diverging. Thus the new
values to be used for the next iteration are vj + p@j and ej + pedej, where expressions for the
limit factors pV and P., which are both 6 (O,1], are given in the Appendix.

5. Generalized Procedure.

This section describes a generalized procedure for calculating the EOS of a material mixture
whose constituents relax from their initial conditions to an equilibrium value of pressure P while
preserving the initial total volume V and energy E. The strategy is to choose the changes in the
EOS quantities to be fixed (but arbitrary) linear combinations of the corresponding changes in
the two extremes of temperature equilibrium and isentropy. In parallel with Sections 3 & 4, a
Newton-Raphson iteration is presented for calculating the changes in the EOS quantities needed
to achieve the final equilibrium state. At the beginning of the i-th iteration, let the values of the

(~] (i] (i] p(z), T:). The two independent variabIesEOS quantities for the ~-th constituent be Vj , ej , Sj , j
are chosen to be (v, e), so

‘i)= ~j(vj ,ej (i) (i)TY)‘~j(vj ,ej ) >(i) V)), P)) = Pj(V$), e$)) ,
‘j (43)

and the first partial derivatives of these quantities are also evaluated at (v:), e!)). Throughout the
remainder of this section, the iteration superscript index i will be suppressed, and changes in the
EOS quantities during the iteration wilI be denoted by the symbol 6. Furthermore, the superscript
Eq will denote temperature-equilibrium values given in Section 3, and the superscript 1s will denote
isentropic values given in Section 4.



The Newton-Raphson approximation uses fist-order Taylor-series expansions to relate changes
in the EOS quantities:

@ + (1 – a)p%j6Sj G OdSj ‘q = (1/Tj ) [~pj~vj ~’ + dej] , (45)

where Q 6 [0, 1] is the fixed (but arbitrary) fractional contribution from the temperature-equilibrium
solutions, which depends on the degree of contact of the mixture constituents. These relations can
be inverted to give

6Vj = (P – Pj)(tb/~P)~j + 6Sj(8V/~S)pj = CYdVjEq+ (1 – ~)~Vjl’ , (46)

dej = ~(–PjdVj ‘q+ Z’j6SjEq) – (1 – CY)P1sdVjlS= dej ‘q + (1 – @)Jejls , (47)

where expressions for the partial derivatives are given in Section 2,

The constraints that the total volume and energy be preserved during the iteration are auto-
matically satisfied since they are satisfied separately by the temperature-equilibrium and isentropic
contributions:

Eqs. (33), (34), & (42) are used to calculate new values of PE’J, TEq, and Pi’, and the generalized
equilibrium pressure is then

P = aPE~ + (1 – cx)P~’ . (49)

If this new value of P is suiliciently close to the previous value, then the iteration has converged
and can be terminated, and the final values of the EOS quantities for the mixture constituents are
vj, ej, sj, P, Tj. Otherwise, the new values of PEq, TEq, and _P1’ are substituted into Eqs. (24),

1S These, in turn, are‘q bejEq, dvj 1s, and cfej .(25), (38), & (39) to calculate new values of dvj ,
substituted into Eqs. (46) & (47), and the results are used to increment vj and ej to begin the next
iteration. As with any Newton-Raphson iteration, the convergence of this procedure requires that
the initial values be sufficiently close to the final equilibrium values. Since such accurate initial
values cannot be guaranteed, the changes in tij and ej are limited to prevent the Newton-Raphson
iteration from diverging. Thus the new values to be used for the next iteration are vj + ~Vdvj and
ej + pedej, where expressions for the limit factors pV and pe, which are both E (O,1], are given in
the Appendix.



6. Conclusions.

This report has described a procedure for calculating the EOS of a material mixture whose con-
stituents are in pressure equilibrium but not necessarily in temperature equilibrium. The procedure
is a generalization of the “MIXPAC procedure5 for calculating the EOS of a material mixture whose
constituents are in both pressure and temperature equilibrium. Since the strategy is to choose the
changes in the EOS quantities to be fixed (but arbitrary) linear combinations of the corresponding
changes in the two extremes of temperature equilibrium and isentropy, those two extremes can
be reproduced as special cases. All EOS quantities are considered to be functions of the speciilc
volume v and energy e, and a Newton-Raphson iteration (modified to prevent it horn diverging) is
used to calculate the changes in these quantities needed to achieve the final equilibrium state. The
procedure is thus well suited for using the EOSPAC subroutine package4 to interpolate the tabular
EOS functions contained in the Sesame EOS Data Library2~3at LANL.
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Appendix: Preventing the Newton-Raphson Iteration from Diverging.

It is well known that a Newton-Raphson iteration generally has a finite radius of convergence
and hence will converge only if the initial guess is sticiently close to the final solution. 1 If such an
accurate initial guess cannot be guaranteed, a modification is required to prevent the iteration horn
diverging. For example, when a Newton-Raphson iteration f%ilsto converge, it can be supplemented
or replaced by a more robust (but less efficient ) iteration — e.g. either successive-bisection or regula-
falsi iteration is guaranteed to converge if two successive guesses that bracket the true solution
can be found. The more robust iteration can be used either to achieve the final convergence or
to improve the initial guess for the Newton-Raphson iteration. Unfortunately, for a multivariate
iteration such as is needed in the present application to balance the partial pressures in a material
mixture, it is difllcu.lt or impossible to find two successive guesses that bracket the true solution
for all the variables. Therefore, an alternate modification is adopted here to prevent the Newton-
Raphson iteration from diverging — the changes in the independent variables during each iteration
are limited.

Following the notation in Sections 3-5, let vj and ej be the values of the independent variables at
the beginning of an iteration, and let 6vj and 6ej be the Newton-Raphson guesses for the changes
in these values, then the new values to be used for the next iteration are taken to be vj + ~Vdvj
and ej + Pe6ej, where the limit factors PO and ~e are both ~ (O, 1]. To derive expressions for the
limit factors, account must fist be taken of the physical bounds on the independent variables:

0< vj + /LVC$Vj< V/Mj , 0< ej + /te6ej < E/Mj . (50)

These inequalities can be manipulated to give bounds on the changes to the independent vaxiables:

—vj < pvtivj < V; = V/Mj —vj , – ej < @ej < e; s E/Mj – ej . (51)

These bounds are too loose, however, since the Newton-Raphson guesses can oscillate between
them indefinitely without ever converging. Thus additional factors $. and de, both c (O,1), are
introduced to reduce the allowed changes in the independent variables:

‘@.vj < ~vdvj < 4vv~ , – l%ej < p,~ej < ~.e~ . (52)

The corresponding expressions for the limit factors are then

#fJ - minj[l, #vma~(–vj/dvj, ‘~/dvj)l , Pe - ‘inj[l> @emaZ(–ej/~ej, ‘~/Jej)l . (53)

A reasonable first choice for the fractions @Vand #e is 0.5, and if the iteration still fails to converge,
a smaller value can be tried.

This modification prevents the Newton-Raphson iteration from diverging to unphysical values
of the independent variables,
seems to do so in most cases.

and while the resulting procedure is not guaranteed to converge, it


