I ! ! . UCRL-TR-209658

LAWRENCE
LIVERMORE
NATIONAL

~ | MPI Profiling

D.K. Han, T.R. Jones

August 20, 2004

This document was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor the University
of California nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the University of
California. The views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by
University of California, Lawrence Livermore National Laboratory under Contract
W-7405-Eng-48.

MPI Profiling

Daniel Han
University of Southern California
E-mail: handanie@usc.edu

Terry Jones
Lawrence Livermore National Laboratory
E-mail: trj@llnl.gov

August 20, 2004

Abstract

The Message Passing Interface (MPI) is the de facto message-passing standard
for massively parallel programs. It is often the case that application performance
is a crucial factor, especially for solving grand challenge problems. While there
have been many studies on the scalability of applications, there have not been
many focusing on the specific types of MPI calls being made and their impact
on application performance. Using a profiling tool called mpiP, a large spectrum
of parallel scientific applications were surveyed and their performance results
analyzed.

1 Introduction

Inherent in any type of parallel program is the need to communicate between proces-
sors, whether it be decomposing the problem set, synchronization, or computation of
the final results. One way to accomplish this is with the Message Passing Interface
(MPI) [1]. MPI allows the user programmer to explicitly parallelize the code and, as a
result, allows for a high level of flexibility. This flexibility, however, may hinder perfor-
mance and scalability. Thus, it is imperative on the part of the MPI implementer to
ensure that message passing does not negatively affect performance. Using mpiP [2],
a variety of statistics were compiled that may help both user programmers and MPI
vendors to identify areas that could lend themselves to optimization.

2 Methodology

2.1 mpiP

Applications were profiled using mpiP, a lightweight profiling library for MPI applica-
tions. All the information captured by mpiP is task-local. It only uses communication
during report generation, typically at the end of the experiment to merge results from

all of the tasks into one output file. All applications that were available to down-
load were compiled and profiled locally; otherwise, the maintainers of the code were
given instructions on how to profile their code. The output file provides a variety of
information in the areas of timing and communication statistics for MPI function calls.

2.2 Platform

Most of the profiles were done on the IBM SP or Linux clusters at Lawrence Livermore
National Laboratory (LLNL). The IBM machine, UV, consists of 128 8-CPU SMP
nodes with 16 GB of memory per node and a 1.5-GHz Power4 p655 core. The operating
system running on the IBM is AIX 5.2. The Linux cluster, MCR, consists of 1154 nodes
with each node having a dual 2.4-GHz Intel Xeon processor and 4 GB of memory. The
Linux cluster uses an operating system derived from Red Hat Linux called CHAOS
(Clustered High Availability Operating System) [3].

3 Applications

The applications chosen for profiling, most of which were developed at LLNL, utilized
MPI significantly.

e AMTRAN: Solves 2D/3D deterministic neutron transport problem using adap-
tive mesh refinement technology [4].

e Ardra: Offers robust scalable solution methods for neutron and radiation trans-
port problems in complex 3D geometries. High resolution in space, energy, and
direction are supported [5].

e Ares: An instability 3D simulation in massive star nova envelopes [6].

e GEODYN: Hydrodynamics simulation used in shock physics involving material
strength and response [7].

e GP: Implements first-principles molecular dynamics within density functional
plane-wave pseudopotential formalism. GP has been used to simulate the prop-
erties of molecular liquids, solids, and semiconductor surfaces [8].

e IRS: The implicit radiation solver code solves the radiation transport equation
by the flux-limited diffusion approximation using an implicit matrix solution. In
fact, IRS is a general diffusion equation solver, but its flux limiter imposes the
speed of light as the maximum signal speed, thus making it a radiation solver [9].

e Linpack: The HPL version of Linpack solves a (random) dense linear system in
double precision arithmetic on distributed-memory computers. It can thus be
regarded as a portable as well as freely available implementation of the High
Performance Computing Linpack Benchmark [10].

e MDCASK: A molecular dynamics code to study radiation damage in metals [11].

e Miranda: A hydrodynamics code ideal for simulating Rayleigh-Taylor and
Richtmyer—Meshkov instability growth. The code uses 10th-order compact
(spectral-like) or spectral schemes in all directions to compute global derivative
and filtering operations [12].

e SMG2000: A parallel semicoarsening multigrid solver for the linear systems aris-
ing from finite difference, finite volume, or finite element discretizations of the
diffusion equation [13].

e Spheral: Spheral++ is a numerical tool for simulating the evolution of a set
of fluid or solid materials subject to hydrodynamic, gravitational, and radiative
effects [14].

e sPPM: Solves a 3D gas dynamics problem on a uniform Cartesian mesh using a
simplified version of the PPM (Piecewise Parabolic Method) code [15].

e SWEEP3D: Solves a 1-group time-independent discrete ordinates (Sn) 3D Carte-
sian (XYZ) geometry neutron transport problem [16].

e UMT2K: A 3D deterministic, multigroup photon transport code for unstructured
meshes [17].

4 Results
4.1 Time in MPI

Figure 1 shows the percentage of time each application spends in MPI versus time spent
in the application (wall-clock time for all MPI calls versus wall-clock time between
MPI_Init and MPI_Finalize). Data were averaged across several runs, anywhere from
32 processes to 640 processes, depending on the application. MPI makes up more than
half of the time in most applications. The user programmer would like to minimize
time in MPI, because time spent there is overhead and may greatly affect the ability
of an application to scale.

Figures 2 and 3 give an overview of the MPI functions that dominate the appli-
cations with respect to time. The data were again averaged across several runs, both
large and small. To simplify analysis, variations of similar functions were grouped
together. For example, calls such as MPI_Gather, MPI_Gatherv, and MPI_Allgather
were grouped under the heading of Gather in Figure 2. Although the differences be-
tween collectives such as Gather and AllGather! may be considerable with respect to
performance, the focus here is more on the overall behavior of the application than
on a strict quantitative analysis.?2 Collectives tend to be of interest because they are
usually the dominating MPI calls in terms of communication and time. We account
here for only those calls that took up a significant percentage of MPI time. Thus, there
were other calls (less than 5% of MPI) that are not accounted for in these figures.

From Figure 2, we can see that most applications usually have one category of
collectives that account for most of the time. Reduces take up a majority of several

L All processes receive data in the buffer rather than just one root process.
2For a performance analysis of many of the applications found here, see Vetter [18].

Amtran Ardra Ares Geodyn

23%
37% D
48%
63%

77%
Gp IRS
29%
46%
459
54%
1%

43%

52% 57%

Mdcask Linpack

55%

Miranda SMG Spheral Sppm
20%
39% 39%
80% 61% 61%
SWEEP3D Umt2k

6%

Bl ° of time in MPI
[] % of time in app

32%

68%
94%

Figure 1: Time in MPI vs time in application.

% of MPI time

100

Bl Reduce
I Barrier
[Gather
[Broadcast
Bl AlltoAll

IRS Mdcask Linpack Miranda Smg Spheral Sppm Sweep3d Umt2k
Applications

Amtran Ardra Ares Geodyn GP

Figure 2: Top collective MPI calls.

% of MPI time

Amtran Ardra Ares Geodyn Gp IRS Mdcask Linpack Miranda Smg Spheral Sppm Sweep3d Umt2k
Applications

Figure 3: Top point-to-point MPI calls.

applications, while Gathers have a minimal effect. Figure 3 shows the same analysis
with the point-to-point calls. Among the point-to-point calls, the MPI_Wait function is
dominant. This is expected because many applications use nonblocking sends/receives
to hide latency. Comparing the two figures, we see that collectives rather than point-
to-point calls take up a larger percentage of the MPI time for an application. One
notable exception is Linpack, in which neither collectives nor point-to-point calls have
a great impact.3

4.2 Communication Patterns

While timing statistics are usually quite important, communication patterns are also
of interest, especially to MPI implementors and vendors. Identifying the predominant
message sizes could help in optimizing low-level protocols. Table 1 shows the message
sizes that took up the majority of all messages sent. The smaller runs were usually
fewer than 64 processors, while the larger ones were at least 256 processors. It is
clear that within a given application, one type of message size generally predominates.

3Interestingly, Linpack spends most of the time in a communicator function, MPI_Comm _split,
which partitions a given communicator into a new set of communicators.

Table 1: Predominant message sizes.

Smaller Runs Larger Runs

Application Kbytes % of MPI Kbytes % of MPI
AMTRAN 23.63 94.79 784.18 99.24
Ardra 996.09 95.17 146.48 81.35
Ares 9.16 99.17 17.87 97.33
GEODYN 550.70 99.06 639.64 97.22
IRS 2.92 99.76 2.23 98.49
Linpack 1.50 91.05 Less than 0.5 91.45
MDCASK 4.62 99.76 2.68 99.62
Miranda Less than 2 90.30 Less than 0.5 95.84
SMG2000 | Less than 0.1 99.65 1 99.85
Spheral Less than 3.6 100.00 0.1 100.0
sPPM 719.0 43.90 719.0 40.02
SWEEP3D 45.0 100.00 Less than 0.1 100.0

sPPM is the one exception; fewer than half the messages were 719 Kbytes.* Based on
this data, it is difficult to pinpoint one common message size across all applications for
MPI implementors to use. The general trend, however, seems to be that an application
can be categorized as a small message passing (less than 5 Kbytes) application versus
a large message passing (larger than 500 Kbytes) application.

4.3 Calling Patterns

Table 2 shows the average number of times a certain MPI function was called in larger
runs. The functions chosen here were ones that were the most prevalent across all
applications. Note that these values are normalized to take into account the number
of processes that were executed. Essentially, it is the average number of calls made per
process. It was surprising to see such a high number of calls being made to Waitany
and the immediate sends/receives.

Figure 4 displays the average number of callsites broken down by function. This is
the number of times a certain MPI function is found in the source code, which gives
an idea of how MPI programmers are coding their parallel applications. The number
of broadcast callsites seems high with over 10 callsites, while Allgather has an average
of about 1 callsite.

4.4 Other Statistics

Figure 5 shows scalability limitations in terms of number of processors. The values
for this figure were actual runs. All applications are capable of running in a single
processor mode in order to debug the application and verify that the serial execution
provided the correct results. Normal runs were considered to be runs with a moderately
sized problem set or daily runs. The aggressive runs were those that pushed the limits

4The remaining messages were greater than 1,000 Kbytes for both large and small runs.

Table 2: Frequency of MPI calls.

MPI Function | Average No. Calls per Process
Allgather 68.5
Allreduce 10616.4

Alltoall 1057.0
Barrier 56.9
Bcast 2067.3
Gather 134.0
Gatherv 284.0
Irecv 246530.9
Isend 222527.9
Recv 53648.3
Reduce 250.9
Send 80337.4
Wait 65881.4
Waitall 31983.5
Waitany 562436.5

for that application. Many of these applications may scale to higher numbers because
these values represent only documented runs. Table 3 lists the number of lines of code
for each application. These values were obtained using the UNIX utility, wc, on the
source code.

Frequency of callsites by MPI functions

12 T T

Average number of callsites

T T T T

AllreduceAllgather AlltoAll Barrier Bdcast Gather Irecv Isend Reduce Recv Send Wait Waitall
MPI function

Figure 4: Average number of callsites.

Table 3: Lines of source code.

Application

Lines of Code

AMTRAN
Ardra
Ares
GEODYN
GP
IRS
MDCASK
Linpack
Miranda
SMG2000
Spheral
sPPM
SWEEP3D
UMT2K

89000
75000
509800
100000
NA
67400
21000
26800
NA
22700
54200
29700
3900
17000

Number of processors

8000 T T T
& Amtran umtek -7444 |
Ardra B
=B~ Ares
7000} - GP b -
-8 IRS
=B~ Linpack
=B~ Mdcask
Miranda
=B~ Smg
Spheral - :
6000 - SpPM e RN KRR ERERRRRRREY T -
Umt2k : :
BOOOJ -+ B -
B000JF v miranda — 3920 - - o
& mdcask — 3084 4
3000 T R T -
2000 v v R R R XERRERERRRR -
sppm — 1000 |, smg-1728 1
irs:— 1024 \

1000 : ardra — 640_. 1
: ares — 594 \ I
| op - 504 &, !
: amtran - 512 = ir - =
: — spheral - 256 |

| : :) : |
Debug Normal Aggressive

Type of run

Figure 5: Scalability of applications.

10

5 Conclusion

Our profiling of various scientific parallel applications has given us insight into how they
use MPI. Many of the applications spend significant time in MPI and are thus not fully
optimized. Application programmers may be able to optimize these applications by
reevaluating the problem specification in terms of data decomposition to see whether
any parallelism can be exploited. Within MPI, MPI_Reduce and MPI Barrier are
most often called. MPI implementors and vendors can focus on these calls in future
implementations to reduce time taken there, and application programmers may want
to consider how they might change their implementation. An indepth profile of a
specific application would clearly be beneficial in deciding which specific calls are
causing bottlenecks.

Our profiles did not indicate the existence of an optimal message size. Smaller
messages dominate, which is reasonable because of performance hits when scaling up
to many processors. Examining MPI message sizes would be an interesting area for
future research.

As these applications begin to run on hundreds and thousands of processors, per-
formance will become increasingly important. By focusing on certain aspects such as
time in calls, the specific MPI functions, and communication patterns, future imple-
mentations of MPI may ameliorate current performance issues.

11

References

[1] Message Passing Interface Forum. URL: http://www.mpi-forum.org/

[2] Vetter, J.S., and C.M. Chambreau. mpiP: Lightweight Scalable MPI Profiling.
URL: http://www.llnl.gov/CASC/mpip/

[3] Garlick, J.E., and C.M. Dunlap. Clustered High Availability Operating System.
URL: http://www.llnl.gov/linux/chaos/chaos.html

[4] Compton, J.C., and C.J. Clouse. “Domain Decomposition and Load Balancing in
the AMTRAN Neutron Transport Code,” in Proc. 15th Intl. Domain Decompo-
sition Conference, Berlin, Germany (July 21-25, 2003). Also available as UCRL-
JC-152231.

[5] Brown, P.N. Ardra: Scalable Parallel Code System to Perform Neutron and Ra-
diation Transport Calculations. URL: http://www.llnl.gov/casc/ardra/

[6] Ares. Code developed by B.S. Pudliner, Lawrence Livermore National Laboratory.

[7] GEODYN. Code developed by I.N. Lomov and B.T. Liu, Lawrence Livermore
National Laboratory.

[8] GP (formerly JEEP). Code developed by Francgois Gygi, Lawrence Livermore
National Laboratory. See “Quantum Simulations Tell the Atomic-Level Story,”
Science & Technology Review (April 2002).

URL: http://www.llnl.gov/str/April02/pdfs/04.02.01.pdf

[9] Dawson, S.A. IRS: An Implicit Radiation Solver.
URL: http://www.llnl.gov/asci/purple/benchmarks/limited/irs/

[10] Petitet, A., R.C. Whaley, J. Dongarra, and A. Cleary. HPL - A Portable Imple-
mentation of the High Performance Linpack Benchmark for Distributed-Memory
Computers. URL: http://www.netlib.org/benchmark /hpl/

[11] Caturla, M.J. The MDCASK Benchmark Code.
URL: http://www.llnl.gov/asci/purple/benchmarks/limited/mdcask/

[12] Miranda. Code developed by A.W. Cook and W.H. Cabot, Lawrence Livermore
National Laboratory. See Cabot, W.H., and A.W. Cook. “Large-Scale Simulations
with Miranda on BlueGene/L,” UCRL-PRES-200327.

URL: http://www.llnl.gov/asci/platforms/bluegene/papers/21cabot.pdf

[13] Brown, P.N, R.D. Falgout, and J.E. Jones. “Semicoarsening Multigrid on Dis-
tributed Memory Machines,” STAM Journal on Scientific Computing 21(5): 1824-
34. Also available as UCRL-JC-130720.
URL: http://www.llnl.gov/asci/purple/benchmarks/limited /smg/

[14] Owen, M., P. Miller, M. Casado, J. Johnson, and N. Keen. Spheral++.
URL: http://spheral.sourceforge.net/

12

[15] Woodward, P.R., and Anderson, S.E. The sPPM Benchmark Code.
URL: http://www.lcse.umn.edu/research/sppm/README.html

[16] Owens, J.L. The ASCI SWEEP3D Benchmark Code.
URL: http://www.llnl.gov/asci-benchmarks/asci/limited /sweep3d/

[17] Chan, B. The UMT Benchmark Code.
URL: http://www.llnl.gov/asci/purple/benchmarks/limited /umt/

[18] Vetter, J.S., and A. Yoo. “An Empirical Performance Evaluation of Scalable Sci-
entific Applications,” SC2002: High Performance Networking and Computing,
Baltimore, MD (November 16-22, 2002). Also available as UCRL-JC-148061.
URL: http://sc-2002.org/paperpdfs/pap.pap222.pdf

13

