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Research on the Hydrogen Passivation of Defects and Impurities in Si 
Relevant to Crystalline Si Solar Cell Materials 

Summary 

Hydrogen is commonly introduced into Si solar cells to reduce the deleterious effects of 

defects and increase the minority carrier lifetime.  Nonetheless, the methods by which hydrogen 

is introduced during processing and hydrogen’s subsequent interactions with defects remain 

poorly understood.  The goal of this experimental research program is to increase the 

understanding, at a microscopic level, of hydrogenation processes and passivation mechanisms 

for crystalline-Si photovoltaics. 

In our experiments, vibrational spectroscopy has been used to study the properties of the 

interstitial H2 molecule in Si and the transition-metal-hydrogen complexes in Si.  The interstitial 

H2 molecule is formed readily in Si when hydrogen is introduced.  Our studies establish that 

interstitial H2 in Si behaves as a nearly free rotator, solving puzzles about the behavior of this 

defect that have persisted since the discovery of its vibrational spectrum.  The transition metals 

are common impurities in Si that decrease the minority carrier lifetime and degrade the 

efficiencies of solar cells.  Therefore, the possibility that transition-metal impurities in Si might be 

passivated by hydrogen has been of long interest.  Our studies of transition-metal-H complexes 

in Si help to establish the structural and electrical properties of a family of Pt-H complexes in Si, 

and have made the Pt-H complexes a model system for understanding the interaction of 

hydrogen with transition-metal impurities in Si. 

A promising method to introduce H into Si solar cells in order to passivated bulk defects is 

by the post-deposition annealing of an H-rich, SiNx surface layer.  Unfortunately, it has been 

difficult to detect directly the H introduced by this method because of its small concentration.  A 

novel method that combines IR spectroscopy with marker impurities that can trap H in the Si 

has been developed, based upon our fundamental studies of the Pt-H complexes in Si, to 

determine the concentration and depth of H introduced by processes commonly used to 

hydrogenate Si solar cells. 
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I. Introduction 

The silicon substrates used for the fabrication of solar cells contain impurities and defects that 

limit device performance.  Hydrogen is commonly introduced into Si solar cells where it reduces 

the deleterious effects of defects and increases the efficiency of solar cells by a few percent [1-

4].  In spite of the importance of hydrogenation processes, the microscopic properties of many 

hydrogen-containing defects in Si remain poorly understood.  In work supported by this contract, 

experiments have been performed to provide new microscopic information about the structures 

and properties of hydrogen-containing defects in Si and the mechanisms by which hydrogen 

interacts with impurities and defects. 

Vibrational spectroscopy has proved to be an excellent probe of hydrogen-containing 

defects and has been used in our studies [5].  Multiple-internal-reflection methods have been 

used to provide enhanced sensitivity for the study of thin hydrogenated surface layers.  Uniaxial 

stress is used in conjunction with IR absorption spectroscopy to provide information about 

defect symmetry and structure. 

Interstitial H2 molecules form readily in Si when hydrogen is introduced.  The recent 

discovery of vibrational lines due to H2 in Si [6,7] has led to new opportunities to probe the 

properties of interstitial H2.  Our studies show that H2 in Si act as a nearly free rotator (Sec. II), 

solving persistent puzzles that have arisen in recent years concerning the microscopic behavior 

of this defect [8-10]. 

Transition-metal impurities in Si decrease the minority carrier lifetime and degrade the 

properties of solar cells.  Hydrogen interacts with transition-metal impurities and modifies their 

Fig. 1.  The interstitial H2 molecule 
in Si. 
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electrical properties [11].  Therefore, the possibility to passivate metal impurities in Si with 

hydrogen has been of long interest for solar-cell applications.  Infrared absorption spectroscopy 

has been used to probe the properties of Pt-H complexes in Si (Sec. III) [12-14]. The Pt-H 

complexes have become a model system for understanding the interaction of H with transition-

metal impurities in Si.  Furthermore, our fundamental studies of the transition-metal-hydrogen 

complexes have led to a novel method to characterize the hydrogen introduced into Si by 

processes used to fabricate solar cells (Sec. IV) [15]. 

II. Interstitial H2 Molecule in Si 

In the early 1980s, isolated H2 molecules in semiconductors (Fig. 1) were suggested to play an 

important role in the diffusion of hydrogen and in H-related defect reactions [16-18].  However, 

in spite of its proposed importance, the H2 molecule in a semiconductor was not observed 

directly until recently when vibrational lines for the H2, HD, and D2 molecules in GaAs [19] and 

Si [6,7] were discovered.  These new experimental results have motivated a number of 

experimental and theoretical studies of the vibrational properties of interstitial H2 in 

semiconductors [20-24].  In spite of these exciting recent advances, a number of experimental 

and theoretical results for H2 molecules, especially in Si, led to contradictory conclusions.  A 

particularly controversial issue concerned whether the H2 molecule in Si is a nearly free rotor or 

whether there is a substantial barrier to rotation.  In work supported by this contract, vibrational 

spectroscopy combined with uniaxial stress has been used to probe the structure and 

microscopic properties of H2 in Si and has led to a definitive solution of the puzzles associated 

with this defect [8-10]. 

The H2 molecule in Si gives only a single, sharp, H2-vibrational line at 3618.4 cm-1 and no 

evidence for an ortho-para splitting in its IR absorption spectrum [6].  To explain the absence of 

an ortho-para splitting, it was suggested that there must be a barrier that prevents rotation of the 

molecule [20].  Uniaxial stress results for the 3618.4 cm-1 line of interstitial H2 in Si were 

interpreted in terms of an orientationally degenerate defect with low symmetry, reinforcing the 

suggestion that the H2 molecule is static [24].  However, several theoretical calculations for H2 at 

a tetrahedral interstitial site in Si find that different orientations have similar energies [9,20-22], 

making it surprising that the H2 molecule does not rotate.  Furthermore, recent molecular 

dynamics calculations indicate that the H2, HD and D2 molecules in Si behave as nearly free 

rotators, bouncing within the interstitial region [23].  In addition to the 3618.4 cm-1 line for H2 in 

3 
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Si, vibrational lines due to HD and D2 were discovered at 3265.0 and 2642.6 cm-1 (4.2K), 

respectively, by IR absorption [6] and Raman spectroscopies [7]. 

The telling experimental clue that interstitial H2 in Si is actually freely rotating is our 

discovery of a new vibrational line at 3191.1 cm-1 for the HD molecule in Si (Fig. 2) [8]. This line 

appears for sample temperatures above T>20K and lies 73.9 cm-1 below the 3265.0 cm-1 line 

previously observed for HD.  This 73.9 cm-1 energy is in fact close to the J = 0 to J = 1 rotational 

transition energy for a free HD molecule.  From selection rules learned from the ro-vibrational 

transitions of HD, it follows that H2 and D2 must also be freely rotating and that their IR 

transitions are seen only when the molecules are in the J=1 rotational state (T2 in tetrahedral 

symmetry).  Thus only ortho-H2 and para-D2 are seen, explaining the puzzling absence of an 

ortho-para splitting in the IR spectrum.  Several additional anomalous properties are also 

automatically explained.  Uniaxial stress results for H2 and D2, which were taken previously as 

evidence for a static defect, are fit well by a T2 to T2 transition in full tetrahedral symmetry (Fig. 

3) [10].  This assignment, and the observed isotope independence of the stress splittings, 

provides a strong confirmation of the rotational motion of interstitial H2 in Si. Furthermore, the 

vibrational properties of an O-H2 center in Si that has been studied recently [25] can be 

explained as those of a rotating interstitial H2 molecule perturbed by the field of a nearby O atom 

[26].  The separate ortho and para O-H2 complexes each gives an oxygen vibrational line and 

H2 vibrational lines with distinctive properties. 
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Fig. 3.  Effect of stress on the 2642.6 cm-1 line of D2 in Si.  The vertical lines show the positions 

of the vibrational lines and the relative intensities given by the fit of our model (a T2 to T2 

transition in tetrahedral symmetry) to the data. 

III. Transition-Metal-Hydrogen Complexes in Si 

In early studies of the hydrogen passivation of deep-level defects, it was discovered that 

exposure of Si samples to a hydrogen-containing plasma can eliminate many of the electrical 

levels associated with transition metal impurities [11,27].  This effect continues to be of great 

importance for the passivation of defective Si materials like the multicrystalline Si used to make 

solar cells.  Until recently, little was known about the microscopic properties of the hydrogenated 

defects or the mechanism of passivation.  Several recent studies provide new insight and have 

made the transition-metal-H complexes in Si model systems for the study of hydrogen's 

interaction with deep-level impurities in semiconductors [14,28].  These recent studies also 

show that the hydrogenation of transition metal impurities is more complicated than the early 

studies suggested and that families of electrically active defects that include a metal impurity 

and different numbers of H atoms can be formed. 

In a series of experiments performed by our group at Lehigh, H was introduced at high 

temperature (1250ºC) into Si doped with a transition-metal impurity [12-14]. In this way, H could 

be introduced throughout bulk samples, producing a sufficient number of defects to study with 
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structure-sensitive methods like EPR and vibrational spectroscopy.  A few hydrogenated 

transition metal impurities (PtH, PtH2, AuH and AuH2) were identified and structures for the 

defects were proposed, providing valuable input for theoretical calculations.  Fig. 4 shows the 

vibrational lines of the neutral charge states of the PtH and PtH2 complexes in Si. 

Independently, a few groups have introduced H by wet chemical etching (at room temperature) 

into thin surface layers of Si doped with metal impurities.  Deep level transient spectroscopy 

(DLTS) was used to study the electrical properties of the hydrogenated transition metals 

[14,28,29].  Unfortunately, it was not known whether the transition-metal-H complexes produced 

by different methods and studied by different techniques were indeed the same defects. 

Correlating the results of our structure-sensitive IR studies with the electrical measurements 

made by DLTS has been one of the achievements of the research supported by this contract 

[14]. 

Experiments on the transition-metal-hydrogen complexes in Si have been performed in 

collaboration with J. Weber's group (formerly at the Max Planck Inst., Stuttgart, and now at the 

TU Dresden).  Our goal was to determine whether the transition-metal-H complexes in Si that 

were produced by different methods, and studied by vibrational spectroscopy by our group [12-

14] and by DLTS by Weber’s group [28,29], are indeed the same defects.  The problem has 

been that typical sample characteristics for DLTS experiments, which probe the electrical 

properties of a defect, and typical sample characteristics suitable for EPR and vibrational 

spectroscopy experiments, are usually incompatible.  Therefore, it has been difficult to take full 
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advantage of what seem to be complementary results because it has remained uncertain that 

the different techniques do, indeed, probe the same defects. 

A.  Level Positions from the Fermi Level Dependence of the Vibrational Spectra 

We have determined the approximate electrical level positions associated with the 

vibrational lines of the transition-metal-H complexes so that these levels can be correlated with 

the results of DLTS experiments [14].  To do this, we have taken advantage of the fact that the 

H-stretching bands associated with different charge states of the same defect are shifted by 

about 20 cm-1, making it possible to monitor the relative populations of different charge states 

for different positions of the Fermi level. 

For these experiments, we prepared samples with different Fermi level positions by 

compensating n- and p-type samples with deep level defects (transition metals or electron-

irradiation produced centers) whose levels are known.  The relative populations of the different 

charge states of the PtH and PtH2 defects were then determined from their vibrational spectra. 

From these data, the approximate level positions of the PtH and PtH2 defects were determined 

by the comparison of the PtH and PtH2 levels to the Fermi level in the sample. 

The results of these experiments link the levels observed by DLTS to specific defect 

structures, and also allow the vibrational lines of the transition-metal-H complexes to be 

associated with specific charge states.  It has also been possible to calibrate the IR absorption 

intensities of the PtH and PtH2 complexes with these experiments so that the concentrations of 

these defects can be determined from their vibrational spectra [14]. 

B.  Multiple Internal Reflection 

The thin, hydrogenated surface layers that are produced by etching for DLTS experiments 

are unsuitable for typical vibrational absorption measurements made with the spectrometer light 

at normal incidence because of the sensitivity limits of the technique.  To enhance the sensitivity 

of IR absorption measurements so that thin surface layers could be studied, we have developed 

the capability to make multiple-internal-reflection (MIR) measurements for Si samples at liquid 

He temperature [14].  For MIR experiments, the ends of a rectangular sample are beveled at a 

45° angle.  The spectrometer light is introduced through one of the beveled faces so as to be 
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Fig.5.  Multiple-internal-reflection 
geometry used for IR measurements of 
thin hydrogenated Si surface layers. 

multiply reflected many times from the internal surfaces of the sample before it exits from the 

opposite beveled face (Fig. 5).  In such measurements, the interaction of the light with the near 

surface regions of the sample is greatly increased. 

For our experiments, Si samples that contained Pt impurities were hydrogenated by a wet 

chemical etching treatment, i.e., with the typical sample preparation method used for DLTS 

measurements.  The vibrational lines previously assigned to the PtH and PtH2 complexes were 

observed in these Si:Pt MIR samples that had been hydrogenated by etching [14].  The 

estimated concentrations of Pt-H complexes that were detected is ~1015 cm-3 for layer 

thicknesses of only ~3 µm.  (This concentration is roughly 100 times smaller than the typical 

sensitivity limit of IR absorption measurements.)  These results support the assignment of Pt-

and H-containing defects seen previously by IR absorption and DLTS to the same PtH and PtH2 

complexes. 

C. Structures of the Transition-Metal-H Complexes 

We have obtained experimental results that challenge the currently accepted structural 

model for the transition-metal-H complexes in Si.  In previous models, it has been proposed that 

the H atom in, for example, the PtH complex in Si is attached to one of the Pt atom’s Si 

neighbors [30].  If this were true, the H-stretching lines for the complexes would show 

characteristic fine structure in their IR spectra due to the naturally abundant isotopes of Si.  We 

have made IR measurements with high signal to noise ratio that show that this fine structure is 
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Pt Pt 

Fig. 6.  Structures of the PtH (left) and PtH2 (right) complexes in Si. 

absent from the H-stretching absorption lines and, therefore, that the H atom in the PtH complex 

is not bonded to Si [31].  Our results favor a structure with the H atom bonded directly to the Pt 

impurity.  Structures for the PtH and PtH2 complexes are shown in Fig. 6. 

IV. Conclusions 

Our studies of interstitial H2 in Si have established that H2 acts as a nearly free rotator in Si, and 

have solved vexing puzzles about the experimental properties of H2 in Si that have persisted for 

several years [8-10].  Our studies of the transition-metal-hydrogen complexes in Si show that IR 

absorption and DLTS studies do indeed study the same defects [14].  These results have 

allowed us to calibrate the IR absorption lines of the Pt-H complexes so that the concentration 

of the defects can be determined from the intensities of the IR lines.  Our results also provide 

experimental support for new structural models for the Pt-H complexes [31]. 

Furthermore, our work on the fundamental properties of the transition-metal-hydrogen 

complexes in Si has provided us with a sensitive new method to study the introduction of 

hydrogen into Si by processes used to fabricate solar cells [15].  A commonly used method to 

introduce H into Si solar cells in order to passivate bulk defects is by the post-deposition 

annealing of an H-rich, SiNx layer that is deposited onto the Si to act as an antireflection coating 

[32-35].  It previously has been difficult to characterize the small concentration of H that is 

9 



introduced by this method.  In our continuing work funded by NREL award AAT-2-31605-4, we 

use IR spectroscopy coupled with Pt impurities introduced into Si-test samples to act as model 

traps for hydrogen.  The Pt-H complexes can be sensitively detected by the multiple-internal-

reflection methods developed in the present studies and their intensities have been calibrated 

so the concentration of H introduced into the Si bulk can be determined [14].  These novel 

methods to sensitively detect H in Si, based on the results of fundamental studies supported by 

the present contract, have the potential to provide new microscopic information about processes 

used to hydrogenate Si solar cells [15]. 
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