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Abstract

SPHERE simulations calibrated to CTX are shown to  predict the correct

temperature (0.12 KeV) for SSPX sustainment Shot 4624. Agreement with the temperature

suggests that the Rechester-Rosenbluth thermal diffusivity included in the SPHERE heat

transport equation is essentially correct. Substituting parallel heat loss as suggested by

NIMROD calculations gives a temperature four times too low, while omitting Rechester-

Rosenbluth transport but retaining ion classical transport gives a temperature that is 50%

too high. Less certain is the magnetic buildup equation in SPHERE representing the

spheromak load as a resistance adjusted to give the correct magnetic field -- as is essential

to obtain the correct temperature by ohmic heating. While extrapolation for long pulses

using the Shot 4624 resistance does give higher magnetic field and higher temperature, the

actual resistance during sustainment is still highly uncertain. In Section 6, we present a new

resistance model in rough agreement with Shot 4624, but much work remains to be done.

Understanding the spheromak resistance during sustainment is the main theoretical

challenge for the model.

* * * * *

1. Introduction

We have simulated SSPX Shot 4624 in which the electron temperature rises to 0.12

KeV during the Sustainment phase, using the SPHERE code [1]. Results are given in

Figures 4 - 8, discussed in Section 3.

The gun circuit simulation for this shot is presented in Section 2. Extrapolations to

long pulses are given in Section 4, followed in Section 5 by a critique of uncertainties and a

review of SPHERE physics as a Òstandard modelÓ for future work. Section 6 presents a

new model for the spheromak resistance, and conclusions are given in Section 7.

2. Gun Circuit

The gun power is simulated by the simplified capacitor bank model in the SPHERE

code with parameters chosen to reproduce approximately SPICE simulations of the gun

circuit for Shot 4624, as follows:
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Formation Bank Sustainment Bank

C(farads) 0.01 0.096

L(mHenries) 1.1 2.225

R(mohms) 2.601 1.3

V(volts) 7000 1400

The delay to turn on of the Sustainment Bank is 300 microseconds.

In characterizing the plasma electrical load, we have in mind a flux core geometry

consisting of an open-line flux core tied to the bias flux y, surrounded by a spheromak in

the lowest Taylor state with eigenvalue lo = 5/R with flux conserver radius R. As in

SPICE  simulations, we represent the flux core by a fixed inductance 0.6 mH, while the

spheromak is represented by a variable resistance of the form:

RS = k(1 - Io/I) (zero if negative) (1)

giving as the power building up the spheromak magnetic field:

P = f I2 RS (2)

 

with gun efficiency

f = fK (Io/I) . (3)

Here Io = loy/mo is the threshold current for instability and fK represents the efficiency of

injecting helicity from the gun into the main flux conserver volume. The factor Io/I is the

Òfundamental efficiencyÓ for converting gun power into helicity K and magnetic energy E =

(lo/2mo)K: (dE/dt)/(I VS) = Io/I with dK/dt = 2VSy (VS = IRS). The spheromak resistance

RS is discussed in Section 6.

We take Io = 180 KA and k = 10 mW held constant throughout the Formation and

Sustainment phases. These values were chosen to give the measured peak gun current

(Figure 1) and measured gun energy òt dt IV (Figure 2)Êwith gun voltage V = I[RS +

L(dI/dt)]. This Io is somewhat below the theoretical value of 208 KA with bias flux y = 26
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mW, or the measured value of 220 KA as Io is defined in the SSPX database. The gun

voltage (Figure 3), which follows from these choices and Eq. (1), is also in reasonable

agreement with the measurements.

The remaining parameter fK is discussed in Section 3.

3. Results

Our simulation of the temperature and magnetic field for Shot 4624 is shown in

Figure 4. The core temperature (r = 0) is plotted, labeled TO in the figures. For simplicity

we ignore impurities and we consider only the electron channel, not  coupled to ions, and

we hold the density constant at n = 1020.

The magnetic field in Figure 1 is to be interpreted as the poloidal field at the wall at

the midplane, corresponding to a field energy E = 2B2R3 MJ with flux conserver radius R.

The parameter fK = 0.4, held constant throughout the shot. This value, adjusted to obtain

agreement with the measured peak field in the Formation phase, also gives reasonable

agreement with the field throughout the shot. This value of fK is similar to that fitting most

shots, possibly representing a Òshort-circuitÓ of injected helicity inside the gun that never

reaches the main flux conserver volume. The actual value may be larger when sheath

voltage is accounted for (Section 6). Upcoming experiments will attempt to improve fK

using new bias coils now being installed in SSPX.

The peak temperature is 0.12 KeV, in good agreement with the Thomson scattering

measurement, is obtained using the same parameters in the Rechester-Rosenbluth thermal

diffusivity that fit CTX [2], as currently written into the SPHERE code. The temperature is

measured at the peak of the sustaining current (t » 1 ms), while in the simulation the peak

temperature occurs at t  » 2 ms during the weakly sustained period when the field is slowly

decaying and the turbulence enhancement factor gP  appearing in the Rechester-Rosenbluth

formula is order unity. Lower temperatures earlier in the shot reflect larger values of gP  as

shown in Figure 5, which plots the gP (r) profile at four successive times during the shot.

That the Sustainment Bank still plays an important role when the peak temperature

occurs is verified by comparing Figure 4 with sustainment to Figure 6 with no

sustainment (Formation Bank only). Without sustainment, the field decays more rapidly

and the peak temperature is somewhat less. The actual temperature during formation would

depend on whether or not impurities are negligible as assumed, and the actual density

during the formation phase.

The effect of classical heat losses is shown in Figure 7, for which the Rechester-

Rosenbluth transport term is turned off, giving a 50% increase in temperature. For this
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purpose the ion and electron temperatures are assumed to be equal, in which case ion

collisional heat conduction is dominant. We do not include a neoclassical correction, which

is difficult to estimate for the spheromak and should be less important than in tokamaks

because in a spheromak the toroidal and poloidal fields are about equal.

Finally, parallel heat conduction is added with cPARALLEL = ve
2/ne depending only on

quantities already in the SPHERE code. In order to continue to utilize the radial heat

transport equation in SPHERE, we approximate parallel heat conduction as radial heat

conduction through the rough correspondence dL = 2pNdr giving a total line length 2pNa

with N = (2paB/moIo), previously shown to explain line lengths in NIMROD simulations

(Appendix A). Then the effective radial thermal diffusivity is:

cEFFECTIVE   = cPARALLEL /(2pN)2 (4)

The effect of including this cEFFECTIVE   is shown in Figure 8, giving a maximum temperature

of T = 0.03 Kev, four times less than the measured value.

4. Extrapolation to Long Pulses and Improved Efficiency

Using Eq. (1), the magnetic buildup equation in SPHERE is given by:

dE/dt = f I2 RS - E/t (5)

where t is the decay time and f is the overall gun efficiency, Eq. (3). Convenient units are

megajoules, megamperes, milliseconds and milliohms, giving B/I » Itoroidal/I in SSPX. For

large t so that dissipation can be ignored, integrating Eq. (5) gives approximately the

following formula for the current amplification:

B/I » (2R3)-1/2 (t f RS)
1/2 (6)

                             

where t is the pulse duration.

For typical parameters of experiments to date, this gives B/I » 1. This numerical

fact, rather than any limit in principle, is sufficient to explain the apparent limitations on
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current amplification in these experiments. For example, for SSPX, R = 0.5, typically f »

1/6, and in the above units (t RS) = 0.2 x 4 = 0.8 for the Formation Bank and (t RS) =

1 x 2 = 2 for the Sustainment Bank, giving B/I = 0.7 - 1.2; and similarly for CTX, except

that f » 1/2, accounting for a sometimes higher amplification in CTX (a factor Ö3 by our

formula). Efforts to increase B/I in SSPX have been frustrated by the dependence of all

three factors t, f and RS on lGUN /lo  º Io/I (e.g. f µ lo /lGUN = Io/I, RS µ (1 - Io/I), and t µ

(1 - Io/I)
1/2, giving a broad optimum at Io/I » 0.5).

If we assume that RS is given by Nature, then, aside from optimizing f, the only

way to increase current amplification by Eq. (6) is by lengthening t using the pulse line

capability of the SSPX Sustainment Bank. The ultimate limit on useful pulse length is t,

the dissipation time. This is where heat transport along open field lines matters. Parallel

transport along open field lines could ultimately be the limit on temperature. But as long as

radial transport determines the temperature, the beta obtained by ohmic heating is relatively

fixed both for classical and turbulent transport (Appendix B), giving T µ B2/n. Then,

unless n runs away, T climbs with B so as to maintain t < t and buildup continues more or

less forever.

To see the benefits of longer pulses, we extend Shot 4624 sustainment, simulated

in Figure 4, by holding the gun current I constant after it reaches its peak value  (» 200 KA

at t » 0.001 s in Figure 4). We then shut off the current at t = 0.003 s and watch the decay.

Results are given in Figure 9. Despite appearances in Figure 4 (Shot 4624), where

the low current in this shot is barely able to hold up the field, the extended pulse injects an

additional 100 KJ of gun energy, giving a maximum B = 0.36 T (nearly double) and a

maximum temperature T = 0.22 KeV (also nearly double). Characteristically, the maximum

temperature occurs after turnoff when turbulence enhancement of transport diminishes as

discussed in Section 5.

To see the benefit of improved efficiency, in Figure 10 we repeat the calculation of

Figure 4 with fK = 1 giving the ideal efficiency, f = I0/I. The improved efficiency increases

the field and temperature for this short-pulse case about as much as did the longer pulse at

poorer efficiency, in Figure 9. The improvement would be less if, as noted earlier, fK in

Shot 4624 is higher taking sheath voltage into account (Section 6).

Simultaneously improving the efficiency and extending the pulse would give still

higher fields and temperatures. Higher charging voltage yielding higher gun current, well
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within SSPX capability, would yield even higher fields and temperatures, if the

empirically-derived spheromak impedance is maintained as assumed in the model.

5. Toward a Standard Model for Spheromaks

Our success in predicting temperatures in SSPX suggests that SPHERE physics

could serve as a Òstandard modelÓ for spheromaks that focuses theoretical attention on

critical uncertainties expressed in terms of a few fitting parameters connecting theory and

experiment. As we have seen, one of these parameters -- the Rechester-Rosenbluth c in

SPHERE -- appears to yield correct temperatures if the magnetic field is calculated

correctly. The greater challenge, and the greatest uncertainly in using SPHERE to

extrapolate to future experiments, is the spheromak resistance parameter k appearing in Eq.

(1), discussed in Section 6.

In this section we will review the c calculation in SPHERE, as an example use of

the standard model. The main idea of the standard model, the one that makes it possible to

calculate c and temperatures, is the paradigm of a flux core spheromak always evolving

self-similarly around a preferred state of magnetic stability.

The rationale for the model has two parts. The first, based both on measurements

and on theoretical expectations, reflects the fact that, whatever the actual magnetic structure,

most of the magnetic energy is contained in symmetric n = 0 components that have the form

of an open-line flux core at the geometric axis which is tied to the bias flux y, surrounded

by a spheromak with closed magnetic surfaces and an energy close to that of the lowest

Taylor state with eigenvalue lo -- as in J. B. TaylorÕs papers, in Corsica equilibria, and in

NIMROD calculations [4]. In the model, to maintain force balance the flux core radius

shrinks as the spheromak field grows during buildup, as shown in Appendix B. This

model allows us to keep books on magnetic energy and helicity in a simple way, through

the relation E = (lo/2mo)K used to calculate the Òfundamental efficiencyÓ in Section 2. It

also allowed us to calculate the length of field lines at steady state in NIMROD given in

Appendix A and cited in Section 3.

The second part of the rationale -- more controversial and more theoretically based

-- is the expectation that spheromak dynamics is dominated by instabilities that

continuously force the magnetic state to a preferred state of stability, sometimes described
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by a fixed l profile (motivated by Ñl as the drive for tearing) though this is not the

essential point (for example, instead of tearing the preferred state may be determined by

pressure driven modes, or non-linear helicity transport).

To calculate c using the standard model, we start from FaradayÕs law, multiplied by

B to obtain a magnetic energy propagation equation with Poynting vector P(r).

(Alternatively, we could consider helicity transport, but the result would be the same, since

<l> » lo for the standard model.) Integrating the magnetic propagation equation gives [2]:

(2p)2ar |P(r)| =      | - h(r)[P - PW(a)]  - PW(r) |   º  gp(r)PW(r) (7) 

Here P, from Eq. (2), is the portion of the gun power feeding dE/dt, coming from the

boundary condition on P(r) at r = a. PW(r) is the integral of hj2 from 0 to r (cylinder model)

and h(r) = ò r  B2rdr/ò a B2rdr is the field form factor defined in Ref. [2]. The standard model

has entered in assuming that h(r) is constant in carrying out the integration. Otherwise, Eq.

(7) is exact. All quantities other than h(r) can be time dependent, representing buildup,

steady state or decay.

To maintain the preferred state h(r) constant in time, it is generally necessary for

magnetic energy to flow from the edge to the core during injection from the edge, and from

the core to the edge during decay to maintain the low-temperature edge against greater

dissipation there. This is captured in P(r), which we interpret as being proportional to the

turbulence required to maintain B near the preferred state, having the form P(r) =

v*<dB2>/2mo with fluctuations <dB2 >, time-averaged if turbulence occurs in bursts. In

SPHERE we use P(r) to calculate the Rechester-Rosenbluth heat transport coefficient c =

veLc <dB2>/B2  µ Lc P(r)/v* [3]. The free parameter is Lc/v* which for an expected

correlation length Lc = pR » 6a requires v* = vA (Alfven speed) based on earlier

calibrations to temperature measurements in CTX [2] (in SPHERE, P(r) is defined to be 2

times our definition here, giving Lc = 3a). Then energy confinement scales with the local

magnetic Reynolds number S µ PW(r)-1, enhanced by the factor gp(r) that is fully

determined by Eq.(7) together with the standard model assumption that h(r) is a known

constant function of r.
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The interesting physics is contained in the turbulence enhancement factor gp(r). For

the non-physical case l and h constant in r, during decay (P = 0), gp = 0 everywhere,

automatically; the field decays exactly self-similarly with no turbulence and there is no heat

transport due to magnetic turbulence.  Even in realistic cases, though gp increases when

power is applied, it hovers near or below unity in quasi steady-state, as we found for

SSPX Shot 4624 in Figure 5. The scaling of temperature with gp is given in Appendix C

for a zero-D approximation to SPHERE.

A serious theoretical challenge to the standard model comes from NIMROD [4],

though the results of Figure 8 make it difficult to explain SSPX based on NIMROD

simulations. In NIMROD, during gun injection all field lines carrying current remain open,

attached to the gun. This in itself would not contradict the standard model if the open lines

were very long and chaotic in the manner assumed by Rechester and Rosenbluth --

apparently not the case in NIMROD. In the Rechester-Rosenbluth picture, any pair of field

lines initially separated in radius occasionally almost touch (with correlation length » pR

[3]) as the lines wind their way to the wall by random walk between magnetic islands. In

that case, Rechester and Rosenbluth find that the derailing of parallel heat flow by radial

diffusion at the touch points gives larger heat transport to the wall than would parallel heat

conduction all the way to the wall -- the reason being that they find c (radial) µ dB2 and the

line length L µ dB-2, giving c(radial)/a2 > c(parallel)/L2 unless magnetic fluctuations are

very large [3].

6. A Model for the Spheromak Resistance RS

The input power to the spheromak, P in Eq. (2), depends on the spheromak

resistance RS, which must be determined independently. Here we present a model for RS in

sustainment based on an interpretation of the Poynting vector discussed in Section 5. This

model relates the spheromak resistance to inductance in the flux core, which can be

obtained from gun current and voltage data.

We start by taking r = a in Eq. (7), in order to examine power flow out of the flux

core. Using h(a) = 1, we obtain:

P = Av*<dB2>/2mo =  AFCv*f<dB2>FC/2mo . (8)

The second step equates power flowing into the spheromak with surface area A to power
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flowing out of the flux core with surface area AFC  = 2pRCR, radius RC and length R (the

length of the geometric axis). Also, we have added a factor f (efficiency) to approximate the

fact that Eqs. (5) and (7) only account for the spheromak mean field energy.

To evaluate P, we suppose that <dB2>FC represents the time average of localized

sawtooth oscillations in which transport occurs during an interval dt when islands overlap

and reconnection occurs, following a slow buildup of free energy dW in a time

t = (dW/ I2 RS) = fdW/P using Eq. (2) [10]. Then:

P = fdW/t (9)

VFC <dB2>FC /2mo = dW(dt/t) (10)

with flux core volume VFC = pRC
2R. We estimate the free energy as:

dW = 1/2 LFC(I2 - Io
2)  =  LFCI2(1 - Io/I)[1 - 1/2 (1 - Io/I)] » LFCI2(1 - Io/I)  (11)

with flux core inductance LFC. (Though normally one would expect dW µ (1 - Io/I)
2 due to

some constraint such as helicity conservation [6], helicity is not conserved in the flux core

alone.)

Combining Eq. (2) with Eqs. (8) - (10) gives:

P = f I2RS = (v*/w) fdW(dt/t) = fdW/t (12)

with w = VFC/ AFC = 1/2 RC, which we shall interpret as roughly an island width at the time

of overlap of islands at the surface of the flux core. Selfconsistency requires dt = w/v*,

which says that v* is the reconnection  speed. We estimate t from the Rutherford growth

rate dw/dt = D'<h>/mo giving t » wmo/D'<h> = 1/2 RCmo/D'<h> where D' is the tearing

parameter and <h> is the line-averaged resistivity. Introducing this into Eq. (12) and using

Eq. (11) gives RS in Eq. (1) with coefficient k given by:
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k = LFC/t = ab RFC (13)

a = (D 'RC) (14)

b = (2p LFC/moR) (15)

RFC = (<h>RB/y) » (8lo/Io)(ZRB)2/5 (16)

where RFC is the classical resistance of the flux core with cross-sectional area pRC
2 = y/B,

<h> » (4 x 10-8)To
-3/2, To (at the midplane) = 0.025(ZRBFC)2/5 by ohmic heating in the

open-line flux core, with field BFC in the flux core. Then RS  µ (LFC/Io)(1 - Io/I). The SSPX

resistance data base is plotted versus this scaling law in Figure 11 for the Formation Bank

and in Figure 12 for the Sustainment Bank.

Note that this interpretation of RS makes clear why empirically the spheromak load

appears as a resistance in SPICE simulations, while its origin lies in inductive magnetic

energy. From Eq. (13), the spheromak load represents a voltage drop IRS µ LFC(I/t) in

which the free energy replacement time t replaces the usual inductive timescale from dI/dt.

In relating t to resistive tearing through the Rutherford formula, the essentially inductive

spheromak resistance becomes an enhancement of the classical resistance RGUN.

For SSPX Shot 4624, LFC = 0.6 mH from a fit to experimental data, giving b = 6,

and RGUN = 0.3 mW for Z = 2, R = 0.5 and BFC » 2.5BWALL = 0.5 at the geometric axis

(giving To = 0.02KeV in the flux core). Then k = 2a (mW), requiring a = 5 to obtain our

fitting value k = 10 mW in Section 2.

We might have expected a » 1 (though a flattened current profile in the flux core

might give a higher value at its surface). Note, however, that a lower a, giving a lower k,

implies that a smaller fraction of the gun power contributes to building the field than is

implied by our fit in Section 3 -- due to sheath losses rather than inefficient helicity injection

(f = fK(RS /RGUN)(Io/I)).
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Indeed, a lower value of a, and also less scatter in the data than in Figures 11 and

12, is obtained when we attempt to refine the resistance formula to include the sheath

voltage » gTo = g25 (ZRB)2/5 (in volts) and the classical resistive drop IRGUN, using Eq.(16)

with lo = 10 for SSPX. Including these terms in the voltage along with IRS  and dividing

by I gives a total gun resistance:

RGUN = [(ZRB)2/5/ Io][25g(Io/I)+   80{1 + 1/2 ab(1 - Io
2/ I2)}] (17)

where in the last term (RS) we have retained the exact form of dW from Eq. (11). In Figure

13, we fit Eq. (17) (in mW) to SSPX data for different values of the gun current (in MA) at

a fixed y = 15 mW (Io  = 0.12 MA) with b = 6 as found above.

For this model, the remaining scatter in experimental values at the stability threshold

I = Io (where the a term is zero) reflects uncertainties in sheath and gun physics, while

scatter in the asymptotic limit I >> Io (where the g term is small) reflects uncertainties in

flux core stability physics (D'). Given the scatter, there is latitude in how we choose the fit,

especially near I = Io, giving a lower a and k for a higher sheath voltage (higher g). To

illustrate this point, the fits in Figure 13 have a » 0.8 both for the curve labeled FB

(Formation Bank) and that labeled SB (Sustainment Bank), but a much larger sheath

voltage is required for Formation: g = 22, giving a sheath of 417 volts (probably too high).

In mirror devices, typically g = 5 - 10.

While the rough agreement with experiment in Figure 13 is encouraging, there is as

yet no direct evidence of saw tooth behavior in the data; the inductance LFC is purely

empirical; and the mechanism for reconnection is unknown.

The earliest attempt to understand the spheromak impedance is given in Reference

[5], in which Eq. (1) was first proposed, along with a theoretical model for k based on

mass flow in coaxial guns. Figure 10 in Reference [5] plots Eq.(1) for CTX data, giving k

= 20 - 30 mW -- similar to our fit in Section 3 if To = 0.01KeV in CTX versus our inferred

value of To = 0.02KeV in SSPX Shot 4624. Other attempts to explain the resistance have
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been based on radial transport of helicity inside the flux conserver, by time-averaged

<v X B> due to tearing (which should be included in NIMROD), and hyper-resistivity due

to Rechester-Rosenbluth particle transport (probably too weak [6]).

An alternative theoretical approach might be Rechester-Rosenbluth particle flow,

which transports helicity with the particles [7]. Particle flow, appearing directly in v x B,

gives much stronger transport than does hyper-resistivity, which is a correction to

resistance. Conceptually, with v* = vA to fit temperature data (Section 5), helicity transport

by radial particle flow inside the flux conserver is a continuation of the coaxial flow in the

gun discussed in Ref. [5]. In the gun, energy flows only when I > Io (force imbalance),

giving a magnetic energy flow rate vAB2/2mo. After the flux core geometry is established,

flow out of the flux conserver occurs at a similar rate, but only intermittently during island

overlap and reconnection, giving Rechester-Rosenbluth transport.

Transport of helicity by Rechester-Rosenbluth particle flow may be the only

theoretical mechanism large enough to explain the data during sustainment, if the MHD

<v x B> dynamo included in NIMROD does not do the job. This would appear to require

that particles flow up hill in order to reach the dense, high pressure core of the spheromak.

But inward particle pinches do occur in tokamaks. It might be useful to search for

experimental evidence correlating RGUN from fits to data with particle flow (gas feed, rising

n, leaking or recycling particles; see Ref. [5]).

7. Conclusions

The simplified physics model of the SPHERE code, originally calibrated to CTX

experiments at T = 0.1 KeV and T = 0.4 KeV, now yields the correct maximum

temperatures achieved in SSPX sustainment experiments (T = 0.12 KeV). The dominant

energy loss process appears to be Rechester-Rosenbluth heat transport in a tangled

magnetic field characterized by a random walk of field lines in space, as would be expected

for a mean field with closed flux surfaces together with overlapping islands. NIMROD

simulations do not appear to yield this structure, suggesting that reconnection is not treated

adequately.

The ability to predict temperatures in SPHERE is based on an assumption that we

propose as the Òstandard modelÓ for spheromaks. Namely, during sustainment a gun-

injected spheromak is well approximated by a flux core attached to the gun, surrounded by

a spheromak in which time-averaged turbulence levels are self-regulated to maintain an

approximate Taylor state. This assumption is sufficient to pin down turbulence levels and

associated transport inside the spheromak, as discussed in Section 5.
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The main uncertainty in the model is the spheromak resistance in sustainment,

needed to calculate the buildup of the field. A tentative model relating the resistance to flux

core inductance is given in Section 6, but much work remains to be done. A reliable

formula for the spheromak resistance in sustainment is the key to making SPHERE a

reliable tool for predicting performance of future experiments and reactors (Section 4). The

model in Section 6 is perhaps a starting point.

 Finally, the simplified cylinder geometry in the SPHERE model must be improved.

Implementing the SPHERE model in the 2-D Corsica transport code is straightforward [8].
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Appendix A. Length of Open Field Lines

We approximate the bias field Bo  = (moIo/2pa) with a = R/2 and multiplication N =

B/Bo and the plasma volume V = 2p2a3 = p2R3/4 (cylinder model). Then, for fK = 1 giving

f = I0/I with I0 = loy/mo (Section 2), magnetic steady state found by setting the right hand

side of Eq. (5) equal to zero gives, after a little algebra:
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fIVS  = (loy/mo)VS  = E/t = (V/t)(B2/2mo) = (lo
2

 R/8mot)N2y2 (A1)

N = [(8/loR)( VSt/y)]1/2 » ( 2VSt/y)1/2 (A2)

where t = (mo/2hlo
2) is the decay time.

For a fixed h, this result is valid whether or not field lines are open. For open lines,

following Reference [8], we interpret N as the winding number -- the number of times

fields lines are wound up inside the flux conserver -- giving a length L* = 2pNa as

assumed in the calculations for Figure 8, Section 2, where L* is the mean length of lines

carrying maximum current (reciprocal of the average reciprocal length). As is shown in

Reference [8], Eq. (A2) correctly predicts the line lengths found in NIMROD calculations

(allowing for a different definition t = (moR
2/h)in Ref. [4]).

The parameter N can also be interpreted as a winding number even if lines are

closed, by analogy with a coil omitting the connections from winding to winding. Closed

or open, B » N(moIo/2pa) as if only a fraction Io  of the gun current I is diverted into the

spheromak, where it is wound up N times, subsequently reconnected (closed) or not

(open). However, unlike the open-line case in which the spheromak current density

saturates at j = V/hL* (voltage V) [4], if reconnection causes radial transport to dominate

inside the spheromak, then t increases with B so that no steady state occurs, as discussed

in Section 5. The open-line flux core current I does saturate, but buildup of the spheromak

current continues if I > Io. The gun current I saturates not far above Io, due to instability,

depending on the magnitude of k in Eq. (1).

Appendix B. Force Balance in the Standard Model

By the assumptions of the standard model, the field changes self-similarly so that

calculating the force balance along the interface between the flux core (FC) and the

spheromak (SP) can be reduced to the force balance at any chosen location. Then we can

write the force balance equation as:

BFC »  y/pRC
2 = BSP º a(ESP/VSP)

1/2 (B1)
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where RC is the flux core radius at a chosen location on the flux core - spheromak interface

(e.g. the midplane), y is the bias flux (constant) and ESP and VSP are the magnetic energy

and volume of the spheromak, and we take a as approximately constant. Differentiating by

time and dividing each side by BFC  (= BSP) gives:

 - 2RFC
-1dRFC/dt = 1/2 [ESP

-1dESP/dt   + VSP
-1dVFC/dt] (B2) 

where on the right we take dVSP/dt = - dVFC/dt to conserve total volume. Introducing VFC
 =

LpRC
2 , taking its derivative and rearranging terms gives:

[1+1/2(VFC/VSP)]RC
-1dRC /dt  »  -1/4 [(ESP

-1dESP /dt) + (VFC/VSP)( L
-1dL/dt)] (B3)

Eq. (B3) says that RC shrinks as long as ESP  grows -- the more so if also dL/dt > 0

(a small effect by the time that VFC/VSP << 1). Then at constant y, if RC shrinks, BFC »

y/pRC
2 grows, and BSP grows to maintain force balance, and current amplification grows.

Compression and current amplification only stagnate if dESP /dt stagnates.

The actual dynamics of helicity propagation would not alter the conclusions. If there

is a preferred l profile (assumption (ii)), the dynamics only delays the relaxation to this

profile and changes nothing in the long run. Moreover, it can be shown that ESP is rather

insensitive to details of the l profile. Also, note that we allow L to grow, as in a

lengthening Òdoughhook.Ó An asymmetric doughhook flux core can also be described by

energy flow out of the doughhook into a surrounding spheromak -- with no real change in

Eq. (B3) and its consequences. Otherwise, as long as the energy in asymmetries is small,

focusing on the symmetric mean field is a useful concept whatever the actual structure.

Appendix C. Zero-D Heat Transport Model

We approximate the heat diffusion coefficients in the SPHERE code [1], evaluated

in the core (r = 0), as follows (T in KeV, n in units of 1020, otherwise MKS units):

cMAG =  3ave(gP /S) =   1.14(gP/T
3/2)(nT/B2)1/2   =   5.7 gP(b

1/2 /T3/2) (C1)

cCLASS   =  (nrL
2)ION =   0.36 T-3/2(nT/B2)          =   9 b T-3/2 (C2)
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cGYROB.  =  0.6(T-3/2/aB2) (Ref. [5])          =   15b T-3/2(T2/na) (C3)

where we assume equal ion and electron temperatures and we have used S = avA mo/h, h =

4  x 10-8 T-3/2 and b = 0.04(nT/B2).

We introduce these coefficients into the energy balance for ohmic heating of

electrons in the core:

hj2 = 3/2 nT(cMAG + cCLASS  +  cGYROB.)/a
2 (C4)

with j = loB/mo = 2.5 B/amo . The result can be written as:

1 = 1.6 gP (b/bC)3/2+ (b/bC)2 (1   +   1.6(T2/na) ) (C5)

where bC = 0.17 is the solution for classical transport only.

The gyroBohm term is irrelevant until T = 0.8(na)1/2 = 0.4Ön in SSPX.

Solutions of Eq. (C5) neglecting cGYROB. are given in Table 1 for ascending values

of the turbulence enhancement factor gP .

Table 1. Zero-D Calculations of Peak Electron b versus gP in the Core

gP b/bC b

0 1 0.17

0.5 0.76 0.13

1.0 0.57 0.10 SSPX Sustainment

5.0 0.24 0.04 CTX Decay

10.0 0.16 0.027
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