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Abstract

This report presents the latest 239Pu(n,2n)238Pu cross sections inferred

from calculations performed with the nuclear reaction-modeling code sys-

tem, IDA, coupled with experimental measurements of partial 
-ray cross

sections for incident neutron energies ranging from 5:68 to 17:18 MeV. It is

found that the inferred 239Pu(n,2n)238Pu cross section peaks at Einc � 11:4

MeV with a peak value of approximately 326 mb. At Einc � 14 MeV,

the inferred 239Pu(n,2n)238Pu cross section is found to be in good agree-

ment with previous radio-chemical measurements by Lougheed. However,

the shape of the inferred 239Pu(n,2n)238Pu cross section di�ers signi�cantly

from previous evaluations of ENDL, ENDF/B-V and ENDF/B-VI. In our

calculations, direct, preequilibrium, and compound reactions are included.

Also considered in the modeling are �ssion and 
-cascade processes in addi-

tion to particle emission. The main components of physics adopted and the

parameters used in our calculations are discussed. Good agreement of the

inferred 239Pu(n,2n)238Pu cross sections derived separately from IDA and

GNASH calculations is shown. The two inferences provide an estimate of

variations in the deduced 239Pu(n,2n)238Pu cross section originating from

modeling.

1 Introduction

The 239Pu(n,2n)238Pu cross section, between threshold and 15 MeV incident neu-

tron energy, is uncertain although it plays an essential role in nuclear diagnos-

tics. Direct neutron counting measurements below 14 MeV by Frehaut[1] and by
Mather[2] di�er signi�cantly from each other both in magnitude and in the rise of

the cross section near threshold. A third radio-chemical measurement by Lougheed

exists near 14 MeV[3]. In order to obtain an improved understanding of the behav-
ior of the 239Pu(n,2n)238Pu cross section both in terms of shape and magnitude, a
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new approach was proposed at LLNL in 1995[4]. This method combines an exper-

imental measurement of the 239Pu(n,2n
)238Pu cross section for individual 
-rays

with a theoretically calculated ratio of 239Pu(n; 2n
)=239Pu(n; 2n) to infer the total
239Pu(n,2n)238Pu cross section. That is,

239Pu(n; 2n)
inferred

=
f239Pu(n; 2n
)gexperiment

f239Pu(n; 2n
)=239Pu(n; 2n)gmodel
: (1)

This report describes the LLNL calculations of the ratio,239Pu(n; 2n
)=239Pu(n; 2n),

based on physics models and presents the inferred 239Pu(n,2n)238Pu cross section.

The theoretical tool employed in our calculations is the IDA system of nuclear

reaction codes[5]. All three classes of reaction mechanisms, namely, the direct, the

preequilibrium, and the compound reactions are considered. In addition to parti-
cle emission, both �ssion and 
-cascade processes are included in the compound

reaction. The calculations are performed for incident neutron energies ranging
from 5:68 to 17:18 MeV. Inferred 239Pu(n,2n)238Pu cross sections from calculations
using the reaction modeling code, GNASH[6], are also shown for comparison.

This report is organized as follows. First, the optical model potential that we
use to calculate the elastic and direct inelastic scattering cross sections is described

in Section 2, while the preequilibrium reaction is discussed in Section 3. In Sec-
tion 4, compound processes which include particle emission, �ssion and 
-emission
are discussed. The major parameters used in each physics model are tabulated.

Section 5 presents results and discussions of the inferred 239Pu(n,2n) cross sections
followed by conclusions in Section 6.

2 The Optical Model Calculations

The direct reaction mechanism is described by the optical model, which describes
the interaction between the projectile and the nucleons in the target nucleus by a

nucleon-nucleus potential. Practical calculations employ one-body phenomenolog-
ical potentials which consist of a real term, V (r), which describes the scattering
of the particle 
ux, and an imaginary term, W (r), which accounts for the ab-

sorption of the particle 
ux by the target nucleus. In V (r) and W (r), r is the

distance between the incoming particle and the target. The general form of the

phenomenological potential is given by:

U(r) = V (r) + iW (r) (2)

= V (Einc)fV (r) real volume

+iWs(Einc)gW (r) imaginary surface

+iWV (Einc)fW (r) imaginary volume

+dso~l � ~sVsohVso(r) real spin� orbit
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+idso~l � ~sWsohWso
(r) imaginary spin� orbit

+Vc(r) Coulomb

where Einc is the energy of the projectile in the laboratory frame. Here, a Woods-

Saxon potential is used for the volume potentials fV (r) and fW (r), that is,

fj(r) =
1

1 + exp[(r � Rj)=aj]
j = V;W (3)

where Rj = r0A
1=3 is the radius of the nucleus and aj is the di�useness parameter.

The surface potential is taken to be proportional to the derivative of the volume

potential, i.e.,

gW (r) = �4aW
d

dr
fW (r) = 4

exp [(r �RW )=aW ]

(1 + exp[(r � RW )=aW ])2
: (4)

For spin-orbit potentials, the Thomas form is used:

hj(r) = �1

r

d

dr
fj(r) =

1

raj

exp [(r � Rj)=aj]

(1 + exp[(r �Rj)=aj])
2 j = Vso;Wso : (5)

The spin-orbit constant dso = (�h=m�c)
2
, where m� is the pion mass. The strength

of the various components of the optical model are embodied in the parameters

V , WS, WV , Vso, and Wso, each of which is in principle a function of the incident
energy Einc.

The phenomenological optical model potential is parametrized in terms of po-

tential strengths and geometrical parameters[7, 8]. As usual, the geometrical pa-
rameters, Rj and aj, are assumed to be energy independent. Since inelastic scat-
tering and nuclear reactions preferentially occur at the surface of a nucleus at low

incident energies, the absorptive potential is typically constructed to have only a
surface component when Einc � 10 MeV, roughly. However, as Einc increases, a vol-

ume imaginary potential is added to account for the interactions inside the nucleus.

For the spin-orbit potentials, experimental evidence[8] suggests that Wso is very

small for Einc < 50 MeV. Thus, in the energy range of 5:68 to 17:18 MeV and in the

absence of Coulomb interactions, the coeÆcients V (Einc);WV (Einc);WS(Einc); Vso,

as well as R and a (a = aj) for each component, are the required parameters for

the optical model potential.

Actinides are deformed. The e�ects of deformation in a target nucleus are

accounted for within the coupled-channel formalism through the parametrization of

the radius parameter Rj. That is, the volume and surface potentials are functions

of r � Rj(f�g) where the collective coordinates f�g describe the deformation of
the target nucleus. Note that the spin-orbit component of the potential is taken

to be non-deformed.
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Einc � 10 MeV Einc > 10 MeV

V0 = 52 MeV
V1 = �0:3

real V2 = 26 MeV same as Einc � 10 MeV

volume V3 = �0:15
R = 1:25 fm

a = 0:63 fm

WV 0 = �3:8 MeV

WV 1 = 0:38
imaginary 0 WV 2 = �1:9 MeV

volume WV 3 = 0:19

R = 1:27 fm
a = 0:62 fm

WS0 = 3:08 MeV WS0 = 8:496 MeV

WS1 = 0:4 WS1 = �0:1416
imaginary WS2 = 1:54 MeV WS2 = 4:248 MeV

surface WS3 = 0:2 WS3 = �0:0708
R = 1:27 fm R = 1:27 fm
a = 0:62 fm a = 0:62 fm

Vso = 6:2 MeV
spin-orbit R = 1:15 fm same as Einc � 10 MeV

a = 0:75 fm

Table 1: Flap1.5 optical model potential parameters.

The set of coupled-channel optical model parameters used in our calculations
were derived by Dietrich and Ross for the actinides. The particular set employed

is called Flap1.5 and is tabulated in Table 1. The energy dependence of the pa-
rameters V (Einc);WV (Einc), and WS(Einc) is as follows:

V (Einc) = V0 + V1Einc � (V2� + V3�Einc) (6)

WV (Einc) = WV 0 +WV 1Einc � (WV 2� +WV 3�Einc) (7)

WS(Einc) = WS0 +WS1Einc � (WS2�+WS3�Einc) (8)

where � = (N � Z)=A. In our calculations, the �rst 5 states of the ground-state
band of 239Pu are coupled. The excitation energy in keV, and the spin and par-

ity, denoted by (Ex; J
�), of these 5 states are, respectively, (0:0; 1

2

+
), (7:861; 3

2

+
),

(57:276; 5
2

+
), (75:706; 7

2

+
), (163:76; 9

2

+
). The quadrupole and hexadecupole defor-

mation parameters used for 239Pu are �2 = 0:2 and �4 = 0:06.

Solutions of the Schr�odinger equation using the given optical model potential
yields the total cross section, �t, the reaction cross section, �R, the shape elastic
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scattering cross section, �se, as well as the direct inelastic scattering cross sections

to the excited states that are coupled. The code used for the coupled-channel

calculations is ECIS[9].

Figure 1 shows the calculated n + 239Pu total cross section in comparison to

the ENDL99[10] evaluation which has an estimated uncertainty of 1% above 300

keV of incident neutron energy. It is seen that the Flap1.5 potential reproduces

the total cross section reasonably well.

The total cross section is related to the reaction cross section and the shape

elastic cross section by

�t = �se + �R : (9)

In contrast to the excellent data that exist for the total cross section, the lack

of data for the reaction cross section, or the shape elastic cross section, makes

it diÆcult to arrive at a unique set of optical model parameters. For the same
reason, it is diÆcult to quantify the error associated with the calculated �R. In
fact, di�erent sets of optical model parameters that have been used for 239Pu are

known to generate reaction cross sections that di�er from each other by 5% to
10%. Unfortunately, the magnitude of the reaction cross section is one of the

major factors that control the magnitude of the calculated, relatively small, (n,2n)
cross section, as well as cross sections of other reaction channels. The magnitude
of the (n,2n) cross section is appreciable between the threshold, 5:647 MeV, and

17 MeV. Within this energy interval, the competing reaction channels are �ssion,
(n,n') and (n,3n) (when Einc � 12:65 MeV). The capture and compound elastic
scattering cross sections are very small in this energy range. We therefore have,

�R � �f + �n;n0 + �n;2n + �n;3n : (10)

The reaction cross section, �R, is of the order of barns. One easily sees that

the uncertainty in �R will greatly a�ect the magnitude of �n;2n, which peaks at a
few hundred millibarns, even when the calculated �ssion cross section, which is a

much stronger channel than the (n,2n), is �tted precisely to the experimental data
available.

Fortunately, the inference of the (n,2n) cross section only depends on the cal-

culated ratio of (n,2n
)/(n,2n) as de�ned by Equation (1). Given both (n,2n
)
and (n,2n) are derived from �R, the uncertainty in �R is partially removed in the

ratio. The goal of the model calculations in the inference of the 239Pu(n,2n) cross

section is, therefore, to obtain as accurate a ratio of (n,2n
)/(n,2n) as possible.

3 Preequilibrium Emission

Preequilibrium reactions take place on a time scale that is in between the direct

and the compound processes. Because preequilibrium emissions occur before the
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composite nucleus reaches its equilibrated state, the emitted particles, on aver-

age, bring with them more energy and orbital angular momentum than particles

emitted via the compound reaction mechanism. In IDA, the preequilibrium re-

action mechanism is described by a semi-classical exciton model[11] where the

interaction between the incoming nucleon and the nucleus is approximated by a

cascade of two-body interactions initiated by the projectile. For example, the pro-

jectile interacts with one of the nucleons in the target nucleus, lifting it from its

prescribed single-particle orbital and creating a two-particle, one-hole, or equiv-

alently, a three-exciton con�guration. These three excitons can further interact,

via two-body interactions, with the rest of the particles and holes in the system

or with each other and create more complex con�gurations. Through this process,

the energy of the projectile is spread among an increasing number of nucleons in

the composite nucleus. The state of the nucleus at any given time is characterized
by the number of excitons, n. The exciton model attempts to determine the prob-
ability, q(n; t), that the composite system is comprised of n excitons at time t via

the master equation

d

dt
q(n; t) = �+(n�2)q(n�2; t)+��(n+2)q(n+2; t)�q(n; t)

h
w(n) + �+(n) + ��(n)

i
:

(11)
In Equation (11), ��(n) = �n!n�2 are the average rates of internal transition from

n-exciton states to those with n� 2, and

w(n) =
X
b

Z
d� wb(n; �) (12)

where wb(n; �) is the average emission rate of particle type b with emission energy
�. Therefore, w(n) is the total emission rate of all particles from state n of the
composite nucleus. Based on the detailed balance principle, the solution of wb(n; �)

can be obtained by considering the inverse process where a particle of type b with
energy � is absorbed to form the composite nucleus[12].

The transition rates are calculated from Fermi's Golden Rule via

�n!n0 =
2�

�h
M2�n0(E

�) (13)

where M2 is the average of the square of the matrix element for two-body inter-

actions between some initial and �nal states, and �n0(E
�) is the state density at

the excitation energy E� of the composite system for a given exciton number n0.
In IDA calculations, Williams' approximation[13] to �n0(E

�) is used. The M2 is

parametrized according to Kalbach-Cline[14] as:

M2 = kpreA
�3E��1 (14)

Once the solution of q(n; t) is obtained, the di�erential cross section of emitting
particle b, d�(a; b)=d�, is computed by[11]

d�

d�
(a; b) = �a

X
n

wb(n; �)�(n) (15)
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where

�(n) =
Z
1

0
q(n; t)dt (16)

is the mean life-time for the exciton state n and �a is the cross section for formation

of the composite nucleus from incident particle a and the target nucleus.

For the n + 239Pu reaction between 5:68 and 17:18 MeV, particle emissions

consist of almost only neutrons. In our calculations, the preequilibrium emission of

the �rst outgoing neutron of the 239Pu(n,2n)238Pu reaction is considered. The mag-

nitude of preequilibrium emission at various incident neutron energies is important

because it a�ects the energy distribution of the excited states in the intermediate

nucleus, 239Pu, and consequently the residual nucleus, 238Pu, in a di�erent way

than equilibrium emissions. It also a�ects the distribution of angular momentum

of the populated states in the entry region of 238Pu in a manner that is di�er-
ent from that arising from equilibrium neutron emissions, although this angular

momentum e�ect associated with preequilibrium emission is not well-understood.
Consequently, the magnitude of the preequilibrium emission plays an important
role in determining the shape of the inferred 239Pu(n,2n)238Pu cross section. To

obtain the value of kpre, which controls the strength of preequilibrium emission for
a given �n0 , we compared the neutron emission spectrum at 14 MeV calculated
from IDA, for the n + 239Pu reaction, to that measured by Kammerdiener[15] for

the n + 235U reaction, as the two nuclei have similar properties. The emission
spectra measured by Kammerdiener for the n + 239Pu reaction are not used be-

cause of contamination present in the data. In extracting the emission spectrum of
n + 235U from data, �ssion neutrons are subtracted based on the evaluated �ssion
spectrum and the �� value from ENDF/B-VI[16]. Figure 2 shows that a value of

kpre = 300 gives a good description of the data. However, there is a discrepancy
between the calculation and experimental data at high emission energies, roughly

Eem > 10 MeV. This is believed to be due to the collective direct reaction mecha-
nism that is not included in the preequilibrium model calculation. Thus, we adopt
kpre = 300 in our calculations of preequilibrium emission.

Preequilibrium emission is more prevalent at higher incident neutron energies.

Our calculation shows that at Einc < 10 MeV, the majority of the �rst generation
of neutrons is emitted via the compound process. Beyond Einc � 10 MeV, the

preequilibrium process quickly becomes dominant as can be seen in Figure 3. Also
seen in the �gure is that as Einc increases, the direct component of the �rst-neutron

emission, corresponding to excitation of the ground-state rotational band, steadily

decreases, as does the compound component of the �rst neutron emission. This
decrease in the direct component is simply a result of the diminishing e�ect of the

coupling between channels.
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4 Compound Processes

Once the cross sections for direct and the preequilibrium processes are calculated,

they are subtracted from the reaction cross section, �R. One then obtains the cross

section of compound nucleus formation, �CNa , where a denotes the incident parti-

cle. The cross sections of various compound processes are subsequently calculated

from the Hauser-Feshbach formulation[17], where the compound nucleus is treated

as a thermally equilibrated system, and in which the formation and decay of such

a compound nucleus are assumed to be independent of each other. The conserva-

tion of energy, angular momentum, and parity is enforced in the Hauser-Feshbach

formalism as follows:

� +Ba = �0 + E 0 +Ba0 = U (17)

~i+ ~I +~l = ~i0 + ~I 0 +~l0 = ~J (18)

p � P � (�1)l = p0 � P 0 � (�1)l0 = � (19)

where the unprimed quantities are associated with the entrance channel with inci-
dent particle a, and the primed quantities represent the exit channel with outgoing

particle a0. The center-of-mass kinetic energies are given by � and �0, and Ba and
Ba0 are the binding energies associated with particles a and a0. The excitation
energy of the residual nucleus is denoted by E 0. The spins and parities of the in-

coming and outgoing particles are labeled by ~i; p and ~i0; p0, and those of the target
and residual nuclei are given by ~I; P and ~I 0; P 0. The orbital angular momenta

are labeled by ~l;~l0 and the total energy, spin, and parity of the compound nucleus
are denoted by U; J; �. The notation used in this section closely follows that of
Reference[12].

The Hauser-Feshbach expression for the mean angle-integrated cross section
�a;a0(�; I; P ; �

0; I 0; P 0), for the reaction whose entrance channel is denoted by the
(a; �; I; P ) and whose exit channel is represented by (a0; �0; I 0; P 0) is[18]:

�a;a0(�; I; P ; �
0; I 0; P 0) =

�

k2a

X
J;�

2J + 1

(2i+ 1)(2I + 1)
f
X
lj

T J
alj(�)g

P
l0j0 T

J
a0j0l0(�

0)P
a00l00j00�00 T

J
a00l00j00(�

00)

=
X
J;�

�CNa (�; I; P ;U; J; �)

P
l0j0 T

J
a0j0l0(�

0)P
a00l00j00�00 T

J
a00l00j00(�

00)
(20)

where ka is the wave number for the relative motion of the pair of particles in the en-

trance channel and T J
alj(�) is the transmission coeÆcient in this channel. The cross

section of forming the compound nucleus with total energy U , angular momen-

tum J and parity � from the entrance channel is denoted by �CNa (�; I; P ;U; J; �).

The compound nucleus at a state (U; J; �) decays to a residual nucleus at a state
(E 0; I 0; P 0), by emitting particle a0 with energy �0, and the transmission coeÆcient

for the exit channel is T J
a0j0l0(�

0). The denominator of Equation (20) is a sum of
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transmission coeÆcients over all possible decay channels from the compound nu-

cleus in state (U; J; �). Depending on the energy, U , of the compound nucleus, the

residual nucleus, after emitting the outgoing particle, can be left in an excited state

that is either in the discrete region or in the continuum. Thus, the denominator

generally consists of two components, that is:

X
a00l00j00�00

T J
a00l00j00(�

00) =

Ea
00

cutX
a00l00j00

T J
a00l00j00(�

00) +

X
a00l00j00I00

Z Emax;a
00

Ea00

cut

!a00I00(E
max;a00 � �00)T J

a00l00j00(�
00)d�00 (21)

where Ea00

cut is where the discrete excitation energy region in the residual nucleus

that corresponds to the ejectile a00 ends, and !a00I00(E
max;a00 � �00) is the density of

levels of spin I 00 in the residual nucleus at energy Emax;a00 � �00. The maximum

kinetic energy in the center-of-mass system for the exiting channel with ejectile a00

is labeled by Emax;a00 . Similarly, the numerator in the last factor of Equation (20)
should be replaced by a product of transmission coeÆcient and level density if the

exit channel (a0; �0; I 0; P 0) leaves the residual nucleus with an excitation energy that
is in its continuum. In both Equations (20) and (21), angular momentum coupling
rules must be satis�ed.

In the range of incident neutron energies that is of interest to this work, three
compound processes need to be considered. They are �ssion, neutron emission and


-emission. As discussed in the previous sections, the compound nucleus formation
cross section, �CNa , can be derived from calculations from the optical model and the
exciton model. The Hauser-Feshbach calculation of the �ssion cross section, the

neutron-emission cross section and the 
-emission cross section essentially trans-
lates into calculating the transmission coeÆcients for �ssion, neutron emission and


-emission, denoted by Tf , Tn, and T
 , respectively. The following subsections

outline our calculations of each of these three processes.

4.1 Fission

Fission is a large component of the reaction cross section. Figure 4 shows that from
5:68 to 17:18 MeV, 50 % to over 70 % of the reaction cross section is attributed

to �ssion. It is, therefore, important to calculate the �ssion cross section correctly

since small variations in the �ssion cross section could signi�cantly alter the calcu-

lated cross sections of weaker reaction channels such as 239Pu(n,2n). Moreover, the
accuracy of the energy dependence of the �ssion cross section a�ects the shapes
of the 239Pu(n,2n) and 239Pu(n,2n
) excitation functions. Most importantly, the

treatment of �ssion may a�ect the calculated (n,2n)/(n,2n
) ratio used to multiply

the measured 
-yield to infer the total (n,2n) cross section. Fortunately, the �ssion
cross section, 239Pu(n,f), is well established experimentally. The determination of
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the parameters used in calculating the �ssion cross section is therefore facilitated

by requiring a good �t to the experimental data.

In calculating the �ssion cross section, �f , we ignore details of the formation of

�ssion products and the Hauser-Feshbach formula simpli�es to:

�f(�; I; P ) =
X
J;�

�CNn (�; I; P ;U; J; �)
Tf(U; J; �)

T (U; J; �)
(22)

where �CNn (�; I; P ;U; J; �) is the compound nucleus formation cross section from

the n + 239Pu reaction, and Tf(U; J; �), T (U; J; �) are �ssion and total transmission

coeÆcients, respectively.

The experimental data only give total �ssion cross sections, which correspond to

the left-hand-side of Equation (22). In order to treat �ssion as one of the competing
channels in the compound process, the �ssion transmission coeÆcient, Tf(U; J; �), is

needed and must be provided by a physical model. For our calculations, the double-
humped �ssion barrier model of Bj�rnholm and Lynn[19] is employed. In this
model, the shapes of the two �ssion barriers are approximated by two parabolas.

For a nucleus with excitation energy U , the penetration through a single barrier
is given by Hill and Wheeler[20] as:

T (U; J; �) =
Z
1

0

�̂(�; J; �)d�

1 + exp [(V (J) + � � U) =�h!]
(23)

where V (J) is the �ssion barrier height at angular momentum J , and �h! is the

curvature of the barrier at the saddle point. An estimate of the quantitative
decrease of the �ssion barrier height, �V , as angular momentum increases is given
by Sierk[21] and the values are tabulated in Table 2. The level density for positive

parity states is assumed to be the same as that for the negative parity states. That
is, �̂(�; J; � = +1) = �̂(�; J; � = �1) = (1=2)~�(�; J). The functional dependence of
~�(�; J) on J is given by:

~�(�; J) = �J(J)�(�) =
(2J + 1) exp

h
� (J + 1=2)2 =2�2

i

2
p
2��3

�(�) ; (24)

where �2 is the spin cut-o� parameter and the dependence of the density of states,

�(�), on the excitation energy �, which is measured from the top of the barrier, is
assumed to be of the constant temperature type:

�(�) =
X
J

~�(�; J) = C exp [�=�] (25)

for low excitation energies where � is the nuclear temperature and C is a constant.

For higher excitation energies, a Fermi-gas behavior is adopted:

�(�) = D
exp(2

p
aE�)

a1=4E�5=4

p
�

12
(26)
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J 0 1 2 3 4 5 6 7

�V (MeV) 0 0.002 0.004 0.008 0.012 0.017 0.022 0.029

J 8 9 10 11 12 13 14 15

�V (MeV) 0.036 0.044 0.052 0.061 0.070 0.081 0.092 0.104

J 16 17 18 19 20 21 22 23

�V (MeV) 0.116 0.129 0.143 0.157 0.172 0.188 0.204 0.221

J 24 25 26 27 28 29 30 31

�V (MeV) 0.238 0.256 0.274 0.293 0.313 0.333 0.354 0.375

J 32 33 34 35 36

�V (MeV) 0.397 0.419 0.442 0.465 0.489

Table 2: Decrease of �ssion barrier V at given angular momentum J. For J > 36,
a linear extrapolation of �V (J) = 0:489 + (J � 36)� 0:024 is used.

where
E� = � � P (Z)� P (N) (27)

and P (Z), P (N) are the proton and neutron pairing energies suggested by Gilbert
and Cameron[22]. The level density parameter a is treated as an adjustable pa-

rameter and D is a constant. A further assumption that the two �ssion barriers,
labeled by A and B, are uncorrelated is made. The resulting �ssion transmission
coeÆcient through both barriers is simply:

Tf(U; J; �) =
TA(U; J; �)TB(U; J; �)

TA(U; J; �) + TB(U; J; �)
: (28)

Following Bj�rnholm and Lynn, the excitation energy � is divided into several
ranges. The �rst few of these segments employ the constant-temperature level
density while the last one uses the Fermi-gas level density. Constants C, �, a,

and to some extent �2, are treated as free parameters in order to reproduce the

experimental �ssion cross section. The continuity of level density �(�) is imposed

throughout all segments of the excitation energy. As a result, apart from the

constant C in the �rst segment, all other values of C as well as D in Equation (26)
are automatically determined by the continuity constraint. We also ensure the

continuity of the spin cut-o� parameter, �2. In the constant-temperature regions,

the spin cut-o� parameter is linearly interpolated from its initial value at the lower
bound of the excitation energy segment to the initial value of �2 at the beginning of

the next energy segment. The �2 in the Fermi-gas region has an energy dependence
of

�2(E�) = 0:0888A2=3
p
aE� (29)

where E� is de�ned in Equation (27). The �ssion barrier heights at J = 0 and the
curvatures for the involved nuclei are tabulated in Table 3 while the level density
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VA (MeV) �h!A (MeV) VB (MeV) �h!B (MeV)
240Pu 5.57 1.05 4.90 0.60
239Pu 6.25 0.70 5.70 0.52
238Pu 6.00 1.04 5.40 0.60

Table 3: Fission barrier heights at J = 0 and �ssion barrier curvatures at the

saddle points for barriers A and B for the three nuclei that �ssion in the incident-

neutron-energy range of 5:68 to 17:18 MeV.

parameters for various excitation ranges and both barriers A and B are listed in

Table 4.

As can be seen from Figure 4, the adjusted parameters give rise to a calculated
�ssion cross section that reproduces the evaluations well. Quantitatively, the cal-

culated �ssion cross section di�ers from that evaluated by less than the uncertainty
of the evaluations which is about 2 %. The two sets of evaluations, ENDL99 and
JENDL3.3[23], are both entirely based on experimental measurements. They agree

with each other well except in the region near 14 MeV of incident neutron energy
where the di�erence between the two evaluations is about 5 %.

4.2 Neutron Emission

The calculation of neutron-emission cross sections follows the Hauser-Feshbach
formulation given by Equation (20). For particle emission, the transmission coef-
�cients are provided by the optical model calculations[7, 8].

The Hauser-Feshbach calculation of neutron emission, as well as other reaction
channels, critically depends on the level densities employed. In our calculations,

the Gilbert-Cameron level density prescription[22] is employed for the neutron
emission channel. In this level density formulation, a constant-temperature form

is used at excitation energy U� � U�
x and a Fermi-gas form is used for U� > U�

x . In

complete analogy to Equation (27), we have, U� = U�P (Z)�P (N) where U is the
excitation energy of a given nucleus. The di�erence between �, in Equation (27),
and U is that � is measured from the top of a �ssion barrier when a nucleus is

deformed to its pre-scission state whereas U is measured from the ground state of

a nucleus with normal deformation.

The various level density parameters used in the particle emission channels in
our calculations are listed in Table 5. Parameter Ecut is the maximum excitation
energy of the discrete states beyond which the continuous level density is modeled

by the Gilbert-Cameron formulation. With the exception of 238Pu, the determina-

tion of Ecut for each nucleus is based on the available discrete level scheme from

ENSDF[24]. The spin cut-o� parameters �2, at excitation energy Ecut, are derived
from the analysis of spin distribution of the discrete levels in each nucleus and

12



� ld �init CA �A CB �B aA aB
MeV MeV MeV MeV MeV�1 MeV�1

0:0! 1:5 CT 5.1 1.35 0.2652 1.65 0.3153
240Pu 1:5! 3:0 CT 5.7 0.3690 0.3740

3:0! 6:0 CT 6.3 0.4000 0.4020

> 6:0 FG formula 32 32

0:0! 1:2 CT 5.7 650.0 0.4100 550.0 0.4150
239Pu 1:2! 7:0 CT 6.4 0.5050 0.5150

> 7:0 FG formula 31 31

0:0! 0:6 CT 5.6 9.0 0.3700 7.0 0.3800
240Pu 0:6! 3:2 CT 5.7 0.3800 0.3900

3:2! 7:0 CT 6.5 0.6500 0.6590
> 7:0 FG formula 30 30

Table 4: Parameters used in level density formulae above the two �ssion barriers

labeled by A and B. The spin cut-o� parameter �init is the initial value of � at

the beginning of a given energy segment. The third column indicates if the level

density used in the corresponding energy interval is constant temperature (CT) or

Fermi gas (FG). The �init for the Fermi-gas segment is determined by the formula

given in Equation (29). The constant D in Equation (26) is not tabulated in the

table since it is determined according to the continuity constraint. For the same

reason, the constant C in Equation (25) for those energy segments other than the

very �rst is not shown in the table.

Ecut (MeV) �2 (MeV2) U�
x (MeV) a (MeV�1)

240Pu 1.162 10.3 3.16 27.01
239Pu 0.5375 46.2 3.48 27.48
238Pu 1.33 29.8 3.55 26.25
237Pu 0.3 7.98 3.81 27.14

Table 5: Level density parameters for 240Pu, 239Pu, 238Pu, and 237Pu.

are shown in Table 5. Again, this analysis is based on the available experimental

information from ENSDF. A linear interpolation of �2 between the values listed

in Table 5 and the initial value of the spin cut-o� parameter at the beginning of
the Fermi-gas segment is carried out. The energy dependence of the spin cut-o�

parameter for the Fermi-gas level density is in the same form as that used in the

�ssion channel (cf. Equation (29)). That is, �2 = 0:0888A2=3
p
aU�. The Fermi-

gas level-density parameter, a, is determined by the statistical analyses of neutron

resonance data at the neutron binding energy. With a given level density at the

13



neutron binding energy and with the knowledge of the number of levels below

Ecut, values of a and U�
x can be obtained by requiring that the level density and

its derivative be continuous at U�
x .

Using the parameters in Table 5, it is instructive to see the model prediction

of the compound component of the neutron-emission cross section versus the pree-

quilibrium component for the (n,2n) reaction channel. The outcome re
ects the

interplay between the modeling of the preequilibrium mechanism and the modeling

of the compound mechanism, as well as the competition between various compound

reaction channels, such as �ssion, (n,n'), (n,3n), and 
-emission. Figure 5 shows

the IDA calculations of the fractions of the compound and preequilibrium compo-

nents of the (n,2n) cross section relative to the total (n,2n) cross section. It should

be pointed out that only the �rst neutron emission has a preequilibrium compo-

nent. It is seen from the �gure that the preequilibrium component is a very small
fraction of the (n,2n) cross section at low Einc, as expected. However, it becomes
comparable to the compound component near Einc = 12 MeV and quickly becomes

dominant afterwards. As mentioned in Section 3, the relative strength of the pree-
quilibrium emission to the compound emission has an e�ect on the shape of the

(n,2n) excitation function. Moreover, because the spin distribution in the residual
nucleus, 238Pu, following a preequilibrium neutron emission from the composite
nucleus, 240Pu, is di�erent from that following a compound neutron emission, their

relative strength , although not the only factor, would impact the relative popula-
tions of states with di�erent spin, J , in the residual nucleus. Comparisons between
the calculated relative populations of some states in the residual nucleus 238Pu and

GEANIE measurements are discussed in the next subsection.

4.3 
 Emission

In our calculations, 
-emission is considered as a compound process. What is
required in order to calculate the cross section of 
-emission is therefore the 
-

transmission coeÆcients. Similar to �ssion, the 
-transmission coeÆcients are

obtained from a separate physical model that approximates the 
-emission mecha-

nism. In particular, the detailed balance principle is applied to relate the averaged
partial radiative width of 
-emission, h�XL


 (f ! i)i, from state f to state i of a
nucleus, to the cross section of the inverse photon absorption process. Here, the

state f is characterized by (Ef ; Jf ; �f) and the state i is labeled with quantum
numbers (Ei; Ji; �i). The detailed-balance principle leads to[25, 26]:

h�XL
 (i! f)i = �2�2gifh�XL

 (f ! i)i=Df (30)

where h�XL
 (i! f)i is the averaged cross section for the absorption of one photon

of energy �
 = Ef �Ei and multipole type XL from the state i of a nucleus to the
state f . The photon wavelength is given by � = �hc=�
 and gif = (2Jf+1)=(2Ji+1)
is a statistical factor. Df is the mean spacing of resonances with spin Jf , parity �f ,
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and energy Ef . With the usual de�nition[27], the 
-ray strength function, fXL;Jf�f
;Ji�i
,

can be expressed in terms of the averaged radiative width of 
-emission as follows:

f
XL;Jf�f

;Ji�i

=
h�XL


 (f ! i)i
�2L+1

 Df

: (31)

The strength functions are assumed to be independent of spin and parity. That is,

f
XL;Jf�f

;Ji�i

(�
) = fXL
 (�
) ; (32)

and the transmission coeÆcients for 
-emission, TXL

 (�
), are de�ned in terms of

the 
-ray strength functions. The transmission coeÆcients, TXL

 (�
), are, therefore,

related to the photon absorption cross section by:

TXL

 (�
) = 2��2L+1


 fXL
 (�
) =
2�2
h�XL
 (i! f)i

��h2c2gif
: (33)

When evaluating the photon absorption cross section, we use the Brink-Axel[28, 29]
hypothesis which allows the absorption cross section of a photon by a nucleus at

an excited state to be equated to that by the nucleus at its ground state:

h�XL
 (i! f)i = 2Jf + 1

3(2Ji + 1)
�gs(�
) (34)

where �gs(�
) is the cross section of absorbing a photon with energy �
 by a nu-

cleus at its ground state and its dependence on �
 is approximated by one or two
Lorentzians, namely,

�gs(�
) =
X
q=1;2

�q
�2
�

2
q

(�2
 + E2
q )

2 + �2
�
2
q

: (35)

The constants �q, �q, and Eq are the peak cross section, peak energy, and width
at half maximum of the Lorentzian, respectively. Their values are derived from

systematics and are known to provide photon absorption cross sections due to the

E1 giant dipole resonance to within a few percent in some tested cases[25]. In IDA
calculations, 
-emission of the multipole types E1,M1, and E2 are considered. For

the dominant E1 radiation, the splitting of the giant resonance in deformed Pu
isotopes is taken into account by a superposition of two Lorentzians. Table 6 lists

the values of �q, �q, and Eq parameters used in IDA calculations.

The modeling of the 
-cascade is very important because it a�ects the ratios of
239Pu(n,2n
)/239Pu(n,2n), which in turn a�ect the total 239Pu(n,2n) cross section

inferred from Equation (1). Apart from the 
-ray transmission coeÆcients, the ini-

tial and �nal level densities associated with the 
-transition also play a critical role

in the competition between 
-decay and other reaction channels. Furthermore, the
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240Pu 239Pu 238Pu 237Pu

�E1
1 (barn) 0.301 0.300 0.297 0.296

�E1
1 (MeV) 2.68 2.68 2.69 2.70

EE1
1 (MeV) 11.55 11.56 11.62 11.63

�E1
2 (barn) 0.408 0.406 0.404 0.402

�E1
2 (MeV) 3.80 3.80 3.80 3.81

EE1
2 (MeV) 13.82 13.83 13.84 13.85

�M1 (barn) 0.043 0.043 0.043 0.043

�M1 (MeV) 1.48 1.48 1.48 1.49

EM1 (MeV) 7.40 7.41 7.42 7.43

�E2 (barn) 0.043 0.042 0.042 0.042

�E2 (MeV) 1.52 1.52 1.52 1.53

EE2 (MeV) 10.14 10.15 10.17 10.18

Table 6: Parameters used in the Lorentzian form of the photon absorption cross

section. The peak cross section, peak energy, and half maximum width of the pho-

ton absorption cross section as a function of the photon energy, �
, are denoted by

�, E, and �, respectively. The multipole type XL=E1,M1,E2 of photon absorption

are indicated by superscripts. The splitting of the E1 giant dipole resonance is rep-

resented by a superposition of two Lorentzians subscripted by 1 and 2, respectively.

angular momentum and parity selection rules imposed on the 
-transitions of mul-

tipole type XL, make the prediction of 
-cascade sensitive to the detailed structure,
such as the spin and parity distribution, of the nucleus in question. In particular,
the level scheme employed in the low excitation energy region, where a statisti-

cal treatment of the level density is not justi�ed and where the collective nature
of nuclear excitation is most pronounced, has direct impact on the population of

a given low-lying excited state. One therefore would like to have as complete a
level scheme as possible in order to account for the structure e�ects in the discrete
region. Unfortunately, the experimental data in the ENSDF library are limited.

For the calculation of the 239Pu(n,2n
)/239Pu(n,2n) ratios, the level scheme of

the residual nucleus, 238Pu, is most important. One �nds, in the ENSDF data

base, that the experimental measurements of bands such as the octupole and �-

bands only extend to less than 1 MeV of excitation energy for this nucleus. Since

the GEANIE measurements provide, with branching ratios known from other ex-

periments, the cross sections of the population of a few discrete states in 238Pu

of excitation energy up to 1:083 MeV, it is essential to extrapolate the bands to

beyond 1:083 MeV in order to reasonably simulate the physical 
-cascade in the

discrete region and compare with GEANIE data. We therefore extended 8 of the 9

existing bands in 238Pu. All bands are assumed to be rotational in nature and the
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index � Ex J branching ratios

1 + 0.0 0
2 + 0.043 2 1(100%)

3 + 0.142 4 2(100%)

4 + 0.294 6 3(100%)
5 + 0.498 8 4(100%)

6 - 0.597 1 1(38%),2(62%)
7 - 0.649 3 2(49%),3(51%)

8 - 0.742 5 3(13%),4(87%)

9 + 0.748 10 5(100%)
10 + 0.861 0 2(53%),6(47%)

11 + 0.900 2 1(5%),2(13%),3(32%),6(27%),7(23%)
240Pu 12 - 0.938 1 1(89%),2(5%),6(5%),7(1%)

13 - 0.959 2 2(92%),6(4%),7(4%)

14 + 0.992 4 4(34%),7(47%),8(19%)
15 - 1.002 3 2(100%)

16 + 1.031 3 2(75%),3(25%)
17 - 1.038 4 3(91%),7(6%),8(3%)

18 + 1.042 12 9(100%)

19 + 1.076 4 2(29%),3(71%)
20 + 1.089 0 2(100%)

21 - 1.116 5 3(90%),4(5%),7(5%)
22 + 1.132 2 1(35%),2(18%),3(47%)
23 + 1.137 2 1(40%),2(60%)

Table 7: Discrete spectroscopy of 240Pu. Excitation energy, Ex, is in units of MeV.

determination of the branching ratios from an added state to others is based on the
assumption that the transition matrix elements for a given multipole type to var-

ious states are the same. Consequently, for a given multipole type, the branching

ratios depend only on the 
-ray energy of the transition. Tables 7 to 9 tabulate the

discrete spectroscopy for the Pu isotopes used in our calculations. Only for 238Pu

did we extend the level scheme; the discrete levels used for the rest of the isotopes
are strictly from ENSDF. The added levels in 238Pu and their associated branching

ratios estimated by us are indicated by an asterisk in column 4 of Table 9. If a

level exists in ENSDF without branching ratios, we also give our estimates and
these cases are indicated by an asterisk in the last column where branching ratios

are given.

As an examination of the e�ect of discrete spectroscopy, we compared our cal-

culations of the relative 
-ray intensities of (8+ ! 6+)=(6+ ! 4+) and (5� !
6+)=(6+ ! 4+) in the 238Pu nucleus, to that obtained from the GEANIE exper-
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index � Ex J branching ratios

1 + 0.0 1/2
2 + 0.008 3/2 1(100%)

3 + 0.057 5/2 1(54%),2(46%)

4 + 0.076 7/2 2(83%),3(17%)
5 + 0.164 9/2 3(89%),4(11%)

6 + 0.193 11/2 4(100%)
7 + 0.285 5/2 1(2%),2(48%),3(38%),4(12%)

8 + 0.318 13/2 5(100%)

9 + 0.330 7/2 2(2%),3(23%),4(32%),5(5%),7(38%)
239Pu 10 + 0.358 15/2 6(100%)

11 + 0.387 9/2 4(22%),7(11%),9(67%)

12 - 0.392 7/2 3(7%),4(5%),7(84%),9(4%)

13 - 0.434 9/2 12(100%)

14 + 0.462 11/2 4(70%),5(19%),6(11%)
15 - 0.470 1/2 1(37%),2(63%)

16 - 0.487 11/2 12(95%),13(5%)
17 - 0.492 3/2 1(35%),2(6%),3(59%)

18 - 0.506 5/2 2(45%),3(4%),4(51%)

19 + 0.512 7/2 7(75%),9(23%),11(2%)
20 + 0.519 17/2 8(100%)

1 - 0.0 7/2

2 - 0.048 9/2 1(100%)
3 - 0.106 11/2 1(95%),2(5%)

4 + 0.146 1/2 1(100%)
5 + 0.155 3/2 4(100%)

237Pu 6 - 0.175 13/2 2(95%),3(5%)

7 + 0.201 5/2 4(68%),5(32%)
8 + 0.224 7/2 5(100%)

9 - 0.257 15/2 3(95%),6(5%)

10 + 0.280 5/2 1(99%),5(1%)

Table 8: Discrete spectroscopy of 239Pu and 237Pu. Excitation energy, Ex, is in

units of MeV.

iments corrected for internal conversion. Figures 6 and 7 show the results. The
calculations are carried out with two di�erent level schemes of 238Pu. One has 20

levels which are provided strictly by ENSDF. In this case, Ecut = 1:173 MeV. The

other is the extended level scheme with 39 levels and Ecut = 1:33 MeV. Clearly seen
from the �gures is that the extended level scheme gives rise to a greatly improved

agreement with experimental data, and therefore a more realistic simulation of the
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index � Ex J branching ratios

1 + 0.0 0
2 + 0.044 2 1(100%)
3 + 0.146 4 2(100%)
4 + 0.303 6 3(100%)
5 + 0.513 8 4(100%)
6 - 0.605 1 1(42%),2(58%)
7 - 0.661 3 2(60%),3(40%)
8 - 0.763 5 3(43%),4(55%),7(2%)*
9 + 0.774 10 5(100%)
10 - 0.911* 7 4(92%),5(5%),8(3%)
11 + 0.942 0 1(36%),2(62%),6(2%)
12 - 0.963 1 1(52%),2(43%),6(4%),7(1%)
13 - 0.968 2 2(100%)
14 + 0.983 2 1(56%),2(20%),3(21%),6(2%),7(1%)
15 - 0.985 2 2(95%),6(2%),7(3%)
16 - 1.025* 3 2(53%),3(47%)
17 + 1.028 2 1(41%),2(57%),3(2%)
18 + 1.070 3 2(77%),3(23%)

238Pu 19 + 1.080 12 9(100%)
20 + 1.081* 4 2(30%),3(40%),4(22%),7(5%),8(3%)
21 - 1.083 4 3(91%),7(5%),8(2%),13(2%)
22 - 1.085* 4 3(100%)
23 - 1.103* 9 5(80%),9(5%),10(15%)
24 + 1.126 4 2(13%),3(37%),4(5%),18(45%)*
25 - 1.139* 5 21(100%)
26 - 1.172* 5 3(45%),4(43%),7(5%),8(3%),22(4%)
27 + 1.174 2 1(45%),2(55%)
28 + 1.192* 5 3(30%),4(20%),24(50%)
29 - 1.203 3 17(20%),18(2%),21(78%)
30 - 1.211* 6 25(100%)
31 + 1.229 0 1(8%),2(92%)
32 + 1.231* 6 3(18%),4(45%),8(18%),10(16%),20(3%)
33 - 1.257* 4 18(20%),25(80%)
34 + 1.264 2 2(70%),3(30%)*
35 + 1.268* 6 3(10%),4(30%),28(60%)
36 - 1.294* 6 4(50%),8(25%),10(20%),26(5%)
37 - 1.295* 7 30(100%)
38 + 1.310 2 2(100%)
39 - 1.321* 5 24(20%),30(80%)

Table 9: Discrete spectroscopy of 238Pu. Excitation energy, Ex is in units of MeV.

The asterisks in column 4 indicate the levels we generate along with our estimates

of their branching ratios. The asterisks in the last column label the levels that are

in the ENSDF database without branching ratios, and for which we provide our

estimates.
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-cascade. Also apparent is the di�erence in the predicted relative 
-ray inten-

sities solely due to discrete spectroscopy. For example, the 
-ray intensity ratio

of (8+ ! 6+)=(6+ ! 4+), where the 8+, 6+, and 4+ states are all members of

the ground-state band, di�ers by about 20 % when using the two di�erent level

schemes of 238Pu. This reveals the sensitivity of the 
-cascade calculations to the

discrete spectroscopy included as model input. Of course, the discrete spectroscopy

is not the only factor that in
uences the 
-cascade process. The initial distribu-

tion in energy and spin of the populated states in 238Pu before the 
-cascade takes

place certainly a�ects the relative strengths of the population of various low-lying

states reached by the deexcitation of 
's. As discussed in Section 4.2, such initial

distribution is a result of the interplay between the relative strengths of preequi-

librium neutron emission, �ssion, compound emission of neutrons and 
's, as well

as the angular momentum transfer mechanisms associated with each process. The
calculations shown in Figures 6 and 7 have the same initial distribution of energy
and angular momentum in 238Pu, and therefore the di�erences re
ect the di�erent
238Pu level scheme only.

Finally, we point out that the branching ratios from the 5� state at 0:763 MeV

in the octupole band, among some other levels, are unknown. In the level scheme
of 238Pu with 20 levels, this state is assumed to decay to the 3� state of the same
band with a branching ratio of 100 %. In the extended level scheme, we allowed

inter-band transitions and adjusted the branching ratios from the 5� state so that
they agree with the measured relative 
-ray intensity of (5� ! 6+)=(6+ ! 4+).
The detailed branching ratios are given in Table 9. Figures 6 and 7 show that the

transition rates from this state greatly a�ect the relative population of the discrete
states in its vicinity. Their precise measurements are therefore desirable. We also

note that no adjustments of branching ratios are made for states of the ground-
state band as well as most of the states provided by ENSDF. Consequently, the
two di�erent calculations shown in Figure 6 are, to a large extent, a re
ection of

the extension of the level scheme, although the adjustment of the branching ratios
of the 5� state does a�ect the relative 
-ray intensity of (8+ ! 6+)=(6+ ! 4+).

The good agreement with data seen in both Figure 6 and Figure 7 suggests that

our overall estimate of the branching ratios from the added levels and from the

levels for which experimental branching ratios are absent in ENSDF, is reasonable.

5 Results and Discussions

The previous sections give a description of the major components of physics that
are adopted in modeling various nuclear reaction cross sections. We now present

the calculated ratios, 239Pu(n; 2n
)=239Pu(n; 2n), and the �nal inferred 239Pu(n,2n)

cross sections.
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number initial level �nal level �
 (MeV)

J� Ex (MeV) J� Ex (MeV)

1 6+ 0.303 4+ 0.146 0.157*

2 8+ 0.513 6+ 0.303 0.210

3 5� 0.763 6+ 0.303 0.460

4 3�=5� 0.661/0.763 2+=4+ 0.044/0.146 0.460*

5 1� 0.963 2+ 0.044 0.919*

6 2� 0.968 2+ 0.044 0.924*

7 4� 1.083 4+ 0.146 0.937*

Table 10: The seven 
-transitions in 238Pu observed by GEANIE. The asterisks

in the last column indicate transitions that decay to the ground state of 238Pu via

independent paths.

5.1 Consistency of Inferred 239Pu(n,2n) Cross Sections

The experimental input to the inferred 239Pu(n,2n) cross section comes from the

measured partial 239Pu(n,2n
)238Pu cross sections. Seven 
-transitions following
the two-neutron emission from the n + 239Pu reaction are observed by GEANIE
and they are listed in Table 10.

To examine the accuracy of the modeling, one meaningful direct comparison
between theoretical calculations and the experimental GEANIE data is the relative


-ray intensities for transitions between discrete states in 238Pu, as discussed at the
end of Section 4.3. Our attention is focused on comparing the model calculation of
the relative 
-ray intensities for the lower-lying states to the corresponding 
-ray

intensities derived from GEANIE data. The reason for focusing on lower-lying
states is three-fold. First of all, the lower-lying states are fed more strongly and,

hence, the modeling of the population of these states carries less uncertainty than
that of states that are weakly populated where the magnitude of the cross section
is rather small. Secondly, the band heads of high-K bands tend to lie at higher

excitation energies than that of the low-K bands. The absence of conservation

of the K quantum number in the 
-cascade model presently used suggests that
the theoretical calculation of the population of the high-K states may be a less

accurate representation of physical reality than the calculation of lower-lying states.
Thirdly, the higher the excited state, the closer it is to Ecut where the discrete

spectroscopy is replaced by a continuous statistical level density formulation. This

results in greater loss of the structure e�ects in the modeling of the population
of the state. Consequently, we compare the relative 
-ray intensity of (8+ !
6+)=(6+ ! 4+) where all the states belong to the ground-state band, and the

relative 
-ray intensity of (5� ! 6+)=(6+ ! 4+) where the 5� state at 0:763 MeV
is a state from the octupole band. The fact that both our calculated relative 
-ray
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intensities, (8+ ! 6+)=(6+ ! 4+) and (5� ! 6+)=(6+ ! 4+), agree with GEANIE

data, within experimental errors, implies that if one is to infer the 239Pu(n,2n)

cross section from the ratios (6+ ! 4+)=(n; 2n), (8+ ! 6+)=(n; 2n), and (5� !
6+)=(n; 2n), separately, one should obtain consistent inferred 239Pu(n,2n) cross

sections within the experimental uncertainty. In other words, if we de�ne

239Pu(n; 2n)inferred1 =

n
239Pu(n; 2n
6

+!4+)
oexperiment

f239Pu(n; 2n
6+!4+)=239Pu(n; 2n)gmodel
(36)

239Pu(n; 2n)inferred2 =

n
239Pu(n; 2n
8

+!6+)
oexperiment

f239Pu(n; 2n
8+!6+)=239Pu(n; 2n)gmodel
(37)

239Pu(n; 2n)inferred3 =

n
239Pu(n; 2n
5

�!6+)
oexperiment

f239Pu(n; 2n
5�!6+)=239Pu(n; 2n)gmodel
; (38)

we would have

239Pu(n; 2n)inferred1 �239 Pu(n; 2n)inferred2 �239 Pu(n; 2n)inferred3 (39)

when experimental uncertainties are considered. Figure 8 shows that this is indeed
the case. One sees from the �gure that the 
uctuation of the points near threshold

is large. This is mostly due to the fact that both the measured partial cross
sections and the calculated ratios in this region are small. Hence, slight changes

in the magnitude of either would lead to a large variation in the inferred (n,2n)
cross section. In addition, 
uctuations from GEANIE data also contribute to the
unsmooth behavior of the inferred 239Pu(n,2n) cross sections. For example, at 8:11

MeV (c.f. Figure 9), the low GEANIE value of the 8+ ! 6+ partial cross section
causes the inferred 239Pu(n,2n) cross section, from Equation (37) at this incident
energy, to be low. Figures 9 and 10 display the partial cross sections measured by

GEANIE and the ratios calculated by IDA that are used in Equations (36) to (38)
to give results in Figure 8.

5.2 The Inferred 239Pu(n,2n) Cross Sections

Further comparisons between the GEANIE data and our calculations indicate that
the relative strengths of populating states belonging to di�erent bands are not

correctly modeled. While the relative 
-ray intensity, (8+ ! 6+)=(6+ ! 4+), and

(5� ! 6+)=(6+ ! 4+), where all states have the lowest energy for the given spin
(yrast states), are simulated accurately within experimental error, the population

of, for example, the 4� state, at 1:083 MeV, of the K = 4 band with quasiparticle

con�guration [�7=2(743) + �1=2(631)], is poorly modeled. This can be seen from
Figure 11 where the relative 
-ray intensity of (4� ! 4+)=(6+ ! 4+) as a function

of incident energy is shown. The theoretical calculation clearly under-predicts the
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strength of the population of this 4� state relative to the 6+ state of the ground-

state band. Similar underestimates are observed for other non-yrast states such as

the 1� state at 0:963 MeV and the 2� state at 0:968 MeV. Apart from the three

reasons given in the previous section, this under-prediction of the population of the

non-yrast states could also suggest possible inadequacies in the model prediction

of the initial population of the excited states of 238Pu in both excitation energy

and angular momentum.

To compensate the tendency of model calculations of overestimating the rel-

ative population of the yrast states to non-yrast states, a summing technique is

used to infer the �nal total 239Pu(n,2n) cross section. Speci�cally, instead of using

individual calculated ratios and individual measured partial cross sections to infer

the total 239Pu(n,2n) cross section as is done in Equations (36) to (38) and shown

in Figure 8, we replace the denominator of Equation (1) by a sum of calculated
ratios, [

P
i (n; 2n
i)=(n; 2n)]

model, of partial to total cross sections. The numera-
tor is replaced by a sum of measured partial cross sections, [

P
i (n; 2n
i)]

experiment

accordingly. The underlying assumption is that for a given initial population of
the excited states of 238Pu, which subsequently 
-cascades, the total sum of the 


intensity remains constant regardless of the relative intensities between individual
paths through which 
-cascade proceeds. If the (n,2n
)/(n,2n) ratios correspond-
ing to all independent paths are included in the sum, the incorrect distribution of


-intensities over various paths could be entirely removed from the inferred total
(n,2n) cross section. However, the inference of the 239Pu(n,2n) cross section needs
GEANIE data as well as the calculated ratios and only a subset of the indepen-

dent paths that lead to the ground state of 238Pu are experimentally observed.
Speci�cally, the 7 
-transitions measured by GEANIE (c.f. Table 10), represent 5

independent 
-decay paths that lead to the ground state of 238Pu. We therefore
base our �nal inference of the 239Pu(n,2n) cross section on a ratio derived from the
sum of these 5 transitions. The 5 transitions used are indicated by an asterisk in

the last column of Table 10. Furthermore, if the 
-decay from a given state takes
several paths and only one is experimentally observed, we include the unobserved

decays, as long as they also form independent paths, by multiplying the observed

decay by a constant derived from the branching ratios known from other experi-
ments. This situation arises for the 1� ! 2+ transition. The 1� state at 0:963

MeV decays to the following states: the 2+ state at 0:146 MeV, the 0+ ground
state, the 1� state at 0:605 MeV, and the 3� state at 0:661 MeV. The relative

intensities of its decay to these states are 84, 100, 7:6, and 1:7, respectively. The

cross section for the 1� ! 2+ transition was measured by GEANIE. We include

the 1� ! 0+ and the 1� ! 1� decays by multiplying the observed 1� ! 2+

excitation function by a constant of 2:281 = (84 + 100+ 7:6)=84. To avoid double

counting, the 1� ! 3� transition is excluded because all decays from the same 3�

state are included separately in the calculation of the (3�=5� ! 2+=4+)=(n; 2n)

ratio, where the transition 3�=5� ! 2+=4+ is a doublet. The �nal inferred (n,2n)
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cross section, 239Pu(n,2n)inferred, is obtained as follows:

239Pu(n,2n)inferred =
f(6+!4+)+(3�=5�!2+=4+)+(1�!2+)�2:281+(2�!2+)+(4�!4+)g

experiment

f[(6+!4+)+(3�=5�!2+=4+)+(1�!2+)�2:281+(2�!2+)+(4�!4+)]=(n;2n)gmodel

Figure 12 shows our (GEANIE/IDA) �nal inferred 239Pu(n,2n) cross section and

that inferred from GEANIE/GNASH1. For purposes of comparison, measurements

by Lougheed near 14 MeV, an Alice[30] calculation by Blann, as well as evaluations

from ENDL, ENDF/B-V and ENDF/B-VI are also shown.

The peak value of the our inferred (n,2n) cross section is approximately 327 mb

at Einc � 11:4 MeV while the peak value from the GEANIE/GNASH inference is

immediately below this value. This is much lower than the ENDL and ENDF/B-VI

peak value and much higher than the ENDF/B-V evaluation as can be seen from
Figure 12. Also seen from the �gure is that our inferred (n,2n) cross section agrees

very well with Lougheed's measurements near 14 MeV. Beyond Ecut � 14 MeV,
our inferred (n,2n) cross section decreases slower than almost all predictions but
the ENDL evaluation. Notice the quite di�erent behaviors of the (n,2n) cross sec-

tion amongst the previous evaluations almost everywhere within the energy range
except around 14 MeV where all evaluations tend to converge to the measurements
by Lougheed. We also point out that although in reasonable agreement with calcu-

lations by Blann, the two sets of inferred 239Pu(n,2n) cross sections, from IDA and
GNASH, are yet again di�erent from all evaluations in terms of how fast the cross

section rises around threshold, the peak value, and the general shape of the exci-
tation function. We also note that there are relatively small di�erences between
the two sets of inferred (n,2n) cross sections.

It is seen that, near threshold, the GEANIE/IDA inferred cross section rises
faster than all but the ENDF/B-VI evaluation. We should point out that due to the

small and yet rapidly changing magnitude of the (n,2n) cross section immediately
after the opening of the channel, the modeling of the cross section in this region is

very sensitive to the slopes of strong reaction channels such as the reaction cross

section and the �ssion cross section. For example, at Einc � 5:68 MeV, a 1:2 %
change in �ssion cross section, which is approximately 20 to 25 mb, would result in

a change of about 50 % in the (n,2n) cross section if the di�erence in �ssion cross

section is mostly propagated into the (n,2n) channel. Furthermore, the subtle

competition between the two-neutron emission channel and the weaker 
-emission

channel also impacts the shape of the (n,2n) cross section near threshold. To get
the correct behavior of the (n,2n) excitation function near threshold is therefore

a diÆcult task, but this will be investigated further. One also notices that the

inferred (n,2n) cross section at 5:68 MeV is absent from Figure 12. This is because

1All results from GNASH in this report refer to the GNASH00b calculations by Chadwick[6]
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the lowest excited state from which a 
-transition is considered in the summed

ratio of [
P

i (n; 2n
i)=(n; 2n)]
model

is the 6+ state of the ground-state band. The

excitation energy of the this state is 0:303 MeV and the (n,2n) channel on this

state does not open until Einc = 5:95 MeV. The inferred (n,2n) cross section at the

next incident neutron energy point, Einc = 6:06 MeV, would also carry a sizable

uncertainty from modeling and it is seen that the experimental uncertainty at this

incident energy is also large. We note that the errors on the GEANIE/IDA and

GEANIE/GNASH inferred (n,2n) cross section are experimental only.

Our calculations of the 5 individual ratios of 239Pu(n,2n
)/239Pu(n,2n) as well

as their weighted sum, as appears in the equation on page 24, are shown in Fig-

ure 13. The corresponding 5 partial cross sections, measured by GEANIE, and

their weighted sum are shown in Figure 14. One sees from Figure 13 that the ratio

of (6+ ! 4+)=(n; 2n) is by far the dominant component in the summed ratio. Also
noted is that the summed ratio has a smoother behavior between 6 and 7:5 MeV of
incident neutron energy than the individual ratio of (6+ ! 4+)=(n; 2n), primarily

due to the inclusion of the ratio of (3�=5� ! 2+=4+)=(n; 2n). We note that all
states in these two ratios, namely, the 6+, 4+, 3�, and 5� states, are members of

the yrast band. The strongest transition observed from the non-yrast band is the
4� ! 4+ transition. In fact, its intensity is only next to the strongest of all transi-
tions observed by GEANIE, namely, the 6+ ! 4+ transition. Obviously, out of the

5 independent 
-decays, the underestimated population of this 4� state accounts
for the majority of the missing 
's from modeling. Additionally, one sees, by com-
paring Figure 12 and Figure 8, that the (n,2n) excitation function inferred from the

summed partial cross section and the summed ratio has a smoother behavior from
threshold to peak, suggesting that the rate of rise of the summed ratio and that of

the summed partial cross section data, within this energy region, are comparable.
On the other hand, when the rate of rise of the (6+ ! 4+)=(n; 2n) ratio and that
of the 6+ ! 4+ partial cross section data are compared, the slight slowing down

of the rise in the 6+ ! 4+ partial cross section between 8 and approximately 10
MeV (c.f. Figure 9) causes the inferred (n,2n) cross section from this particular

ratio to dip in this energy interval (c.f. Figure 8).

5.3 Sensitivity of the 239Pu(n,2n
)/239Pu(n,2n) to the An-

gular Momentum Dependence of the Fission Barriers

The physical models and input parameters impact the outcome of the calculations.
In this section, we discuss the sensitivity of the model calculations of the ratios,
239Pu(n,2n
)/239Pu(n,2n), primarily to the angular momentum dependence of the

�ssion barriers.
Focusing on the ratios of 239Pu(n,2n
)/239Pu(n,2n), which are what the model

calculations are tasked to provide, there are two areas in which sensitivity studies

should be emphasized. One is the initial population of the excited states in the
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residual nucleus, 238Pu, as a function of excitation energy and angular momentum;

the other is the subsequent 
-cascade mechanism for a given initial population.

We have discussed the latter in Section 4.3 with an emphasis on the discrete

spectroscopy. We showed the impact of the discrete spectroscopy in the 238Pu

nucleus on the calculated relative 
-transition intensities in Figures 6 and 7. Apart

from the details of the spectroscopy for a given Ecut, earlier calculations[31] of
235U(n,2n) cross sections also pointed out that the choice of Ecut has a large e�ect

on the (n,2n
)/(n,2n) ratios.

The initial population of the excited states in 238Pu as a function of excita-

tion energy and angular momentum is determined, mainly, by the strength and

spin dependence of the preequilibrium and compound reactions. The latter in-

cludes particle emission, �ssion, and 
-decay. The choice of optical model po-

tential parameters has a smaller e�ect on the initial energy distribution in 238Pu
through its e�ect on the strength of the direct inelastic scattering cross section.
However, studies carried out earlier[32] suggest that the di�erence in the ratio of
239Pu(n,2n
6

+!4+)/239Pu(n,2n) between a spherical optical model potential and
a deformed one is at most about 8 %. This earlier study also showed that the

di�erence made to the 239Pu(n,2n
6
+!4+)/239Pu(n,2n) ratio by the two deformed

optical model potentials, one from Dietrich which is the model used in the cur-
rent calculations, and the other from Madland, is less than 3 %. As discussed

in Section 3, the strength of the preequilibrium emission in our current calcula-
tions is determined by comparing the calculated neutron emission spectrum with
that measured by Kammerdiener. As for the spin dependence associated with the

preequilibrium emissions, the e�ects on the angular momentum distribution in the
residual nucleus due to di�erent spin transfer mechanisms remain to be studied.

In this section, we focus on the e�ect of the angular momentum dependence of the
�ssion barriers on the �nal calculated ratios of 239Pu(n,2n
)/239Pu(n,2n).

The dependence of the �ssion barrier V on the angular momentum J of the

�ssioning system in Equation (23) is made so that the faster the nucleus spins,
the easier it is for the system to undergo �ssion. When this angular momentum

dependence is turned o�, the dependence of the �ssion transmission coeÆcient

on angular momentum comes solely from the level density as can be seen from

Equation (23). Often, the non-angular-momentum-dependent �ssion barrier is

used in modeling various reaction cross sections for actinides, as is the case in the

GNASH calculations shown in Figure 12. To see, quantitatively, how this angular
momentum dependence impacts various ratios of 239Pu(n,2n
)/239Pu(n,2n), we

carried out calculations both with and without the dependence of V on J . The two

�ssion barriers in each �ssioning nucleus are assumed to have the same dependence

on J . Results are shown in Figure 15. The red curves are various ratios calculated
when the angular momentum dependence of the �ssion barrier is turned on whereas

the black curves are the same calculated ratios when that dependence is turned

o�. In both cases, the �ssion parameters are tuned so that the calculated �ssion
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cross section �ts the ENDL99 and JENDL3.3 evaluations as shown in Figure 4. It

can be seen that by turning on the angular momentum dependence of the �ssion

barriers, the dominant ratio, namely, (6+ ! 4+)=(n; 2n), is lowered by about

6 %. The largest change in this ratio occurs around the (n,2n) threshold and

beyond, roughly, 10 MeV. The changes to the other ratios are much smaller and

the dependence of V on J can raise the ratios as well as decrease them. However,

the net e�ect on the summed ratio is that the dependence of V on J lowers the

summed ratio around threshold by about 10 % to 15 % and it lowers the summed

ratio by about 4 % after 10 MeV of incident neutron energy. In terms of the inferred

(n,2n) cross section, turning o� the dependence of V on J would lower the inferred

(n,2n) cross section around threshold by about 11 % to 17 % and it would lower the

inferred (n,2n) cross section beyond, roughly, 10 MeV by about 4 %. Comparing

the inferred (n,2n) cross sections from IDA and GNASH (c.f. Figure 12), one
can conclude that one of the reasons that the inferred (n,2n) cross section from
GNASH is lower, particularly around threshold and at higher energies, could be

the absence of the dependence of V on J . We learn from this sensitivity study that
the angular momentum dependence of the �ssion barriers does impact the ratios of
239Pu(n,2n
)/239Pu(n,2n) as it a�ects the spin distribution in the residual nucleus,
238Pu, and the e�ect appears to be signi�cant around the (n,2n) threshold region.
The higher the angular momentum of the state from which 
-decay originates, the

more pronounced the e�ect on the ratio of 239Pu(n,2n
)/239Pu(n,2n), in accord
with the assumption that the higher the angular momentum, the more the lowering
of the �ssion barrier height.

Another physical quantity that a�ects the spin distribution in various nuclei
is the spin cut-o� parameter in the level density. Calculations for the n + 235U

reaction, where better quality and more extensive data are available, are carried out
with two sets of spin cut-o� parameters for the Fermi-gas level density formula for
both neutron-emission and �ssion channels. They are: �2(E�) = 0:0888A2=3

p
aE�

and �2(E�) = 0:146A2=3
p
aE�. The former leads to an excellent reproduction of

the GEANIE measurements of the relative populations of various discrete states

in 234U. We therefore adopted it in the calculations for the n + 239Pu reaction.
Incidentally, the spin cut-o� parameter formula of �2(E�) = 0:0888A2=3

p
aE� is

also used in the GNASH calculations.

5.4 Uncertainties

The largest uncertainty, from both experimental measurements and theoretical cal-
culations, in the inferred (n,2n) cross section is around the threshold region. The

theoretical uncertainties of the calculated summed ratio are diÆcult to quantify

due to the number of physics models involved and the number of parameters in
each of these models. However, independent model calculations do provide an esti-

mate of the variation of theoretical predictions. In Figure 12, the 239Pu(n,2n) cross
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section inferred from both IDA and GNASH calculations, based on the same set of

GEANIE data are shown. Although they do di�er, especially around threshold and

in the high incident-neutron-energy region, the fact that the two independent calcu-

lations agree with each other within experimental error is nevertheless remarkable.

The averaged di�erence between the two sets of inferred (n,2n) cross sections is less

than 15 %. Another independent calculation is being carried out at LLNL using

the nuclear reaction modeling code STAPRE. Upon detailed comparisons, we �nd

di�erences in intermediate results between the three codes, in particular, between

the IDA calculations and that from GNASH and STAPRE. Despite the model-

ing di�erences which need to be further studied, preliminary calculations from

STAPRE show close agreement for the inferred 239Pu(n,2n) cross sections with

IDA around the threshold region, and close agreement with GNASH in the high

energy tail of the excitation function. The convergence of the inferred 239Pu(n,2n)
cross sections from all three modeling codes leads us to conclude that the uncer-
tainty from the theoretical calculations is such that the �nal inferred 239Pu(n,2n)

excitation function, as shown in Figure 12, is correct to within, probably, 15 %.

6 Conclusions

We have successfully calculated the ratios of 239Pu(n,2n
)/239Pu(n,2n) and sub-
sequently obtained inferred 239Pu(n,2n) cross sections between 5:68 and 17:18

MeV incident neutron energy. Our inferred 239Pu(n,2n) cross section peaks at
Einc � 11:4 with a peak value of approximately 326 mb. This new 239Pu(n,2n)

excitation function is much di�erent in shape from all previous evaluations and its
peak cross section di�ers from the previous evaluations by as much as 40 %. At
Einc � 14 MeV, our 239Pu(n,2n) cross section is found to be in good agreement

with the radio-chemical measurements by Lougheed. Comparisons between the
inferred (n,2n) cross sections derived from GEANIE/IDA and GEANIE/GNASH
show strong convergence to the �nal excitation function presented in Figure 12 in

spite of the existing di�erences in details between the di�erent calculations.

The extended level scheme we generated for 238Pu leads to improvements to the

relative 
-ray intensities of (8+ ! 6+)=(6+ ! 4+) and (5� ! 6+)=(6+ ! 4+) by

about 25 % and 35 %, respectively, as shown in Figure 6 and 7. The dependence of
the �ssion barrier height on angular momentum is found to lower the summed ratio

(c.f equation on page 24) mostly near the threshold region and above 10 MeV. As

a consequence, the inclusion of the angular momentum dependence of the �ssion

barrier height increases the inferred 239Pu(n,2n) cross section by about 11 % to

17 % near threshold and by about 4 % beyond 10 MeV. Finally, the use of the
summed ratio, [

P
i (n; 2n
i)=(n; 2n)]

model, and the summed partial cross sections,

[
P

i (n; 2n
i)]
experiment

, in the inference of the �nal 239Pu(n,2n) cross section results

in good agreement between our inferred (n,2n) cross sections and that measured by
Lougheed. It clearly reduced the bias of modeling to overestimate the population
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of yrast states and leads to inferred 239Pu(n,2n) cross sections that are consistent

between GEANIE/IDA and GEANIE/GNASH within experimental errors.
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Figure 1: n + 239Pu total cross section as a function of incident neutron energy.

Solid line represents a 5 coupled-channel calculation by ECIS using the optical

model potential Flap1.5. Symbols give the ENDL99 evaluation.
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Figure 2: Preequilibrium neutron emission spectra of n + 239Pu at 14 MeV calcu-

lated from IDA with various strengths of M2, and neutron emission spectrum of

n + 235U at 14 MeV measured by Kammerdiener.
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Figure 3: Ratios of the cross section of the �rst neutron emitted via the direct,

preequilibrium, and compound mechanisms, respectively, over the cross section of

total �rst neutron emission, as a function of incident neutron energy.
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Figure 4: The 239Pu(n,f) cross section, as a function of Einc, calculated from IDA

and its evaluations from ENDL99[10] and JENDL3.3[23]. The top curve is the

reaction cross section, �R, calculated from ECIS as a function of Einc.
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Figure 5: Fractions of the compound and preequilibrium components of the (n,2n)

cross section to the total (n,2n) cross section as a function of Einc calculated from

IDA. In the preequilibrium component of (n,2n) cross section, only the �rst neutron

is emitted via the preequilibrium mechanism.
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Figure 6: Relative 
-ray intensity of (8+ ! 6+)=(6+ ! 4+) calculated by IDA

and measured by GEANIE. Two separate calculations are carried out. One uses

20 discrete levels of 238Pu obtained from ENSDF. The other employs our extended

level scheme of 238Pu with 39 levels, discussed in the text. States 8+, 6+, and 4+

all belong to the ground-state band with excitation energies of 0:513, 0:303, and
0:146 MeV, respectively.
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Figure 7: Relative 
-ray intensity of (5� ! 6+)=(6+ ! 4+) calculated by IDA

and measured by GEANIE. Two separate calculations are carried out. One uses

20 discrete levels of 238Pu obtained from ENSDF. The other employs our extended

level scheme of 238Pu with 39 levels, discussed in the text. States 6+ and 4+ belong

to the ground-state band with excitation energies of 0:303 MeV and 0:146 MeV,

respectively. State 5� at 0:763 MeV of excitation energy belongs to the octupole

band.
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Figure 8: Inferred 239Pu(n,2n) cross sections, according to Equations (36) to (38),

using our calculated ratios of 239Pu(n,2n
)=239Pu(n,2n) and GEANIE data. Mea-

surements by Lougheed near 14 MeV are also shown.
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Figure 9: Partial cross section 239Pu(n,2n
)238Pu measurements for the 6+ ! 4+,

8+ ! 6+, and 5� ! 6+ tansitions obtained from GEANIE.
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Figure 10: Calculated ratios of 239Pu(n,2n
6
+!4+)/239Pu(n,2n),

239Pu(n,2n
8
+!6+)/239Pu(n,2n), and 239Pu(n,2n
5

�!6+)/239Pu(n,2n).
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Figure 11: Relative 
-ray intensity of (4� ! 4+)=(6+ ! 4+) as a function of

incident neutron energy, measured by GEANIE and calculated by IDA. The 4�

state has an excitation energy of 1:083 MeV and belongs to the K = 4 band of the
238Pu nucleus.
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Figure 12: Final inferred 239Pu(n,2n) cross section as a function of incident neu-

tron energy using GEANIE data and IDA calculations from the equation on page

24.
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Figure 13: Ratios of (6+ ! 4+)=(n; 2n), (3�=5� ! 2+=4+)=(n; 2n), (1� !
2+)=(n; 2n), (2� ! 2+)=(n; 2n), and (4� ! 4+)=(n; 2n) as well as their weighted

sum, as de�ned in the equation on page 24, as a function of incident neutron

energy, calculated by IDA.
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Figure 14: Partial 239Pu(n,2n
) cross sections for the transitions of (6+ ! 4+),

(3�=5� ! 2+=4+), (1� ! 2+), (2� ! 2+), and (4� ! 4+) as well as their

weighted sum, as de�ned in the equation on page 24, as a function of incident

neutron energy, measured by GEANIE.
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Figure 15: Ratios of (6+ ! 4+)=(n; 2n), (3�=5� ! 2+=4+)=(n; 2n), (1� !
2+)=(n; 2n), (2� ! 2+)=(n; 2n), and (4� ! 4+)=(n; 2n) as well as their weighted

sum, as de�ned in the equation on page 24, calculated by IDA with and without

angular momentum dependence of the �ssion barriers.
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