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Summary

The goal of this project is to develop experimental and computational protocols to use 
SIMS to image the chemical composition of biological samples, focusing on optimizing 
sample preparation protocols and developing multivariate data analysis methods.  Our 
results on sample preparation, molecular imaging, and multivariate analysis have been 
presented at several meeting abstracts (UCRL151797ABS, UCRL151797ABSREV1, 
UCRL151426ABS, UCRL201277, UCRL154757).  A refereed paper describing our 
results for sample preparation and molecular imaging of various endogenous 
biomolecules as well as the mutagen PhIP has been accepted for publication (UCRL-JC-
151797).  We are also preparing two additional papers describing our multivariate 
analysis methods to analyze spectral data.   As these papers have not been submitted, 
their content is included in this final report.

Introduction/Motivation

Time- Of-Flight Secondary Ion Mass Spectrometry (TOF- or static-SIMS) is a surface 
analysis technique that provides chemical specificity and imaging capability.  SIMS has 
been used to characterize biomaterial surfaces, molecules in tissues, and proteins 
(Kempson 2003, Roddy 2003, Wagner 2003).  The time-of-flight mass analyzer generates 
complex spectra containing large numbers of peaks, primarily those originating from 
proteins that constitute most of a dry cell’s mass.  Proteins are long unbranched chains 
composed of only 20 different amino acids.  The complexity lies in the large number of 
combinations of these 20 amino acids present in cells.  Adding to the complexity is the 
fact that in general, a given biomolecules can be ionized not only as single ‘parent’ ions, 
but also as multiple ‘daughter’ ionized fragments.  Thus, in general, there is an absence of 
unique peaks for different biological samples.

Identification of signatures from mass spectra in conjunction with genomic data is being 
developed for applications such as disease diagnostics and characterization as well as 
proteomic profiling (Diamandis 2004, Nishizuka 2003).  One of the difficulties with mass 
spectra is the complex multidimensionality of the dataset.  These data are over 
determined; that is, the number of variables is greater than the number of samples.  
Algorithms have been used to analyze these data to demonstrate that a pattern consisting 
of several peaks (from tens to thousands) is sufficient to differentiate between two groups 
using genetic algorithms combined with cluster analysis (Petricoin 2003).  Principal 
component analysis (PCA) has also been used to interpret TOF-SIMS spectra recorded 
from proteins adsorbed onto model surfaces (Lhoest 2001).  In these methods, a subset of 
m/z peaks are selected to represent a given protein sample based on the observed spectra 
and amino acid composition.  Two supervised multivariate analysis techniques, 
discriminant principal component analysis and linear discriminant analysis, have been 
compared in their ability to distinguish spectra from adsorbed protein films (Wagner 



2002).  PCA has also been used to analyze TOF-SIMS images of organic monolayers of 
single and mixed phospholipids (Biesinger 2002).  

Recently, algorithms to characterize underlying structure in complex gene expression 
data have been developed using ‘metagene’ patterns from DNA microarray experiments. 
In this method, singular value decomposition (SVD) is used to derive metagenes that are 
linear combinations of individual gene expression values that together constitute the 
metagene (West 2000).  The metagenes have been shown to identify and classify cellular 
phenotypes based upon their gene expression values.  

For this project, we used Singular Value Decomposition to calculate linear combinations 
of the original mass/charge peaks contained in an alternate coordinate system.  We then 
selectively remove, or project out, independent m/z information to remove the 
‘commonality’ contained in the spectral information to expose underlying differences in 
different sample spectra.  We show that we are able to cluster spectra from homogenates 
of different cellular regions and cell types.  A second application is to use SVD to derive 
‘metamasses’ from TOF-SIMS spectra.  We then identify those metamasses that 
contribute most to the intra-group separation using canonical analysis (CA).  In order to 
relate these metamasses back to the original measured mass peaks, we again use 
canonical analysis to identify those mass peaks that contribute most to the intra-group 
separation.  We find that SVD in combination with canonical analysis (CA) enabled the 
identification of a subset of m/z peaks that are responsible for giving maximal separation 
of different sample types.  Using this method, for the samples we used, we find that a 
signature comprised of 35 m/z peaks is sufficient to categorize spectra from a variety of 
biological samples. 

Data Analysis

TOF-SIMS spectra contain thousands of peaks.  The challenge is identifying the peaks in 
the spectra that can be used as the markers of a complex signature.  In order to reduce the 
dimensionality of the space spanned by the mass spectra, we first apply singular value 
decomposition (SVD) to the training dataset.  The equation for the singular value 
decomposition of M is: M = USVT where U is an m x n matrix, S is an n x n diagonal 
matrix, and VT is an n x n matrix.  The columns of U are the left singular vectors and 
form an orthonormal basis for the mass spectra.  Each single vector of U represents a 
linear combination of m/z peaks and this linear combination is referred to as a metamass.       
The resulting matrix VT contains the right-singular vectors and represents the 
measurements of the metamass for each observation. By representing the data in this new 
coordinate system defined by the left singular vectors of the SVD, the dimensionality is 
reduced from n the number of m/z peaks to at most m, the number of samples.  It is 
important to note, that this representation of the data is exact and no information is lost.  
The set of left singular vectors spans the identical space as the original data.   Each of 
these new variables, which we call metamasses, is a linear combination of the original 
peak intensities.  For the clustering application, we define M(m), the new data matrix 
defined by the removal of the m largest eigenvectors.



In order to identify signatures from the spectra, we then use a variant of canonical 
analysis on the reduced space to determine the separation between the different spectra.    
Canonical analysis only works in the case when m < n – g, where g is the number of 
distinct groups.   In our case, after SVD, m=n, and g=4 so we cannot directly apply 
Canonical analysis.  To get around this problem, we apply a selection procedure know as 
forward selection.  Forward selection is an iterative procedure and finds the best set of 1, 
2, 3, …, n-g metagenes that maximizes separation between the groups. The best set of 
metagenes for small sets, typically up to about 5, we perform the optimization by 
considering all possible combinations of metagenes and selecting the set that yields the 
best Wilke’s parameter.  For larger sets, the exhaustive search is too time consuming and 
we add a single metagene by considering the given group and the addition of a single
metagene.  We repeat this process until we have found n-g sets.   One problem with this 
approach and with almost all multivariate approaches is that the problem of  “cherry 
picking.”  Because we have as many degrees of freedom (variables) to choose from as 
observations, we can always find a set of n-g variables that will provide separation 
between groups.  The challenge here is to find a set of variables that not only provides 
separation, but also is predictive. To help identify sets of genes that provide good 
separation, but are not statistically significant, we calculate the significance of each added 
variable during each step of the forward selection procedure.   We then only choose those 
sets of metagenes that are significant at the level of 0.05.  

Because the transformation from the mass spectra to metamasses is dependent upon the 
samples, we need to identify the particular peaks in the spectra that can be used as the 
components of a signature.  To this end, we consider each metamass that has been 
identified in the first step and take only the mass peaks that contribute significantly to the 
metagene.  For this, we take peaks where the coefficients from the left singular vector 
that makes up the metamass c(ij)^2 > tol, where i identifies the m/z peak in metamass j.  
This is repeated for each metamass yielding a list of potential m/z peaks for use in 
identifying the signature.  

The final step is to apply the forward selection to the list of m/z peaks identified in the 
second step.  The criteria we use to avoid any false positives are the same as in the first 
forward selection.

Clustering of Cell Homogenate Spectra Using Singular Value Decomposition

As described earlier, ions analyzed by TOF-SIMS are generated directly from the sample 
surface.  The majority of cell mass is composed of proteins (polymers of only 20 different 
amino acids) comprise the majority of dry cell mass.   Thus, TOF-SIMS mass spectra 
obtained from biological material, including cells, are very similar.  Figure 1 shows 
typical mass spectra obtained from cell homogenates of the nuclear and particulate 
fractions of the MCF-7 breast cancer cell line.  The similarity can be quantified by 
calculating the correlation coefficient between mass spectra obtained from homogenates 
from different cellular regions.  Table 1 shows the correlation coefficients calculated 
between 5 spectra collected from cytosolic, nuclear, and particulate fractions.  By 
definition, the correlation coefficient with any mass spectra with itself is 1.0 as seen 



along the diagonal.  The cytosolic and nuclear fractions are highly correlated within each 
group and between groups (correlation coefficient > 0.99) while the correlation between 
the particulate fraction and the other two fractions are much lower (correlation coefficient 
< 0.52).

The S matrix containing 30 eigenvalues was calculated from the data matrix containing 
30 TOF-SIMS spectra (m/z 1-400) from cytosolic, nuclear, and particulate fractions.  The 
presence of 30 non-zero eigenvalues indicates that the mass spectra are linearly 
independent.  The SVD orders the eigenvalues high-to-low beginning at the upper left 
corner.  For this dataset, the largest eigenvalue contains ~ 70% of the variance of the data 
(not shown).  After removal of the contribution of the largest eigenvector by setting the 
corresponding eigenvalue to 0.0, we define the new data matrix M(m) and then calculate 
the correlation coefficients between the newly represented TOF-SIMS spectra contained 
in M(m).  The results are shown in Table 2.  The within-group correlation decreased to < 
0.1 in some cases.  However, all between-correlations were < 0.0, enabling classification 
of the spectra into a cytosolic, nuclear, and particulate fractions.

Identification of Signatures to Distinguish SIMS Spectra from Biological Samples

We analyzed 30 mass spectra from lysozyme, cytochrome c, and myoglobin samples 
identified two metamasses that gave the best separation along canonical axis 1 and 2 (not 
shown).  However, we were unable to validate these m/z peaks due to day-to-day 
variability in spectra.  We therefore collected an additional 188 spectra on four different 
days on different silicon wafer chips.  We used 19 myoglobin spectra and 20 spectra each 
from cytochrome C, lysozyme, and insulin as the training set and the remaining spectra as 
the validation set.  In this case rather than 2 m/z peaks, 35 peaks were required to 
separate the four protein spectra.  Figure 2 shows the plot of the first two canonical axes 
of the training (solid circles) and validation (open circles) spectra.  Most of the separation 
is along the first canonical axis.  For the training data, all four proteins can be 
distinguished, primarily along the first canonical axis although the lysozyme and insulin 
spectra are very close together.  When the validation spectra are overlaid onto the training 
set, the cytochrome C and myoglobin test set overlay the training data and are clearly 
separated; however, the lysozyme and insulin cannot be distinguished.   For reasons we 
do not yet understand, there is a large amount of scatter in the insulin test data. 

Summary

We developed protocols to measure ions generated from biological samples and 
measured the distribution of various biomolecules.  PhIP distribution was localized to the 
plasma membrane, but development of data analysis methods is required for image 
interpretation.  We have developed a method using singular value decomposition and a 
variant of canonical analysis to distinguish mass spectra from different samples including 
proteins, cell homogenates, and images. 
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Figure 1.  Typical mass spectra obtained from cell homogenates of the nuclear and particulate fractions of 
the MCF-7 breast cancer cell line.  



C1 C2 C3 C4 C5 N1 N2 N3 N4 N5 P1 P2 P3 P4 P5 
C1 1               
C2 0.999 1              
C3 0.999 0.999 1             
C4 0.992 0.996 0.997 1            
C5 0.995 0.998 0.999 0.999 1           
N1 0.996 0.994 0.995 0.989 0.991 1          
N2 0.992 0.990 0.990 0.982 0.984 0.999 1         
N3 0.998 0.983 0.984 0.972 0.976 0.993 0.997 1        
N4 0.994 0.993 0.993 0.986 0.989 0.999 0.998 0.994 1       
N5 0.995 0.992 0.993 0.985 0.988 0.999 0.999 0.996 0.999 1      
P1 0.439 0.410 0.413 0.362 0.377 0.467 0.512 0.552 0.469 0.488 1     
P2 0.449 0.419 0.422 0.368 0.383 0.475 0.519 0.559 0.477 0.496 0.998 1    
P3 0.479 0.453 0.458 0.411 0.423 0.509 0.552 0.591 0.509 0.529 0.996 0.989 1   
P4 0.451 0.423 0.427 0.378 0.391 0.482 0.527 0.565 0.483 0.502 0.999 0.995 0.998 1  
P5 0.508 0.478 0.480 0.426 0.443 0.530 0.572 0.611 0.533 0.550 0.992 0.997 0.984 0.988 1 

Table 1.  Correlation matrix of raw TOF-SIMS data.  A correlation value of 1 represents two identical 
samples and as the value decreases the differences between samples increases.  The correlation between 
nuclear and cytosolic fractions renders them virtually indistinguishable.  Only the membrane bound 
particulate fraction can be identified.



C1 C2 C3 C4 C5 N1 N2 N3 N4 N5 P1 P2 P3 P4 P5 
C1 1               
C2 0.865 1              
C3 0.764 0.982 1             
C4 0.459 0.828 0.888 1            
C5 0.587 0.905 0.948 0.986 1           
N1 -0.17 -0.10 -0.96 0.070 0.000 1          
N2 -0.72 -0.78 -0.77 -0.58 -0.67 0.681 1         
N3 -0.67 -0.84 -0.83 -0.80 -0.83 0.0583 0.628 1        
N4 -0.14 -0.15 -0.19 -0.07 -0.12 0.904 0.631 0.27 1       
N5 -0.44 -0.47 -0.48 -0.32 -0.40 0.880 0.867 0.480 0.923 1      
P1 -0.70 -0.93 -0.93 -0.90 -0.93 -0.230 0.543 0.798 -0.14 0.174 1     
P2 -0.66 -0.91 -0.93 -0.92 -0.94 -0.230 0.534 0.792 -0.13 0.174 0.997 1    
P3 -0.75 -0.93 -0.92 -0.87 -0.91 -0.240 0.535 0.787 -0.17 0.153 0.996 0.986 1   
P4 -0.73 -0.94 -0.94 -0.89 -0.93 -0.210 0.563 0.797 -0.13 0.190 0.999 0.993 0.998 1  
P5 -0.62 -0.90 -0.92 -0.91 -0.94 -0.240 0.512 0.790 -0.14 0.159 0.999 0.999 0.978 0.986 1 

Table 2. Correlation matrix of data after SVD.A correlation value of 1 represents two identical samples 
and as the value decreases the differences between samples increases.  The within-group correlation 
decreased to < 0.1 in some cases.  However, all between-correlations were < 0.0, enabling classification of
the spectra into a cytosolic, nuclear, and particulate fractions.



Figure 2.  Myoglobin (blue), cytochrome C (red), lysozyme (blue), and insulin (green) spectra plotted 
along canonical axes 1 and 2.  Solid circles are spectra from the training set.  Open circles are spectra from 
the validation set.




