
UCRL-TR-211040

MObIUS (Massive Object Integrated
Universal Store): A Survey Toward a
More General Framework

J. K. Sirp, S. T. Brugger

April 5, 2005



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 

 
 
 

 

 This work was performed under the auspices of the U.S. Department of Energy by University of 
California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48. 
 



M O b I U S
(Massive Object Integrated Universal Store)

A Survey Toward a More General Framework

Jennifer K. Sirp 
and

S Terry Brugger

February 23, 2004

Abstract

General frameworks for distributed computing are slowly evolving out of Grid, 
Peer Architecture, and Web Services.   The following results from a summer long survey 
into distributing computing practices have revealed three things.   One, that Legion and 
Cactus-G have achieved the most in terms of providing an all-purpose application 
environment.   Two, that extending a local programming environment to operate in a 
highly distributed fashion can be facilitated with toolkits like Globus.   Three, that 
building a new system from the ground up could be realized, in part, by using some of the 
following components; an Object Oriented Database, Tapestry,  JXTA, BOINC, Globus, 
component architecture technology, XML and related libraries, Condor-G, Proteus, and 
ParMETIS.  

Introduction

This paper offers the results obtained after conducting a broad survey of 
computer systems.   The objective of this research was to locate systems that could 
potentially contribute to the development of MObIUS, a general, distributed, Object-
Oriented, framework.   In contrast to current implementations of Web Services, Peer-to-
Peer and computational Grid middleware, this system should be able to efficiently handle 
a wide variety of applications and adapt to a dynamic environment.   Many systems were 
evaluated over the summer.   Those showing the most promise are featured here.   The 
requirements that were used as a means of measurement and evaluation throughout this 
study are discussed on the page that follows.  



2

Requirements

1.  Scalabity:

The proposed application should be highly scalable, ranging from a single 
machine to a nation-wide grid or peer environment.   The system should have the ability 
to make full use of the resources that are currently available.   

2.  Application Development: 

The framework should allow the application developer to compose, deploy, and 
manage applications while operating at a high level of abstraction.  

3.  Interoperability: 

 An application developer should be able to define and compose new objects on 
new nodes without the need to worry about binary compatibility.

4.  Granularity: 

Data modeling should be achieved through object-level granularity.   Ultimately, 
this will allow concepts such as versioning, capabilities, distribution, partitioning, 
performance, and migration to be applied to any object regardless of size or complexity.

5.  Access: 

An object level security mechanism will be used in this system, providing security 
from the ground up.  Access to all objects should be achieved through capabilities.   A 
capability acts as a reference to an object, defining both a name and access level.   An 
object may have any number of capabilities.  

6.  Distribution and Migration:

Objects should be initially distributed across the available store (primary and 
secondary, which may be on different nodes).   The system should also impose object 
migration based on access patterns and resource availability (i.e., load balancing and 
distributed computation).  

7.  Performance:

Replication of (caching) objects should occur based on access patterns.  
Furthermore, the system should allow a user to specify the minimum level of replication 



3

of an object for robustness.   Optimally, the system will perform automatic partitioning by 
splitting and distributing large objects across nodes for efficiency.

8.  Versioning: 

Versioning should be provided for objects and allow multiple branches to occur.  
Users should be able to disable versioning for efficiency.   Users should also be able to 
own different versions or branches.  Replicants should be updated upon user request or 
automatically by the system.   Replicants should have the ability to be read-only, write 
through, or versioned writes with conflict resolution.

Organization

This paper is organized into three parts.   The first section briefly describes the 
current state of distributed computing to establish a background for why we feel this 
project is important.   The second section explores systems that have achieved some 
aspect of what we hope to accomplish and discusses what these systems can contribute to 
the project.   Section three contains comparison charts which contrast the differences 
between various systems.  

1.  Background

At the moment, distributed computing has manifested itself in three 
distinguished realms, namely, Grid, Peer-to-Peer, and Web Services.  What is interesting 
is that while each of these technologies differs based on the interests of the people behind 
them, they are all moving toward the same goal: finding a more general, application 
framework [1].  There is a definite need for a general application environment that can 
make working with complex aggregations, like Grids and Peer groups, easier for the 
developer.  It is in the intersection of Grid, Peer, and Web technologies where it seems 
most reasonable that an effective middleware solution lies.  

Computational Grids have had great success from a high performance and 
scientific standpoint.   However, their success has been attained from harnessing the 
power of a few enormous machines rather than a large collection of less powerful 
computers [1].   As a result, their middleware hasn’t been designed with the need to 
operate on a highly dynamic bed of resources.   Furthermore, the scientific community 
has been focused on optimizing performance for specific computation problems.   These 
individual projects have been focusing their energy into either gathering resources, in 
terms of Virtual Organizations, with a variety of security and interests issues, and/or fine 
tuning algorithms for the Grid environment.   As a consequence, Grids are difficult to 
program.   The application developer has to work at an undesirable level of abstraction, 
paying attention to a variety of details about the architecture beneath [1].  



4

Web Services have had great success from the client/server perspective of distributed
computinga.   Currently, Web Services have achieved the ability to integrate 
homogeneous distributed systems that are running the same client/server environment 
[2], and seem to be doing well in heterogeneous environments, for example, when mixing 
Windows and Unix servers.   Web Services have been able to provide an easy 
development environment for the programmer with .NET and J2EE, although they are 
somewhat limited as to the types of services that they can provide.   The solution to their 
interoperability problems has been light-weight, flexible middleware, namely SOAP 
(Simple Object Access Protocol) [2].  Web Services are based on a simple messaging 
protocol to ease application development and provide interoperability among disparate 
systems.  UDDI (Universal Discovery, Description, and Integration) and WSDL (Web 
Services Description Language) handle the dynamic discovery and composition of these 
servicesb.   

Peer-to-Peer technology is another distributed computing paradigm that has 
demonstrated promise in the hopes of providing a ubiquitous framework for applications.  
Peer technology has been unmatched in regards to its degree of decentralization and 
ability to adapt to unstable resources [1].  Peer architecture has been designed with the 
need to be highly self-organized.  However, the peer community is also fragmented in 
that peer groups are designed around specific purposes: instant messaging, file sharing, 
and single purpose programs.  As it stands, users are required to download multiple 
client/server programs in order to obtain a specific service.  Furthermore, Peer-to-Peer 
architectures do not take data storage and application processing with inter-peer 
dependencies into account [1].

The focus of our research has been aimed at the aforementioned technologies.  In 
general, by combining the best aspects of each, a framework could be achieved that 
would provide a solution to the difficulties in distributed computing.  Combining the 
flexible protocols used in Web Services, the self-organization of Peers, and the high 
performance development environment of Grid architecture, a versatile and scalable 
system could easily evolve.   The proposed middleware would be able to flex with the 
dynamic nature of the Internet and be able to take full advantage available resources.  

a For clarification, the term Web Services is used here to describe client/server applications.   In a 
typical Web Services scenario, a client application sends a request to a service provided at a given URL 
using the SOAP protocol (XML over HTTP).  The service receives the request, processes it, and returns a 
response to the client.

b UDDI (Universal Discovery, Description, and Integration) is a specification for a registry that is 
used to publish WSDL documents.  This registry combined with WSIL (Web Services Inspection 
Language) is used to locate services.   Web Services Description Language (WSDL) is a standard interface 
for Web Services.  WSDL is defined by an XML schema.  These documents allow multiple protocols to be 
associated with each service.



5

2.  Systems Overview

The following section presents and discusses the various systems that were 
evaluated.  The most promising of these are Legion and Cactus-G.  Both of these systems 
encompass a majority of the proposed requirements.  Furthermore, these systems are 
based on a component or object model, lending them to being easily extendable.  In case 
these systems are not applicable, other components were surveyed as potential 
contributors MObIUS.  These subsystems are described and discussed below.

2.1 System Extension

Four systems were evaluated in this category.  Two of these, Legion and Cactus-
G, are the best representatives of complete systems that address a majority of the 
requirements.  Both systems follow an Object-Oriented design making them feasible 
candidates for extension.  Amoeba and NLTSS (Network Livermore Time Sharing 
System) were also examined, however, NLTSS has been retired and Amoeba appears 
unstable.  For a detailed comparison of all four systems, see Appendix A, Table 2.1.

Legion is a distributed Object-Oriented middleware system that runs on the 
operating system of a variety of machines.  Systems that run Legion, contribute resources 
into a collective pool that is then presented to the user as if it were a single machine.    
Legion was built on top of Mentat, a very stable and efficient parallel processing 
development environmentc.  As a result, high performance, interoperability, and 
application execution are automatically achieved.  All objects are Legion objects and are 
distributed over the available resources.  The object model enables developers to create 
and reuse application code easily.  An IDL (Interface Description Language) is used to 
provide interoperability among the objects over remote locations.  Unlike CORBA 
(Common Object Request Broker Architecture), Legion developed its object 
communication techniques with high performance in mind, making it better suited for 
parallel programming over a wide-area network.  Legion is implemented in C++ and 
follows an object design model, making it a likely candidate for extension.  

Another potential candidate for extension is Cactus-G.  Cactus began as a HPC 
(High Performance Computing) scientific development environment that was later 
extended to run on Grid architecture.  MPICH-G2, a Grid enabled implementation of 

c Particularly well-suited for message passing, non-shared memory architectures, Mentat is an 
Object-Oriented parallel processing system.  Objectives of Mentat include; easy-to-use parallelism, high 
performance through parallel execution, and interoperability.  Mentat utilizes the Object-Oriented paradigm
to provide high-level abstractions for the complex aspects of parallel programming, such as 
communication, synchronization, and scheduling.  The run-time system constructs program graphs, 
manages communication and synchronization, and is portable across a wide variety of MIMD architectures.  
Mentat has been distributed to over 100 different sites and is freely available.



6

MPId (Message Passing Interface), provides the communication protocol over a wide area 
network and Globus is used for authentication services.  Cactus was originally developed 
as a framework for the numerical solution of Einstein’s equations, and has now evolved 
into a more general problem-solving environment.  This new framework allows 
developers to work at a high level of abstraction from the complex Grid architecture 
underneath.  Cactus runs on the user’s operating system like Legion and features a 
microkernel design, which enables ‘thorns’ to be added separately.  Different modules, or 
thorns, can implement different versions of an application, solve completely different 
problems, or provide general services such as data migration and replication.  The code is 
freely available and the project representatives are very willing to assist and answer 
questions.  The source code for Cactus is available through CVS and compiles easily; 
however, it will not actually do anything unless thorns are added.  Thorns provide the 
applications and infrastructure [4].  The modular design also allows programmers to stack 
modules on top of one another and switch out components based on the desired 
implementation.  The Thorn Library is freely available and currently offers data 
distribution, migration, parallel I/O, and check pointing.  Object versioning has not been 
addressed but could be added as a thorn.  Thorns can be written in Fortran, C or C++.  

Neither Cactus-G nor Legion directly offers object versioning, and provisions for 
automatic data partitioning at run-time are questionable.  However, it seems reasonable 
that a Legion object could be extended and versioning capabilities could be added.  
Furthermore, it may be possible to address run-time partitioning with another application 
like ParMETIS.  For Cactus-G, it may be possible to implement thorns that are capable of 
versioning and partitioning and add them as separate modules.

Another possibility is to use Globus to extend a local system, since it can manage 
many of the underlying details associated with distributed computing.  A current trend is 
for organizations to take their existing applications and deploy them over a Grid for better 
performance.  Academic projects such as Cactus-G and Condor-G were once local 
systems that have now been extended with the Globus Toolkit.

Developed at Argonne National Laboratory, the Globus Toolkit is an open source, 
OGSI (Open Grid Services Infrastructure)e compliant implementation of libraries and 
tools designed to get an application ‘grid-enabled’ [5, 6].  The toolkit provides 
management, security, discovery, and monitoring of Grid resources, all from a standard 

d MPICH-G2 is a Grid enabled version of MPI 1.1 that has used the Globus toolkit to operate on a 
highly distributed environment.   MPICH-G2 uses TCP for inter-machine messaging and MPI when 
applicable.

e OGSI (Open Grid Services Infrastructure).  The OGSI refers to Grids that are based on a Web 
Services model.  OGSI uses WSDL to define accessible Grid services that are located across the Internet 
via SOAP (XML/HTTP).



7

Java API.  Version 3 of the toolkit specifies a container architecture in which Grid 
services can be placed to run in a specified hosting environment.  The container 
architecture allows services to be developed without having to worry about the 
underlying protocols and transport bindings.  Services publish their existence through 
WSDL (Web Services Description Language).  Another benefit of Globus is that it 
provides excellent support for organizations that are implementing distributed 
applications.

2.2 Component Systems

Should it be necessary to design and build a system from the ground-up, the 
following section summarizes and discusses systems that could be of use.  Relevant 
components to this project have been identified by the following categories: Peer 
Technology, Component Architecture, File Systems, Messaging and Communication, and 
Optimizations.  The most applicable examples of each system category have been focused 
on in detail.  

2.2.1 Peer-to-Peer Technology

Peers have naturally evolved into being highly self-organized in order to adapt to 
a dynamic environmentf.  In this regard, borrowing from peer technology could be 
beneficial.  The decentralized nature of these systems allows them to be autonomous and 
tolerant to a highly dynamic environment, such as the Internet.  Furthermore, advanced 
messaging algorithms and searching mechanisms used by third generation Peers are far 
more efficient than earlier approaches which used broadcast with TTL (Time To Live).  
The most relevant Peer applications to MObIUS are Tapestry, JXTA, and BOINC.  

Tapestry is a third generation, overlay, Peer-to-Peer infrastructure that is 
continually being developed at the University of Berkeley.  Tapestry offers high-
performance, reliability, efficient messaging, adaptive algorithms, and the guarantee of 
file delivery in an operating network.  Instead of using the broadcast and flood approach 
that can bog down the Internet, Tapestry uses a distributed hashing algorithm to 
efficiently message nodes and guarantee deliveryg.  Tapestry also utilizes ‘hot spot 
caching’ where it publishes pointers to cached documents that are frequently accessed to 
boost performance [7].  An implementation of Tapestry has been coded in Java and 
features an extensible API.  The Java implementation also enables the application to be 
highly portable since it can run on any machine with a JVM.  Furthermore, Ocean Store 
has chosen to implement on top of the Tapestry infrastructure.  Though just released 

f The dynamic environment here refers to unreliable IP addresses and the disconnectivity of 
resources.

g Earlier Peer ancestors, like Gnutella, have been unable to guarantee files in an operating network.  
Implementations of Gnutella usually keep the TTL (Time To Live) of queries fixed.  Resources beyond the 
specified number of hops are unreachable.  



8

(October, 2003), Ocean Store is a global storage application that is designed to offer what 
typical federated file systems have achieved, on an unreliable bed of storage resources 
such as the Internet.  Nodes running Tapestry would be able to use Ocean Store as a 
global storage mechanism.

Another approach to borrowing from Peer architecture is to use a toolkit like 
JXTA (Juxtapose) or BOINC (Berkeley Open Infrastructure for Network Computing) and 
build a specialized Peer application.  Both JXTA and BOINC are in the early stages of 
development and have growing communities of contributing developers.  BOINC 
provides a C++ API and has just released their toolkit (September, 2003).  Alternatively, 
JXTA provides a Java API and is also now available for download.

2.2.2 Component Architecture

Component or object-based architectures such as CCA (Common Component 
Architecture) and CORBA (Common Object Request Broker Architecture) offer an 
Object-Oriented approach to distributed computing.  These models propose standards that 
describe what an object should look like and how the corresponding framework that 
handles them should operate.  Components provide an easy way for a programmer to 
develop, compose, and manipulate applications.  Applications can be created with 
existing components regardless of what language or architecture they were initially 
implemented.   Component models can enable complex applications to be managed by 
scripts, and legacy applications can often times be easily wrapped in order to run on the 
new infrastructure.  

CORBA can provide interoperability between different languages and platforms 
and locations via an IDL and can be implemented with Grid technology.  CORBA 
operates by using an IDL communication mechanism providing transparency and 
interoperability. Object references persist, but are not utilized as capabilities.  A Client 
makes a request through an object reference to a distributed object which is typed by an 
interface.  The ORB (Object Request Broker) delivers the client request and returns the 
result.  

CCA is a specification developed by the DOE that describes how to build portable 
software components that can then be reused in any CCA framework.  The CCA has been 
focused on building applications and components for massively parallel computers.  CCA 
supports Java, C, Python, C++ and Fortran.  CCA ports are synchronized and designed 
for direct transmission between the components.  Three implementations of this 
architecture are Ccaffeine (SPMD), Uintah (Threaded), and XCAT (Distributed).  

Although no detailed comparison was drawn between the two technologies, 
CORBA is clearly a much larger solution that has had more time to evolve, and many 



9

free implementations of the standard exist.h CORBA offers bindings for C++, Java, Ada, 
Smalltalk and others.  CCA offers fewer features and is relatively new, but is likely to be 
more reliable.  Two advantages that CCA has over CORBA are that it was developed 
with high performance computing in mind and it is simpler to learn.

Component architecture could help achieve interoperability and provide a high 
level of abstraction to the programmer.  Businesses that offer Web Services have been 
using CORBA to achieve a very high degree of interoperability among different 
machines and environments.  This kind of technology has also been directly applied to 
science.  XCAT, in particular, has implemented a Web Services modeli, using CCA, on a 
Grid environment.  Multiple application components can be linked together and managed 
through the engine, to achieve a particular task.  Furthermore, the components can be 
deployed on the Grid and then composed together dynamically at runtime.  XCAT uses 
XML to describe the components and XSOAP, previously known as SOAP RMIj, to 
communicate between them.  Currently, XCAT is looking to implement Proteus (see 
Section 2.2.4) to achieve better performance and is working on using WSDL as a way to 
describe what kinds of communication mechanisms various components support.  

2.2.3 File Systems and Storage

File systems and databases available today have the ability to satisfy a variety of 
the proposed system’s requirements; such as, fault tolerance, versioning, persistence, and 
transparency.  The systems evaluated here fall roughly into three categories; Distributed 
File Systems (DFS), Databases, and Federated File Systems.  Among all the systems 
evaluated, Coda, FramerD, Objectivity, and Lustre offer the most potential.   

Coda is an advanced distributed file system that has been designed around AFS, 
and therefore provides a global namespace.  To be an effective distributed system, Coda 
has resolved the associated disconnectivity issue by providing client-side caching and 
client modification logs to update servers when a client reconnects.  Though almost all 
OODB (Object Oriented Database) distributions offer these capabilities, what makes 
Coda unique is a sophisticated, optimistic, locking mechanism that provides conflict 

h Electra, U Colorado, Xerox, JacORB, TAO, Jorba, omniORB, Mico, Arachne, ORBit 
(http://www.jetpen.com/~ben/corba/orbmatrix.html)

i An adaptation of Web Services technology has been realized in Grid Portals.  Like the XCAT 
Science Portal and NASA IPG Launchpad, Portals provide an easily configurable GUI that can send 
control information to a running simulation.  Complexity is masked from the user via the web GUI.  
Messages can be sent to a simulation with SOAP allowing the user to manipulate their application.  
Typically, these applications use a set of scripts to obtain a proxy certificate, configure the requested 
application for the user, and contact the application factory to generate an instance of the program.

j XSOAP is a C++, Java implementation of the SOAP protocol.  



10

resolution and offers check pointing at the server level.  Data is accessed at the file level 
and stored in Volumes on servers; object-level granularity is not supported.  Other 
systems that were evaluated, but found less relevant, based on design purposes, were 
GFS, NFS, the Elephant File System, and Intermezzo.  

As an alternative approach to storing massive amounts of data, Object-Oriented 
Databases come equipped with features like encryption and user authentication, 
versioning of classes, XML support, fault-tolerance through disconnectivity, client-side 
caching for performance, and automatic handling of updates.  Common OODB’s on the 
market are able to offer everything that Coda provides except for a similar conflict 
resolution scheme.  Instead, OODB’s typically approach conflicts with ‘last guy wins.’

 OODB’s can approach operations in a distributed context by storing data in 
different volumes across multiple locations.  Others, like Objectivity, approach data 
distribution in a federated environment, offering complete transparency across multiple 
servers and databases.  In other words, to the user, the data appears and responds as if it 
were local.  OODB’s do not offer automatic data partitioning or redistribution.

 Unlike a RDBMS (Relational Database Management System), Object-Oriented 
Databases are explicitly designed to handle objects and offer full support for concepts 
associated with the Object-Oriented paradigm such as encapsulation, inheritance, and 
polymorphism.  The primary method for interacting with the database is through an 
Object-Oriented language, which can make accessing and operating on stored objects 
much easier for the programmer.  

An OODBMS will provide object persistence and maintain integrity and 
concurrency of objects.  In many OODB’s, an application class can simply be declared 
“persistent capable”.   Issues like storing base and derived classes, linking to the schema, 
and working with referenced objects are all handled automatically.  Some OODB’s 
maintain their access permissions at the object level.  

Although no OODBM found directly offers object-level versioning, OODBMS 
can support the concept.  OODB’s assign OID’s to all objects in the database completely 
independent of the primary key.   It would be possible to implement versioning by simply 
adding another field to the object schema and setting it to point to the known version 
OID.  It may also be possible to extend the notion of a capability to reference the OID.  

 It was fairly difficult trying to locate a free OODB.  Several projects and partial 
systems were found late in the survey and have not been fully explored.  OZONE is an 
open initiative for the development of an open source Java-based Object-Oriented 
database system, still in the development stage.  DB40 is an object database engine that 
has been implemented in Java and has been designed to work in a mobile environment.  
An even more promising system, which is currently available for download, is FramerD.   
Developed at MIT to support machine learning, FramerD is optimized for pointer-



11

intensive data structures that are often used by semantic networks, frame systems, and 
many intelligent agent applications.  As a result, the design addresses what makes many 
applications obsolete in later years: the need to make an inflexible forward declaration of 
an object.  

Federated systems are another storage possibility; these systems provide a global 
namespace and can pool together a vast number of storage resources into a common 
access source.  The main benefit behind this approach is that it enables the system to 
scale both upward and downward to any degree.  Possibilities for Federated systems are 
the Avaki Data Grid, the Lustre file system, and Objectivity’s OODB.

Lustre is an open source, distributed, object-based file system that is being 
developed under ASCI.  Lustre provides significant advantages over distributed file 
systems including:  running on commodity hardware, using object based disksk for 
storage, and utilizing metadata servers for storing file system information.  Replicated, 
failover metadata Servers (MDS’s) maintain a transactional record of high-level file and 
file system changes.  Distributed Object Storage Targets (OST’s) are responsible for 
actual file system I/O and for interfacing with storage devices.  Lustre supports strong file 
and metadata locking semantics to maintain coherency of the file systems even in the 
presence of concurrent access.  File locking is distributed across the storage targets that 
constitute the file system.  Each OST handles the locks for the objects that it stores.  
Lustre is due to be released at Lawrence Livermore on October 1, 2003.

 Avaki is a commercial distribution of Legion.  From a Federated perspective, 
Avaki is impressive in that it is able to carve up resources on one machine or millions.  
Individuals willing to contribute resources designate how much they are willing to donate 
to the pool, much like Legion.  Avaki uses a capability-like system for access control and 
has been ported to a wide variety of architectures.  However, the granularity does not 
extend to the level of an object.  

The systems discussed here were discovered as being the optimum choices for a 
distributed system, a database system, and a federated system.  Coda is not a likely
candidate for use, simply because it has been surpassed by current implementations of 
OODB’s and supports a limited variety of architectures.  Lustre appears as though it will 
surpass Avaki as a Federated system with its regard for object-level granularity and 
parallel I/O.  If an Object-Oriented database approach is to be taken, Objectivity appears 
to be the only to offer a federated view of the distributed resources.  FramerD holds 
potential as a free OODB system that could be extended.  Other systems evaluated in this 

k  Object-based Disks (OBD’s) allow for better efficiency over conventional block access and 
storage.   An Object-based schema is applied to the disk that allows collections of data to vary in size as 
opposed to a predetermined or fixed block size. 



12

category but not found applicable include GOOD’s (Graph-Oriented Databases)l.  
Appendix D contains a comparison of the top three commercial OODB’s.  

2.2.4 Messaging and Communication

Many communication mechanisms were evaluated in terms of efficiency, 
interoperability, and their level of abstraction.  It is apparent that no single protocol will 
be able to work effectively for HPC and at the same time be flexible enough to work with 
a highly heterogeneous collection of machines, such as the Internet.  The need for a 
multi-protocol library seems essential in order to achieve both of these requirements.  
Object models such as CORBA and CCA offer one approach; however, they do not solve 
all interoperability and performance issues.  These architectures can help provide 
persistence and maintain stateful communication, but they cannot be the only solution. 

The trade-off in communications is fairly straight forward: to gain 
interoperability, performance must typically be sacrificed.  Scientific floating point 
numbers are not well represented as text and can eat up extra bandwidth.  However, it is 
possible to describe the communication protocols supported by two machines with XML 
and then let them determine which way is the most effective to transfer the data.  Two 
machines that are interoperable through a high performance protocol like MPI should be 
allowed to communicate that way.  Furthermore, if machine architectures are compatible 
then binary transfer should be supported.

A multi-protocol library should provide a common denominator protocol (e.g., 
SOAP), allow the user to switch between protocols dynamically, allow for the dynamic 
discovery of protocols, use metadata (XML for example) to define component interfaces, 
should allow for large, high–speed, data transfers, and should support automatic 
generation of stubs and skeletons.  While it is clear that SOAP can meet many of these 
requirements, for high speed transfer it is not a good candidate.  Java and C++ libraries 
like BinX, XDF, and XSIL offer support to the programmer for scientific data, but they 
are relatively new and have not been well tested.  These libraries can offer a more 
canonical representation of scientific types that XML has a difficult time describing such 
as streams, tables and arrays [9].  

PDBLibm (Portable Binary Database Library) and Proteus both address the 
interoperability issue associated with the transferring of binary data.  Though binary data 

l GOODB’s (Graph-Oriented Database).  Several Graph-Oriented approaches to databases are 
currently being pursued.  These are in the early development stages and are mostly research projects.  
These systems use a front end schema to represent relational data in a graph structure.  The data itself is not 
stored in this manner.  Some projects are using OODB’s as the backend for storage to achieve better 
efficiency.  

m PDB Lib is an LLNL development that is part of PACT tools.  



13

transfer is fast, it is not often applicable in heterogeneous environments.  Since different 
architectures and machines represent binary data differently.  

PDBLib follows the typical model for binary conversion (hub and spoke) where 
data is converted to a neutral format before passing, and the receiving end converts it 
back.  PDBLib adopts this approach but only applies the conversion when necessary, to 
avoid the overhead of translating data when dealing with two systems that are binary 
compatible.  PDBLib supports complex structures in two ways.  It has a mechanism 
similar to the C struct and also handles pointers so that entire trees can be passed [10].

Proteus is a multi-protocol library for integrating different messaging protocols 
such as SOAP, JMS, and binary within one system.  Clients developed with Proteus can 
communicate with any available messaging format without having to recompile.  Proteus 
is written in C++ and is planning on porting to Java.  Proteus objects act like a translator 
between two objects that speak different languages.  A main design goal was 
performance and Proteus has addressed this issue by not requiring deserialization 
(packaging into objects) in Grids and by allowing for the intermediary object to pass data 
direct without buffering [11].  

PBIO (Portable Binary I/O was also evaluated.  PBIO offers higher performance 
but does so by eliminating DTD checking on the receiving end of the transmission.  
XML, CORBA, MPI, and RMI have been compared for a variety of performance and 
interoperability criteria in Appendix E.

2.2.5 Optimizations

Several applications have been discovered that can provide the more specialized, 
performance requirements of MObIUS, specifically, data partitioning and migration.  It 
was difficult locating tools that operate with anything other than Fortran.  Paradigm is 
one HPC compiler that stood out, but only operates on Fortran77 code.

 Zoltan is a dynamic load-balancing library that has been developed and is in use 
at Sandia Labs.  The Library has been written in C, uses MPI, runs on Unix, and has been 
designed to run on parallel computers and clusters of workstations.   Zoltan offers 
automatic migration for objects that don’t have dependencies, like those in particle 
physics applications.  In addition, Zoltan can be used as a parallel static partitioner for 
non-dynamic applications.  

ParMETIS will automatically partition application data, both statically and 
dynamically, for parallel processing.  ParMETIS provides a parallel library that partitions 
data based on a weighted graph.  Nodes and vertices correspond to objects and have a 



14

weight that relates to their potential computational load.  Edges on the graph correspond 
to communication costs.  

Condor-G is a job scheduling application for HPC; it is an open source project 
developed at the University of Wisconsin.  Condor-G has utilized the Globus Toolkit for 
security and communication; it runs on Linux, Solaris, Digital Unix, and IRIX.  Condor-
G is highly scalable, freely available, and is a currently evolving project.  Although, it is 
regarded as one of the more sophisticated job schedulers (compared to Globus), it appears 
that very little of its functionality (load balancing, distribution, and migration) responds 
to the dynamic nature of the resources on which it operates.  

2.3 Conclusion

The current state of distributed computing holds relevance to the development of 
MObIUS.  There is a definite need for a general middleware that can address and adapt to 
a variety of architectures and maintain a high level of abstraction for the programmer.  
Grid, Peer, and Web Service technology are all merging toward a similar, general, 
infrastructure but have yet to achieve this goal.  Based on the findings to date, there is no 
single system available that achieves all of the requirements we have suggested.  Legion 
and Cactus-G are the best representatives of complete systems that could possibly be 
extended.  Legion’s object based design and native capability support make it a more 
suitable candidate for the proposed system.  With adequate versioning capabilities 
implemented, Legion could be evolved into MObIUS.

 Alternatively, if a new system is to be built, taking an existing application 
environment and extending it for a widely distributed environment with a toolkit like 
Globus, is one option.  Third generation Peer applications like Tapestry, JXTA, and 
BOINC offer another alternative.  With more efficient messaging algorithms, a natural 
ability to flex with the Internet, and user friendly API’s, Peer applications offer great 
potential to the development of a general framework.  Component architectures like 
CORBA or CCA can help provide the desired abstraction level to the programmer and 
interoperability among different platforms while natively supporting the notion of an 
object.  Tools like Objectivity, FramerD, and Lustre can provide storage solutions for the 
proposed system.  ParMETIS, Paradigm, and Zoltan can provide the more specific 
requirements such as data partitioning and data migration.  Finally, Proteus, PDBLib, 
SOAP, BinX and similar XML libraries could be utilized in a multi-protocol 
communication implementation.  



References

[1] I.  Foster and A.  Iamnitchi.  On death, taxes, and the convergence of peer-to-peer 
and grid computing.  In 2nd International Workshop on Peer-to-Peer Systems 
(IPTPS'03), Berkeley, CA, Feb.  2003.

[2] D.  Gannon, R.  Bramley, G.  Fox, S.  Smallen, A.  Rossi, R.  Ananthakrishnan, F.  
Bertrand, K.  Chiu, M.  Farrellee, M.  Govindaraju, S.  Krishnan, L.  Ramakrishnan, Y.  
Simmhan, A.  Slominski, Y.  Ma, C.  Olariu, and N.  ReyCenvaz.  Programming the 
Grid: Distributed Software Components, P2P and Grid Web Services for Scientific 
Applications.  Cluster Computing, 5(3), 2002.

[3] Ian Foster, C.  Kesselman, and S.  Tuecke.  The anatomy of the grid: Enabling 
scalable virtual organizations.  International J.  Supercomputer Applications, 15(3), 
2001.

[4] http://www.cactuscode.org/Documentation

[5] The Globus Project.  http://www.globus.org

[6] Thomas Sandholm, Jarek Gawr.  Globus Toolikt 3 Core – A Grid Service Container 
Framework.  July 2, 2003

[7] Ben Y.  Zhao, Ling Huang, Jeremy Stribling, Sean C.  Rhea, Anthony  D.  Joseph, 
and John D.  Kubiatowicz, Tapestry: A Resilient Global-scale Overlay for Service 
Deployment, IEEE Journal on Selected Areas in Communications

[8] Gary Kumfert.  Lawrence Livermore National Laboratory, September 2003

[9] Martin Westhead, Mark Bull, Representing Scientific Data on the Grid with BinX –
Binary XML Description Language.  EPCC, University of Edinburgh

[10] PACT overview.  http://www.pact.llnl.gov/Overview.html

[11] Kenneth Chiu, Madhusudhan Govindaraju, Dennis Gannon.  The Proteus 
Multiprotocol Message Library.  Indiana University, Computer Science Department, 
2002

Appendix A, Complete Systems



References

S.  G.  Parker and C.  R.  Johnson, SCIRun: A Scientific Programming Environment for 
Computational Steering, in On-line Proceedings of the 1995.

http://www.cs.wis.edu/condor

G.  Allen, T.  Dramlitsch, I.  Foster, N.  Karonis, M.  Ripeanu, E.  Seidel, and B.  Toonen.  
Supporting Efficient Execution in Heterogeneous Distributed Computing Environments 
with Cactus and Globus.  Proceedings of Supercomputing 2001.

http://www.cactuscode.org/Documentation

A. S.  Grimshaw, W.  A.  Wulf, J.  C.  French, A.  C.  Weaver, and P.  F.  Reynolds.  
Legion: The Next Logical Step Toward a Nationwide Virtual Computer.  CS 94 -21, 
University of Virginia, 1994.

A.  S.  Grimshaw, A.  Nguyen-Tuong, And W.  A.  Wulf, Campus-wide computing: Early 
results using legion at the University of Virginia, Tech.  Report CS-95-19, University of 
Virginia, Mar.  1995.

http://legion.virginia.edu

Madhusudhan Govindaraju, Sriram Krishnan, Kenneth Chiu, Aleksander Slominski, 
Dennis Gannon, XCAT 2.0: A Component-Based Programming Model for Grid Web 
Services.  Indian University, Bloominton, IN, Department of Computer Science –

www.extreme.indiana.edu/xcat/publications/tr-xcat.pdf

James Frey, Todd Tannenbaum, Ian Foster, Miron
Livny, and Steven Tuecke, Condor-G: A Computation Management Agent for Multi –
Institutional Grids.  

www.cs.wisc.edu/condor/condorg/

Avaki Poised to Take Legion and Commercial Grid Computing to the Edge.
2001 Online: News about the NPACI and SDSC Community, Volume 5, Issue 12 - June 
13, 2001

Appendix B, Peer-to-Peer Systems

D.  Milojicic, V Kalogeraki, R.  Lukose, K Nagaraja, J Pruyne, B.  Richard, S Rollins, Z.  
Xu, Peer-to-Peer Computing, Technical Report HPL-2002-57, HP Labs.  2002



References

http://www.objectstore.net

http://www.jxta.org

http://www.gotdotnet.com

http://www.oceanstore.cs.berkeley.edu

http://www.boinc.berkeley.edu

http://www.research.microsoft.com/~antr/pastry/

Ian Clarke, A Distributed Decentralized Information Storage and Retrieval System, 
University of Edinburgh, Division of Informatics, 1999

D.  G.  Andersen, H.  Balakrishnan, M.  F.  Kaashoek, and R.  Morris.  Resilient overlay 
networks.  In Proceedings of SOSP '01, Banff, Canada, Oct.  2001.

Appendix C, File Systems

P.  Braam, M.  Callahan, and P.  Schwan.  The Intermezzo File System.  In Proceedings of 
the 3rd of the Perl Conference, O'Reilly Open Source Convention, Monterey, CA, USA, 
Aug.  1999.

Bill von Hagen.  Distributed Filesystems for Linux.  Linux Magazine, November 2000

D.  S.  Santry et.  al.  Deciding when to forget in the elephant file system.  In Proceedings 
of the Seventeenth ACM Symposium on Operating Systems Principles, pages 110--123, 
December 12-15, 1999.

M.  Satyanarayanan, The Evolution of Coda, ACM Trans.  Computer
Systems, vol.  20, no.  2, May 2002, pp.  85–124.

Peter J.  Braham.  The Coda Distributed File System.  Linux Journal, June 1998.

Appendix E, Communications 

C.  Reichenberger, VOODOOA Tool for Orthogonal Version Management, Software 
Configuration Management: Selected Papers SCM-4 and SCM-5, pp.  61-79, Apr.  1995.



References

Java.sun.com Introduction to CORBA Short Course.  –
http://www.developer.javea.sun.com/developer/onlineTraining/corba/corba.html#co5

S.  Vinoski.  New Features for CORBA 3.0.  Communications of the ACM, vol.  41, pp.  
44--52, October 1998.

The DOE Common Component Architecture Project –
http://www.extreme.indiana.edu/~gannon/cca_report.html

Fei Sophie Gao.The Comparison of CORBA and SOAP.  ITSC UAH, February 28, 2002

eXtensible Data Format (XDF) Homepage, 
http://www.xml.gsfc.nasa.gov/XDF/XDF_home.html

M.  Govindaraju et al.  Requirements for and evaluation of RMI protocols for scientific 
computing.  In Supercomputing, 2000.

http://www.research-indiana.org/iu_proteus.html

Bierman, G.  M.  Using XML as an Object Interchange Format, Department of Computer 
Science, University of Warwick, May 17, 2000.

Why use MPI?.  http://www.mpi-softech.com, June 2003

What is MPICH-G2? http://www.hpclab.niu.edu/mpi/g2_body.html

F.  E.  Bustamante, G.  Eisenhauer, K.  Schwan, and P.  Widener, Efficient wire formats 
for high performance computing, in Proceedings of Super- computing '00 

Dan Wahlin, Top 5 Uses for XML.  XML & Web Services Archives.  
http://www.fawcette.com/xmlmag/2002_01/online/online_eprods/xml_dwahlin01_18/def
ault.asp



References

Works Consulted

Storage 

Ullman, J.D., A comparison Between Deductive and Object-Oriented Database Systems, 
Proc.  of the Int'l Conf.  on Deductive and Object-Oriented Databases, 1991, pp.  263-277

Steve McClure.  Object Database vs.  Object-Relational Databases., IDC Bulletin 
#14821E, August 1997

Ronald Bourret.  XML and Databases.   
http://www.rpbourret.com/xml/XMLAndDatabases.htm#xmlquery, July 2003

http://www.fastobjects.com

Capabilities

Mullender, S.  J.  and Tanenbaum, A.  S.  (1986).  The design of a capability-based 
distributed operating system.  The Computer Journal, 29:289-299.

T.  Riechmann and F.  J.  Hauck, Meta Objects for Access Control: Extending Capability-
based Security, In Proceedings of New Security Paradigms Workshop, Langdale, 
Cumbria, UK, 1997, pp.  17-22.

R.S.  Fabry, Capability-Based Addressing, CACM, vol.  17, no.  7, pp.  403-412, July 
1974.

Grids and Distributed Architectures

J.  Nick I.  Foster, C.  Kesselman and S.  Tuecke.  The Physiology of the Grid: An Open 
Grid Services Architecture for Distributed Systems Integration.  Open Grid Service 
Infrastructure WG, Global Grid Forum, June 22, 2002.

W.  Allcock, A.  Chervenak, I.  Foster, C.  Kesselman, C.  Salisbury, S.  Tuecke, The 
Data Grid: Towards an Architecture for the Distributed Management and Analysis of 



References

Large Scientific Datasets, Journal of Network and Computer Applications, 23:187-200, 
2001.

Geoffrey Fox Grids and Peer-to-Peer Networks for e-Science
at SPECTS 2002 meeting San Diego CA July 17 2002;
http://grids.ucs.indiana.edu/ptliupages/publications/presentations/

http://www.teragrid.org/

Roxana Diaconescu, Reidar Conradi, A Data Parallel Programming Model Based on 
Distributed Objects.  Norwegian University of Science and Technology, Computer and 
Information Science Department

O’Reilly Network,  http://www.oreillynet.com



Appendix A, part 1

Appendix A, part 1 – Complete Systems

system platforms
language support / 

interoperability
supports legacy 

code
transparency scalability

access control / 
capabilities

object / data 
distribution

object 
migration 
(failure)

object migration 
(forced for 

optimization)

data partitioning 
(load balancing)

data partitioning 
(parallelization)

Legion
Windows, Linux, 

Solaris
Excellent

YES (Fortran, Ada, 
C, and others)

High Excellent YES YES YES No Data No Data YES

Cactus-G

Linux, Windows 2000 
&NT, Alpha Linux, 

Alpha OSF, SGI, IBM 
SP, MacOS X, Fujitsu, 

Hitachi SR8000-F1, 
Sun Sparc, Cray T3E, 

Mac Linux, Open BSD

F77, F90, C, C++, also 
cactus development 

language for developing 
parallel applications, 

Requires Globus

YES High High N /A YES No Data No Data No Data YES

Amoeba

Sun-3, 4, Micro Sparc, 
3/60 &3/50 

workstations, Intel 
Pentium, mostly 

POSIX compatible, 
some UNIX 

interoperability 

ANSI C, Pascal, Modula 
2, GNU BASIC, Fortran 

77, Orca (parallel 
programming lang)

Limited languages High
No Data 

(estimated to be 
Good)

YES YES YES YES No No data

NLTSS
Legacy 

supercomputers at 
LLNL: Cray, CDC 7600

an alternative to UNIX, 
supports LTSS

YES YES High YES YES
NO, in event of 
failure, memory 

dump to disk
NO NO No data

The information used here has been collected from a variety of documented sources and interviews. For a list of sources that contributed to this sheet please refer to References, Appendix A, Complete Systems .

Complete Systems



Appendix A, part 2

Appendix A, part 2 – Complete Systems

system persistence replication 
updates 

replicants
versioning of 

objects
state of system developer cost / licensing extendibility design job scheduling performance

Legion YES YES YES

NO but does provide 
check pointing and 
supports concept of 

object states

up and running, 
continuing 
progress

University of 
Virginia

Unsure

federated file 
system was 
designed to 

permit extension 
of basic services

Object Oriented 
layered virtual 

machine
YES High

Cactus-G
YES, check 

pointing
NO N /A

CVS for 
development of new 

thorns

implemented and 
on going, new 

thorns are being 
developed

Open Source 
research 
project

Freely available

YES, modular 
design allows for 
new functionality 
to be developed as 

a thorn, 
implemented in 
C++, C and perl

modular 
framework for 

Grid 
Environment

YES High

Condor-G
YES, Check 

pointing of job 
queue

NO N / A N /A
implemented and 

ongoing
university of 

Wisconsin
Freely available No Data No Data Excellent High

Amoeba YES YES YES NO 
most recent data 

from 1996

Vrije 
Universiteit, 
(Amsterdam)

Freely available 
for research 

institutions and 
universities

 the OO design of 
the system allows 

for some 
interchangeability 

I.e. File servers 
can be swapped

distributed, 
parallel, 

operating 
system

YES
Designed for high 
performance (FLIP 

protocol)

NLTSS YES

YES, data moved 
directly to 

processor for 
high 

performance

No Data No data
retired from use at 

the lab in 1993, 
replaced by UNIX

LLNL

FREE to 
government 
agencies, but 
may not be 
complete

No Data

Pure message-
passing, 
Network 

Operating 
System

YES Extreme

The information used here has been collected from a variety of documented sources and interviews. For a list of sources that contributed to this sheet please refer to References, Appendix A, Complete Systems .

Complete Systems



Appendix B, part 1

Appendix B, part 1 – Peer-to-Peer Systems

system technology
communication / 

messaging / lookup
anonymity(P, R, S, D) security decentralization supported applications scalability

availability / 
developer

.NET platform SOAP,  XML, COM N/A
passport, cryptography, 
author/auth, support for 

SSL,  Kerberos, others

client/server and pure 
P2P

Many, including MS Office world-scale Microsoft

JXTA platform XML / JXTA search N/A
cryptography algorithm, 
distributed trust model

client/server and pure 
P2P

limited
addresses embedded 

systems
Sun Microsystems 

public domain

Tapestry (Java) overlay
KBR (Key-Based 
Routing based on 

DHT), DOLR
N /A

PKI trust, message 
authentication support

distributed, no central 
manager

OceanStore(global persistent data Store 
that pro-actively migrates data), 
Bayeux(multicast distribution)

Designed for billions UC Berkeley

Pastry(C#) overlay
KBR (based on DHT), 

DOLR
N /A

certificates for nodeID, 
cryptography algorithm

distributed, no central 
manager

SCRIBE: group communication, PAST 
archival storage, SQUIRREL: cooperative 

web-caching, SplitStream: content 
distribution, POST: co-operative 

messaging

Designed for billions Microsoft Research

Gnutella file sharing
(http) broadcast with 

TTL
Multicasting, covert paths 

(P)
not addressed, no 

encryption support
hybrid content distribution, Lime Wire

thousands, has the 
potential to flood 

(broadcast messaging)
open source

FreeNet (Java) file sharing KBR (based on DHT)

covert paths, identity 
spoofing(P)covert paths 

(R)non-voluntary 
placement(S), 
encryption(D)

full anonymity & 
prevention of DoS

pure P2P content distribution log(network_size) open source

Napster file sharing
contact central server, 
download form peer

N/A N / A centralized content distribution millions not sure

Groove collaboration / 
platform

XML poor
shared-spaces, 

authentication/authorizatio
n, encryption

hybrid 
purchasing, inventory, auctions, 

messaging
N/A not sure

Magi collaboration XML N/A certificate authority hybrid instant messaging, shared file access, chat 100 corporate networks ? not sure

Avaki
distributed 

computing / 
overlay

IDL, variety of 
bindings, supports mpi

N/A encryption, authentication
distributed, no central 

manager
computation grid, shared(federated) 

secure data access
scale to 1000's (2.5 - 3k 

tested)
Avaki

SETI distributed 
computing

download from server medium N / A master/slave closed
millions (highly scalable 

server side)
UC Berkeley

* Anonymity refers to P= publisher, R = reader,  S= Server, D = document;  DOLR = Decentralized Object Location and Routing messages are mapped to virtual 'endpoints' which enables message delivery in the presence of network failure. 

While there are hundreds of peer systems today, the ones chosen here represent prominent examples from each peer category. Categories of peers include platform, overlay, file sharing/collaboration, and distributed computing. The 
information used here has been collected from a variety of documented sources. For a list of sources that contributed to this table please refer to References, Appendix B, Peer-to-Peer Systems .

Peer-to-Peer Systems



Appendix B, part 2

Appendix B, part 2 – Peer-to-Peer Systems

system platform distinctive features fault tolerance guaranteed delivery persistence replication
performance / 

optimization (caching)

load balancing 
(object 

migration)

.NET Windows

widespread MS application 
base, multi-language 

interoperability, extensive 
API's, designed for web 

applications

High YES YES YES No Data YES

JXTA Windows, Linux, Solaris
open source, platform 

independent
High YES YES YES No Data YES

Tapestry (Java) JVM
structured and symmetric, 
very resilient to dynamic 

changes 
Yes, adaptive algorithms

Yes in an operating network 
and Yes,  even through fail-

over ( DOLR)*
application specific objects

supports application 
specific object replication,  
application specific object 

caching

YES hot spot caching 
(publishes pointers)

YES applications 
are allowed to 
place objects 

where it needs 
them

Pastry(C#) Windows
structured and symmetric, 
very resilient to dynamic 

changes 
Yes, supported

Yes in an operating network 
and Yes,  even through fail-

over ( DOLR)*

notifies applications of 
changes in  dynamic 

environment

supports application 
specific object replication,  
application specific object 

caching

YES
Yes, application 

Independent

Gnutella Windows, Linux
free protocol(Gnutella is a 

model), large user 
community

resume download NO YES, resume download YES No Data No Data

FreeNet (Java) any JVM system
preservation of anonymity, 

written in Java 
decentralization, replication NO NO Some

High / routing table built 
on cache

No Data

Napster common consumer OS supported centralized server server replication NO NO server replication
Lookup server w/ P2p 

download
N / A

Groove Windows
self updating, multiple 
identities, follows COM 

model
queued messages YES No Data No Data No Data N / A

Magi Windows, Mac handhelds queued messages YES No Data No Data High N / A

Avaki Windows, Linux, Solaris

based on Legion, 
heterogeneity, secure access, 

high parallel execution, 
distributed administrative 

control, highly 
transparent(masks 

complexity)

check pointing, reliable 
messaging, m migrates failed 

jobs
YES YES caching

High, even on platforms 
with different 

communication 
characteristics

Yes

SETI All common user OS supported
resilience = check pointing 
on users disk, very large 

scale

timed check pointing, 
redundancy, reissues jobs

through central server
Yes, writes to local hard 

drive
Yes, replicates data sets 
and jobs, for accuracy

High (based on 
parallelism)

No Data

* Anonymity refers to P= publisher, R = reader, D = document, S= Server, DOLR = Decentralized Object Location and Routing messages are mapped to virtual 'endpoints' which enables message delivery in the presence of network failure.

The systems described in this chart have been evaluated on a variety of criteria that relates to the requirements of MObIUS. While there are hundreds of peer systems today, the ones chosen here represent prominent examples from each peer category. 
Categories of peers include platform, overlay, file sharing/collaboration, and distributed computing. The information used here has been collected from a variety of documented sources. For a list of sources that contributed to this sheet please refer to 
References, Appendix B, Peer-to-Peer Systems .

Peer-to-Peer Systems



Appendix C

Appendix C  – File Systems

system platform scalability transparency
client side 

caching
handles 

disconnectivity
security licensing access  to storage notes

NFS
Unix, Linux, 

Windows
Fair

No Global 
namespace

Yes No Poor
Linux = GPL, 

others 
proprietary

Syscall-level access
very popular, primitive locking mechanisms, no client 

side cache makes it stateless

InterMezzo
Linux Kernels 2.2 

and up
Good global namespace Yes Yes, persistent cache No GPL File

inspired by,  but not based on CODA source, uses a 
journaled file system (stores changes in a log), can 

interoperate with other journaled file systems

AFS
Unix, Red Hat 

Linux, Windows
Excellent global namespace Yes No Kerberos

IBM Public 
License

File
pioneered persistent client-side caching, doesn't offer 

persistence through disconnectivity

CODA
Linux, NetBSD, 

FreeBSD, 
Windows

Very Good global namespace Yes Yes, persistent cache
Kerberos, access 

control lists
GPL, LPGL 

(Lesser GPL)
File, Volume built upon AFS but handles disconnectivity

GFS
Linux Kernels 2.2 

and up
Good No Data No N/A Any GPL Block

for Linux clusters, accesses storage at the block level, 
makes this system inherently processor and system 

independent, rather than file; open source SAN

File Systems

This table provides a rough comparison of the NFS, InterMezzo, CODA, GFS, and AFS file systems. The data used in this chart has been collected from several different documents. For a list of references from which the data was derived, 
please refer to References, Appendix C, File Systems .



Appendix D

Appendix D  – Databases

1

PRODUCT CRITERION

versioning schema level versioning (on-the fly), class level (on the fly) schema level versioning, updates object, class, schema

replication
Hardware level (clustering), server level replication 

(asynch and synch)
server level replication synchronous server level across geo. dispersed servers

security / encryption
data block encryption, SSL client-server (blowfish  is 

default but also supports plug-ins)
No Data

no encryption, SSL client server (Kerberos is default but 
also supports plug-ins)

language support Native C++ and Java,  C++ (transparent access)  Native Java and C++,  C++ (transparent access) C++, Java, Smalltalk, SQL 92 interface

XML support import and export, have DTD defined import and export toolkit NO (import /export expected in upcoming release 8.0)

system platforms
Windows(all), Solaris, HP Unix, VX Works, AIX, Red 

Hat Linux
NT, 2000, Solaris, AIX, HP Unix, Red Hat Linux

Windows, Unix, Linux Digital HP, IBM, Intel, Silicon 
Graphics, Sun

availability fail-over, replication fail-over, replication fail-over, replication

load balancing
achieved through architecture (master / slave + 

caching) (achieved through replication)
achieved through replication

automatic when new clients are added, and through 
replication

scalability (memory / architectural) 2GB 64 bit support
Federated Database (exabytes), one installation can 

support 1000 clients per server, 64 bit support

OODBM Interoperability ODBC (objects put in tables) OQL, JDOQL ODBC No but much of ODMG is supported

RDBMS Interoperability SQL Object Factory (POOR Performance) VQL(Versant Query Language), SQL, JDBC SQL, JavaBeans

integration with CORBA
NO direct support but can be used in conjunction with 

CORBA
No Data

NO direct support but can be used in conjunction with 
CORBA

caching
writes to server will be propagated to client on a read 

(maintains coherency)
dual server caching client-side based on pages (LRU)

data transfer method Object No data Pages

object level locking Yes, pessimistic Yes Yes, pessimistic 

notes spoke with an engineer when gathering data
tools: XML toolkit, object Inspector, Monitoring 

console, Administration console 
spoke with an engineer when gathering data

persistence achieved at creation time No data achieved at creation time

fault tolerance Yes No data
Yes, check pointing with online incremental back-up 

utility

Object-Oriented Databases

This table provides a detailed comparison of three current versions of OODB's that are on the market. The data used in this chart has been collected from product engineers and related whitepapers.

FASTOBJECTS t7 9.5 VERSANT (6.0) OBJECTIVITY



Appendix E

Appendix E – Communication Protocols

communication 
protocol

uses
ease of use / 
abstraction 

level

interopera
bility 

(disparate 
systems) 

security
object access 

via references
performance

distributed 
garbage 

collection

transaction 
state 

maintained 
(persistence) 

data 
transmission

drawbacks advantages

CORBA

distributed 
service 

processing and 
object 

communication 
across a variety 
of environments 

Poor Moderate questionable YES
Good (avg. 3x's 

faster than 
soap)

Supported YES binary encoding  

security is an issue 
no support for 

versioning, just a 
standard 

Highly 
transparent

RMI Java API Good ( Java API) Java only Good YES Very Good YES YES binary encoding  

need java compiler 
to take advantage 
of type checking 

benefit

can offer type 
checking, 
exception 

handling, part 
of Java API

MPI
High 

Performance 
Data Transfer

Fair Poor N/A NO Excellent NO N/A binary encoding  extremely rigid fast 

SOAP Messaging Excellent Excellent questionable NO Poor NO NO Unicode

lacks transaction 
management, 

server needs to 
timeout the object 

to reclaim 
memory, requires 
a greater amount 

of run-time 
checking 

great for 
asynchronous 

communication 
and loosening 
the degree of 

coupling 
between client 

and server

Communication Protocols

The table provided here shows the relationship performance and interoperability among data transfer methods. As interoperability increases, performance typically declines. References to the sources from 
which this data was obtained can be found in References, Appendix E, Communication Protocols .




