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The Discrete Wavelet Transform with Lifting : A Step by Step Introduction

Christopher M Elofson, University of Arizona

There is a great deal of information pertaining to wavelets readily available from various sources; several 
of the more recent sources describe the lifting technique for constructing wavelets. The tutorial paper by 
Sweldens and Schröder [1] gives a thorough explanation of the lifting approach for Haar bases.  While it 
provides an excellent introduction to the topic, it is not immediately obvious how this approach is extended 
to nonuniformly spaced data on finite intervals. The present paper provides intermediate steps that  
supplement  the material in [1]. After working through the following discussion, the reader should have no 
problem deriving the relevant equations presented in Sweldens and Schröder’s article.   Because of the 
abundance of information on the Haar basis, this discussion will instead work through the steps using a 
linear basis set.

I. Introduction

The technique of lifting is a radically simpler alternative to traditional methods for the 
construction of certain classes of wavelets. It also allows the building of “second 
generation” wavelets which are more general than “first generation” wavelets in that they 
can be used in situations where dilation and translation may not be readily usable [1]. The 
paper by Daubechies and Sweldens [2] provides an illuminating comparison between the 
construction of wavelets by lifting and by traditional approaches.  In this paper, we 
confine our discussions to the method of lifting.

Lifting works entirely in the spatial domain and can be considered as made up of two 
steps – predict and update.  These are explained below for uniformly spaced data sets and 
in the following section, we explain the adjustments necessary for non-uniform data sets.

II. Uniformly Spaced Data Sets 

II.1  Predict Step

The predict step is in fact simply using some form of interpolation to estimate the values 
at odd indices (assuming 0-based indexing) by using the surrounding points, then placing 
at the odd index the difference between the original value at this index and the predicted 
value.  Let (2i+1) be the odd index to be calculated in the predict step.  Then we must use 
the even values at indices (2i) and (2i+2) during interpolation.  For now, let us consider 
only regularly spaced data sets.  Then the distance d2i+1, defined as the distance between 
y2i+1 and the approximation is simply:
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In the following figure, the predict process is shown graphically.  Note that for this figure 
i = 0.

Figure 1.  Original data points in black; d1 is the difference between     
actual and predicted values at x1. 

As evident in Figure 1, restricting our example to regularly spaced points simplifies 
things, as the predicted odd value is simply the average of the two neighboring even 
points.  The predict step for higher order polynomials differs only in that a different type 
of interpolation is used to calculate the predicted value (more points will need to be 
used).

Throughout this discussion we will use the following example data set so that the reader 
can easily understand the purpose and effects of each step.
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Figure 2.1    Sample coordinates.

In Figure 2.2 on the following page, we see the effect of the predict step applied at all the 
odd points.

d1

predicted y1



Figure 2.2  Predict Step on Sample Data Set 

II.2  Update Step

The update step attempts to create an accurate representation of the original data at a 
coarser level.  If the even values are used as they are, the representation at the coarser 
level would not be a satisfactory representation of the data at the finer level.  

The idea used in the update step to maintain a faithful representation of the data at the 
finer level is to preserve certain quantities, the standard ones being moments of 
increasing order.  In the case of the Haar basis, only the 0th moment is conserved, but for 
a linear basis, we need to preserve the 0th moment and the 1st moment.  Note that for an 
update step of degree n, (n+1) conditions are needed.

Let’s take a simple example of the update step, using a slightly modified version of the 
sample data set on the previous page.   We are going to alter the data set so that the first 3 
points and the last 3 points lie on a straight line. 

d1 = 2

predicted y1

d3 = 7

predicted y3

d5 = -1 

predicted y5
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Figure 3.  Simplified Sample Data Set

As shown in Fig. 4, the only region that is changed by using the predicted values at the 
odd points is that between x2 and x4, as d1 = d5 = 0. 

Figure 4.  Update step on the Simplified Sample Set – original data shown 
in black, predict step in red, and updated data in green.  The area under the 
original data is shown in cyan and that under the updated data, in purple.   

d3 = 7

d5 = 0

d1 = 0

Ad

α

Au
α



Unlike the Haar basis, we cannot simply average the data, as this would cause the graph 
to become discontinuous (stepped, not piecewise-linear).  We need to instead update the 
y-values at indices 2 and 4 in order to account for this change.  This update will also alter 
future predictions over the intervals [x0, x2] and [x4, x6], effectively distributing the 
‘extra’ area along the entire interval.  The next task is to find these update values.

Remember that in the linear update step we want to conserve the 0th and 1st moments.  It 
turns out that with regularly spaced points the changes in y2 and y4 are the same – let us 
call this quantity α – so in the following derivation we will simply work with the 0th

moment, or area under the data points. The explanation here is very closely patterned 
after that in [2].

Figure 4 shows the area under the original data, Ad (cyan), and the area under the updated 
data, Au (purple).  We require that these two quantities be equal:

Using the trapezoidal rule to calculate each of the integrals, and letting α be the 
difference between the updated data and the original data at indices 2 and 4 shown in 
Figure 4, we get the following equations:

Simplifying the area equations on the previous page and rewriting the differences in x-
values in terms of ∆x produces
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Since d1 = d5 = 0, we know that y1 equals the average of y0 and y2, and similarly, that y5

equals the average of y4 and y6.  Thus,

and

We also know

, and thus  

In our example, evaluating this expression yields α = 1.75.  The area over the interval 
[0,6] has been conserved when going from the original data set to the updated data set.  
However, not all data sets are going to have only one imperfect prediction (i.e. with only 
one nonzero value of d).  In the next section we demonstrate an approach to deal with 
more realistic data sets. 

III. Non-Uniformly Spaced Points and Boundary Conditions

In the previous section we looked at the best case scenario – uniformly spaced points and 
only one nonzero d.  While these assumptions ease the explanation of the predict and 
update steps of the discrete wavelet transform, it is highly unlikely that these conditions –
especially the latter – would be present in practice.  From this point forward, all 
derivations will be based on non-uniformly spaced data.  The resulting expressions can 
easily be simplified to those for uniformly spaced data.

III.1   Predict
The linear predict step requires little change, as it is a weighted average of the 
neighboring even values:
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Just as in the first section, the predict step is completed on each of the odd-indexed values 
in the data set.  So far we have chosen data sets with an odd number of points.  This is 
ideal for the predict step, as all odd indices have even neighbors to their right and left.  It 
is also ideal for the update step, as adapting the update to an even number of points can 
cause conservation issues.  When applying the discrete wavelet transform, it is likely that 
a set or subset (coarser iteration, as the complete transform is pyramidal in structure) will 
have an even number of points.  Since we have a procedure that can accommodate non-
uniform points, we will simply add a point between the last two points, with x and y 
values equal to the averages of those of the existing points.  The transform can then 
continue as before.

III.2  Update

In Section II we looked at a special data set of size 7.  We will soon look at a similar set, 
the only difference being that the points are non-uniformly spaced (d1 and d5 are still both 
0).  Let us first explain the role of this special set.  The foundation of the linear update 
step is preserving the 0th and 1st moments of the data while going to a coarser level.  If we 
were to use this directly on a set of size 7 with d1, d3, and d5 all nonzero, we would have a 
system of six unknowns (many more in a large data set), and only two conditions to 
impose on them.  If we try to impose more conditions by preserving the moments over 
each subinterval, we run into the problem of having many more conditions than we have 
variables.  Instead, we will use the fact that we know how to find the update values for a 
set with only one imperfect update – we break up our data set into subintervals between 
even indices, keeping the above explanation in mind.

Figure 5 illustrates this idea using the same (uniformly spaced) sample data set shown in 
the second figure:  x = {0,1,2,3,4,5,6} and  y = {0,7,10,13,2,4,8}. The data is subdivided 
according to the ‘region of influence’ of each of the three differences in estimated values 
– d1, d2, and d3.  In the predict step, each odd prediction used the even values to either 
side of the odd value.  Similarly, we must use the two neighboring odd values in each 
even update.



Figure 5.  Illustration of Regions of Influence at the Update Step

Since y0 and y6 lie on boundaries, the effects of d1 and d5 are going to be slightly 
different.  Let us first take indices 2 and 4 as examples in order to explore the effects of 
d3.  Since we are trying to average only the area on [2,4], we are going to make the 
assumption that d1 = d5 = 0.  Using the equations of Section 2, adjusted to non-uniform 
data points, we get:
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Since we now have two variables (due to non-uniform spacing), we must also use the 
equations for the 1st moment:

Solving 

and

 for α, β gives

Notice that if we assume uniformly spaced points, 

just as we had in Section 2.  We now have expressions for α and β –uniformly or non-
uniformly spaced data – for the center case (no endpoint affected by the d value).  We 
must now derive expressions for the update step that will distribute data properly when an 
endpoint is affected.
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We can represent such a condition by taking a set of 5 points. We will assume that d3 = 0, 
constructing a set in which the area change caused by d1 can be distributed over only 
[0,4] – a left endpoint.  The following figure depicts such a set.

Figure 6.  Left Endpoint Special Case Update

Similar to the center case, we will set up a system of equations that conserve the 0th and 
1st moments over the update step.
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Solving 

and

 for α, β gives

which with uniform points simplifies to

The right boundary case simply mirrors the left.  The right boundary for uniform points, 
for example, results in the α value of (d/8) for the inner even point and the β value of 
(3d/4) for the outer even point (boundary point).

We now have expressions for non-uniform center points, left end points, and right end 
points.  In the following general forms, for each di, αi is the value of the change in the left 
even neighbor, and βi is the change in the right even neighbor:
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* s refers to “smoothing”, where d originates from “detail”, the roles the two steps play in the wavelet transform.

Left End Points (i=1 for 0-based indexing):

Right End Points:

We now have a very good picture of how the linear update step is built.  The same 
concept can be applied to any order polynomial, although depending on the application 
there may or may not be a benefit for using higher order bases.  Recall our example set:
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Figure 7.  Sample Data Set

We know that for each d (difference of predicted odd) value, there are left and right even 
neighbors that are affected – the boundaries being the exception to the rule.  Thus, for our 
7 data point example we know that:

where si is the updated y-value at index i.*  The following figure shows the completed 
update step on the sample set.  Like Figure 4, the original data is plotted in black, the 
predict step in red, and the updated data in green.  The area under the original data is 
shown in cyan, and that under the updated data is shown in purple.
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Figure 8.  Completed Update Step on Sample Set

At this point we have completed one iteration of the linear discrete wavelet transform.  In 
order to finish the transform, we must continue to perform iterations on coarser meshes 
over the domain until only three or four points remain. This is slightly different from the 
Haar construction, where only two points remain at completion.  Each successive 
iteration is completed using a mesh constructed of only the updated points of the last 
iteration.  As a result, the size of each successive mesh is equal to the ceiling of the size 
of the previous mesh divided by two.  

IV. Application

While the main goal of this paper is to provide a simple explanation of the lifting 
approach for wavelet transformations for non-uniformly spaced data, the above approach 
has been tested on 6 astrophysical opacity data sets with a view to exploring the 
possibility of compressing the data.  The behavior of the functions ranged from relatively 
smooth to strongly jagged.  Each set was transformed with both Haar and linear basis 
functions and the change in the Rosseland mean was used as a criterion for dropping 
wavelet coefficients.  On the smoother data sets, it was possible to get high levels of 
compression while preserving the Rosseland mean, (about 99.5% compression with only 

α1

β1 + α3

β3 + α5

β5

d1

d3

d5



10 –5 difference in Rosseland means); however, on less smooth data sets, the compression 
was sharply reduced (about 51% compression with a 10 –5 difference in Rosseland 
means).  Linear basis functions performed better for the smoother data sets while 
preserving the Rosseland means to high accuracy, but for the less smooth data sets, Haar 
basis functions performed better.  It remains to be seen as to whether entirely different 
basis functions specially tuned for opacity data sets can be used to obtain better results. 
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