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Abstract

The Transmission Control Protocol (TCP) has been around for around 30 years, and in
that time computer networks have increased in speed and reliability many times over. TCP
has done very well to maintain stability and avoid collapse from congestion in the Internet
with this incredible increase in speed. But as the speed of networks continues to increase,
some assumptions about the underlying network that influenced the design of TCP may no
longer hold valid. Additionally, modern networks often span many different types of links. For
example, one end-to-end transmission may traverse both an optical link (high-bandwidth, low-
loss) and a wireless network (low-bandwidth, high loss). TCP does not perform well in these
situations. This survey will examine some of the reasons for this, focusing on high-bandwidth
networks, and offer some solutions that have been proposed to fix these problems. This paper
assumes basic knowledge of the TCP protocol.

1 Overview

Originally the Transmission Control Protocol was designed to be a reliable, extensible means
to transfer data over the ARPAnet, while still leaving room for growth and unseen uses in the
future [10]. Considering that it was originally designed 30 years ago and is still in high use, it
has done quite a good job of fulfilling its design goals.

Lately, however, cracks have begun appearing in the design of TCP when used over very
high speed networks. Some of the latest research by labs and universities produces huge
datasets that need to be shared with researchers across the world. For example, the Stanford
Linear Accelerator Center has over a petabyte (10 bytes) of stored data [2]. To share all of
the SLAC data with other research institutions over an OC12 connection (622 Mbps, relatively
high speed by today’s standards), would require over 140 days. Increasing the speed to an
0C48 (2.4 Gbps) or an OC192 (10 Gbps) would shorten the transfer time to approximately 34
days and 8 days, respectively. Considering how fast many of these research projects generate
data, transfer rates that slow will not suffice.

Because of this excess of data to transfer, much research has gone into increasing the speed
of the lines that transmit this data. All of the line speed in the world is useless, however,
unless it is adequately utilized. As the link capacity increases due to improving technology,
Standard TCP is able to use less and less of the available bandwidth (see Figure 1). One of
the main causes for this decrease in utilization is the “jagged” way the congestion window
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Figure 1: FAST versus TCP/RED performance as network speed increases [2]

changes due to additive-increase and multiplicative decrease in Standard TCP. Multiplicative
decrease is much too drastic, while additive increase doesn’t increase fast enough. See Section
2.2 for further discussion.

Another problem with the current version of TCP is that it is biased against connections
with large round-trip times (RTT). Since the increase of TCP is tied to each RT'T, a connection
with a smaller RTT will increase its congestion window much faster than a connection with
a large RTT, thus responding more quickly to changes in available bandwidth or congestion.
In most cases, this will cause the faster of the two competing streams to get the majority of
available bandwidth. This can be a big problem when you communicate with many different
end-hosts with differing RTTs to each.

Additionally, if there is a large amount of data to send, TCP makes no effort to pace
itself and sends it all at once. This can aggravate the congestion problems in the network.
Many times this happens when a packet acknowledgment (ACK) is lost, delayed, or corrupted
and thus causes a loss event at the sending host. Following that a large number of packets
can get resent all at once from the sender (possibly the entire congestion window worth of
packets). This can cause congestion because the buffers in the network routers are of finite
sizes. To illustrate that congestion windows are big enough to overflow router buffers, consider
the example in Section 2.2 where the window size is almost 120 MB at steady state!

Lastly, Standard TCP uses a loss event as a signal of congestion, at which point the
sender lowers the congestion window to limit the number of packets to send, thus lessening the
congestion in the router’s buffers. [8] indicates that a loss is a poor signal of congestion because
the loss may not be caused by congestion. If congestion does exist a loss should be used as a
“signal of last resort”, as it doesn’t give an accurate view of the level of congestion. By the
time a loss occurs the congestion control has already failed by overloading the capacity of the
network, thus causing the loss event. Congestion control should work to avoid congestion, not



merely react to it. Of course this assumes that the loss event was not caused by an unreliable
network, but by the actions of the protocol.

2 TCP Breakdown

2.1 Connection Setup

In relative terms, connection setup takes very little time compared to the rest of the transfer.
For example, connection setup is three packets out of the over 730 million packets sent just
from the sender when transferring a terabyte of datal. Thus its effects will be ignored for the
purposes of this paper.

2.2 Reliable Transfer and Congestion Control

TCP is designed to provide reliable in-order transfer of data across an unreliable network. Re-
liable transfer is related to congestion control because the Standard TCP congestion control
algorithm is triggered by a loss event. When a receiving host detects a gap in the received
packets’ sequence numbers, it re-sends the acknowledgment (ACK) for the last packet re-
ceived correctly and in order. In TCP Reno, the sending host will re-send the missing data
when it receives three duplicate ACK’s for a packet, as well as all packets after the missing
data. A packet is also considered lost if a timer on the sender times out before the expected
acknowledgment for a packet arrives.

When a packet is considered lost, TCP initiates congestion control. For TCP Reno this
means cutting its congestion window in half (multiplicative-decrease). To recover from the
loss, it increases the congestion window size by one segment every RTT (additive-increase)
[10]. In the case of a 10 Gbps connection at full utilization, this means dropping down to 5
Gbps and slowly increasing back up to 10 Gbps, and as mentioned in [12] (and in more detail
below) this could take up to 1.5 hours for some connections.

Congestion control after a timeout event is even more drastic, reducing the congestion
window to 1 segment, and increasing from there. There is a slow-start phase, however, pro-
viding for exponential growth to a threshold level (typically half of the window size before the
timeout). Beyond the threshold the additive increase starts again.

Additive-increase multiplicative-decrease (AIMD) is a major source of the problems with
conventional TCP in very high speed networks. For example, take the oft-given example of
a Standard TCP connection with 1500 byte packets, 100ms round-trip time, and a 10 Gbps
connection. To fully utilize the connection at 10 Gbps in steady-state requires a congestion
window of 83,333 segments. With the 100ms RT'T, to reach full utilization after multiplicative-
decrease requires roughly 1.5 hours. To maintain full utilization of the line requires no more
than one packet loss per 5 billion packets, far beyond the constraints of today’s physical
networking technology. [12]

2.3 Flow Control and Sender / Receiver Buffer Size

Each end-host on a TCP connection has a limited amount of buffer space to allocate to TCP.
And regardless of how efficient the TCP implementation is, an undersized buffer at either the

! Assuming a 1500 byte packet size, and not counting retransmissions



Router | Delay- | Loss- Receiver
feedback | based | based | modification

TCP Reno no no yes n/a
HSTCP no no yes no
STCP no no yes no
TCPW no no yes no
FAST TCP no yes no no
XCP yes yes no yes

Table 1: Several proposals to improve network performance in high speed networks, and how they
compare to TCP Reno.

sender or receiver can restrict performance over any type of network. To ensure that the full
bandwidth of a link is used, there needs to be enough buffer space to receive and store the
data that has been received by the client but not yet processed by the application. However,
an unlimited buffer could quickly consume system resources if the application is not able to
process data from the buffer fast enough.

A technique called dynamic right-sizing, which automatically adjusts the buffers allocated
to TCP by the operating system, has been developed at Los Alamos National Laboratory
(LANL) [4]. Previously these adjustments were done by hand, and cooperation between system
administrators at either end of a connection was required to tune the buffers for a particular
link. Optimizing the buffers for a connection between LANL and the National Center for
Atmospheric Research, researchers were able to obtain a speedup in throughput from 1 Mbps
to 15-20 Mbps.

3 Specific Protocols

The remainder of this paper will discuss new TCP-based protocols that aim to solve the
problems with congestion control as outlined above. The first few protocols that we mention
keep the general TCP congestion control algorithm intact, and simply modify the parameters
of how much to grow or decrease the congestion window (i.e. AIMD adjustments). We then
look to FAST which replaces the AIMD of Standard TCP with an equation-based approach,
which aims to prevent losses before they occur by indirectly monitoring the routers’ queuing
buffer sizes. Lastly we will examine XCP, a redesign of TCP to take into account feedback
from the routers along the route a packet takes between the sender and the client.

3.1 HighSpeed TCP

HighSpeed TCP (HSTCP) [5] proposes a modified congestion control algorithm that results
in much better performance and network utilization than Standard TCP. Standard TCP con-
gestion control imposes strict constraints on network reliability for flows with large windows.
For example, full utilization of a 10 Gbps network with Standard TCP necessitates a packet
loss rate of 1 loss per 5 billion packets. This unrealistic reliability requirement is due to the
Standard TCP response function, w = 1.2/,/p, where w is the size of the average congestion
window, and p is the steady-state packet loss rate [5].

The HighSpeed TCP response function uses the same response function as Standard TCP



for networks with loss rates between 1 and a certain threshold, Low_Window, currently 1073,
For packet loss rates between Low_Window and 0, the HighSpeed TCP response function is given
by w = 0.12/p%835. This allows for much larger congestion windows and fewer RTTs between
losses as the packet drop rate decreases. The choice of setting the Low_Window threshold to
1072 is based largely on intuitive estimation of traffic behavior in the commercial Internet.
This variable could have a major impact on existing TCP traffic, so more research should be
done to determine the consequences of changing its value.

Standard TCP suffers from a jagged steady-state because it constantly probes the network
for more available bandwidth. Once a congestion event occurs, the window is halved, and the
sender returns to additive increase. HighSpeed TCP mirrors this behavior, but it attempts to
smooth out the rough edges. The algorithm increases the window faster and decreases it less
drastically than Standard TCP, all in an attempt to gain better utilization.

The increase function (congestion avoidance phase) of Standard TCP increases the window
by one segment per acknowledged window. HighSpeed TCP defines a larger increase, based on
the formula w = w + a(w). The value of a (size of the increase) is between 1 and 73 segments,
and is calculated from a lookup table based on the current window size. Thus, if the window
is already large, the increase will also be large.

The HighSpeed TCP decrease function is determined by w = (1 — b(w))/w. In Standard
TCP, b is .5, which causes the window to be reduced by half when a congestion event occurs.
The HighSpeed TCP algorithm makes the reduction in window size proportional to the current
window size. The value of b is also determined by a lookup table, and it ranges from .5 to .09.
Large windows, rather than being chopped in half, will be reduced by only about 10 percent.

Because one goal of HighSpeed TCP is to increase network utilization, it is also important
to ensure fairness with Standard TCP, especially at relatively high packet loss rates. Fairness
with Standard TCP is a lower priority on more reliable networks, since Standard TCP is unable
to fully utilize bandwidth in networks with drop rates of less than 1079 [5]. The HighSpeed
TCP response function can be characterized as MIMD (multiplicative-increase, multiplicative-
decrease), whereas Standard TCP is AIMD (additive-increase, multiplicative-decrease). Given
the assumption that congestion events are not synchronized, it can be shown that MIMD will
converge to fairness [6]. In summary, HighSpeed TCP will not compete fairly with Standard
TCP in reliable, high-performance networks, but HighSpeed TCP will compete fairly with
other HighSpeed TCP connections. It is also fair to Standard TCP in low-quality or high
error-rate networks.

3.2 Scalable TCP

Scalable TCP (STCP) [9] provides another alternative to the Standard TCP response function.
Unlike HighSpeed TCP, which increases or decreases the sender window in proportion to the
current size of the window, the Scalable TCP algorithm uses constant values for the increase
and decrease factors (a = 0.01 and b = 0.875). Specifically, the window increase function
is w = w + .01, and the decrease function is w = 0.875 * w. As a result, the algorithm
fixes the number of round-trip times between losses, and the sending rate doubles every 70
RTTs, regardless of the current sending rate. In that way, the protocol scales well on high
bandwidth-delay networks.



3.3 TCP Westwood

The main idea behind TCP Westwood (TCPW) [11] is to estimate the amount of bandwidth
available before transmitting. The two methods of calculating bandwidth are Bandwidth Share
Estimates (BSE) and Rate Estimates (RE). First, TCPW tries to determine the cause of packet
loss in the network (either due to link errors or congestion). Research has found that when
loss is caused by link erros, BSE results in better performance, and when packet loss occurs
under network congestion, RE is preferable [11].

3.4 FAST

FAST TCP takes a different approach than the previous protocols mentioned. Rather than
sticking with the basic congestion control algorithm of Standard TCP, FAST replaces it with
a delay-based approach. It works by estimating the queuing delay in the routers used to send
its data. Depending on how much queuing delay it detects it will increase or decrease the size
of the congestion window [2].

The queuing delay is estimated as the difference between the minimum RTT observed so
far and the current weighted average RTT [7]. The congestion window is then modified by
using another equation, shown below. This equation is run once every other RTT to resize the
congestion window. w is only updated every other RTT, to allow the flow to stabilize to the
latest changes.

baseRTT

w is the congestion window size; v is a constant in (0, 1] and is usually set to 1; base RT'T
is the lowest RTT seen so far, whereas RT'T is the weighted average RTT calculated so far;
and ¢ is the queuing delay. Lastly, a(w, ) is a function on w and ¢ used to adjust the rate of
the window size change, and is generally set to a constant value.

As you can see above in equation 1, FAST requires that the congestion window no more
than double every time it is re-calculated. This ensures that out-of-control growth does not
occur, and thus lessens the chances of exceeding the bandwidth in a link. As well, you can see
by the equation above that the growth of a window is dependent on the ratio of the baseRTT
(the fastest RTT seen so far) to the current RTT. For example, if the current RTT is twice
that of the baseRTT, then that fraction will evaluate to 0.5, and the window size will increase
by 0.5 + a.

a can be adjusted depending on the size of g. One method put forth in [7] is to have
a(w, q) = kw when ¢ is zero (where k is a positive integer) and a(w, q) = ¢ when ¢ is non-zero
(where c is a small constant). This allows for multiplicative growth as long as the network
can sustain it, and when the routers’ queues start to fill up FAST increases the window very
slowly, if at all.

Currently upon a loss event FAST uses multiplicative decrease and cuts its congestion
window by half. In the future the designers hope to modify the equation above to react to loss
events as well.

To prevent overflowing the routers’ buffers when a large burst of packets can be sent, FAST
employs a burstiness control module that controls how much data can be sent at once based
on the measure of the queuing delay. This helps ensure that a bad situation is not made worse
by adding more packets to already full router queues.



Figure 2 shows the length of 3 flows used to test FAST, STCP, HSTCP, and TCP Reno.
The results are shown in figures 3 and 4. By examining figure 3 (which shows throughput
on the top graphs, and congestion window size on the bottom) you can see that FAST is
much more stable than STCP, HSTCP, and TCP Reno on the same dataset. As well, figure
4 (showing average queue size, cumulative packet losses, and link utilization) displays that
FAST minimizes the average queue size, produces practically no packet losses, and gives the
most consistent link utilization of the 4 protocols shown.
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Figure 2: FAST dummynet experiment setup, 3 flows and their lengths [7]
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Figure 4: FAST dummynet results. Queue size (top), cumulative lost packets (middle), and link
utilization (bottom) [7]

3.5 eXplicit Control Protocol (XCP)

XCP [8] takes a different approach to fixing the pitfalls in TCP. While the other proposed
solutions modify how TCP reacts to loss events and controls the congestion window, XCP gets
rid of TCP congestion control altogether and develops a new protocol. In XCP, congestion
and fairness are controlled through input from the routers along the path. Also, the protocol
decouples the management of congestion and fairness into two separate controllers in the

7



routers. The Efficiency Controller monitors the bandwidth utilization of the link and the
queue length, and computes the aggregate increase/decrease (feedback) in throughput needed
to maximize efficiency. This aggregate throughput feedback is given to the Fairness Controller,
which distributes it to all the packets passing through the router. The Efficiency Controller
uses MIMD to converge quickly to fairness.

Feedback from the routers is given by adding a Congestion header between the Transport
Layer header and the IP header [1]. The most important parts of the header are the fol-
lowing: RTT - the sender’s measurement of the round trip time, Throughput - the sender’s
measured throughput, Delta _feedback - the sender’s desired throughput increase (modified
by the routers along the path), and Reverse_feedback - the value of Delta feedback, copied
into the header by the receiver (for feedback on the return path of acknowledgment packets).
The fairness controllers in the routers along the path will modify the Delta_feedback and
Reverse_feedback according to the values determined by the routers to maximize efficiency
and fairness. To converge to fairness, the routers use AIMD. Since fairness is decoupled from
efficiency, other algorithms for fairness and efficiency control are possible, which could be
studied in further research.

The performance of XCP in simulation and in experimental implementation is impressive.
In both high-bandwidth and high-RTT environments, XCP is able to utilize the bandwidth at
above 90% (figure 5), keep queue length minimal, and have virtually no loss events. XCP also
is very effective at fairly distributing bottleneck bandwidth (figure 6). These characteristics
are demonstrated by simulations in [8] and implementation experiments [3]. Further research
is needed to learn how XCP will perform in a large scale environment and how fairly it will
compete with TCP and other network traffic flows.
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Figure 5: XCP High Bandwidth and High RTT utilization (simulation) [§]

XCP is a very effective protocol for avoiding congestion and achieving fairness across mul-
tiple connections, and has been demonstrated to be stable in simulations and experiments.
The biggest problem with XCP is the challenge of implementation on a wide scale. [8] sug-
gests two ways to approach implementation. A cloud-based approach in which XCP would
be implemented in parts of a network, with border systems providing traffic to non-XCP net-
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Figure 6: XCP Fairness (measured and simulated) [3]

works. Another approach suggested is to implement XCP routers with TCP support, and
detect which routing algorithm to use depending on the type of traffic. There is a lot of room
for research before XCP could be implemented on a wide scale, especially since it requires
changes to routers. Once the routers are implemented, it would be difficult to change them
if it is decided to use different algorithms within the framework of XCP. Also before XCP or
another similar protocol could be implemented, there would need to be a lot of research to
learn if the given parameters in the congestion header are the best options. Adding congestion
control to routers is a significant task. If it is to be implemented, it is important to understand
the best approach to giving and receiving feedback.

4 Outstanding Problems / Research Ideas

How do you create a congestion control algorithm that is at the same time backwards compat-
ible, efficient in high-bandwidth networks, and fair with the other connections? Some research
focuses on maximizing throughput for a single connection. Other research gives fairness with
existing traffic a heavier consideration. Still others seek balance and trade offs between all
gaols. Is it possible to ensure that any new protocol performs well on virtually any type of
network, from dial-up Internet to high-speed bulk data transfers to wireless networks?

Furthermore there is no standard way to measure the quality of a new protocol as compared
to other protocols in several network topologies. One possible area of research is to develop
this measure and evaluate the Transport protocols using it. The output of this research could
include a set of benchmarks to compare protocols objectively.

Lastly, there appears to be little research into the performance of Transport protocols in
mixed-protocol networks.

5 Conclusion

TCP congestion control is a complex system that has many possible methods of modification
to improve its performance on very high-bandwidth networks. Methods designed to improve
TCP must strike a balance between network congestion control, client and server buffer sizes,
fairness, and backwards compatibility. Due to the huge number of computers and routers



connected to the Internet, any non-backwards compatible TCP replacement would take a very
long time, a huge amount of effort, and lots of money to implement.

As well, any backwards-compatible TCP improvement must “play fair” with the current
versions of TCP in use now, or at least not take any more bandwidth from them than they
would otherwise use. If a modification of this entrenched protocol can maximize utilization,
fairness, and backwards compatibility, it will be well on its way to becoming the next generation
TCP.
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