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COMPOSITE SPECIES IN THE HYDRODYNAMIC THEORY OF ATOMIC

MIXING IN MULTICOMPONENT PARTIALLY IONIZED GASES

J. D. Ramshaw

ABSTRACT

A dynamical description of atomic mixing in multicomponent gases and plasmas was
summarized in a previous report (UCRL-ID-145502). That description is based on the use
of separate continuity and momentum equations for each species present, including neutral
atoms, ions, and free electrons. This level of detail is not always feasible in practical prob-
lems, where subsets of species (e.g., neutral atoms of a particular element together with their
ionization products) must be grouped or lumped together into composite species or materials
to make the problem tractable. A simple procedure for constructing such composite species
was outlined in UCRL-ID-145502, but not in sufficient detail to enable implementation. In
particular, the treatment of the free electrons presents some subtleties, since they cannot
be included in the composite species for dynamical purposes, whereas they are ordinarily
lumped together with the atoms and ions that produced them for state equation purposes.
Our purpose here is to provide a more complete description of the procedure by which com-
posite species and their evolution equations may be defined and derived. Special attention
is given to the problem of how to deal with the free electrons in a manner consistent with
the different roles they play in the dynamics and thermodynamics. The results are given
in a form that should be well suited for implementation in hydrodynamics codes that use
conventional material state equations.
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1. INTRODUCTION

The dynamics of multicomponent gases and plasmas is usually described in terms

of momentum and energy transport equations for the fluid mixture as a whole, continuity

equations for each species or component in the mixture, and constitutive relations for the

fluxes of momentum, energy, and species masses due to molecular collisions. These constitu-

tive relations are ordinarily diffusional in character. For such a description to be valid, the

collisional transfer of momentum and/or energy between the different species must be fast

relative to time scales of interest. When this condition is not satisfied, it becomes necessary

to use a more general description in which each species has its own momentum and/or energy

transport equation. The conventional diffusional description of species transport is simply

an approximation to these individual species momentum equations [1,2].

In order to simulate the atomic mixing of materials in fast processes where the dif-

fusion approximation is not valid, it is necessary to solve the individual species momentum

equations. These equations were summarized in a previous report [3]. In the present con-

text, each type of ion and neutral atom, as well as the free electrons, must be considered a

separate species. Thus, for example, even a pure argon plasma is actually a multicomponent

mixture consisting of several different species, namely neutral Ar atoms, singly, doubly, etc.

ionized argon ions (Ar+, Ar++, etc.), and free electrons (e−). We shall denote the various

types of atoms present by the symbol Xk (k = 1, 2, ...), and the various ionization states

of Xk by X
n
k (n = 0, 1, 2, ...), so that X0

k refers to neutral atoms of Xk while X
n
k for n ≥ 1

refers to n-tuply ionized Xk; i.e., X
1
k = X+

k , X
2
k = X++

k , etc. The free electrons will simply

be denoted by the symbol e, which will also be used as a sub- or superscript.
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It is clear that a plasma produced by ionizing a mixture of many different types of

atoms Xk will contain a much larger number of different species X
n
k and e. Due to computer

time and storage constraints, it is not always feasible in practical calculations to separately

track each and every one of these species. The usual practice has been to simplify the

description by assuming ionization equilibrium and considering each type of neutral atom

X0
k, together with all of its ionization states or products X

n
k (n = 1, 2, ...) and the free electrons

thereby produced, as a single composite species or material Xk (which will be referred to for

short as composite species or material k). The mixture as a whole may then be regarded as

a mixture of a much smaller number of these various composite species. Thus, for example,

a partially ionized mixture of argon and helium would be considered a mixture of the two

composite species Ar and He, while a pure argon plasma would consist of the single composite

species Ar and hence would no longer be formally regarded as a multicomponent mixture.

By construction, each composite species Xk is inherently electrically neutral, and

therein lies a dilemma. As is well known, an inhomogeneous electrically neutral plasma will

spontaneously develop a nonzero internal electric field E, which serves as the mechanism by

which charge neutrality is enforced [2–4]. The resulting electric field exerts forces on the

charged species. Those forces appear in the momentum equations, and they significantly

affect the motion of the charged species and hence the dynamics of the plasma as a whole.

Within the context of a diffusional description, this effect is usually referred to as “ambipolar

diffusion” [4]. The dilemma is that since the composite species Xk are electrically neutral,

they cannot and do not interact with the electric field. If the plasma dynamics were described

entirely in terms of the composite species Xk, the effects of the electric forces would therefore

be entirely lost, and this would represent an inaccurate and unacceptable approximation.
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In order to retain the electric forces, it is clear that the free electrons cannot be lumped

together with the ions that produced them for dynamical purposes; i.e., in the momentum

equations. In contrast, however, thermodynamic state relations for the composite species

Xk ordinarily do include the effects of the free electrons. This dichotomy is inconvenient

and a bit cumbersome, but it is not fatal and can be dealt with by carefully transforming

back and forth, as necessary, between the various quantities that do and do not include the

contributions of the free electrons. Our main purpose here is to explicitly show how this

may be done, and to present the resulting relations for doing so in sufficient detail to permit

their incorporation into hydrodynamics codes.

The present discussion is therefore a sequel to Ref. [3], with which the reader is pre-

sumed to be familiar. Unless otherwise stated, the notation is essentially the same as that

of Ref. [3], and all equations are again written in cgs units. We also take this opportunity

to remark parenthetically that the relations given in Ref. [3] for the various coupling coeffi-

cients, which will also be employed here, were derived under the assumption that the relative

velocities between different species are not too large. When this assumption is not valid, the

relations in Ref. [3] are no longer accurate and should be replaced by the corrected relations

given by Burgers [5] and Chang [6].

2. THERMODYNAMIC STATE RELATIONS

Thermodynamic state relations for each composite species or material by itself, un-

mixed with other composite species, may be determined by a conventional thermodynamic

equilibrium calculation in which the appropriate free energy or thermodynamic potential of
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material Xk is minimized with respect to the relative populations of the neutral atoms, ions,

and free electrons of which it is composed, subject to the constraints that its nuclei and

electrons are conserved during ionization and recombination. Thus each “pure” composite

species Xk has a thermal equation of state for its pressure p̃k(ρ̃k, T ) as a function of its mass

density ρ̃k and temperature T, a caloric equation of state for its specific internal energy

ẽk(ρ̃k, T ), and so on. The tilde ˜ is used to indicate quantities associated with a “pure”

composite material, unmixed with other such materials. These quantities of course differ

from the corresponding partial quantities (e.g., the partial pressure pk and partial density

ρk) that pertain to composite material Xk within a multimaterial mixture.

The aforementioned equilibrium calculation of course also determines the number

densities ñnk of the ionization states Xn
k present within material Xk, or equivalently the

corresponding mass densities ρ̃nk = mn
k ñ

n
k , where m

n
k is the mass of a single particle of X

n
k .

Clearly mn
k = m0

k − nme, where m
0
k is the mass of a single neutral atom of X0

k and me is

the mass of a single electron. Since the ionization states Xn
k can be numerous, it would

be cumbersome for standardized state routines or packages to provide all of the number

densities ñnk , especially since they are not required in most applications. These quantities

are therefore not usually accessible to the user. However, the mean degree of ionization is

normally available, and is indeed required for the development that follows. This quantity

is usually expressed in terms of either the electron number density ñek(ρ̃k, T ), or the mean

positive charge per heavy particle |Qe|Z
∗

k(ρ̃k, T ), where Z
∗

k =
∑

n nñ
n
k/ñ

h
k, ñ

h
k =

∑

n ñ
n
k is the

total number density of heavy particles in material k, and Qe < 0 is the charge on a single

electron. It is easy to see that the two quantities ñek and Z
∗

k contain equivalent information.

Each particle of Xn
k gives rise to n free electrons, so that ñ

e
k =

∑

n nñ
n
k and hence Z

∗

k = ñek/ñ
h
k.
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Moreover, the number of heavy particles is not changed by ionization, so ñhk has the same

value that it would have in the absence of ionization, namely ñhk = ρ̃k/m
0
k. It follows that

ñek =
Z∗

k ρ̃k
m0
k

(1)

which is the simple basic relation between ñek and Z
∗

k . In what follows, we shall assume the

availability of either ñek(ρ̃k, T ) or Z
∗

k(ρ̃k, T ), from which the other may easily be obtained

from Eq. (1).

Although ionization does not change the number of heavy particles, it does slightly

change their masses. The mean mass of a heavy particle of material k is also simply related to

Z∗

k , and is given bym
h
k =

∑

nm
n
k ñ

n
k/ñ

h
k =

∑

n(m
0
k−nme)ñ

n
k/ñ

h
k = m0

k−meñ
e
k/ñ

h
k = m0

k−Z
∗

kme.

Moreover, the mass densities of free electrons and heavy particles within material k are

clearly given by ρ̃ek = meñ
e
k and ρ̃hk = ρ̃k − ρ̃ek, respectively, from which it follows that

mh
kñ

h
k = m0

kñ
h
k −meñ

e
k = ρ̃hk.

As discussed above, the free electrons cannot be lumped together with the heavy

particles in the momentum equations, which describe the motion of the heavy particles only.

Correspondingly, the pressure forces in the momentum equations must be evaluated with

the electronic contributions excluded. It is therefore necessary to separate out the electronic

contributions to the functions p̃k, which in turn requires an additivity assumption; i.e.,

p̃k = p̃hk + p̃ek. Thus we must also assume that the state function p̃ek(ρ̃k, T ) for the electron

pressure of material k is known (albeit perhaps only approximately). The heavy-particle

pressures are then simply given by p̃hk = p̃k − p̃ek. It should be noted, however, that p̃hk is

not yet the pressure whose gradient appears in the momentum equation for material k. The
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pressure forces in gas mixtures are proportional to gradients of partial pressures [3], which

have not yet been defined.

Up to this point, we have tacitly assumed that the electrons and heavy particles

have the same common temperature T. When this is not the case the situation becomes

somewhat more complicated, but the basic ideas remain the same. For present purposes,

the only essential difference is that the various thermodynamic quantities become functions

of both the heavy-particle temperature T and the electron temperature Te.

The preceding discussion pertains to the state relations for “pure” composite materi-

als in isolation, and we shall assume that these relations are available for all such materials

present, either in analytical or tabular form. In the present context, however, we are con-

cerned with mixtures of several such materials, for which we require similar thermodynamic

state relations. Strictly speaking, the state relations of a multicomponent mixture cannot

in general be expressed in terms of the state relations of the pure materials of which it is

composed. (The reason is simply that the state relations of a mixture depend upon the form

of the interatomic forces between particles of different materials, and this information does

not enter into, and hence cannot be extracted from, the state relations of the pure materials.)

Unfortunately, it is rarely feasible to construct accurate state relations for multicomponent

mixtures of interacting components, and even less feasible to employ them in practical hy-

drodynamic calculations. In lieu of this, one must perforce approximate the state relations

of the mixture in terms of those of the pure materials of which it is composed. The question

of how best to do so is nontrivial, and will be discussed in detail elsewhere [7]. For present

purposes, it suffices to note that such approximations are ordinarily based on an artificial

partitioning or separation of the mixture into its constituent materials, in which material k
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is regarded as being confined by itself within a compartment or subvolume with volume frac-

tion αk. Various approximate procedures have been proposed for determining these volume

fractions, but they need not concern us here. We simply regard the αk as known quantities,

the actual values of which are immaterial for present purposes.

In terms of its volume fraction, the partial mass density of composite material k in

the mixture is related to its corresponding pure material mass density by

ρk = αkρ̃k (2)

and the total mass density of the mixture is simply ρ =
∑

k ρk. The partial mass density of

material k exclusive of its free electrons is given by

ρhk = αkρ̃
h
k = ρk − ρek (3)

where ρek = αkρ̃
e
k = men

e
k is the partial mass density of the electrons associated with com-

posite species k, and nek = αkñ
e
k is the corresponding partial number density. Similarly, the

partial number density of the heavy particles of material k is simply nhk = αkñ
h
k. The total

mass density of the free electrons in the mixture is then simply ρe =
∑

k ρ
e
k = mene, where

ne =
∑

k n
e
k is the total number density of the free electrons.

Regardless of how the αk are defined, the total pressure of the mixture is invariably

taken to be

p =
∑

k

αkp̃k (4)

a relation for which there is in fact a sound theoretical basis [7]. The quantities αkp̃k therefore
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play the role of partial pressures, since their sum is the total pressure. Moreover, it is easy

to verify that αkp̃k reduces to the usual partial pressure of material k in a mixture of ideal

gases, where p̃k = ñhkkBT + ñekkBTe, and kB is Boltzmann’s constant. The partial pressure

of material k in the mixture will therefore be taken to be

pk = αkp̃k (5)

The partial pressure of material k sans electrons is then given by

phk = αk(p̃k − p̃ek) = αkp̃
h
k (6)

which now indeed is the pressure whose gradient appears in the momentum equation for

material k sans electrons (see Sect. 4 below).

3. CONTINUITY EQUATIONS

In general, the continuity equations in a multicomponent mixture contain source

terms representing the exchange of mass between different species due to chemical reactions,

including ionization and recombination. In Ref. [3], these chemical source terms were omitted

for simplicity, but they must be carefully and correctly accounted for in real calculations.

There is a common misconception, occasionally found even in textbooks, that these source

terms vanish in chemical equilibrium, but this is not in general the case. What actually

happens is that the kinetic expressions for these source terms assume an indeterminate form

in the equilibrium limit, while the source terms themselves remain nonzero and are implicitly
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determined by the equilibrium constraint conditions [8]. These conditions are expressed by

the law of mass action, or in the present context by Saha equations.

The chemical source terms in the continuity equations are constrained by the fact

that mass is conserved in chemical reactions. This in turn implies that these source terms

must add up to zero when they are summed over any subset of species which is chemically

decoupled from all other species outside the subset. Each composite species Xk constitutes

just such a subset, and hence its partial density ρk satisfies a continuity equation in which

no chemical source terms appear. In contrast, the partial densities ρhk do not include the free

electrons, and their continuity equations consequently contain source terms that represent the

interconversion between free and bound electrons by ionization/recombination processes. Of

course, since me � m0
k these source terms are very small, but they may as well be completely

eliminated by solving continuity equations for the partial densities ρk rather than ρ
h
k; i.e.,

∂ρk
∂t

+∇ · (ρkuk) = 0 (7)

where uk is the mean velocity of composite material k including its free electrons.

It is conceptually essential to note that uk differs slightly from the velocity of material

k sans electrons, which is denoted by uhk. It is the velocities u
h
k, rather than uk, that will be

determined by the momentum equations. The difference between uk and u
h
k is small because

me is small, but there is no need to neglect it since the relation between the two velocities

can easily be calculated exactly. The momentum density of composite species k including

its free electrons is given by

ρkuk = ρhku
h
k + ρekue (8)
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where ue is the mean velocity of the electrons, which of course is independent of k (the free

electrons are indistinguishable) and is determined by Eq. (10) of Ref. [3]. In the present

context and notation, this relation becomes

qeρeue = −
∑

k

qkρ
h
ku

h
k (9)

where qe = Qe/me, and qk is the mean charge per unit mass on the heavy particles of material

k, which is simply related to Z∗

k . Clearly qkρ
h
k is the total positive charge density of the heavy

particles of composite material k, which can also be written as

qkρ
h
k =

∑

n

qnkρ
n
k (10)

where qnk = n|Qe|/m
n
k is the charge per unit mass of X

n
k , and ρnk = αkρ̃

n
k = αkm

n
k ñ

n
k is its

partial density. Combining these relations with Eqs. (1) and (3), we obtain

qk =
αk
ρhk
|Qe|ñ

e
k =

ñek|Qe|

ρ̃hk
=
Z∗

k |Qe|

mh
k

(11)

The velocities uk can now be obtained in terms of the uhk by combining Eqs. (8), (9) and

(11) to obtain

ρkuk = ρhku
h
k +

ρek
ρe

∑

j

(

m0
j

Z∗

jme

− 1

)

−1

ρhju
h
j (12)

in which the second term clearly represents a small correction.
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4. MOMENTUM EQUATIONS

In contrast to the continuity equations, it is necessary to write the momentum equa-

tions for the composite species sans electrons as already discussed. As noted in Ref. [3],

these equations are readily obtained by assuming that all of the individual heavy species

Xn
k (n = 0, 1, 2, ...) contained within composite species k move with the same velocity uhk.

The individual momentum equations for those species are given by Eq. (11) of Ref. [3], and

summing those equations over n for each k then yields

∂(ρhku
h
k)

∂t
+∇ · (ρhku

h
ku

h
k) = − ∇phk + ρhk(g + qkE) +

∑

j

αkj(uj − uk)

+
∑

j

(βkj − βjk)∇ lnT + βke∇ lnTe (13)

where E is given by Eq. (9) of Ref. [3], and

αkj =
∑

nm

αkn,jm ; βkj =
∑

nm

βkn,jm ; βke =
∑

n

βkn,e (14)

in which the coefficients αkn,jm, βkn,jm, and βkn,e may in principle be evaluated using the

relations given in Ref. [3]. Unfortunately, those relations involve the partial number densities

nnk = αkñ
n
k , which as previously discussed are not normally available. They could, if desired,

be approximated by solving the relevant Saha equations [9,10], but this would entail a

great deal of additional labor and complexity. This hardly seems justified, since the results

would be approximate in any case and moreover would be unlikely to be consistent with

the approximations used in constructing the equations of state, particularly since the Saha

equations come in a variety of forms and remain controversial for two-temperature plasmas
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[10–20]. We therefore adopt a simpler alternative approximation suggested by Chang [21],

in which we disregard Eq. (14) and proceed as though composite species k sans electrons

were actually a single species of identical particles with number density nhk, mass m
h
k, and

charge Qk = mh
kqk = Z∗

k |Qe|. The coefficients αkj, βkj, and βke in Eq. (13) can then simply

be evaluated using Eqs. (12)–(15), (17), (18) or (19), and (21) of Ref. [3].

Strictly speaking, Eq. (13) should also contain source or sink terms representing the

electron momentum gained or lost by the heavy particles due to the bound electrons gained or

lost during ionization or recombination. These terms are proportional to the corresponding

source terms in the continuity equations for ρhk, which are not however available since we do

not solve those equations, as previously discussed. Fortunately, these source terms are very

small due to the small value of me, so they will be neglected in Eq. (13) for simplicity.

Finally, we remark parenthetically that the ad hoc assumption that all the individ-

ual heavy species Xn
k contained within composite species k move with the same velocity

is not strictly necessary, and could be relaxed without increasing the number of history

variables that need to be advanced in time. This could be done by allowing those species

to have different velocities unk while neglecting the differences between their accelerations.

This is precisely the type of approximation upon which diffusional descriptions are based

[1,2], and in the present context it would result in a diffusional description for the relative

velocities unk − u
m
k within each composite species while still computing the mean velocities

uhk dynamically. In essence, this would be a multifluid analog of the combined diffusion

coefficient method of Murphy [22–24], and it would undoubtedly improve the accuracy of

the description. However, although this approach would not increase the number of history

variables, it would nevertheless greatly complicate the description, to the point where its
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practicality might well be questioned. (Indeed, the reader may well feel that the description

is already complicated enough, if not more so, as it stands.) Moreover, the more accurate

approach would also require the use of state relations that provide all the number densities

ñnk , which as already discussed is not the case for most state routines or packages developed

for real materials. In spite of its appeal, this approach therefore seems unsuitable for most

practical applications at the present time, but it may warrant further consideration in the

future.

5. SUMMARY OF EQUATIONS

The logical structure of the equations to be solved is as follows. The continuity equa-

tions (7) are used to determine the partial mass densities ρk of the composite species k by

advancing these quantities forward in time. There is also at least one energy equation that

determines the specific internal energy of the mixture as a whole [25], and possibly an electron

energy equation that determines the internal energy and temperature of the free electrons.

These densities and energies then serve as the independent thermodynamic variables in the

thermodynamic state relations for the mixture, which are approximated in terms of the

state relations for the “pure” composite species as discussed in Sect. 2 above. Whatever

approximations are employed for this purpose then determine the volume fractions αk and

the temperature(s) T (and Te), from which the ρ̃k and all other remaining thermodynamic

variables, including the other “tilde” variables (number densities, pressures, etc.), may then

be determined from the relations given in Sect. 2. At this point all quantities except the

velocities uhk have been advanced in time, and these advanced-time values are then available
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for use in evaluating the various force terms in the momentum equations (13). Finally, these

momentum equations are used to perform the time advancement of the velocities uhk.
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