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Abstract .

A pulsating form of hydrodynamic instability has recently been shown to arise during liquid-

propellant deflagration in those parameter regimes where the pressure-dependent burning rate

is characterized by a negative pressure sensitivity. This type of instability can coexist with the

clsssical cellular, or Landau, form of hydrodynamic instability, with the occurrence of either de-

pendent on whether the pressure sensitivity is sufficiently large or small in magnitude. For the

inviscid problem, it has been shown that when the burning rate is realistically allowed to depend

on temperature as well as pressure, that sufficiently large values of the temperature sensitivity rel-

ative to the pressure sensitivity causes the pulsating form of hydrodynamic instability to become

dominant. In that regime, steady, planar burning becomes intrinsically unstable to pulsating dis-

turbances whose wavenumbers are sufficiently small. In the present work, this analysis is extended

to the fully viscous case, where it is shown that although viscosity is stabilizing for intermediate

and larger wavenumber perturbations, the intrinsic pulsating instabili~ for small wavenumbers

remains. Under these conditions, liquid-propelkmt combustion is predicted to be characterized by

large unsteady cells along the liquid/gss interface.
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PULSATING HYDRODYNAMIC INSTABILITY AND THERMAL COUPLING

IN AN EXTENDED LANDAU/LEVICH MODEL OF

LIQUID-PROPELLANT COMBUSTION — H. VISCOUS ANA4ZYSIS

Introduction

Hydrodynamic (Landau) instability in combustion is typically associated with the onset of

wrinkling of a flame surface, corresponding to the formation of steady cellular structures as the

stability threshold is crossed. This type of instability was originally described by Landau [1], and

is attributed to thermal expansion across a combustion front. Although gaseous combustion was

determined to be intrinsically unstable in Landau’s ardysis, it was demonstrated that additional

effects, such as gravity and surface tension, that enter when” the unburned mixture is a liquid
. .

result in a specific stability criterion. However, this anslysis, along with a later study by Levich

[2] that considered viscous effects in lieu of surface tension, assumed that the the combustion

front propagated normal to itself with constant speed, whereas it is now recognized that there is a

dynamic interaction between the burning rate and local conditions at the front.

For those problems in which pyrolysis, exothermic decomposition and/or combustion occurs

in an intrusive region in the vicinity of the liquid/gas interface, the dynamical coupling of the

burning rate with the underlying hydrodynamics of the flow can be achieved through an analysis

of the thin combustion/interface region. An alternative approach, however, is to simply postulate a

phenomenological dependence of the local burning rate on pressure and temperature, and to obtain

results in terms of suitably defined sensitivi~ parameters. Both types of methodologies have been

applied to the problem of solid-propellant combustion, and each offers certain advantages [3,4]. In

the present series of studies on liquid-propellant combustion [5–7], the latter approach has been

adopted, thereby generalizing the Landau/Levich model to allow for a coupling of the burning rate

with the local pressure and temperature fields.

Summarizing some of the results obtained from the present model, it has been shown that

when only the pressure sensitivim of the burning rate is taken into account, an appropriately

generalized stability criterion for cellular (Landau) instability is obtained. Exploiting the realistic

limit of small gas-to-liquid density ratios, it is found that the stable region occurs for negative
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values of the pressure-sensitivity parameter, with the original Landau model being intrinsically

unstable in this limit. In particular, the neutral stability boundary possesses a local minimum when

plotted against the disturbance wavenumber, suggesting that as the pressure-sensitivity parameter

decreases in magnitude, the liquid/gas interface/front develops cells corresponding to classical

hydrodynamic instability [5]. This minimum reflects the fact that surface tension and viscosity

are stabilizing influences for short-wave disturbances, whereas gravity is a stabilizing influence

for long-wave perturbations. As a result, the effect of reducing the gravitational acceleration to

microgratity levels is to shift the neutral stability minimum to smaller wavenumbers. Thus, in the

microgravity regime, Landau instability becomes a long-wave instability phenomenon, implying

the appearance of large cells along the combustion interface.

Aside from the classical cellular form of hydrodynamic instability, this dynamic generalization

of the Landau/Levich model also predicts the appearance of a pukating fmi-n of hydrodynamic

instability, corresponding to the onset of temporal oscillations in the location of the liquid/gas in-

terface. This form of hydrod~amic instability occurs for negative values of the pressure-sensitivity

parameter that are sufEciently large in magnitude [6]. Consequently, stable, planar burning is pre-

dicted to occur in a range of negative pressure sensitivities that lies below the cellular boundary

and above the pulsating boundary just described. A stable range of negative pressure sensitivi-

ties is applicable, for example, to certain types of hydroxylammonium nitrate (HAN)-based liquid

propelkmts at low pressures for which nonsteady modes of combustion have been observed [8].

The appearance of both pulsating and cellular forms of hydrodynamic instability is analogous to

the two corresponding types of thermal/diffusive instabilities that occur for sufficiently large and

su.fiiciently small Lewis numbers, respectively [9].

When the effect of a temperature sensitivity in

ysis, substantial modifications to the above stability

temperature-sensitivity parameter is sufficiently large

the burning rate is included in the anal-

description can occur. Specifically, if the

relative to the parameter corresponding to

pressure sensitivity, the pulsating hydrodynamic stability boundary can develop a turning point

(i. e., become C-shaped) in the (disturbance-wavenumber, pressure-sensitivity) plane. In that case,

the stable region for small wavenumbers disappears, and liquid-propellant combustion is predicted

to be intrinsically unstable to the nonsteady form of hydrodynamic instability for all sufficiently
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large disturbance wavelengths. This has been described in detail in the limit of zero viscosity [7],

and the purpose of the present work is to extend that analysis to the fully viscous model. Viscous

effects were shown to have a substantial iniluence in the absence of thermal sensitivity, where it

turned out that the stable region became significantly widened when viscosity was present, and the

same result will be demonstrated when thermal effects are present. However, the same intrinsic

pulsating instability that occurs for sufficiently large temperature sensitivities and sufficiently small

wavenumbers in the inviscid case will be shown to be preserved even when viscosity is included.

These results lend further support to the notion that a likely form of hydrodynamic instability in

liquid-propellant combustion is of a nonsteady, long-wave nature, distinct from the steady, cellular

form originally predicted by Landau.

Summary of the Mathematical Model . .

The mathematical model was described previously [5,10], but is briefly summarized here for

completeness. Specifically, it is sssumed that the combustion hont coincides with the liquid/gas

interface, where pyrolysis and/or exothermic decomposition occurs. Denoting the nondimensional

location of this downward-propagating

coordinate and the adopted coordinate

x3 = –co, we transform to the moving

interface by X3 = @(zl, Z2, t), where Z3 is the vertical

system is fixed with respect to the stationmy liquid at

coordinate system z = zl, y = Zz, z = 223— @(zI, q, t)

such that the liquid/gas interface always lies at z = O. Conservation of mass, energy and momentum

within each phase then gives

V.v=o, z#o, (1)

(2)3: fig+’”ve={.;}vm 2:0,

!&gg+(v. v)v=(o, o,-F’.-’) -{p:, }vP+{A:- }V’v, 2:0, (3)
9

where v, @ and p denote velocity, temperature and pressure, respectively, PT1 and Prg denote the

liquid and gas-phase Prandtl numbers, p, A and c (used below) are the gas-to-liquid density, thermal

difisivity and heat-capacity ratios, and 1%-1 is the inverse Froude number (gravitational accel-

eration). Other nondimensional parameters introduced below include the liquid surface-tension

coefficient ~, the gas-to-liquid viscosity ratio p (pWrg = pPTl), the rate-of-strain tensor e and

7

------- m,. ,,, ,., .. . ,., ,., >.. , . . . . ... .. , m. ..... ..:. ......4 . ...!7>..< . . . . . - ,,.-. . , , .,.,,.k.-.z, , . .. .. >e. . ., ,, ,., ,.,, . , .. .,.,, ,.=. , , . ., .,,.,,., ,—---..- ..---., ., . . . -.



the unburned-to-burned temperature ratio aU.

Equations (1) - (3) are subject to a set of boundary and interface conditions given by

v=O, @= Oatz=—co, @=latz=+co, elz=()- = elz=o+ ,

fls. xv-=ii~ xv+,

fi..(v._ – pv+) = (1 – p)s(qg ,

m
ii~w– – s(@)x = A(plz=o+, e[z=()) ,

24.=0- – Plz=o+ = fis” [Pv+(fis “v+) – V–(fis “v–) – P~~~9e+ “ fis + ~~~e– “M

+ ii5.(v- – Pv+)s(@)g – 7’(-V “ h,),

(4)

(5)

(6)

(7)

(8)

[
fi~x p+(fi~ . v+) —V–(iis . v_) + (v_ – PV+)s(@)#] = &x (d~rge+ . ii. – Prle_ . ii.) , (9)

[fl. - (cpAve]z=~+ – Vqz=o’- ) = ii. (w+ – V–)elz=l) + t(a.pv+ – v_)]
(10)

+ [(1 – Cp)e[z=o + 2(1 – %P)]s(@)~ > 2 = c/(1 – au) ,

where v+ = V]Z=O+, e+ = el.=OA, and Eqs. (5) – (10) correspond to continuity of the transverse

velocity components (no-slip), conservation of (normal) mass flux, the mass burning rate (pyrolysis)

law, conservation of flux of the normal and transverse components of momentum, and conservation

of heat flux. Here, S(Q) = (1+ O: + @~) ‘1’2, the unit normal iis = ( – @z, –@V, l) S(Q), and the

expressions for the gradient operator, the Laplacian and the curvature in the moving coordinate

system are given by V = (az-@.8z,a.-@.az, az), v’= azz+ay.+(l+@:+@;)azz-2@.azz-
2@@yz – (Q.. + @VV)~. and –V. i% = OZZ(1 + @~) + @YY(1 + Q:) – 2@z@Y@~V), respectively.

However, the vector v still denotes the velocity with respect to the (ZI, Z2, Z3) coordinate system.

Finally, we note that the nondimensional mass burning rate appearing in Eq. (7) is assumed to

be functionally dependent on both the local pressure and temperature at the liquid/gas interface.

By definition, A = 1 for the case of steady, planar burning, but perturbations in pressure and/or

temperature result in corresponding perturbations in the local mass burning rate.

Since the thermal and hydrodynamic fields are coupled only through the temperature depen-

dence of the mass burning rate A appearing in Eq. (7), the strictly hydrodynamic problem for

p, v and @~ can be analyzed separately when A is assumed to depend on pressure only [5,6].

In the present work, we focus on the fully coupled problem to determine how the hydrodynamic
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stability boundaries are modified when the local burning rate depends on temperature as well as

pressure. Our stability results will thus depend on two sensitivity parameters, AP and Ae, defined

ss AP = ~A/@le=l,P=O and Ae = 8A/8@ ]e=1,P=0, where Cl = 1 and p = O denote the interface

values of temperature and pressure of the bssic solution in Eq. (11) below. Though an explicit

expression for the reaction rate A is not needed in the present smlysis, we note that since the

nondimensional activation energy is typically large, the temperature sensitivi~ Ae would likely

be larger in magnitude than the pressure sensitivity AP, a fact that will have some bearing on the

relative scalings of these parameters that will emerge in the following analysis.

The Basic Solution and its Linear StabiIity

The nontrivial basic solution of the above problem that corresponds to the special case of a

steady, planar deflagration is given by
. .

{
@“=–t, V“=(o, o,vo), ?)O= ‘:l_l :::

P ~ >

{
@o(z) = ;“’ :::

{

–.F7--1Z + p-l – 1, z <0pqz) =
2 > –pFr–lz, 2>0.

(11)

The problem governing its linear stability may be formulated, prior to introducing any further

approximations, in a standard fsshion by introducing the perturbation quantities @(z, y, t) =

@(z, g, z, t) – @o(i), U(z, y, z, q = q% y, 2, t) – ‘o(z)> @> Y>z>~) = P(% Y, z, ~) – P“(z) and

o(z, y, Z,t) = e – @o(z) – q5@0/dz. The problem obtained when Eqs. (1) – (10) are linearized

about the basic solution (11) is then given in terms of these perturbation variables by

(12)

18!9 :80
{} -={-u;ez}+{:,}(%+z+a‘~otp at 82

(14)

u ‘O, O=oatz=–m, d=oatz=+~, ~l.=o~–(?l.=o-=~., (15)

UqIz+2- – ?.hlz=o+ = (P-l – 1)4% , u21z=o_ – 74212=0+= (P-l – 1)4, ,

9
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—.. ,

U3Iz=~- – @L31z=O+=(1 - p)dt , U31Z=0. – & = APCI.=O++ Ad.=o+ , (17)

(1.=0- -(1.=0+ = 2(~31.=o+-~31z=o- )+2~’l (~ .=o_ -P* ~=o+)-m-mt-? (4ZZ + 4,,) ,

(18)

‘p” *LO++%%=0+)-%3.=0-+%%=O.)‘0’( (19)

‘PT1%1==0++%l.=O+)-P”’(%lz=o-+%l==O.)‘0’( (20)

i%’ ae
cpA— — —

8Z Z=o+ 6’2 2=0- –
42=0+ + elz=l)-= —U312=0- + @t > (21)

where Eqs. (16) and (17) have been used to simpli~ Eqs. (18) – (21).

Nontrivial harmonic solutions for ~, u and ~, proportional to eiwt+ikl~+~~z~,that Satis”&Eqs.

(12) - (14) and the boundazy/boundedness conditions at z = +m me given by @ = eiut+i~’z+i~’~

and

{

~ = eiut+ik~x+ikXi blekz – Fr-l, z<’
bze-kz – pFT-l, z >0,

(22)

. .
U1 = e2~t+zk@+ik2y

{

b3eqz – ikl (iw + k)-lblekz, z<’
b4e’z – ikl(iup – k)–lb2e-kz, z >0,

(23)

. .
U2 = eZwt+zklx+ik2y

{

b5eqz – ik2(ti + k)-lblekz, 2<0
bce’z – ik2(iwp – k)–lb2e–kz, z >0,

(24)

. . .

{

b7eqz – k(iw + k)–lblekz,~3 = ezwt+zklx+2k2y z<’
b8e’z + k(iwp – k)–lb2e–kz, z >0,

(25)

{

e = ewt+iklx+ikzy bgepz – [iti + k2 – q(q + l)]–lbTeiq+lJz + k[(iw)2 – k2]–lble(k+l)z, z <0
bloesz, z>’.

(26)

Here, k = (k; + kj) 1’2 is the overall disturbance wavenumber and the quantities p, q, r, s are

defined as 2p = 1 + [1+ 4(iw + k2)] 1’2, 2Prl q = 1 + [1 + 4Prz(iw + Prz k2)]l’2, 2pPr1 r =

1 – [1 + 4pP7-l(iwp + pPTLk2)] 1’2 and 2PAS = 1 – [1 + 4p2A(iw + Ak2)] 1’2. Substituting this

solution into the interface conditions (16) - (21) and using Eq. (12) for z ~ O yields eleven

conditions for the ten coefficients bl - blo and the complex frequency (dispersion relation) iw(k).

In particular, these conditions are given by

ik1b3 + ik2b5 + qb7 = iklbd + ikzbc + Tbs = O, (27)

ikl
b3– — bl–bet+ .

ikl ik2
b2 = (p-l–l)ikl , bs–mbl–bc+ .

ik2
b2 = (p–l –l)ik2 , (28)

iw+k 2WP — k ZWp — k

10



b7– &b~–pbg–
pk

bz = (1–p)iw, b7–—~.~ ~bl–Ap b2–Ae blo = iw—pFr-lAP , (29)
iWp —k .

[
2k2Prl

1+ 1[~w+kbl– 1+
2k(kpPrL + 1 – p)

1
b2 – 2PTZqb7 – 2(1 – p – pPrz r)b~

tip-k (30)

=(1 - p)(Fr-’ – 2iu) +~k’,

2ikl kpPrL 2iklkPrl
pPrl rbb + b2 + iklpPrl bg – PI-l qb3 + ~w+k bl–ik1Prlb7 =0, (31)

iW/1 – k

2ik2kpPr1 2ik2kPr1
pPTl TbG+ b2 + ik2pPrl bg – Prl qb~+ ~w● k bl – ik2Pr1 b7 = O,

tip-k
(32)

blo – b9+ [iw + k2 – q(q + 1)]-1b7 – k[(iw)2 – k2]–lbl = 1, (33)

[ 1
(1 – c+cph)b10 –pb9 + iw+k:::(q+l) +1 b7– &[=+ ’lb’=l+iw’34)

While the above problem is linear in the coefficients bl – blo, which can thus be eliminated to

give a single equation for iw, the resulting dispersion relation is quite long and highly nonlinear..-

Explicit results may be obtained for certain special cases, inchding the original problems considered

by Landau [1] (AP = Ae = Prl = p = O) and Levich [2] (AP = Ae = p = v = O), as well as

a particular case (Ae = p = Prl = O) of the generalized model described above [5,11]. To

obtain more general results, it is possible to exploit the smallness of certain parameters and to

seek asymptotic solutions for the neutral stability boundaries. In particular, realistic limits to

exploit include the smallness of the gas-to-liquid density and viscosity ratios p and p, and, in the

microgravity regime, Fr ‘1. Pursuing this approach, tractable asymptotic results have so far been

obtained for Ae = O [5,6] and for the inviscid problem when Ae is nonzero [7]. The present work

essentially completes the asymptotic anzdysis of the dispersion relation embodied in Eqs. (27) -

(34) by extending the last of these studies to the folly viscous case.

Parameter Scalings and Asymptotic Analysis of the Dispersion Relation

Focusing on the realistic regime p <<1 (typical values are on the order of 10-3 or 10-4), we

formally introduce a bookkeeping parameter e<< 1 and introduce the reasonable scaliigs p = p’c,

P = P*C, 1%1 N O(1) and either FT-l = g or Fr-l = g*e, where R--l N O(e) corresponds to

the case of greatly reduced gravity. In this parameter regime, the appropriate scaling for AP to

describe the neutral stability region is AP = A~e [5,6], whereas the appropriate scale that describes

the main effects of thermal coupling turns out to be Ae = A~e114 [7]. Based on this scaling, we

11
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note that the ratio Ae/AP N 0(e-314) >>1, as might be expected based on an overall Arrhenius

reaction-rate dependence on temperature.

Based on our previous analyses, the scalings introduced above induce a set of corresponding

regimes for the wavenumber k (and the complex frequency iw) in the dispersion relation determined

by Eqs. (27) – (34). These first emerged in our analysis of cellular instability using the generalized

model in the limit Ae = O, but they are also relevant when one considers the pulsating form of

instability and when Ae is allowed to be nonzero.In particular, in the case of cellular instability and

zero temperature sensitivity, there are three wavenumber scales to be considered. First, there is an

O(1) outer wavenumber region where the stabilizing effects of surface tension, viscosity and gravity

are all relatively weak. Second, there is a far outer scale k N kf /e where surface tension and/or

viscosity are strongly stabilizing and gravitational effects are, to a first approximation, negligible.

Finally, we have an inner scale k N ki~ or k N ki~2 where gravity is the dominant stabilizing effect

(the first scale is valid for normal gravity, the latter for the reduced gravity regime), and where
●

viscosity and surfacetension effects are absent at leading order. In each of these regimes, the

cellular stability boundary, obtained by seeking solutions of the dispersion relation for which iw is

identically zero, is given respectively by

A;(k) A;til (ki) ~
{

~’(~”g – ki)/2ki, F?=-l - o(1)
- –p*/2 ,

p*(p*g* – ki)/2ki, FT–l - O(C) ~
(35)

A;(f) 2p*/!L*P[1+ kf(p*~ + 2p*P + 2p*P)]

- ‘P* + 4p*P(1 + p*Pkf) – (1 – ~)(p’~ + 2/J*P) ‘
R= (1+ 4p*2P2k;) l“ , (36)

where P s Prl. Matching these solutions to one another then leads to the composite stability

boundary

A;(c) - –P* +
2p*p*P [1 + ek(p”~ + 2P*P + 2P*P)]

+g{~g., (37)
4p*P(l + ekp*P) – (p*’y + 2P*P) [1– (1 + 4p*2P2e2k2)l’2]

as shown in Fig. 1. Clearly, the stable region lies below A; = —p*/2 (negative values of Ap over

certain pressure ranges are characteristic of a number of HAN-based liquid propellants [8], with

the location of the minimum in the cellular boundary increasing to less negative values of Ap with

increasing values of the stabilizing parameters ~’, Prt, P* and g (or g*)- Comparing the two

sets of curves corresponding to the normal and reduced gravi~ cases, it is clear that the critical

wavenumber for instability becomes small in the latter regime. That is, cellular hydrodynamic

12



instability becomes a long-wave instabilityy in the limit of small gravitational acceleration. Further

discussion of this stability boundary, and its relationship to the original Landau/Levich predictions,

is given in [5].

Considering the pulsating stability boundary (in the limit Ae = O), which is obtained by

seeking solutions of the dispersion relation for which only the real part of iu vanishes, it is found

[6] that the corresponding expressions in the inner and outer wavenurnber regions are given by

A; N –p” , A; N ‘p*(l + 2Pk)l/2 , (38)

respectively. In this case, it is clear that the outer soIution is, in fact, the composite solution,

which lies below the cellular boundaries and recedes to negative values of Ap that are larger in

magnitude thsn O(e) as k becomes large (Fig. 2). Clearly, this stability boundary is more sensitive

to the stabilizing effects of the liquid viscosity parameter P than is the cellular boundary, having a

leading-order stabilizing effect for O(1) wavenumber disturbances in this case. In the limit P ~ O,

the pulsating boundary collapses to the straight line A; = –p* (i.e., A: = –1 in Figs. 1 and 2),

but even in that limit, there is a region of stability corresponding to values of A; greater than –p*

and less than the minimum in the cellular boundary, which is greater than —p*/2. However, if one

now considers the effects of a nonzero temperature sensitivity in the inviscid limit P = O, then,

for Ae N 0(d14), the pulsating boundary possesses a turning point such that the stability region

disappears for sufficiently small wavenumber perturbations [7]. This is illustrated in Fig. 3, which

indicates that the pulsating boundary then frames the stable region except along the upper branch

that asymptotes to the previous celhdar boundary as k becomes large in the outer wavenumber

region. The evolution from a stability diagram that indicates a stable region delineated by distinct

pulsating and cellular hydrodynamic stability boundaries to the pulsating-dominated one shown

in Fig. 3 can be shown to occur in the parameter regime Ae N 0(c112), which, based on the

– 112 >30 (i. e., of the same order as a typical nondimensional activationestimate Ae/AP N Oe m

energy), appears to be attainable for many types of liquid propellants. We now extend the analysis

that produced the fully-developed pulsating boundary shown in Fig. 3 to the viscous case in which

both P and p“ are aIIowed to be nonzero.

Owing to the complexity of the fully viscous problem, we analyze Eqs. (27) – (34) directly by

seeking appropriate expansions for the complex frequency iw and the coefficients bi. This differs

13
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from our approach in the inviscid limit where it was feasible to first eliminate the bi in order to

obtain a single implicit equation for iu alone. We first consider the O(1) wavenumber region and,

based on our previous analyses, seek an expansion for the dispersion relation iw(k) in this region

in the form

–1/2 (~”. + #4iwl + eiw-e U2~”2 +...), (39)

Introducing the previously defined parameter scalings, the quantities p, q, r and s defined below

Eq. (26) are expanded as

P m P(–1/4)~–1’4 + Po + P(l/4)~1/ 4+... Y ~ w ~(–1/4)~–V4+qo +...,

(40)
l@+ T3/4e+rle +... ,~ m ~(1/2)~ s ~ s(l/2)(el/2) + “ . . ,

where p(_1j4) = (iwo) 112,2p. = [1+iw1/(iwo)112], 8p(1/4) = (iuo) ‘1/2 [1+4k2 +4iwz – (iwl )2/iwo],

q(_l/4) = (iwo/P)l/2, 2Pqo = [1 + iwl/(iwo/P)l/?] , ?-(1/2) = 5(1/2) = –iwop* , r(3/4) = +Jlp” ,

and ~1 = —iw2p* – @* Pk)2. Finally, the bi are conservatively postulated to have the expansions

~i = $-l)c-l + b(–3/4)e–3/4 + $1/2)e-l/2 + ... . ~ = 1, 2, 8,
i ‘z

bi = &l/2)#/2 + &l/4)e-1/4 + 6:0)+ ... . i = 3, 4, 5, 6, (41)

bi = 6$li4@14 + b~)eo + &i4)#4 + . . . . i = 7, 9, 10,

where the form of the latter expansions is again partly motivated by our previous analyses of more

specialized cases.

Substituting the above expansions into Eqs. (27) – (34) and equating coefficients of like powers

of q we obtain the leading-order conditions

‘–1’2) + ikzb~–1’2) + q(_llJ)b\–1’4) = iklb~–1’2) + ikzb~–1’2) + r(lJz)b$–l) = O,ikl b3 (42)

b;+ = –k*/p* , b~-l) = –(iwo)2/k , 6$-1/4) = 6$1/4) = 0, (43)

b[-l) + 6$-1)– 2/&l)= 0, &) = –(k/p*)(l + A;/P*) , (44)

where the last of these was obtained horn the leading-order difference of the first and second of Eqs.

(29) using the last of Eqs. (43). From Eqs. (43) and (44) we thus conclude that the leading-order

dispersion relation is given by

(iuo)2 = (k/p* )2(2A; + p*) , (45)

14



which is the same result as that obtained in the inviscid case when A& = O. In particular, Eq.

(45) implies that (iwO)2 ~ O for A; ~ - p*/2, which recovers the leading-order cellular boundmy

(35) for O(1) wavenumbers, but gives no definitive information regarding stability for A; < -p*/2

because iuo is purely imaginary in that region. That is, the stability of the basic solution in the

latter region is determined by the real parts of higher-order coefficients in the expansion (39) for

iw, although the fact that Zm{iwO} # O implies that disturbances have a pulsating character for

values of A; below the cellular stability boundary.

At the next order in the zmalysis of Eqs. (27) – (34), we obtain a second set of conditions

given by

(-1/4) + q(_~/4) bp + !70 b7(-1/4) + ~k2 b5 (-1/4) =() ,ikl b3 (46)

(–1/4) + ik2 b~‘-1’4) + r(l/2) b~‘–3’4) + T~3/4) b8(-1) = 0,ikl b4 (47)

‘3/4) = &l/2) =$-3/4) = bjiwl = 1 b~-1/2) = $1/4) = b$) = b$) : ;~-3/4) = 0, (48)

where the last of Eqs. (48) was deduced from the next-order difference of Eqs. (29). Finally, horn

the sum of the first of Eqs. (28) multiplied by ikl and the second of Eqs. (28) multiplied by ikz,

we conclude that b$–1’2) = iwo(1 — Aj/p*). However, the fact that iwl = O implies the need to

continue the analysis at the next order to determine iw2. Proceeding in this fashion, we obtain

from the previous results and Eqs. (29) – (34) at this next higher order a new set of conditions

given by

(-1/2) _ 2iW2= k(l – A;/p*) ,b$) – (k/itio)b~ b$)=o, (49)

b\-1/2)_ 2b$-1/2) = iwo(2kP – 1 + A;/p*) , (50)

WA) = ~wo[I – (A;/p*)2] , (51)b$-li2) – (A~/P*)bIO

–(k/tio)b\-li2) – (iwcJ112b~i4) – %w2 = zPk2 , #’4) = &’4) , (52)

where Eq. (51) was actually obtained from the next higher order difference of Eqs. (29), and the

second of Eqs. (49) was obtained from the sum of Eqs. (31) multiplied by ikl and Eqs. (32)

(-1/2), b~-112), &/4) andmultiplied by ikz. Equations (49) - (52) constitute a closed system for bl

iw2. Eliminating the first three of these in favor of the last and using the result (45) for iwo, the

dispersion relation for iw2 is finally obtained as

iwz = –2Pk2 + k(A;/p* – 1) [A;/P* + 1 + p*-1’4k-112A: (2A;/p* + 1)-3’4 ] . (53)

15
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Stability in the region A: < –p*/2 below the cellular boundary is determined by the real part

of iw2. In that region, the principal value of the complex factor in Eq. (53) may be written as

(A~/p*+l)-314 = [-(A~/p*+I)] ‘3j4e-3imi4, and thus the neutral stability condition Re{iwz} = O

leads to an implicit equation for the (pulsating) neutral stability boundary A; (k; A&, l’). In terms

of the new pressure sensitivity parameter ; defined by A; = —(p*/2) (1 + 6), where $ represents

the negative deviation, in units of p*/2 horn the cellular boundary A; = –p*/2, this boundary is

given by

i312(3 + 8)-2 [(3+ ;)(1 – t) + 81%]2 = c#2/k , a = 4A&4/p*. (54)

In the limit k ~ m, it is clear that that are two solutions of Eq. (54) given by 8 = O (i. e.,

A; = –p*/2) and ii w –I + 2( I + 2.Pk)l/2 (i.e., Aj/p* N –(1 + 2Pk)1i2. Thus, the pulsating

boundary is clearly multi-valued, as in the inviscid case (Fig. 3), with one branch approaching
. .

the cellular boundary and the other branch approaching the pulsating boundary for Ae = O (Fig.

2) in the limit of large k. More generally, Eq. (54) may be rewritten as a cubic equation for the

inverse relation k(~) as

64P2k3 + 16(3+ b)(l– &)Pk2 + (3 + 6)2(1 – &)2k– alj2(3 + ~)2&-3i2 = 0, (55)

which is clearly seen to collapse to the previous inviscid result [7] in the limit P + O. For arbitrary

P, typical plots of k(~) are shown in Figs. 4a–d, which, when rotated -90° so that the k-axis is

horizontal, is readily interpreted in the context of Figs. 1 – 3, where the lines A; = –p*/2 and

A; = –p” correspond to ; = O and 6 = 1, respectively. It is clear that these curves asymptote

to the lines ; = O and ~ = –1 + 2(1 + 2Pk)112 as k + m, where the latter corresponds to the

viscous pulsating boundary in the limit A: ~ O. They cross the line ~ = 1j w~ch corresponds to

the inviscid pulsating boundary in the above limit, at k3 = d12/4P2. The fact that the pulsating

boundary becomes C-shaped (in the rotated frame of reference) for A& >0 implies that steady,

planar burning is intrinsically unstable for sufficiently small wavenumbers. In addition, since the

portion within the C-shaped curve is the stable region, any crossing of the C-shaped boundary

from the stable to the unstable region corresponds to the onset of a pulsating instability. As A~

increases, the turning point of the C-shaped pulsating boundary shifts to larger values of k. On

the other hand, as A: becomes small, the turning point shifts to small values of k such that

16



this point eventually leaves the O(1) wavenumber region for which Eq. (54) are valid. Indeed, it

turns out that the transition to separated pulsating and cellular branches occurs as Ae decreases

through O(C112) values for intermediate O(e112) wavenumbers [7]. Thus, as A: becomes small, the

original pulsating and cellular boundaries are recovered in the O(1)wavenumber regime, but as A~

becomes large, the original cellular boundary lies within the unstable region for O(1) wavenumbers

and the bssic solution becomes intrinsically unstable to oscillatory disturbances.

Composite Neutral Stability Boundary

A composite asymptotic solution for the neutral stabili~ boundary in the regime Ae N 0(d14)

is thus obtained by matching the cellular and pulsating boundaries in the far outer wavenumber

regime, where the former is given by Eq. (36) and the latter by the second of Eqs. (38), with the
. .

appropriate solution branch of Eq. (54) in the O(1) wavenumber region. In particular, reverting

bsck to the parameter A;, we denote the two solution branches of Eq. (54), which correspond to the

portions of Figure 4 that lie to the left and to the right of the turning-point minimum, by A~(0)”) (k)

and A~(O;~J(k), where the superscript “o” denotes, as before, the outer, or O(l), wavenumber region

and the superscripts “u” and “1” denote the upper and lower (rotate Figure 4 by -90°) portions

of the double-valued pulsating boundary AJ(Ic). Along the upper branch, AJ(0)u) ~ –p*/2 (i. e.,

&-O) ask ~ co, which can be matched with Eq. (36) since A;(f) - –p*/2 as kf -+ O. Similarly,

AJ(O*~)~ –p*(l + 2F’k)1J2 (i.e., ; ~ –1 + 2(1 + 2Pk)112) as k ~ co, which clearly matches the

viscous pulsating boundary given by the second of Eqs. (38) in the far outer wavemunber region.

As a result, a leading-order composite stability boundary spanning both the outer and f= outer

wavenumber regions is given by

{

A;(o’u)(k)-
2p*p*P [1+ ek(p*V + 2P*P + %“p)]

$+
A;(k) - 4p*P(l + p*Pek) – (1– [1 + 4p*2P2e2k2]li2) (p*~ + 2P*P) (56)

A;(o’’)(k) ,

for A; ~ AJC, where Ajc denotes the turning point calculated horn Eq. (54) and the second term

in the top expression has been expressed in terms of the outer wavenumber variable k.

The composite stability boundary is shown in Fig. 5. Based on the above construction,

the lower branch of Eq. (56) is a pulsating boundary for all wavenumbers, whereas the upper

branch transitions from a pulsating boundary for O(1) wavenumbers to a cellular boundary for

-., , ,, ... . . - ........ ... . ... , .,!r.. - ,.. ,d . . . . ...,..’?.- . .. -., - .s. . . .
..,.



O(e-l) wavenumbers. Indeed, from Eq. (45), the size of the upper region of oscillatory instability,

which is bounded below by the upper branch of the pulsating stability boundary and above by the

region of nonoscillatory instability beyond the outer cellular boundary A; N –p*/2 for A~ = O,

shrinks to zero as k becomes large on the O(1) wavenumber scale. In this regime, the lack of a

stable region for sticiently small wavenumbers thus implies an intrinsic instability to long-wave

pulsating perturbations.

Conclusion

The present work further extends our recent formal treatment of hydrodynamic instability

in liquid-propellant combustion. The analysis is based on a generalized Landau/Levich model in

which the dynamic motion of the liquid/gas interface, assumed to coincide with the combustion

front, realistically possesses both a pressure and temperature sensitivity. In the present work,

the fully viscous case was considered, thereby generalizing previous analyses in which either the

viscosity of the fluid and/or the temperature sensitivity of the reaction rate was neglected. As in

these preceding studies, the smallness of the gas-to-liquid density ratio was used to define a small

parameter that allowed an asymptotic treatment of a rather complex dispersion relation. Specifi-

cally, it was again shown that in addition to the classical Landau, or cellulak, stability boundary,

there exists a pulsating hydrodynamic stability boundary as well. For sufficiently small values

of the temperature-sensitivity parameter, there is a stable region between these two boundaries

corresponding to a range of negative pressure sensitivities for which steady, planar burning is stable.

As the pressure sensitivity decreases in magnitude, the cellular stability threshold is crossed,

leading to classical Landau instability. Surface tension, viscosity (both liquid and gas), and gratity

are all stabilizing effects with respect to this type of instability. However, only gravity stabilizes

small-wavenumber disturbances, and thus Landau instability becomes a long-wave instability in the

reduced-gravity limit. Alternatively, as the pressure-sensitivity parameter increases in magnitude,

the pulsating boundary is crossed, and liquid-propellant combustion becomes unstable to oscillatory

perturbations. This type of hydrodynamic instability is more sensitive to the stabilizing effects of

(liquid) viscosity than is the cellular boundary, but the stabilizing influence of viscosity does not

extend to small wavenumber disturbances, and gravity turns out not to have a significant effect on



this type of hydrodynamic instability. Consequently, for sufllciently large values of the temperature

sensitivity parameter, the pulsating boundary develops a turning point and becomes C-shaped.

In this parameter regime, corresponding to ratios of the temperature-to-pressure sensitivities of

the order of 200 – 1000, steady, planar combustion is intrinsically unstable to nonsteady long-

wave perturbations. In that case, the pulsating form of hydrodynamic instability is predicted to

dominate, leading to large unsteady cells along the burning liquid/gas interface.
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Nomenclature

burning rate

pressure-, temperaturesensitivity coefficients

coefficients in perturbation solution (i = 1, 2, . . . , 10)

rate-of-strain tensor

Froude number

inverse Froude number (gravitational acceleration)

perturbation wavenumber

unit normal

pressure

Prandtl number

quantity defied below Eq. (26)

quantity defined below Eq. (26)

time variable

perturbation velocity vector

velocity vector

moving coordinate system

surface-tension coefficient

small bookkeeping parameter

perturbation pressure

gas-to-liquid thermal diflusivity ratio

gas-t~liquid viscosity ratio

gas-to-liquid density ratio

perturbation in location of gas/liquid interface

location of gas/liquid interface

complex perturbation frequency

Subscripts, Superscripts:

i inner wavenumber regime or integer variable

~ far outer wavenumber regime

1 liquid

9 .!3=

o ~uter wavenumber regime

* scaled quantity
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Figure Captions

Fig. 1. Asymptotic representation of the cellular hydrod~amic neutral stability boundaries. The

upper and lower sets of curves correspond to the normal and reduced-gravity regimes,

respectively (curves drawn for the case e = .04, p’ = 1.0, g = 6.0, g* = 2.0). The solid

curves correspond to the inviscid limit (P = O) with nonzero surface tension (~ = 2.5).

The dash-dot curves correspond to nonzero surface tension (~= 2.5) and liquid viscosity

(P= 1.0), but zero gas-phase viscosity (p*P = O). The dash-dot-dot curves differ from

the dash-dot curves by the addition of gas-phase viscosity (p*P = 1.0), and are similar to

the dash-dot-dot-dot curves, where the latter correspond to larger viscosities (P= P*P =

2.0). The dash-dot-dot-dot-dot curves correspond to a viscous case (P= p*P = 1.0), but

with zero surface tension.

Fig. 2. Asymptotic representation of the pulsating hydrodynamic stability boundary for the vis-

cous case (P > O). The region between the pulsating and cellular boundaries (the latter

are shown on an expanded scale in Fig. 1) is the stable region with respect to hydrody-

namic instability.

Fig. 3. Composite pulsating/cellular hydrodynamic stability boundary for Ae w 0(e114) in the

limit of zero viscosity.

Figs. 4a-d. Pulsating hydrodynamic stability boundaries for k w O(1) and Ae - 0(#14) in the

general viscous case. Figures are drawn for P* = 1 and (a) P = .001; (b) P = .01; (c)

P = .1; (d) P = 1.0.

I

Fig. 5. Composite pulsating/cellular hydrodynamic stability boundary for Ae N 0(e114) in the

general viscous case.
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