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Fourier Transforms of Pulses Containing 
Exponential Leading and Trailing Profiles 

Stephen I. Warshaw 

N Division, Physics and Advanced Technologies Directorate 
Lawrence Livermore National Laboratory, Livermore CA 94551 

1. Introduction 

In this monograph we discuss a class of pulse shapes that have exponential 
rise and fall profiles, and evaluate their Fourier transforms. Such pulses can be used 
as models for time-varying processes that produce an initial exponential rise and 
end with the exponential decay of a specified physical quantity. Unipolar examples 
of such processes include the voltage record of an increasingly rapid charge followed 
by a damped discharge of a capacitor bank, and the amplitude of an electromagnetic 
pulse produced by a nuclear explosion. (See, e.g., Northrop (19961, Radasky (1988) 
and references they cite.) Bipolar examples include acoustic N waves propagating 
for long distances in the atmosphere that have resulted from explosions in the air, 
and sonic booms generated by supersonic aircraft. These bipolar pulses have leading 
and trailing edges that appear to be exponential in character. (See, e.g., Pierce (1981), 
Whitham (1974), Lighthill (1956).) 

To the author's knowledge the Fourier transforms of such pulses are not 
generally well-known or tabulated in Fourier transform compendia, and it is the 
purpose of this monograph to derive and present these transforms. These Fourier 
transforms are related to a definite integral of a ratio of exponential functions, 
whose evaluation we carry out in considerable detail. From this result we derive 
the Fourier transforms of other related functions. In all Figures showing plots of 
calculated curves, the actual numbers used for the function parameter values and 
dependent variables are arbitrary and non-dimensional, and are not identified with 
any particular physical phenomenon or model. 

2. Evaluation of Three Integrals 

We establish the following first integral result by the residue theorem, thus 
following a similar derivation carried out by Faulkner (1988): 

m 

Tc =--- ehxdx J 1 + ex sin .nh 
-CQ 
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where x is a real variable and h is a complex constant such that 0 < Re h < 1. We 
evaluate the contour integral of the complex function ekZ/(1 i- e=) counter-clockwise 
along a closed curve in the complex plane consisting of two segments: a semicircle 
of radius R in the upper half plane with center at the origin, and a line segment 
along the real axis from x = - R to x = + R connecting the ends of the semicircle. 
This contour integral is then equal to 2ni times the sum of the residues at the poles 
of the integrand lymg within the contour. The poles are located at points zo where 
the integrand denominator vanishes, that is, at values z = zo for which ezo = - 1. 
Thus zo = (2n + l)ni and the poles lie entirely on the imaginary axis. Now, if the 
limit of (z - zo)f(z) as z --+ zo exists and is finite, then the poles of f(z) at zo are simple, 
and the residues at these poles are precisely this limiting result. It further follows 
that if the function f(z) is a ratio of two analytic functions p(z)/q(z), then the residue 
of f(z) at the poles zo of f(z) (the zeros of q(z)) is given by p(zo)/q'(zo). (See, e.g., 
Churchill (1961) or Nehari (1961).) This is indeed so for the function ekZ/(l + e"); 
the residues at zo are therefore e(k-l)zo. The contour evaluation is then, in full, 

where the first definite integral is along the straight segment on the real axis, the 
second (angular) one is along the semicircular arc (for which z = Reie), and in the 
summation n runs from 0 to the index of the highest zero lying within the contour. 
As the radius R -+ - it is clear that n + 00 also, and the limiting value of the first 
definite integral is the desired result. 

The angular integral can be shown to vanish as R -+ -, because the absolute 
value of any line integral of an analytic function has an upper bound of WL,, where 
M, is at least the maximum absolute value of the integrand on the contour, and L, is 
the length of the contour. Symbolically, this says that 

For the angular integral, we find that M, = 1/(2 cosh (hRcos9)) and L, = ~cR, and so 
McLc + 0 as R + 00. Applying this maximal criterion to the first integral also 
determines certain restrictive conditions on the parameter A, because the integral 
should be bounded as x --+ f 00. We thus require Re h > 0, for otherwise the integral 
would diverge as the lower limit - R -+ - 00. (This is a consequence of the exponent 
x in the denominator of the integrand having a + sign.) For large R we have M, -+ 
e(Re - 1)R, and so we further require that Re h < 1, in order for the integral to 
converge as the upper limit R -+ + -. 
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Turning now to the summation above, Faulkner astutely observed that its 
terms constitute a geometric series when the common term e(h-2* - 1)zi = - ehni is 
factored out. The term-to-term ratio of the resulting series is r = e2ani; its infinite 
sum is of the form C. rn and thus evaluates to 1/(1 - r) = 1/(1 - e2hni ). The right-hand 
side of the contour integral equation then becomes - 2niehni/(l - e2hni), which easily 
reduces to n/sin An. Q.E.D. 

The next integral result we wish to establish is similar to the previous one: 

co 

- (1 - h)n - 
sin nh 

-03 

The evaluation of this integral proceeds almost exactly as in the previous case, even 
with the poles of the integrand occurring at the same locations zo = (2n + 1)ni as 
before. However, the order of these poles is 2, because in the limit as z + zo the 
quantity (z - zo)2ehx/(l + ex)2 exists and is finite. For this case the residues at the 
poles are evaluated by carrying out the limit operation given by 

lim -( d (z-zo) e ”). 
z + z o  dz (I + 

and are found to be (A - 1)ehZo. The subsequent evaluation then proceeds in the 
manner carried out for the previous case, from which the asserted result follows. 

We may verify this result by noting that 

00 

- v k  - ln - ehXdx 
-00 J p + e X  sin nh 

easily follows from the first integral result. By differentiating both sides of this 
equation with respect to p and subsequently setting p = 1, we obtain the second 
integral result. This process can obviously be carried out for higher orders of the 
integrand denominator by repeated differentiation with respect to p, and then 
setting p = 1 afterwards; the generic result after k such differentiations is 

m 

- (1 - h)(2 - h)  .....( k - 1 - A) pa- n S (JA + eX)k (k - l)! sin 7th 
- ehx dx 

--m 

This evaluation procedure is much more preferable and easier to use than the 
method of residues for the higher orders of the denominator, because the residue at 
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a pole of f(z) of order k (where the limit of (z - z0)k f(z) as z -+ zo exists and is finite) 
is usually evaluated from the limiting value of a multiple order derivative, viz. 

Such evaluations can be extremely tedious at high orders. 

The third integral result we need is obtained by differentiating the first 
integral result with respect to the parameter h (Shaeffer (2001)). This leads to the 
integral evaluation 

03 

n2c0s nA 
sin2 n~ . 

- -  - 

-03 

Other related integrals quickly follow. One such arises from using the 
relation 2ex cosh x = 1 + e2x in the integrand of the first integral to produce the 
following result: 

n - - 
J cosh x sin nh 

-03 

Another is obtained by making the integration variable substitution y = ex in the 
first integral to yield 

m 

Yh-ldY = n . I 1 + y sin An 
0 

This result is also derived by contour integration in Nehari. 

These integral results have been previously reported by Gradshteyn and 
Ryzhik (1965) and Jeffrey (1995). We end this section by noting that all are related to 
the gamma function through the remarkable reflection formula (see, e.g. Whittaker 
and Watson (1927)) 

n r(x)r(i - X) = -. 
sin nx 

3. The Inverse Biexponential Pulse Shape 

The simplest instance of a uniformly continuous pulse shape with 
exponential rise and fall profiles is the inverse biexponential function given by 
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1 
f(t) = t o )  + ef3(t - t o )  

where a and 0 are positive real numbers. This function has exponential leading 
and trailing edge asymptotes ea(t - to) and e-P(t - to) respectively. It approaches zero as t 
approaches either infinity, and peaks near t = to, where to is the value of t at which 
the asymptotes intersect. (In this paper we shall as a convenience regard this 
intersection point as the time location of the pulse for relative phase purposes, to be 
discussed in the next section.) The peak occurs at tpeak = to + (en a - Cn &/(a  + p), 
and the peak value of the function is f(tpe&) = l/[(P/a)"/("+ P) + (CX/P)P/(~ + PI]. 

The Fourier transform of this function can be written 

F(o) = f(t) eiWt dt = eiWtO i 
-pJ -cD 

where we assume the positive sign convention for iot (see, e.g., Jeffrey), and define 
the integration variable z = t - to. Further manipulation of parameters and 
exponents leads to 

+- 
= E,eiwto csc ((a + io) E,) ehx dx F(o) = 

-pJ 

where h = (a + iw)/(a + p), x = (a + p)z, E, = n / (a  + p), and we make use of the first 
basic integral result derived before. We observe that one of the main integral para- 
meter conditions is always satisfied, viz., Re h = a/(a + p) < 1. We also note that 
the asymptote crossover time to determines the transform phase factor e'%. The 
magnitude of the Fourier transform is easily evaluated and is 

Note that F(0) = E,/sin(ka), and that I F(o) I + 2ke-Gw as o + 00. Thus F(o) levels off 
as o + 0 and decreases exponentially as o + 00. 

We plot f(t) in Figures 1 and 2, and the magnitude I F(w) I in Figures 3 and 4, 
using, respectively, log-linear, linear-linear, log-log and log-linear axes, and with 
arbitrary units. The asymptotic behavior of both f(t) and I F(o) I is clearly evident in 
the log-linear plots. 
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Figure 2. Linear-linear plot of the inverse biexponential 
function f(t) with a = 0.5, p = 0.1 and to = 5. 
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Figure 3. Log-log plot of the magnitude I F(o) I of the Fourier trans- 
form of the inverse biexponential function, using a = 0.5 and P = 0.1. 
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Figure 4. Semi-log plot of the magnitude I F(o) I of the Fourier transform of 
the inverse biexponential function f(t), using a = 0.5 and p = 0.1. The high- 

frequency asymptote 25e-b~-), where 5 = n/ (a  + p), is shown by the dotted line. 
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4. Sum of Two Inverse Biexponential Functions 

A difficulty with the inverse biexponential form is that if a >> P (or vice 
versa), then the asymptote associated with a (or p) is not a good representation of 
the leading (or trailing) edge profile, as suggested by Figure 1. One way of over- 
coming this problem is to model the pulse as the sum of two inverse biexponential 
functions, where the leading edge of the first and the trailing edge of the second 
become the leading and trailing profiles of the pulse, and the trailing edge of the first 
and the leading edge of the second overlap in such a way as to provide a smooth 
transition from one function to another. In this way both the leading and trailing 
edges can be made to follow exponential profiles much more closely than in the case 
of the single inverse biexponential function. This pulse sum is represented in the 
time domain as 

where the a's and 0's are positive real numbers. a1 and -a2 are the exponential 
slopes of the leading and trailing edges, -PI and a2 are the exponential slopes of the 
overlapping edges, tl and t2 are where the asymptotes for each pulse intersect, and y 
determines the amplitude of the second pulse relative to the first. 

We illustrate these concepts by plotting an example pair of biexponential 
functions, fl(t) and f2(t), and their sum f(t) = fl(t) + f2(t), in Figure 5 (on log-linear 
axes) and in Figure 6 (on linear-linear axes), using the following parameter values 
(in arbitrary units): 

a1 = 0.5 a 2  = 2.7 
P1= 3 p2 = 0.1 
tl = 5 t2 = 5.2 

y = 0.9 

The leading and trailing edge asymptotes for the sum are also plotted in both 
Figures. This choice of parameters resulted in a very smooth sum function where 
the transition region between the two biexponentials is narrower than the leading 
and trailing edge regions. That is, the values for P1 and a 2  are much larger than 
those for a1 and P2, and the asymptote intersection time difference t2 - tl is small. A 
comparison of the graphs in Figures 1 and 5 -- which have the same horizontal and 
vertical axes and (except for a slight time shift) the same leading and trailing 
asymptote functions -- shows that a sum of two overlapping biexponential functions 
can indeed follow the leading and trailing edge asymptotes much more closely than 
a single biexponential function can. Other values of the parameters will of course 
result in different shape effects. For example, a "flat-top'' pulse can be obtained by 
suitably separating tl and t2 and adjusting the other parameters. 
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Figure 5. Log-linear plot of two inverse biexponential func- 
tions fl(t) and f2(t) and their sum, as discussed in the text. 
The leading and trailing edge asymptotes are also plotted. 
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Figure 6. Linear-linear plot of two inverse biexponential func- 
tions f,(t) and f2(t), and their sum, as discussed in the text. 
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The Fourier transform of the sum of biexponential functions is, of course, the 
sum of the Fourier transforms of the individual functions, and is given by 

where the component transforms Fl(o) and F2(o) are the Fourier transforms of fl(t) 
and f2(t), which in turn are given by 

where ci = n/(ai + pi)/ for i = 1 and 2. Note that the phase relation between each 
transform is determined by the complex factor @ti. The magnitude of the sum 
transform I F(o) I is the magnitude of the sum of the individual transforms, that is, 

I F(o) I = I Fl(o) + F2(o) I. The magnitudes I Fl(o) I, I F2(o) I and I F(o) I are shown 
plotted in Figures 7, 8, and 9, using the parameter values given previously for fl(t) 
and f2(t). The magnitudes I Fl(o) I and I F~(w)  I are shown by dotted lines. The axes 
in Figure 7 are logarithmic, while log-linear axes are used in Figures 8 and 9. Figure 
9 is an expanded view of the upper left corner region of Figure 8, which more clearly 
shows how the different magnitudes vary with frequency. (In all plots o = 2nf.) 

10 
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Figure 7. Log-log plot of the magnitudes of the Fourier transforms of the 
individual and sum inverse biexponential functions shown in Figures 5 

and 6. Fl(o) and F2(o) are Fourier transforms of fl(t) and f2(t) respectively. 
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Figure 8. Semi-log plot of the Fourier transform magnitudes for the 
individual and sum inverse biexponential functions of Figures 5 and 6. 
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Figure 9. Expanded view of upper left region of Figure 8. 

The remarkable feature of the magnitude of the sum transform F(o) for the 
parameters used here is that it dips considerably below the individual magnitudes of 
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the transforms Fl(w) and F2(o) over part of the frequency range. This produces the 
tilted shallow trough around f = 0.4 shown in Figures 7 and 8. This dip is the result 
of the frequency domain phasing interference between the two biexponential 
components that occurs because their time-domain peaks occur at different times. 
(Recall that the relative phase of each component is manifested as the complex 
factor &uti discussed earlier.) This dipping is a characteristic feature to be expected in 
Fourier transforms of multicomponent functions when the components occur at 
different times. 

To illustrate this phenomenon more fully, we plot on log-linear axes in 
Figure 10 the magnitudes of the Fourier transform of the sum of the biexponentials 
for different asymptote crossover time separations (t2 - tl) = 0.4,O.B and 1.2 of the 
two biexponentials. This was done by setting t2 = 5.4,5.8 and 6.2 in the sum while 
keeping all the other parameters unchanged. The magnitude for (t2 - tl) = 0.2 was 
plotted previously in Figure 8, and can be included in the comparison. It is easy to 
see that as the time separation A t  = t2 - tl between the two component functions 
increases, the frequency interval Af between the dips in the transforms decreases. 
One finds (and can verify analytically) that this frequency spacing and the time 
separation interval follows the simple "uncertainty principle" law Af At = 1 for each 
transform case. 

10 

1 

.1 

.01 

.OOl 

.OOOl 

. 0 0 0 0 1  

0 0 .5  1 1.5 2 
f 

Figure 10. Magnitude I Fl(o) + F2(o) I of the sum of the Fourier 
transforms of the inverse biexponential functions fl(t) and 6(t) for 
different time separations t2 - tl of these components. See text for 
details. The dotted curves are I Fl(o) I and I F2(0) I as in Figure 8. 
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5. A Fractal Family of Inverse Biexponential Functions 

A suite of pulse functions that have the same exponential leading and 
trailing edge asymptotes ea(f - to) and e-P(t - to) can be formed by applying a semi- 
logarithmic "magnification" transformation to the inverse biexponential function. 
This consists of dividing the dependent variable (t - to) by a positive factor K, and 
raising the resulting inverse biexponential function to the power of this same factor 
K. The resulting function is given by 

This transformation has the same effect as scaling the en f K  and (t - to) axes of a plot 
by the same factor 1 / ~ ,  thus producing a l'zoorn1l effect for K f 1. Thus, if one 
displays (fK(t))l/" versus (t - tO)/K in a loglinear plot, the plotted shape of the 
function is invariant for all K > 0 (and is the same as that for K = 1, an example of 
which is shown in Figure 1). This invariance gives fK(t) a fractal character. 

In Figure 11 we plot fK(t) for K = 1/8,1/4,1/2,1,2 and 4 (using a = 0.5, P = 0.1 
and to = 5) with semi-log axes. This display shows that these curves all have the 
same pair of asymptotes, and as K diminishes the function fK(t) more closely 
approaches these intersecting asymptotes as a limit. This suite of curves is replotted 
in Figure 12 using linear-linear axes, where it is seen that fK(t) becomes narrower 
and more sharply peaked in the neighborhood of to as K decreases. 

1.0 

f,(t) 

. 3  

.1 

0 5 10 
t 

15 2 0  

Figure 11. Semi-log plot of the fractal inverse biexponentials f K ( t )  for a = 0.5, 
f3 = 0.1, to = 5. The common asymptotes ea(t-to) and e-fW-to) are shown dotted. 
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Figure 12. Linear plot of the fractal inverse 
biexponential functions f K ( t )  for a = 0.5, p = 0.1, to = 5. 

The Fourier transform FK(o) of fK(t) is obtained making variable substitutions 
x = (a + p)(t - tO)/K and h = (a + io)K/(a 3- p), as follows: 

--Do --m 

These algebraic transformations are similar to those carried out in Section 3 for the 
original (K = 1) inverse biexponential case. The above integral has been evaluated in 
Section 2; on setting p = 1 there we obtain the Fourier transform as 

Keiwto (1 - h)(2 - h) .....( K - 1 - h) 7'C 

a + p  (K - I)! sin nA. ' 
F K b )  = 

The Fourier transforms for the cases K = 1,2  and 3 are 

and 
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The magnitudes I FK(o) I of these transforms are plotted in Figure 13 using the same 
parameter values a = 0.5 and p = 0.1 as for Figures 1 through 4/11 and 12. 

We also include in Figure 13 a plot of the magnitude of the Fourier transform 
Fo(o) of the piecewise continuous function fo(t) composed of the leading and trailing 
edge asymptote functions ea(t - to) for t 5 to, and e-fi(t - to) for t 2 to. T h s  transform is 

The curve representing I Fo(o) I is labeled "K = 0" in the Figure. This follows the 
notion suggested by Figures 11 and 12 that the piecewise function fo(t) just defined is 
in a sense the limiting curve that results from letting the parameter K of the fractal 
biexponential function f K ( t )  approach zero. 

10 

I F K  (w) I 
1 

.1 

.Ol 
0 05 .10 .15 

f 

- 

.20 

Figure 13. Log-linear plots of the magnitude I FK(w) I of the 
Fourier transform of the fractal inverse biexponential function 
fK(t) for integer values of K, using parameters a = 0.5 and Q = 0.1. 

It turns out that the formalism for the Fourier transform FK(o) of fK(t) can be 
extended to include the case where K is not an integer. This is desirable for the range 
0 < K < 1 because very sharp functional shapes of fK(t) are obtained that conform 
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closely to the leading and trailing asymptotic exponentials. As we showed in 
Section 2, K (or k) represents the order of the derivative of the integrand of the 
Fourier transform, and so the use of non-integer K can involve the notions of 
fractional derivatives, which have become a well-developed analytical tool (see, e.g., 
Osler (1971)). This suggests that the extension of FK(o) to non-integral K be carried 
out by employing the gamma function, which has often been used to define the 
analytic transition between derivative-related polynomials of adjacent orders. 

The key recursive property of the gamma function that permits this is given 
by T(z) = (z - 1) T(z - 1) = (z - l)(z - 2) T(z - 2) = etc. Then the polynomial given by 
(z - l)(z - 2) ..... (z - k + 1) whch has k - 1 factors can be replaced by the gamma 
function ratio r(z)/r(z - k + 1). From this and r(n) = (n - l)! we can formally 
rewrite the Fourier transform of the fractal biexponential function as 

which is a true statement when K is a positive integer. If we now make use of the 
relation T(h)T(l- h ) = n/sin nh, and the beta function which has the property that 
B(x,y) = J?(x)T(y)/r(x + y) = B(y,x), we obtain the compact results 

where we recall h = (a + io)rc/(a + p), and therefore K - h = (p - io)K/(a + p). The 
evaluation of FK(o)  requires calculating r(z) for complex argument. 

Note added in proof. We can indeed verify that this new expression correctly 
represents the Fourier transform of fK(t) for non-integral K, because a definition of 
the beta function is the integral (Abramowitz and Stegun (1965)) 

On making the substitutions t = ex and z + w = K we find that this relation can be 
rewritten 

which is exactly the expression of the generalization of FK(o) to non-integer K that 
was formally derived above. 
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We plot in Figure 14 the magnitude I F,(o) I of the Fourier transforms given 
by this new compact form, for integral and non-integral values of K. These plots 
were produced by calculating each of the three gamma functions indicated, by using 
a Fortran 77 double precision complex gamma function algorithm that was publicly 
available on the Internet, and whose accuracy was verified by comparison with the 
table entries of the gamma function for complex argument presented the handbook 
edited by Abramowitz and Stegun. The numerical values of I F,(w) I used to plot 
those curves for which K is an integer are identical to those obtained using the 
earlier "integer K" formulas that generated the corresponding curves in Figure 13. 
We also include in Figure 14 a plot of the magnitude of the Fourier transform FO(OJ) 
of the piecewise function fo(t) formed from the leading and trailing asymptotic 
profiles as described earlier; this curve has the label "0". 

10 

1 

.1 

01 

0 .125  
0.25 

0.5 

0 .05 .10 .15 .20 
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Figure 14. Log-linear plots of the magnitude I FK(u) I of the Fourier 
transform of fK(t)/ for integer and non-integer values of K, using the 
parameters a = 0.5 and p = 0.1. I F,(o) I was calculated from the new 
Fourier transform formula for FK(w) derived on the previous page. 

It is clear from these plots that the new generalized form of FK(w) is a very 
satisfactory representation of the Fourier transform of the fractal biexponential 
function f,(t) for both integral and nonintegral K. We see from Figures 11 through 
14 that as K approaches zero, the behavior of both this function and its transform 
smoothly approach that of their respective envelopes, which are the piecewise 
continuous function formed from the two asymptotic profiles and its Fourier 
transform; the latter is labeled as K = 0 on the transform plots. 
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We now derive the asymptotic high-frequency functional form of I FK(o) I by 
considering its limit as w -+ 00. We start with FK(w) as originally derived here for 
integer K (rather than work with r ( K  - h)r(h)), because its limiting asymptotic form 
is also valid for noninteger K, and this approach is much easier. From the definition 
of h it is clear that h + iwK/(a + p) as w -+ 00, and so the cosecant term approaches 
the limit function -2ie-"wK/(a + p). The polynomial (1 - h)(2 - A) ..... (K - 1 - h) in the 

and dominates as w + 00 . We also replace (K - l)! with r ( K ) .  On putting all this 
together and then taking absolute values, we find that the high frequency limit form 
of the Fourier transform magnitude is given by 

numerator has K - 1 factors; its leading term is thus ( - h ) K -  = ( - i o K / ( a  + P))"- 

We plot this limit function in Figure 15 for the same values of K , a and p as used in 
the previous three plots, along with the corresponding full (i.e. normal) Fourier 
transform magnitudes. The limit functions are shown by dotted curves, while the 
transform magnitudes are plotted as solid curves. It is seen that both sets of curves 
do indeed merge at higher values of ci). We observe that this limit form almost has 
a fractal character itself similar to f,(t), because in it 6.1 is multiplied by K, and the 
main terms can be regarded as raised to a power of K. 

100 1 I I I l l  I I I , ,  I I I l l  

.OOl 01 .1 
f 

1 

Figure 15. Log-log plots of the magnitude I FK(ci)) I of the Fourier 
transform of fK(t), for integer and non-integer values of K, with para- 
meter values a = 0.5 and P = 0.1. The dotted curves are asymptotic 
high frequency limiting functions corresponding to each value of K.  
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6. Bipolar Forms of Inverse Biexponential Functions 

We turn now to bipolar pulses having exponential leading and trailing 
profiles. The simplest such forms are the first derivative df(t)/dt of the inverse 
biexponential function f(t), and the function f(t) multiplied by a linear factor (t - tl). 
Because the zero crossing of the linear factor at tl can be placed anywhere relative to 
the inverse biexponential peak near to, the latter function has more versatility. 

We treat the derivative function f'(t) = df(t)/dt first. From the definition of 
f(t) given in Section 3, this is expressed by 

Both f(t) and f'(t) are shown plotted in Figure 16 (on linear-linear axes) and Figure 17 
(on log-linear axes) with parameters a = 1, p =  0.5 and to = 5. It is seen that I f'(t) I has 
the same asymptotic exponential behavior as f(t) for large values of I t I. The zero of 
f'(t) occurs at the peak of f(t), which was previously evaluated in Section 3. 

The Fourier transform of the derivative function f'(t) is obtained trivially 
because it is just the Fourier transform F(o) of f(t) multiplied by the factor -io. This 
transform was derived previously in Section 3, and so the Fourier transform of the 
derivative is 

-ioF(o) = -iocei% csc((a + io)E,) 

where 5 = n/(a + p). In Figure 18 we plot the magnitudes of the Fourier transforms 
of the biexponential function and its derivative as I F(o) I and I o F(o) I respectively. 
The derivative transform has two obvious features: it is zero at o = 0, and although 
I oF(o) I appears to show exponential decline, its log-linear plot slope approaches 
that of I F(o) I for large o only logarithmically. 

We finally consider the bipolar pulse obtained by multiplying the inverse 
biexponential function f(t) by the linear factor (t - tl). This is written 

Both f(t) and (t - tl)f(t) are plotted in Figure 19 (on linear-linear axes) and Figure 20 
(on log-linear axes) with the parameters a = 1, P = 0.5, to = 5 and tl = 6. Figure 20 
shows that I (t - tl) f(t) I has almost, but not quite the same asymptotic exponential 
behavior as f(t) for large values of I t I .  
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Figure 16. Linear-linear plot of the inverse biexponential function f(t) 
(shown dotted) and its derivative f‘(t) (solid) for a = 1, = 0.5 and to = 5. 
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Figure 17. Log-linear plot of the inverse biexponential 
function f(t) (dotted curve) and the magnitude I f‘(t) I of 
its derivative (solid curve ) for a = 1, f3 = 0.5 and to = 5. 
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Figure 18. Log-linear plot of the magnitudes of the Fourier 
transforms of the inverse biexponential function f (  t) and its 
derivative f(t) as I F(o) I (shown dotted) and I oF(o) I (solid). 
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Figure 19. Linear-linear plot of the inverse biexponential 
function f(t) (dotted curve) and the derived bipolar form 
(t - tl)f(t) (solid curve) for a = 1, p = 0.5 to = 5 and tl = 6. 
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Figure 20. Log-linear plot of the inverse biexponential f(t) 
(shown dotted) and magnitude of the bipolar function 
(t - tl)f(t) (solid curve) for a = 1, 8 = 0.5, to = 5 and tl = 6. 

The Fourier transform of the bipolar function (t - tl)f(t) is obtained almost as 
trivially, because the inverse transform of the derivative F'(o) = dF(o)/do is +itf(t), 
by the same reasoning that -ioF(o) is the Fourier transform of the derivative 
function f(t) = df(t)/dt. Since tl is a constant, the Fourier transform of (t - tl)f(t) is 
therefore 

where 
Fbipolado) = - iF'(o) - tlF(w), 

F(o) = Sei% csc((a + io)c) 

and E, = n/(a + 8). Carrying out the derivative operation (d/dw) gives 

Fbipolar(O) = ceiwto CSC((a  + io)c) [(to - ti) - @Ot((a + io)c)]. 

This result could also have been obtained by using, equivalently, the third integral 
evaluated in Section 2. When tl = to, only the pure derivative results. The magni- 
tude of this Fourier transform is plotted in Figure 21 on log-linear axes, using the 
same parameters a = 1, 
in Figures 19 and 20. This plot shows a low magnitude value at o = 0, a rise to a 
peak, and then an exponential falloff with o. These values at o = 0 and at the peak 
also depend on the time difference to - tl. 

= 0.5, to = 5 and tl = 6 as in the bipolar function plots shown 
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Figure 21. Semi-log plot of the magnitude of the Fourier transform of the 
bipolar function (t - tl)f(t> with parameters a = 1, p = 0.5, = 5 and tl = 6. 

7. Extensions to Boxcar and N Wave Pulse Functions 

We conclude this monograph by describing two other pulse function types 
that can be derived from the unit step function, and yet have the requisite leading 
and trailing exponential profiles: these are the boxcar function and the N wave 
function. Rounded unit step functions can be modeled as inverse biexponential 
functions of Section 3 when either the leading or trailing edge becomes horizontal; 
for this to happen either a or p (but not both) become zero. Thus, if we set p = 0 we 
would obtain the function u(t) = 1 /(1 + e-a(f - to)), which goes to zero as t << to and 
approaches unity for t >> to. Also, as a becomes large, the transition in u(t) between 
0 and 1 sharpens and becomes discontinuous when a + -. The function formed 
from the difference of two such u(t) functions (each with a different value of to) has 
a rounded boxcar shape, and can be written 

This is approximately unity between the times tl and t2, and approaches zero on 
either side of this interval. We plot in Figure 22 an example of this boxcar function 
with the parameter values a1 = 3, tl = 0, a 2  = 2, and t2 = 10. 
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Figure 22. Linear-linear plot of a boxcar function formed as the difference of 
two rounded step functions with parameters a1 = 3, tl = 0, a 2  = 2, and t2 = 10. 

The Fourier transform of the boxcar function is easily obtained, because the 
boxcar function can be written as the sum of two inverse biexponential functions. 
which is described in detail in Section 4. The other parameters of the biexponential 
sum must therefore have the values = p 2  = 0 and y = -1 in order to produce the 
boxcar function, and so the Fourier transform of the boxcar follows directly from the 
formulas derived in Section 4. In Figure 23 we plot the magnitude of the Fourier 
transform of the boxcar function of Figure 22; the same parameter set is used for 
both plots. The interference pattern is clearly evident. In the limit as a1 and a 2  both 
become large, the rounded boxcar shape becomes more like a rectangle, and its 
Fourier transform approaches the classic sin(oAt) /o shape. (Ths is also apparent 
from the fact that the Fourier transforms of the two component rounded step 
functions (which are shown as the two dotted curves in Figure 23) each behave as 
1/03 at low values of 0.) 

The N wave function is obtained from the boxcar function by multiplying the 
latter by the linear function (t - to), where tl < to < t2; this function is therefore 

An example N wave function is shown plotted in Figure 24, corresponding to the 
parameter values to = 4.5, a1 = 3, tl = 0, a 2  = 4, and t2 = 10. 
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Figure 23. Log-linear plot of the magnitude of the Fourier transform 
of the boxcar function shown in Figure 22. The dotted curves show 
the Fourier transform magnitudes of the step function components. 
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Figure 24. Linear-linear plot of the rounded N wave function 
(t - tO)fbox(t), with parameters to = 4.5, a1 = 3, tl = 0, a2 = 4, and t2 = 10. 
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The Fourier transform for the N wave is also obtained easily, because the N 
wave is the difference of two bipolar biexponential functions of the form (t - b)f(t) 
each having by the same linear factor, and such bipolar functions were treated in 
Section 6. Its Fourier transform is therefore the difference of two transforms each of 
the form Fbipolar(O) derived in Section 6. More explicitly, if 

then its Fourier transform is 

where the numerical part of each subscript label indicates a different set of function 
parameters. We show in Figure 25 a plot of the magnitude of the Fourier transform 
of the N wave function displayed in Figure 24; the parameters are the same for both 
plots. The Fourier transform magnitudes of the two component bipolar functions 
are indicated by the dotted curves. 
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Figure 25. Linear-linear plot of the magnitude of the Fourier transform 
of the N wave function shown in Figure 24. The dotted curves show 

the Fourier transform magnitudes of the bipolar function components. 
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8. Epilogue: Formulas and Algorithms 

Calculating the magnitudes of Fourier transforms presented here does not 
present difficulties, because the simpler complex multiplication and inversion 
operations are used, and iterations of these operations may be transferred directly 
into algorithm form instead of reducing complicated algebraic expressions to 
simpler forms. Where transforms of sums of functions are involved, the real and 
imaginary parts are separately summed before taking the magnitude. For reference 
and convenience the basic calculational procedures are: 

Circular functions of complex argument: 
sin(x + iy) = sinxcoshy + icosxsinhy 
cos(x + iy) = cosxcoshy - isinxsinhy 

Inversion: I/(x + iy) = (x - iy)/(x2 + y2) 

Multiplication: (XI + iy1)(x2 + iy2) = ~ 1 x 2  - ylyz + i(x1yz + x2y1) 

Magnitude: 

We next present two examples of Fortran 77 algorithm segments used to 
calculate the Fourier transforms. The first one, which follows, evaluates the magni- 
tudes of the three "fractal" Fourier transforms worked out in Section 5, which are 
Fl(o), F2(0) and F3(o), for specified f. The inputs to this segment are the parameters 
a, p, K and f, represented respectively by the variable names alf, bet, ak and f. 
Also, con represents KE, = n ~ / ( a  + P), and om represents o = 27cf; the meanings of 
the other names should be obvious. The magnitude result I F(w) I is represented by 
the variable name ftamp. The algorithm calculation is done for K = 1,2  or 3, and in 
practice f is stepped as a loop index is incremented, which is not shown. Note that 
the contribution from the phase factor e'% = cos(ot0) + i sin(ot0) to the real and 
imaginary parts of the Fourier transforms has been omitted. 

The second algorithmic coding segment, which also follows, calculates the 
magnitude I Fl(o) + F2((11) I of the Fourier transform of the sum fl(t) +f2(t) of two 
inverse biexponential functions, as described in Section 4. The variable names are 
similar to the ones in the previous example, except that the names of quantities 
associated with each function have the number 1 or 2 appended, as appropriate. 
This time the calculation of the phase factors e% and eiot2 is included in order to 
properly account for interference effects. The inputs to this segment are the 
parameters al, Bl, tl, a 2 ,  pz, t2, y and f, represented respectively by the variable 
names a l f l ,  b e t l ,  taul ,  a l f 2 ,  beta, tau2, gam, and f . 
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Calculation of I Fl(o) I, I F2(0) I and I F3(0) 1, for specified o = 2nf: 

pi=4. *atan (1. ) 
con=pi*ak/ (alf +bet) 
gcon=pi*ak/(alf+bet)**ak 
if(ak.eq.3.) gcon=gcon*.5 
xi=con*alf 
sx=sin(xi) 
cx=cos (xi) 
om=2.*pi*f 
et=con*om 
a=sx*cosh(et) 
b=cx*s inh (et) 
g=gcon/(a**2+b**2) 
if(ak.eq.1.) then 
ftreal= g*a 
ftimag=-g*b 

ftreal= g*((bet-alf)*a-2.*om*b) 
ftimag=-g*((bet-alf)*b+2.*om*a) 

c= (bet-2. *alf) *a-3. *om*b 
d= (bet-2. *alf) *b+3. *om*a 
ftreal= g*((2.*bet-alf)*c-3.*om*d) 
ftimag=-gx((2.*bet-a1f)*d+3.*om*c) 

elseif(ak.eq.2.) then 

elseif(ak.eq.3.) then 

endi f 
ftamp=sqrt(ftreal**2+ftimag**2) 

Calculation of I Fl(o) + F2(o) I for specified o = 2nf: 

pi=4.*atan(l.) 
conl=pi/(alfl+betl) 
gconl=conl 
xil=conl*alfl 
sxl=sin (xil) 
cxl=cos (xil) 
con2=pi/(alf2+bet2) 
gconZ=gam*con2 
xi2=con2*alf2 
sx2=sin (xi21 
cx2=cos (xi21 
om=2.*pi*f 

etl=conl*om 
otl=taul*om 
al=sxl*cosh(etl) 
bl=cxl* s inh (e tl ) 
cl=cos (otl) 
sl=sin(otl) 
gl=gconl/(al**2+bl**2) 
ftreall=gl*(al*cl+bl*sl) 
ftimagl=gl*(al*sl-bl*cl) 

c second function fourier transform 

c first function fourier transform 

30 



et2=con2*om 
ot2=tau2*om 
a2=sx2*cosh(et2) 
b2=cx2 * s  inh (et2 ) 
c2=cos (ot2) 
s2=sin (ot2) 
g2=gcon2/(a2**2+b2**2) 
ftrea12=g2*(a2*~2+b2*52) 
ftimag2=g2*(a2*~2-b2*~2) 

c magnitude of sum transform 
ftamp=sqrt((ftreall+ftreal2)**2+(ftimagl+ftimag2)**2) 
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Appendix: Complex Gamma Function Subroutine 

For completeness, we include below a listing of the modified Fortran 77 
double precision complex gamma function subroutine that was used to help 
calculate the graphical results presented in Section 5. 
downloaded in May 2002 from the following site on the Internet: 

The original subroutine was 

http://momonga.t.u-tokyo.ac.jp/-ooura/gamerf.html 

The source is evidently the following person: 

Takuya OOURA 
Research Institute for Mathematical Sciences 
Kyoto University 
Kyoto 606-01 Japan 

The electronic mail address is 

oour a@kur ims . kyo to-u . ac.j p 

oour aammm. t .u- toky o .ac . j p 
or 

subroutine cdgamma(xreal,ximag,freal,fimag) 
real xreal,ximag,freal,fimag 
implicit rea1*8 (a - h, o - z )  
parameter ( 

& pi = 3.14159265358979324d+OOf 
& pv = 7.31790632447016203d+OO, 
& pu = 3.48064577727581257d+OOr 
& pr = 3.27673720261526849d-02, 
& pl = 1.05400280458730808d+Ol, 
& p2 = 4.73821439163096063d+0l1 
& p3 = 9.11395751189899762d+Ol, 
& p 4  = 6.6275640096621352ld+Ol, 
& p5 = 1.32280130755055088d+Oll 
& p6 = 2.93729529320536228d-01) 

& ql = 9.99999999999975753d-01, 
parameter ( 

& 92 = 2.00000000000603851d+OO, 
& 93 = 2.99999999944915534d+0O1 
& 9 4  = 4.00000003016801681d+OO, 
& 9 5  = 4.99999857982434025d+OOr 
& 96 = 6.00009857740312429d+OO) 

c complex Gamma function in double precision 
xr = dble(xrea1) 
xi = dble(ximag) 
if (xr .It. 0) then 

wr = 1 - xr 
wi = -xi 
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else 
wr = xr 
wi = xi 

end if 
ur = wr + 9 6  
vr = ur * (wr + 95) - wi * wi 
vi = wi * (wr + 9 5 )  + ur * wi 
yr = p6 + (p5 * ur + p4 * vr) 
yi = p5 * wi + p4 * vi 
ur = vr * (wr + 9 4 )  - vi * wi 
ui = vi * (wr + 9 4 )  + vr * wi 
vr = ur * (wr + 93) - ui * wi 
vi = ui * (wr + 93) + ur * wi 
yr = yr + (p3 * ur + p2 * vr) 
yi = yi + (p3 * ui + p2 * vi) 
ur = vr * (wr + 92) - vi * wi 
ui = vi * (wr + 92) + vr * wi 
vr = ur * (wr + 91) - ui * wi 
vi = ui * (wr + 91) + ur * wi 
yr = yr + (pl * ur + vr) 
yi = yi + (pl * ui + vi) 
ur = vr * wr - vi * wi 
ui = vi * wr + vr * wi 
t = ur * ur + ui * ui 
vr = (yr * ur + yi * ui) + pr * t 
vi = yi * ur - yr * ui 
yr = wr + pv 
ur = 0.5d0 * log(yr * yr + wi * wi) - 1 
ui = atan2 (wi, yr) 
yr = exp(ur * (wr - 0 . 5 d 0 )  - ui * wi - pu) / t 
yi = ui * (wr - 0.5d0) + ur * wi 
ur = yr * cos(yi) 
ui = yr * sin(yi) 
yr = ur * vr - ui * vi 
yi = ui * vr + ur * vi 
if (xr .It. 0) then 

wr = pi * xr 
wi = exp(pi * xi) 
vi = 1 / wi 
ur = (vi + wi) * sin(wr) 
ui = (vi - wi) * cos(wr) 
vr = ur * yr + ui * yi 
vi = ui * yr - ur * yi 
ur = 2 * pi / (vr * vr + vi * vi) 
yr = ur * vr 
yi = ur * vi 

end if 
freal=real (yr) 
fimag=real (yi) 
return 
end 
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