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Abstract 
Several advection algorithms are presented within the remap framework Tor unstructured 

mesh ALE codes. The methods discussed include a generic advection scheme based on a finite 
volume approach, and three groups of algorithms for the treatment of material boundary inter- 
faces. The interface capturing algorithms belong to the Volume of Fluid (VoF) class of methods 
to approximate material interfaces from the local fractional volume of fluid distribution in arbi- 
trary unstructured polyhedral meshes appropriate for the Kull code. Also presented are several 
schemes for extending single material radiation diffusion solvers to account for multi-material 
interfaces. 

1 Basic Advection 

The general mass, momentum and energy continuity equations are written in a moving mesh 
framework as 

where an implicit summation convention is assumed over repeated covariant and contravariant 
indices (i in this case). p is the fluid density, P the pressure, vk the velocity components, E the 
specific energy, and v," the grid velocity components. A staggered mesh scheme is utilized to 
solve the conservation equations, with zone-centered scalar variables (p,  P,  E )  and node-centered 
velocities and momenta. The Lagrangian formulation is recovered simply by setting 21; = uz and 
d / a t  -+ d / d t ;  the Eulerian limit by definition assumes the mesh is fixed in time so vi = 0. 

Decomposing equations (1.1) - (1.3) into their respective Lagrangian and remap parts by incor- 
porating the convective derivatives into the total time derivative on the left-hand-side yields 

a 7  (1.4) 
- df = S(f, vk, P )  + v p f  
d t  

1 
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where f represents any of the density, momentum or energy density fields. This set of equations 
is solved in a split manner with explicit Lagrangian df/dt = S ,  and remap d f / d t  = u6Vif parts 
which solve the dynamical and kinematical elements respectively. It should be noted that due to 
the nonphysical nature of the mesh velocity w:, the time step in the remap cycle is not linked to 
the real physical time step in the Lagrange cycle, but is in fact an arbitrary unit defined by the 
desired absolute nodal displacement, and can thus be normalized to unity. Any number of physical 
time steps can be performed between remap cycles, and the frequency of remapping is generally 
determined by the quality of the evolving mesh. Expanding the second term of (1.4) and using an 
operator splitting procedure in the remap cycle allows for a fully conservative method of solution 
by sequentially solving 

= V i ( V i f ) ,  (1.5) 
df - 
d t  

followed by 

By identifying the velocity divergence term with the relative rate of change in the local cell volume 
V ,  equation (1.6) has the discrete solution fn+' = fn f1 /2Vn/Vn+1,  where fnS1 is the full time 
advanced solution of (1.5) and (1.6) together, and fn+'i2 is the solution of (1.5) which is discussed 
below and in section $2 devoted to interface capturing algorithms. Equations (1.1) - (1.6) are 
equivalent to solving 

where J E VnS1/Vn 3 d(znS1, ynt', zn+') /d(xn,  yn, 9) is the Jacobian of the coordinate trans- 
formation satisfying the conservation equation 

(1.10) 

1.1 Advection of zone-centered fields 

When interface capturing is not needed, equation (1.5) is solved for the zone-centered quantities 
(f = p or p) in a straight-forward manner using a single step, first order in time marching 
scheme. A finite volume approach is used to compute the right-hand-side of (1.5) by converting 
the infinitesimal volume integrals to discrete area summations over the faces in each zone 

(1.11) 

where VZ is the zone volume, ( f u 6 ) z p  is the extrapolated value of the flux from the donor cell 
center to the cell faces, and ( A ~ ) z F  is the face area vector normal. The area normals of each face 
are defined as the sum of the inward-pointing (towards the cell center) face-faceted area vectors 
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of each of the tetrahedral side elements (defined by two nodes, a face center and the zone center) 
that make up the face ( A ~ ) z F  = Czs(Ai)zs .  ( z ~ ~ ) z F  are the mesh velocity components at the face 
center, defined as the average of the velocities on the nodes making up the faces. ~ Z F  is the first 
order extrapolated zone-centered field computed by the Taylor's expansion 

4 

(1.12) L i  . 
f Z F  = f Z  + (vi . f)z(r - +,) 

from the donor cell center r$ to either the face center ri =: r$F or the advective control volume 
center T' = rLF + ( A ~ / ~ ) ( V ~ ) Z F .  

(Vif)$ in (1.12) is the zone-centered gradient limited to force monotonicity in the extrapolated 
field variable. This is achieved by identifying three unique control volumes (assigned as upstream 
Vuf ,  downstream VD f, or average V A ~  gradient operators) by the sign of the inner product of 
A.V 3 (Ai)SF(v%,Nl + ~ % , ~ ~ ) / 2 ,  where (Ai)SF are the components of the face-faceted area vector of 
the side unit, and vi,N1 and vi,N2 are the velocity vectors at the two nodes comprising the unique 
edge length of the side. Each of the gradient operators are computed in a similar manner as (1.11) 
except replacing the sum over cell faces by sums over the side faces 

+ - +  

(1.13) 

where MkDA1 is a masking function set to either zero or unity depending on the sign of A'. @ 
identifying the side as contributing to the upstream, downstream or average gradients. A particular 
side is associated with the upstream (downstream) gradient if A'. @ > 6 (< -S), where S << 1. The 
average gradient is a composite sum of the upstream and downstream geometries, and thus includes 
all the cell faces. The effective extrapolated field variables (to the face centers of the side elements) 
can be computed as a geometrically weighted average of the zone-centered fields. For example, the 
simplest equidistant weighting scheme approximates f F S  = ( fzo+fz+)/2 and fs = cl fzo +c2fz+ ,  
where fzo is the donor cell centered field, fz+ is the field value at the center of the opposite zone 
sharing the face, and (el, c2) = (1, 2 / 3 )  in 3D and (c1, cz)  = (1/2, 1/2) in 2D. ( A i ) ~ s  in (1.13) is 
the area vector of the face-faceted side surface, and ( A Z ) c y ~  are the area vectors of the remaining CY 

(equal to two in 2D and three in 3D) surfaces of the tetrahedral side S. In 3D these area vectors 
are 

1 
2 C(A)CYS = -(%2 - FZ) x (FN1 - .i) 

cy 

where Fz, FZF,  F N ~ ,  and FN2 are the vector coordinates of the zone center, face center, and the two 
nodes of the side element. 

To enforce monotonicity, the actual reconstructed gradient (Of)$ is set to zero if the inner 
product of any combination of the three gradient operators is less than a predetermined small 
number (Le., (Of)$ = 0 if VkfV:f < 6, or ObfVDf < d, or OifVDf < 6, with 6 << 1). The 
final gradient is further limited to various degrees of sharpn.ess by defining the normalized scalar 

(1.15) 
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and applying either of the minmod, van Leer, or superbee limiters 

4 = max[O, min(1, e ) ] ,  
4 = - - -  le1 + 0 

1 + 101’ 
4 = max[min(l, 20), min(2, e ) ] ,  

to get the final expression for the zone-centered limited gradient 

(1.16) 

(1.17) 

(1.18) 

(1.19) 

A different, though somewhat more restrictive and costly, method of applying a gradient limiter 
on an unstructured mesh is to modify the magnitude of the average gradient operator with some 
parameterized function (9) of the maximum, Vmax E max(lVvf1, l V ~ f l ,  lVofl), and minimum, 
Vmin E min(lVUf1, IVA f 1, lVofl), of the three masked gradient magnitudes 

(1.20) 

where P is a steepness parameter bounded by 0 5 ,8 5 1, and a is a coefficient to enforce mono- 
tonicity in the extrapolated field ~ Z F :  

a = min(1, max(0, min(a1, ap))), (1.21) 

where 

iffzF = fz + ( V i f ) i ( ~ $ F  - .$)/a > max(fz, fz+) or a1 = 1 otherwise, and 

(1.22) 

(1.23) 

if fZF < min(fz, fz+) or ap = 1 otherwise. The min/max operations in (1.21) - (1.22) are 
performed over each of the faces in the zones, and a is chosen as the smallest value needed for 
strict monotonicity across all the faces. 

1.2 Advection of node-centered fields 

The node-centered momentum equation, which assumes a single velocity for all materials, is solved 
in a similar manner as described above for the zone-centered variables. The only difference being 
the use of nodal (as opposed to zonal) control volumes composed of all the sub-zonal corner volume 
elements attached to the specified node and collectively connecting the neighboring zone centers. 
An effective node-centered mass density p~ is also constructed as a corner-volume weighted average 
of the corner-centered density fields, and evolved consistently with the momentum equation. In 
particular, defining the nodal density as the volume average over nodally attached corners with 



5 
4 

p~ = Cc V c p ~ /  Cc Vc at the beginning of the evolution cycle, an evolution equation is solved for 
p~ by constructing a total density flux over all materials m 

(1.24) 

The flux for each material in (1.24) is first evaluated on the zone faces from the zone-centered 
density evolution step (see §l . l) ,  then averaged (with volume weighting) to the face centers of the 
nodal control volume boundaries. The fluid velocity components ( u k )  are then updat,ed t n  ihe I 

(1.25) 

where ( s ~ ) ~  = & ( w ~ ) ~  is the momentum vector at  the current time level n, and p;" is the solution 
of (1.24) at the time advanced level n + 1. d s k / d t  solves (1.5) in the form 

(1.26) 

(1.27) 

where ( C m ( ~ $ ) m ) ~ ~  represents the cumulative (over fluids) zone-centered mass flux averaged to 
the nodal control volume face centers, and 

is a first order extrapolation of the node-centered velocity w b  components to either the nodal control 
volume faces ri = T & ~  or the advective control volume center T~ = rkF + ( A t / 4 ) ( ~ ; , ~ ~  + w : , ~ ~ )  
using a node-centered limited gradient similar to that described above for zone-centered fields. 

2 Unsplit Interface Capturing 

Multi-material interfaces in nonreactive incompressible fluids are advected in an EuSerian reference 
frame according to 

(2.29) 

where M is the total number of materials, u) is the fluid velocity, and F[m] is the volume fraction 
occupied by the mth fluid material and defined by a step function: FLm] = 0 if the cell is empty of 
material m, FLm] = 1 if the cell is completely filled with material m, and 0 < F["i = V["]/Vz < 1 
in cells containing an interface boundary, where Vz = V["] is the total cell volume. Equation 
(2.29) is associated with the first conservative remap step with -+ -wi and f -+ Frm], and the 
methods described below to solve (2.29) are also relevant for (1.5). 

Equation (2.29) is solved only in those cells containing an interface boundary and satisfying 
F, < max(FLm]) < 1 - F,, where the lower bound cut-off volume fraction F, is set to a small 



number, typically < 
material pirn] at time level n + 1 

An unsplit finite volume approach is used to solve (2.29) for each 

(2.30) 

where (At u4)Ai represents the total volume of the advective control volume with positive (negative) 
inner product of v)Ai representing inflow (outflow), since A, points inwards towards the zone center. 
Hence equation (2.30) can be interpreted as a net flux of volume through each of the zone faces 

(2.31) 

The following sections describe several methods for computing ~ V Z F  for an arbitrary number of 
fluids and fluid distributions on unstructured meshes which satisfy the implicit volume fraction 
constraints. 

However, before going ton to describe the interface capturing algorithms, three additional ingre- 
dients are introduced here that are needed in all the methods: a renormalization step to enforce 
the volume fraction constraints, a method to identify the upstream cell, and the calculation of the 
advection control volume V,,,. 

The advection control volume is the volume formed by a face of the donor cell and the charac- 
teristics projected off the nodes of the face using the local mesh velocity. In 3D, the contribution to 
the total advection control volume from each of the tetrahedral sub-volume side elements attached 
to one edgelength of the face is 

- 

2 ~ 1  and 2 N 2  are the coordinate positions of the two nodes making up a single edgelength of the 
face or side unit, 2~ is the face center, 

is the center of the back face, 

is the center of the advection control volume, and 

+ 1 
XFI = - 4 (22,Vl-k 22N2 f 

~ 3 2 )  

(2.33) 

(2.34) 

(2.35) 
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is the center of the face formed by the two nodes N1 and N 2  and the projected nodal characteristics. 
Also, NT is the total number of nodes in the face, 61 = At c g , N ] ,  A2 = At i?gN2, and Aij and A,T, 

-+ -+ 

(2.36) 

The total advective control volume is the sum of (2.32) over all edges or side volumes in the face: 

For a specified donor cell face, the corresponding upstream or opposite face cell is identified by 
evaluating the intersection of all the other face normals with the effective plane of the target donor 
cell face. Given a fluxing face with normal f i 0  (defined as the sum of the constituent face-faceted 
side normals) and face-center position X F O ,  construct a vector originating from the face center to 
an arbitrarily distant position along the face normal: XE = X F O  + d o ,  where c = coV,/(LD-') ,  co 
is a constant much greater than unity to guarantee the vector ~ $ 0  extends beyond the cell domain, 
L is a characteristic (minimum) cell length scale, and D is the number of space dimensions. Then 
loop over each of the other ( j )  faces in the donor cell with normals fi(j) and face centers zg), and 
evaluate the intersection parameter 

vacv = cs vascv. 

..+ 

-+ + -+ 

(2.37) 

The vector 2, - 2 ~ 0  intersects the plane fi(j) if T(j) is bounded by 0 < T(j) < 1. The upstream 
cell associated with a specified face is defined as the neighboring zone opposite the donor cell which 
shares the face with the minimum intersection parameter. 

Finally, all the interface advection methods discussed below are supplemented with a volume 
fraction renormalization step to enforce three additional constraints. First, the volume of fluid 
fluxed through each of the faces in a donor cell is limited so as not to deplete more material than 
is available in the cell. Second, to prevent overfluxing into acceptor cells, the outward pointing 
flux of each material across the faces in each donor cell is conservatively redistributed across all 
neighboring cells in proportion to either the magnitude of the orthogonal (to the fluxing face) 
velocity component or the net flux transfer in order to preserve the fluid volume and maintain 
the constraint E, F["] = 1. Third, the computed fluxes are conservatively redistributed again, 
but this time across each of the materials within a single cell and in proportion to F["] to keep 
individual fluxes in the range 0 5 F["] 5 1 while also preserving E, Fkm] = 1. 

2.1 Material Ordering Schemes 

An integral part of multi-fluid calculations is the automatic and locally adjustable ordering of all 
the different materials for advection with little to no user intervention. This effectively allows 
for an accumulated fluid composition to be formed from materials of relatively higher weighted 
precedence, thereby filling the donor cell from the downstream to upstream direction, eliminating 
the need to track interface boundaries on all sides of each material. A single composite volume 
fraction is defined as 

(2.38) 
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where Flml denotes the sum of volume fractions from the first m ordered materials. The advection 
process is repeated for each composite group of materials to compute the accumulated transfer 
volumes 6Vlm1 across each face of the donor cell. The individual material fluxes are recovered 
through the normalization 

(2.39) 

where V,,, is the advection control volume and SV["] is the mth fluid material transfer volume 
bounded by the interface surface and the advection control volume. The normalization is designed 
to limit the total volume fraction from exceeding unity, and the individual volume fractions from 
becoming negative due to numerical errors. 

Two ordering schemes have been implemented: downstream- and upstream-loaded, distin- 
guished by the relative volume weights of the fluid distribution. In the first scheme, materials 
are ordered into four distinctly defined groups plus an additional fifth group to accomodate mate- 
rials not falling into the other four. The first group is the highest priority in the advection process 
since it stores the predominantly downstream materials. Using the notation FLYl, FArn1 and FL2, 
to denote the upstream, donor and downstream cells for material m respectively, fluids falling into 
this category satisfy FA?, < F,, (F,'"], FAYl) > F,, and represent a surface that is essentially 
parallel to the cell face orientation. Note that FA!, can be assigned as the volume fraction in the 
upstream cell using the identification process described above, or simply by 

(2.40) 

where (ViF): is the donor cell-centered limited gradient of the volume fraction, and X i  and X i  
are the acceptor and donor cell centers respectively. The second group includes materials with 
surfaces aligned more perpendicular to the cell face (or more parallel to the face normal) and are 
characterized by (FA!1, F'ml, FA?,) > F,. The third group represents isolated fragments with 

[FA!,, < F, and FArn1 > F, which are advected prior to the dominantly upstream or trailing 
materials characterized by < F, and (FAYl ,  FArn1) > F,. However, it is possible that more 
than one material can fall into each category, making it necessary to implement a more quantitative 
procedure to order the fluids within each group. Since the general idea is to advect from leading 
to  trailing edge materials) a simple calculation of the normalized volume fraction gradient provides 
a convenient measure of priority. For the first, second and fourth groups, the order parameter 
is defined as P = ( F D + ~  - FD-~)/F~. This parameter naturally increases (decreases) for higher 
volume fractions in the downstream (upstream) cells. I t  also increases in magnitude for smaller 
donor cell fractions when the upstream or downstream cells are saturated to unit fraction levels, 
reflecting the "steeper" nature of the interface surface. For the third group in which there is little 
or no fluid present in either the upstream or downstream cells, the order parameter is simply the 
volume fraction in the donor cell P = FD. 

The second (predominantly upstream weighted) ordering scheme is essentially the mirror image 
of the first, but with some minor adjustments. In particular, the highest priority group in this 
ordering scheme includes the isolated fragments satisfying (FAYl7 FA?l) < F, and FAm1 > F, with 
priority P = ~ / F D .  The other groups are ordered according to the relative presence of materials 
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in the upstream cell: FLY, < F,, FLml > F,, > 1 - F, with priority P = I/FD for the second 
group, FLYl < F,, FArn1 > Fc, FLYl > FD with priority P = FD+~/FD for the third group, and 

> FC, FD [ml > F,, FF$, > F, with priority P = (FD+~ - FD-~)/FD for the fourth. This second 
scheme can be effective in some advection algorithms that are more prone to generating floating 
debris. These ordering schemes are applied as a first step in all interface capturing algorithms 
discussed below. 

A 

2.2 Aligned Bisection Method 

Some of the earliest directionally split VoF algorithms (DeBar 1974; Noh & Woodward 1976; Hirt 
& Nichols 1981) assume the interface surface is aligned either parallel or perpendicular to the 
flow vector component in each dimensional sweep. These algorithms thus work well if the flow 
geometry is primarily aligned parallel to one coordinate direction or along the velocity vector field. 
However, they can become highly inaccurate for more complex geometries or off-axis translational 
and rotational flows. 

By generalizing these algorithms to allow for “corners” inside a single cell, it is possible to more 
accurately represent arbitrary surface orientations with several adjustable bricks of fluid within 
the donor cell, effectively increasing the curvature modeling capabilities at  smaller scales (Anninos 
2000). A modified aligned algorithm with improved accuracy and generalized to unsplit advection 
is achieved by introducing four (six) parameters in 2D (3D) representing the dimensions of two 
distinct blocks of fluid which run the length of the donor cell along the face normals for each 
face of the cell. Assuming a face-normal vector pointing in the x direction, the width and height 
dimensions of the two fluid blocks are denoted by 6x1, 6x2, 6y1, 6y2, 6~1, and 6 ~ 2  with the block 
labeled with subscripts 1 (2) being more downstream (upstream) than the other. The normalized 
height functions are associated with volume fractions in the neighboring downstream and upstream 
cells 

and 

(2.41) 

(2.42) 

where Ay and AZ are the characteristic transverse cell dimensions, and where the filling factors 
for each of the cross sectional areas have been assumed to be equal and related to the appropriate 
adjoining cell volume fraction. The width parameters are determined by the constraints 

(2.43) 

(2.44) 

The fluid flux is then defined as 
(2.45) 

6V 
Vacu 
-- - FD+l 

if (Vacv/Vz) 5 (Jxl/Axc>, or 

(2.46) 



f 0  

otherwise, and where 

(2.47) 

For cases in which 6xl/Ax 5 0, L e  transfer volume is set to 6T = FDV,,,, and if 6x1/Ax >_ 
0, 6 V  = FD+~V,,,. Notice that this method does not require explicit knowledge of the precise 
orientation of the material interface: the compound block structure is aligned relative to the cell 
face normals and planes, and sized in dimensions to satisfy the volume fraction constraints. 

2.3 Donor/Acceptor Limiter 

An alternative, but slightly more computationally expensive, method to that described in 32.2 is the 
donor/acceptor concept which is based on switching between the donor or downstream cell volume 
fractions to flatten or steepen the fluid distribution as appropriate, A fairly robust algorithm can 
be developed using minimal cell connectivity data and extended to unsplit advection. For each 
face, it is necessary only to estimate the interface orientation or slope (s) from the local volume 
fraction gradients, to define a reference vector against which the interface normal is compared, to 
identify the appropriate donor or downstream volume fractions for each outflow cell face, and to 
apply the necessary volume constraint preserving steps. 

This approach utilizes a parameterized flux limiting formula to compute the volume of advected 
fluid using a downstream filling algorithm that is aligned relative to the face normal orientation. 
The flux limiter can be conveniently written in compact form as 

(2.48) 

where 
(2.49) 

1 dF FD = FD f --(VZ - V ~ C U ) .  2 d V  
q = F D + ~  if the slope s > s, (with a critical slope s, typically set to one or two), or 7 = FD 
otherwise. Expression (2.48) is derived by considering the various independent orthogonal fluid 
distributions in the donor and acceptor cells. The volume fraction derivative is defined as 

(2.50) 

where VD F VZ, VU, and VA are the donor, upstream and acceptor cell volumes. To force a steeper 
boundary and help prevent the generation of floating debris, the transfer volume is redefined with 
q = F D + ~  if F D + ~  < F,, F’ 2 F, and F D - ~  > 1 - F,, or if F’-l < F, and FD 2 F,. 

There are many ways to estimate the slope of the interface boundary. The most straightforward 
procedure is to associate the three-dimensional surface parameters with the local volume fraction 
gradients projected to each of the face normals separately. First, compute the volume fraction 
gradients using the most compressive (superbee) limited gradient operator defined in $1.1 and split 
the gradients into perpendicular 

(2.51) 



(2.52) 

components relative to the advecting cell face. N& is a vector normal to the advecting cell face, 
and defined as the sum of the face-faceted area vectors of the tetrahedral side elements within the 
face. The interface slope is then defined as 

where XAD is the distance between donor and acceptor cells, and 

FD - FD-1 
F D + ~  - FD + 6' @ =  

to force an additional monotonicity of the volume fraction variance orthogonal to the face. 

(2.53) 

(2.54) 

2.4 Series/Parallel Models 

The final group of methods discussed here are similar to the donor/acceptor method in 32.3 in that 
they all use the interface slope (as defined in 52.3) to switch predominantly between two different 
fluid topologies: series or steep (s > s,) versus parallel or flat(s 5 sc) flow with s, = 1 (Tipton 
1994). Materials that have been grouped as series are given the highest (lowest) priority in the 
advection sequence if the material is dominantly downstream (upstream) as described in section 
2.1. The volume flux for this group of materials is computed in a grid aligned manner, and assigned 
as 

6V 
Vacv 

for leading and middle materials classified as series, or 

0 ,  1 - (1 - FD) 
Vacu Vacv 

(2.55) 

(2.56) 

for trailing materials classified as series. Fluids grouped as parallel are given intermediate priority 
with transfer volumes: 

(2.57) 

where c is a constant to include (c = 1) or not (e = 0) the transverse interpolant. 
Other topological parameters, in addition to the slope, can be used to force a classification of 

the material distribution as either series or parallel in ambiguous situations. For example, the flow 
is considered as series if either F D + ~  < 6 and FD > 0.1, or FD > (1 + 6 ) F ~ - 1 ,  or F D - ~  < 6 and 
F'+1 > 1 - 6, or F D + ~  < 6 and F D - ~  > 1 - 6, where 6 << 1. The transfer volume can also be set to 

vacv Vacv 
(2.59) 

if F D - ~  < 6 and FD+I > 1 - 6. 
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2.5 Advection with volume fractions 

The conservative first stage of the remap cycle, equation (1.5), can be rewritten to explicitly include 
the volume fraction in the mass and energy conservation equations as 

(2.62) 

with the following constraints: 

m m m 

The momentum equation update is not affected beyond the basic approach outlined in 51.2 
since the total volume fraction weighted density is used in (2.61) and the velocity is common to all 
the materials. The mass density and energy equations (2.60) and (2.62) are discretized with finite 
volumes and solved for each material as 

(2.66) 

Here &$n and E$$" are the upwind values of the density and specific energy for material [m], 
at time level n, upwind from face F ,  and either centered in the donor cell or extrapolated to the 
face or advection control volume centers using a first order monotonic expansion as in (1.12) if the 
extrapolation is not performed across an interface. The remap cycle is completed to time level n 
by applying the operator split compression contribution (1.6) to each of the intermediate solutions 
(2.64) - (2.66). 

3 Multiphase 2T RHD with material interfaces 

3.1 Multiphase model 

Expanding equations (2.60) - (2.62) to include the compressive remap term and the physical La- 
grangian elements, the multiphase continuity equations coupled with a 2T radiation diffusion model 
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can be written in ALE form as 

- -  - -Vz(pV"ui - v i ) )  - pvkviv; - V k ( P  + PR), 
at 

(3.67) 

(3.68) 

-h["]P[m]VZui + g[m](aE - aaT:), (3.69) 
4 1 aE 

c at 3 
= -Vi(E(u2 - u:)) - EVp;  + Va(DViE - -Evi) - aE + GCLT', (3.70) 

where uk is the physical velocity assumed to be the same for each material, u$ the grid velocity, p = 

E, F[m]p[m] the average density, pe = E, F[m]p[m]~[m] the average energy density, B the effective 
material pressure in a mixed cell, PR = E / 3  the radiation pressure, E the homogeneous (single 
material) radiation energy, D the diffusion coefficient, a the crossection, T, the effective single 
material electron temperature, g[m] is an energy weight function for distributing the homogeneous 
(across materials) radiation energy into each material, and h["] and P["] in the energy equation 
(3.69) are the weighting coefficient for compression work and pressure for each material [m]. The 
compression weight factor is taken to be the normalized adiabatic compressibility or bulk modulus 
Ks = pdP/apls at constant entropy (Youngs 1994) 

-- 

with average bulk modulus 
- 1 
K s  = 

m] K[m]' E m F [  / s 

(3.71) 

(3.72) 

defined such that E, 
( P  = E, Pi"]) if the multiphase model is not used, or the bulk modulus weighted average 

= 1. The effective pressure is set either as the sum of the partial pressures 

(3.73) 

otherwise. 
In the multiphase model, the component pressures within a single cell can be adjusted as an 

option to drive the mix to pressure equilibrium at the common pressure (3.73). This is achieved 
by altering the volumes which each material occupies in a cell to the form 

This amounts to changing the local volume fractions as 

(3.74) 

(3.75) 



In practice, (3.75) is limited to maximum fractional changes 16F/FI,,, 5 0.1, and over time scales 
linked to the local sound speed: 6F[m] + kc,6F[m], where k c ,  = 0.5min(l,Atmin(CS)/AZ), and 
At is the timestep, AZ is a charateristic minimum length scale, and min(C,) is the smallest sound 
speed over all materials in the cell. Substituting (KS[m1F[m]/p[m])1~2 for the material sound speed, 
the volume fraction is adjusted according to 

(3.76) 

where 

(3.77) 
and the constant k < 1 is typically set to l / Z .  Each of the volume fraction corrections 6Frm] 
performed in a cell are subsequently renormalized to enforce the constraints CmbF'[m] = 0 and 
0 5 F["] 5 1. After renormalization, the specific internal energy is adjusted to account for the new 

(3.78) 

3.2 

The coupling between radiation and hydrodynamics is achieved by assuming a constant specific 
heat over the solve cycle and rewriting (3.69) as 

Radiation diffusion with material interfaces 

using the individual material cross sections. An effective single material energy equation is con- 
structed by defining 

to write the non-convective terms in (3.79) as 

(3.81) 

4 1aE 
c at 3 = V i ( D V i E  - -Evi) - ,(E -  UT^^), (3.82) 

where the notation T4 = T4 is introduced for both the radiation ( T ~ R )  and electron (T4e) temper- 
atures. Also, E = UT;, and 

-- 

(3.83) 
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Three procedures are described below that can be used to easily extend single material radiation 
diffusion solvers to include multi-material interfaces. These procedures are based on formulating 
reasonable choices for the weight coefficient gEm] in equation (3.69), given a solution to the homoge- 
nous diffusion equation (3.82). 

Considering only the non-convective terms, the first method constructs a first order semi-implicit 
solution to the discretized multiphase internal energy equations using the time advanced solution 
(T::') to the diffusion equation 

1 

(3.84) 

Equation (3.84) can be solved algebraically for T4e [ml,n+] 

where Tim1 is a reference temperature about which the solution is linearized and is chosen as either 
the time-retarded, time-advanced, or time-averaged electron temperature. Also, 

(3.86) 

is a pseudo-timestep defined with constant coefficient ~ C R  < 1 associated with the physical radiation 
Courant factor to keep temperature variations for each material relatively small. 

A second method follows the basic idea of the first, except that weighted combinations of 
variables are used to make results at  extremely low volume fractions more robust and constrained 
to relative low scatter. Temperatures in this method follow (3.85) 

with 

(3.88) 

(3.89) 

(3.90) 

The third and final procedure presented here defines the temperature simply as a specific heat 
weighted average of all materials within the cell 

(3.91) 
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where AER 3 a(E  - aT4,) is the total energy change due to radiation effects, and 

if AER > 0, or 

(3.92) 

(3.93) 

otherwise. This approach generally yields comparable results to the previous two methods, though 
it can be less robust for very low volume fraction material, particularly when actual densities are 
used in place of cell average densities. 

In order to guarantee energy conservation at  the end of the radiation update cycle, the material 
temperatures are rescaled after each of the above redistribution calculations according to 

(3.94) 

where A e  is the net (radiation + PdV summed over all materials) change in internal energy density, 
and the normalization factor Q is constructed so that when the internal specific energy is updated 
by 

JmI,n+l = ,[mI,n + cum] [ (  T'mI>n+1 - Tj"l,n) (3.95) 

the process is conservative over the cycle such that 

(3.96) 
m m 
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