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CHORD DISTRIBUTIONS OF A SPHERICAL SHELL

BRITTON CHANG *

1. Introduction. Many years ago, Dirac [1], [2] derived an approximation for a,
the eigenvalue of the Neutron Transport Equation which is physically the criticality
of a chunk of nuclear material, in terms of the distribution of the chord lengths
in the chunk. The criticality of an assemblage of nuclear material is linked to the
chord lengths of the assembly, because the net number of secondary neutrons which is
produced in a collision by a primary neutron with an atom of the fissionable medium
is proportional to the number of mean free paths that the primary neutron can travel
in the assembly. Dirac derived the chord length distributions for three convex solids;
an oblate ellipsoid, a hemi-sphere, and a hemi-ellipsoid.

In this paper, we derive the distributions for two kinds of chords for a spherical
shell. The first kind are truncated chords which are drawn in the left figure of Fiq.
1. The second kind are complete chords which are drawn in the right figure of Fig.
1. Truncated chords are chords which originate at a point r and terminate at the
nearest boundary of the shell. We can think of a truncated chord as the path in which
a particle is born at point r and travels in the direction p to the nearest boundary of
the shell. For the case of the truncated chords, we can think of the region bounded
by the inner surface of the shell as being filled with a perfect absorber. If the particle
leaves the shell through the inner surface, it is absorbed by the perfect absorber. On
the other hand, complete chords are straight lines that spans the sphere as if inner
void region of the shell was not there. If a complete chord leaves the shell through
the inner surface, it re-enters the shell through the other side of the void. The length
of a complete chord is the length of the portion of the straight line that is within the
shell.

2. The Distribution of Truncated Chord Lengths of a Spherical Shell.
If the inner and outer radii of a spherical shell are a and b respectively, then the
volume of the spherical shell is V = 4%’(b3 —a®). If we assume that the interior points
of the spherical shell are equally probable, then the interior points are distributed
according to the distribution law

2 2

(2.1) prz%:%, a<r<b.
It is easy to verify that fab drp, = 1. Furthermore let u be the cosine of the angle that
is between the radius vector and the direction of the path of a neutron. If we assume
that at each interior point r, the paths through this point is isotropically distributed,
then the ’angular’ distribution law of the paths is

1
(2:2) Pu=73> —1<p<l.

Since the joint probability density is the product of p, and p,, then the conditional
probability density of the angle, given r, is p(p|r) = p, = 1/2.
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F1G. 2.1. The left figure illustrates truncated chords in a spherical shell, and the right figure
illustrates complete chords in a spherical shell.

The derivation of the distribution of path lengths p; from the joint probability
density p.p(p|r) is an excercise in the change of integration variables from r and
to r and [, where [ is the length of the path from the point r in the direction y to
the nearest boundary of the shell. The left figure in Fig. 1 shows that there are two
types of truncated chords which emanate from the point r in a spherical shell. The
first type of path is from the point r to the inner wall of the shell, while the second
type of path is from the point r the outer wall of the shell. It is clear from the left
figure of Fig. 1 that the path length [ is discontinous with respect to the angle pu.
At the angle of discontinuity g = —4/1 — a?/r2, the path grazes the inner boundary.
This discontinuity adds a small degree of difficulty to the change of variables, but this
small difficulty is easy to overcome.

In order to keep the presentation simple, let us define the integral which is the
focus of our attention as

b 1
= [arp. [ auptuln)
a —1
Ne=r:

b -V b 1
2. = r r )
(2.3) /adrp 11 dp p(plr) +/a drp /m dp p(pr)

where the p integral is divided into two pieces in order to account for the two types
of paths mentioned above. If we define the u integrals of the above equation as

=
(2.4) Rz dusuln.
1
(2.5) Py(r) = /_\/m du p(p|r) ,
then @ of (2.3) can be written as Q = Q, + Qp, where
b
(26) Q= [ drpputr),
b
27) Q= [ dron).
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F1G. 2.2. The domain of integration of Qg can be decomposed in two ways. The figure on the
left describes the double integral as holding r fized while integrating over 1. The figure on the right
describes the double integral as holding | fized while integrating over r.

The paths of (2.4) are those that intersect inner wall of the shell. The lengths of
these paths can be determined simply by geometry, and are

@8) la = /@~ (L= )77 .

The integration limit 4 = —1 corresponds to the path length [, = r — a, and the
integration limit g = —4/1 — a2/r? corresponds to the path length I, = v/r2 —a2.
Since we wish to express the integral in (2.4) in terms of [,, we solve (2.8) for y, i.e.

a2 —r2 — 2
2.9 == " a
(2.9) 7 ol ,

from which we get

dp r? —a? 12
dl, 2rl2 '
The substitution of (2.10) into (2.4) gives

(2.10)

du Vri—e® 2 g2 2
plulr) Gl = [ T

—a r—a

@11)  Pu(r) = /

where the subscript a on [, is dropped in the last integral since [, is a dummy inte-
gration variable.
Now the substitution of (2.11) into (2.6) gives

b Vr2—a? r2 — g2 — 2
2.12 .= i e -
(2.12) Q / dr p / - L

We would like to change the order of integration in (2.12). Figure 2 shows the domain
of integration and the limits of the double integral of (2.12). When the order of
integration is reversed, Fig. 2 shows that the integral of (2.12) can be writtten as

b—a a+l 2 _ 2 _ 712
Q. :/ dl/ dr p, #
0 VaZ+12 4rl

Vb2 —a? b r2 — g2 -2
(2.13) +/ dl/ dr pp ———— -
b NEe 4rl

—a
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Since the r integrals of (2.13) are analytical, then @, can be written as

VB a?
(2.14) Qa :/ dl pa(1) ,
0
where
4(1,::33(1,2&3) ) 0 S l S (b - a)
(2.15) pall) =

2 2 72,2
Tt b—a) <1<V -a,

Turning to the integral Py of (2.5). The paths in (2.5) are those that intersect
the outer wall of the shell. The lengths of these paths can also be determined simply
by geometry, and are

(2.16) Iy =02 — (1 —p?)r2 — pr.
We can solve (2.16) for u to give

b2 _ T2 + l2
2.17 =2~ T'%
(2.17) I o,
from which we get

dp b2 —r? -2
2.1 —— = ——
(2.18) dly 2rl?
The substitution of (2.18) into (2.5) gives
V=T —a? N e SOV TR
d b —r?+1
(,u|r) — dlb = — 5 dl
—r b—r 4rl

where the subscript b on [ is dropped in the last integral since [ is a dummy inte-
gration variable.
The substitution of (2.19) into (2.7) gives

VB a4V a® e 2
(2.20) Qp = / dr p, / V-r -y,
b

(2.19) Py(r) = /b

4r]2

Figure 3 shows the domain of integration and the limits of the double integral of
(2.20). When the order of integration is reversed, we can write the integral of (2.20)
as

b—a b 2 2 2
b*—r*—1
Qb —/0 dl ~ dr Pr e
VbZ=a2 2
2—r2—1
+/ dl/ dr pT i
2v/b%—a? b 2.2 72
(2.21) +/ di bor -l

dr pr — .
V=a? Jivi=mra T 4P
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1 1

Fic. 2.3. The domain of integration of Qp can be decomposed in the same two ways that the
domain of integration of Qg s decomposed.

Since the r integrals of (2.21) are analytical, then @ can be written as

2vb%—a?
(2.22) Qy = /0 dl py(l)
where
an =l 0<1<(b-a)
(223) ()= e (o q) <1< VP

Since @ = @, + Qp, and @, and @ are given by (2.14) and (2.22) respectively,
then @ can be written as

21/b2 —a2
(2.24) o= pri,
0
where
3(46° %) 3a’ <I< (b
16(6°—a®) T 1(55—a?) 0<i<(b—a)
22,512\ /p2_ 2 2_ 2 j2\2
(2.25) pr =4 el e | S0 el (b-a) <1<V -2
e R i<

is the distribution of truncated chord lengths of the shell.

2.1. The Average Path Length of a Spherical Shell. The average path
length < I > in a spherical shell is

(2.26) <l>E/ pldl .
0

The substitution of (2.25) into (2.26) with a bit of algebra gives

3(b—a)? 9 9 9 b+a
2.2 =—"— 1|4 4 .
(2.27) <l> 16027 — o) ( b° + 6ab + 4a* + (b + a) logeb_a
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3. The Distribution of Complete Chord Lengths of a Spherical Shell.
We can derive the distribution of complete chord lengths in the same way that we
derived the distribution of truncated chord lengths in the previous section. The only
change that we need to make in the derivation is in the definition of the length of a
chord. In order to be complete, we assume that the interior point of a spherical shell
are equally probable and that the chords are isotropically distributed. So p, and p,
are given by (2.1) and (2.2) respectively. We see that there two kinds of complete
chords in the right figure of Fig. 1. The first type is entirely within the shell, while the
second type crosses the hollow region of the shell. If u, the ’angle of inclination’ of the
chord with respect the vector r, is between —\/ 1—a?/r? and \/ 1 —a?/r2, then the
chord is the first type. If |u| > /1 — a?/r2, then the chord is the second type. The
chord length of the first type and the chord length of the second type are respectively

lo =202 — (1 —p2)r? , 0 < |p| £ +/1—a2/r?
(3.1)
=202 — (1—p®)r2 —2y/a> - (1—p>)r? , J1-a®/r2<|u/<1.

In the last section we broke the y integral of ) into 2 regions. In this section, we
break the p integral of @) into 4 regions according to the breakpoints of (3.1), i.e.

Q=/abdr oo [ otul

:/abdr{/_\/m—i—/o +/\/m+/l }dup(mr)

-1 —y/1—a?/r2 0 v/ 1—a?/r?

b V1—a?/r? b 1
(32) =2 / drp; / dp p(plr) + 2 / drp; / dp p(plr) ,
a 0 | a \/1—a?/r? |

where we took into account that the p integrals are symmetric with respect to —pu.
Since @ is broken into two pieces, we can write it as Q = Q4 + Qp, where

b v 1—a?/r?

(3.3) Q=2 arp / dy plulr) |
b 1

(3.4) Q=2 / arp. [ Al

The chord lengths for @), are given by the first equation of (3.1), and the chord lengths
for @y are given by the second equation of (3.1).

For (,, we change the variable of integration from u to l,. Solving the first
equation of (3.1) for pu,

(5)"+r =t

(3.5) b=- - ;
and its derivative is
la
(3.6) & B .
@ 2r (l“ ) + 72 — b2
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F1G. 3.1. The domain of integration of Qq for complete chords.

The substitution of (3.6) into (3.3) gives

2v/b2%2—a? la
(3.7 = 2/ dr pr/ dly, p(u|r) 22
2vb2—r2 2% (%) L2 )2

Figure 4 shows the the domain of integration and the limits of the double integral of
(3.7). When the order of integration is reversed, Fig. 4 shows that the integral of
(3.7) can be written as

2vbZ—a? b la
Qu = / d, dr prp(ulr) f“
0 V2 —(1a/2)? r (lja)z 42— p2
262 —a? 372

For )y, we change the variable of integration from y to l. Solving the second
equation of (3.1) for pu,

V(@22 + 27 =0 — @) 4+ 402 —1?)(r2 — )

(3.9) p= i ;
we get
Gy % /2! = (2= a?)’

U2 [(@)22 + 22 — 12 — @) + 402 - 1) — a?)

The substitution of (3.10) into (3.4) gives

2\/th2 20, p(p|r b2 —a?)® — (1,/2)*
(3.11)Q = /dr/ b PP(M|)(( ) (b/)) -
2(b—a) rlf\/((lb/2)2 +2r2 — b2 —a2)? + 402 — ) (r2 — a?)

Since the integration limits of the inner integral in the above equation are independent
of r, we can change the order of integration without changing the limits of integration.
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Furthermore the r integral is analytical, so we get

2,2 2
(3.12) Qb:/“’ g3 (B*-a)” 12
) 2(1)7&) 2(b3 - (13) l2 16 )

Combining (3.8) and (3.12), we get

(313) Q= /2\/W i 312 . /2\/W i 3 (b2 _ a2)2 _ ﬁ
' Lo 8(b° —a®) o) 2(b3 — a3) 12 16 ) °

Therefore the distribution of the complete chord lengths in a spherical shell is

2

S - 0<I<2(b—a)
(314) o) =

2 2232
32(;)31—013) + 18?2(1()1)3—&0/2}) b 2(b - a) S l S 2 b2 - a2
3.1. Average Complete Chord Length in a Spherical Shell. The average

length < I > of a complete chord in a spherical shell can be determined easily from
the density (3.14) and the formula

(3.15) <l>z/ prldl.
0
The substitution of (3.14) into (3.15) gives

3b—a)' +90* —a??  3(¥-a’)’ b+a
8(0° — @) A0 —a3) Bep_q -

(3.16) <l>=
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