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The pulse requirements for electron diffraction imaging of single biological 
molecules are calculated.  We find that the electron fluence and pulse length 
requirements imposed by the damage limit and by the need to classify the 
diffraction patterns according to their angular orientation cannot be achieved with 
today’s electron beam technology.  A simple analytical model shows that the 
pulse requirements cannot be achieved due to beam broadening due to space-
charge effects. 

 
Crystallography is widely used for determining the structure of biological molecules [1].  
In x-ray and electron crystallography, the intensity of the diffraction pattern of a periodic 
assembly of molecules is measured, and the electron density is reconstructed using phase 
retrieval algorithms [2]. Structure modifications due to radiation damage are prevented by 
sharing the incoming radiation among a large number of coherently scattering molecules 
[3].  A major challenge is the fabrication of the required uniform and large crystals, and 
many important biological molecules have resisted attempts at crystallization completely.   
 
In an alternative approach that does not require crystallization, two-dimensional 
diffraction patterns of single isolated molecules are recorded.  In the simplest scenario, 
individual, identical molecules are exposed to pulses one-by-one in random, unknown 
orientation.  Schemes to pre-align the molecules have been suggested but are 
experimentally formidable [4].  If the molecules are not pre-aligned, the relative 
orientations of these patterns are then determined, and from these, a three-dimensional 
diffraction pattern is constructed.  Since the scattering strength of an isolated molecule is 
significantly lower than of a crystal of molecules, much larger fluences are required, and 
radiation damage becomes a concern.  The damage limitation can potentially be 
overcome by using extremely short and intense pulses to capture each image before the 
damage can manifest itself [5].   Neutze et al. suggested the possibility of using short x-
ray pulses for high-resolution diffraction imaging of single isolated biological molecules 
[6].   
 
In addition to x-rays, electrons are a likely candidate for diffraction imaging since their 
interaction cross section with biological materials is ~103 times larger than for photons.  
Recent advances have made it possible to attain sub-picosecond electron pulses with an 
unprecedented electron number density [7, 8].  It is the goal of this paper to determine the 
pulse requirements for electron diffraction imaging of single biological molecules and to 
explore if such pulse are achievable with today’s electron beam technology. 
 
In single particle diffraction imaging, the measured diffraction patterns will be very noisy 
due to counting statistics, so that the limiting step will be the ability to classify the 
diffraction patterns according to their orientation.  For x-ray imaging, Huldt et al. [9] 
developed an analytical model that determines the minimum number of incident photons 
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per unit area (photon fluence) for a given the particle size and desired resolution.  The 
analysis is based on determining to a certain confidence level if two noisy diffraction 
images show the same view of the sample or two different views.  Their model assumes 
there is no damage, so that the result is independent of the pulse duration.  Here we 
extend the model to electron beam diffraction imaging.  We use a screened Rutherford 
cross section to describe the coherent elastic scattering of the electrons off atoms, which 
is suitable for large energies (> 10 keV) and small-atomic-number elements (Z < 30).  
The cross section in differential form is given by [10,11] 
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where E is the electron energy in keV, φ is the scattering angle, Z is the atomic number, 
and α is the screening factor that can be estimated by [12] 
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Figure 1 shows the electron fluence requirements to classify diffraction images with 90% 
confidence at 10 keV, 100 keV, and 1 MeV, as a function of particle size and image 
resolution.  We assumed the chemical stoichiometry of the anthrax lethal factor 
(H51.61C30.77N8.16O9.40S0.60) [13], a particular protein of current interest, and a mass 
density of 1.35 g/cm3.  Other protein molecules have quite similar composition and 
density.  Figure 1 shows that reducing the molecule size or improving the resolution 
requires higher fluence.  Also, larger fluences are required when higher energy electrons 
are used.  This is primarily due to a decrease of the solid angle Ω spanned by each pixel 
at higher energy.  If we assume that all pixels are independent samples of the molecular 
transform according to the sampling theorem [14], then the distance between independent 
pixels in reciprocal space is 1/2a, where a is the molecule radius, and [9] 
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λ is the de Broglie wavelength of the electrons.  Even though the total elastic scattering 
cross section decreases at higher electron energies, the differential scattering cross section 
actually increases at small angles according to Equation (1).  For instance, when the 
electron energy is increased from 100 keV to 1 MeV, the differential elastic scattering 
cross section at the resolution to which the images are classified increases 2.4 times, the 
de Broglie wavelength decreases 4.2 times, and we find that the required fluences 
increase approximately 7 fold.  This estimate is consistent with the results shown in 
Figure 1. 
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Just as with x rays, electron irradiation causes energy transfer to the molecule and 
subsequent damage .  At 30 keV, for instance, for every elastically scattered electron 
about two primary electrons damage the biological molecule through impact ionization 
[15].  The nature of the damage is similar to the case of x-ray irradiation [6, 16,17].  The 
secondary electrons escape the molecule initially and charge it up positively.  Since the 
energy of the secondary electrons is only of the order of 25 eV [18], the molecule charge 
quickly becomes large enough to trap the secondary electrons electrostatically. The 
trapped electrons collide with each other frequently (~ 1/fs) and their energy distribution 
becomes Maxwellian after a few collisions.  They then relax in position to form a 
neutralizing cloud around the positively charged ions.  The particle then assumes a 
roughly two-zone structure, consisting of a neutral core and a thin positively charged 
outer shell, which extends to the boundary of the particle. On a longer timescale of order 
10 fs, the repulsive electrostatic forces between the ions cause a macroscopic motion of 
the whole molecule, called a Coulomb explosion. The trapped electrons damage the 
molecule further through electron impact ionization. 
 
We previously developed a hydrodynamic continuum model for the physics that leads to 
damage when a small particle absorbs a large x-ray dose [17].  This model has been 
modified  to treat the electron irradiation case.  It includes ionization processes and 
Coulomb-force driven atomic motion.  Further, trapping of electrons, Debye shielding, 
non-uniform collisional ionization, and three-body recombination effects are all included 
in the model.  The molecule is divided into equidistant radial zones, i.e. spherical shells.  
We track the zone boundaries as the molecule expands.  Figure 2 (a) shows the outward 
motion of selected spatial zones of a molecule of radius 150 A, irradiated by an electron 
pulse of flux 5x107 ph/fs/(100nm)2 for 100 fs.  Only the charged outer layers of the 
molecule expand, whereas the neutral molecule core does not move with time.  Figure 2 
(b) shows the ionization of carbon, the dominant interacting constituent of biological 
molecules.  Initially, the number of atoms in state (2,3) increases with time due to 
(primary) electron impact ionization of neutral atoms, state (2,4).  The atoms then 
continue to be ionized through primary and to a lesser extent through secondary 
ionization of the valence electrons by the beam electrons and trapped electrons, 
respectively.  Figure 2 (c) shows the time evolution of the average electron energy.  The 
average electron temperature increases with time due to the increasingly higher initial 
energy of the secondary electrons with increasing ionization states of the ions [18] and 
the eventual reduction of the number of electrons due to three-body recombination.  We 
further found that the shorter the pulse the less is the amount of damage by the trapped 
secondary electrons and also the shorter is the time for the Coulomb-driven motion of the 
atoms in the outer part of the molecule.   
 
In order to assess the effect of the damage dynamics on the quality of the diffraction 
image, we calculated the time-integrated diffraction pattern of a pseudo molecule, and 
compared it with the diffraction pattern of a hypothetically undamaged sample.  The 
pseudo molecule was generated by placing atoms randomly within a spherical volume 
according to the stoichiometry and mass density. The motion and ionization are 
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calculated according to the continuum model described above.  We follow the treatment 
by Neutze et al [6], and define a measure R for the effect of damage on the image quality, 
 

R =
K−1 Ireal (u,Ω) − Iideal (u,Ω)

Iideal (u',Ω)
u '∑u∑ ,     (4) 

 
with     
 

K =
Ireal (u,Ω)

u∑
Iideal (u,Ω)

u∑
.        (5) 

 
I(u,Ω) is the mean number of elastically scattered photons to be detected by an idealized 
detector pixel of projected solid angle Ω centered at a positional vector, u.  Ireal 
corresponds to the damaged molecule, and Iideal corresponds to the fictitious undamaged 
molecule.   The degradation factor, R, strongly depends on the resolution up to which the 
ideal and the real images are compared, as shown in Figure 3.  For given irradiation 
conditions, the R-factor increases as we demand higher resolution. We also found that the 
R factor is strongly affected by the beam parameters.  As also shown in Figure 3, lower 
fluences or shorter electron pulses lead to lower R factors, and therefore higher-quality 
diffraction images, since the molecule is less damaged.  If the damage of the molecule is 
too severe, the diffraction image is insufficient to allow image reconstruction.  This poses 
an upper limit, Rmax, on the R factor.  Rmax can be used to determine the maximum 
achievable resolution from a damage point of view, and a value of 20% has proven to be 
sufficient [1].   
 
We have combined the results from the damage simulations with the results from the 
theory for the effect of counting statistics on image resolution (classification) to obtain 
the maximum electron pulse length.  Overlaid in Figure 1 are the electron pulse lengths as 
a function of image resolution, particle size, and electron fluence.  For example, to 
achieve 4 A resolution for a molecule of radius 100 A with 100 keV electrons, a fluence 
of 9x106 electrons in a 100 nm spot and a bunch length of 2 ps or shorter are required.  
For comparison, a fluence of 2x1012 photons in a 100 nm spot and a pulse length of 2 fs 
are required when a 12 keV x-ray pulse is used instead [19].  For molecules with radii 
between 50 A and 200 A, generally pulse lengths of the order of 0.5 to 10 ps are required. 
 
 
Our calculations show that the pulse length and fluence requirements electron diffraction 
imaging of single biological molecules with the requirement to classify the diffraction 
pattern according to their respective orientation are extremely demanding and can hardly 
be met with today’s electron beam technology.  A state-of-the-art ultra-fast high-intensity 
electron beam system was recently discussed by Siwick et al. [7].  They were able to 
produce a 30 keV electron of 0.6 ps length with 6000 electrons per pulse.  The pulse 
length is in the right regime for biomolecular diffraction imaging.  A pulse diameter of 
100 µm results in a fluence of approximately 10-1 electrons in a 100 nm spot.  This 
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fluence is more about a factor of 108 too small.  Similarly, Cao et al. [8] reported on an 
electron beam system that produces a 60 keV electron beam of 0.3-2.5 ps length with 
2000 to 6000 electrons per pulse, which also is not sufficient.   
 
The very large electron beam intensities that are required for single particle diffraction 
imaging are not achievable due to limitations caused by space charge effects, i.e. the self-
dispersion due to the Coulomb repulsion between electrons in the pulse, which is most 
significant when the electron density is high.  The space charge effect leads to a strong 
dependence of electron pulse length on the beam intensity due to longitudinal pulse 
broadening [8].  Space charge broadening also occurs transversally, and in the Appendix 
we present a simple model to estimate the extent of this effect.  If we assume K0 = 9x106 
electrons in a 100 nm spot and a pulse length of 2 ps, then, using Equation (11) of the 
Appendix, k = 3.6x10-4 for 100 keV electrons.  Using Equation (12) of the Appendix, we 
obtain an increase of a factor of 5 in beam diameter over a drift distance of 10 µm, and a 
factor of 1310  in beam diameter over a drift distance of 1 mm, which shows that an 
electron beam of that fluence will quickly diverge due to space-charge effects.  Note that 
in this regime the beam diverges so fast that our assumption that the radius varies slowly 
over z is not valid anymore. 
 
Our calculations show that with electron pulses, lower fluences are sufficient for 
diffraction imaging of biological molecules without pre-alignment than with x-rays, but 
these fluences are still very difficult to obtain and cannot be realized with today’s 
technology.  Our calculations also show that the pulse length requirements are extremely 
challenging.  A very simple analytical estimate shows that an electron beam of the 
required fluence and pulse length for atomic resolution imaging would transversally 
broaden over a very short distance, thereby reducing the fluence to a level were image 
orientation cannot be performed reliably.  To realize single molecule diffraction imaging 
using electrons the fluence requirement will need to be relaxed, for example by using pre-
alignment schemes that orient the molecule in the laser beam [4].  If the molecules are 
pre-aligned, lower fluences below the damage threshold [3] can be used. 
 
We thank Abraham Szoke and Henry Chapman for useful discussions.  This work was 
performed under the auspices of the US Department of Energy by the University of 
California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-
48. 
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Appendix 
 

Using the uniform beam model, we estimate the transverse broadening of an initially 
parallel and circular beam of radius a0 when it drifts over a distance L in the z direction.  
We assume that the beam length is much longer than the diameter, so that end effects are 
negligible, and we ignore longitudinal space charge effects.  We assume that the beam 
radius a(z) varies with distance z slow enough so that the axial electric field and the radial 
magnetic field can be neglected.  The charge density ρ(z) is assumed to be uniform across 
each cross section of the beam.  The electric current is constant along the beam and is 
given by 
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where K0 is the fluence of the electron pulse, τ the pulse duration, and e the fundamental 
charge.  The radial electric field and the transversal magnetic field, respectively, are 
given by 
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where v0 is the constant velocity of the electron bunch in the z direction.  The radial force 
on a single electron is then 
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with β = v0/c, γ = (1-β2)-1/2, and me is the electron mass.  At the edge of the beam, 
 

 

)z(a
1k

)z(a
1

vm2
eI

dz
)z(ad

23
0e0

2

2
≡














γπε

−
= , with    (10) 

 

233
e0

2
00

2

cm2
aKe

k
γτβε

≡ .        (11) 

 
 

Figure 4 (a) shows the dependence of k on the electron energy.  The solution to this 
ordinary differential equation with a(0) = a0 and da(0)/dz = 0 is 
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where erfi is the imaginary error function.  The beam radius a as a function of the drift 
length is shown in Figure 4 (b) for different values of k.   
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Figure Captions 
 

Figure 1: Classification-limited resolution as a function of particle size and electron 
fluence for (a) 10 keV, (b) 100 keV, and (c) 1 MeV electrons (solid lines).  The curves 
are labeled with the electron fluence in units of number of photons in a 100 nm spot.  The 
dashed lines show the damage-limited upper bound for the pulse lengths. 
 
Figure 2:  Damage caused by electron irradiation.  (a) Motion of the atomic shells.  
Every third boundary is shown.  (b) Ionization of carbon.  (i,j) denotes a state with i 
electrons in the K shell and j electrons in the L shell.  Only the states that reach densities 
of at least 5% of the initial density of the neutral state (2,4) are shown.  (c) Time 
evolution of the average electrons temperature, Te.  The molecule is of radius 150 Å and 
is illuminated by an electron pulse of flux 5x107 ph/fs/(100nm)2 for 100 fs.   
 
Figure 3:  Degradation factor, R, as a function of resolution for different beam 
parameters.  The graphs are labeled with the number of electrons per 100 nm diameter 
and the pulse length.  The radius of the molecule is 150 A. 
 
Figure 4:  (a) Dependence of the parameter k in Equation (9) on electron energy.  (b) 
Dependence of beam radius on drift length for different values of k.  Not that for K0 = 
9x106 electrons in a 100 nm spot and a pulse length of 500 fs, then k = 1.44x10-3 for 100 
keV electrons.   
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