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ABSTRACT

This document provides an assessment of hazards as required by the National
Environmental Policy Act for the alternative of restarting the reactor at the
Transient Reactor Test (TREAT) facility by the Resumption of Transient Testing
Program. Potential hazards have been identified and screening level calculations
have been conducted to provide estimates of unmitigated dose consequences that
could be incurred through this alternative. Consequences considered include
those related to use of the TREAT Reactor, experiment assembly handling, and
combined events involving both the reactor and experiments. In addition,
potential safety structures, systems, and components for processes associated
with operating TREAT and onsite handling of nuclear fuels and experiments are
listed. If this alternative is selected, a safety basis will be prepared in accordance
with 10 CFR 830, “Nuclear Safety Management,” Subpart B, “Safety Basis
Requirements.”
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National Environmental Policy Act
Hazards Assessment for the TREAT Alternative

1. INTRODUCTION

This document provides an assessment of hazards as required by the National Environmental Policy
Act (NEPA) (42 USC § 4321 et seq.) for the alternative of restarting the reactor at the Transient Reactor
Test (TREAT) facility by the Resumption of Transient Testing Program. Potential hazards are identified
and screening level calculations are provided for unmitigated dose consequences that could be incurred
through this alternative. Consequences considered include those related to use of the TREAT Reactor,
experiment assembly handling, and combined events involving both the reactor and experiments. If this
alternative is selected, a documented safety analysis for the facility and experiments will be prepared as
required by 10 CFR 830, “Nuclear Safety Management,” Subpart B, “Safety Basis Requirements.”

In accordance with the U.S. Department of Energy (DOE) “Recommendations for Analyzing
Accidents under the National Environmental Policy Act” (DOE 2002) and 10 CFR 830, Subpart B, this
document provides a broad-based overview of the following:

o The types of operations proposed for the Resumption of Transient Testing Program, which include
operating the TREAT Reactor, reactor refueling, experiment handling, insertion, irradiation of the
experiments using the reactor, and combinations of these operations.

e Hazards associated with the identified operations, with identification of hazards limited to those that
could occur at TREAT. Activities associated with use of other facilities at the Idaho National
Laboratory (INL), including, but not limited to, the Advanced Test Reactor, Hot Fuel Examination
Facility at the Materials and Fuels Complex (MFC), and the Idaho Nuclear Technology and
Engineering Center (Building 666), will be subject to the unreviewed safety question process in each
of those facilities to determine if that activity is bounded by its respective safety basis. Hazards
associated with operation of the TREAT Reactor during transient testing would not involve other
facilities, and the potential to impact the current storage mission of TREAT is not credible on account
of the robust design of the reactor structure and subsurface storage areas (ECAR-2184 2013).

e A preliminary identification of safety functions that would be assessed. If resumption of transient
testing using the TREAT facility is selected after completion of the NEPA process, all required safety
analyses will be conducted in accordance with the requirements of 10 CFR 830, Subpart B. These
safety analyses are driven by the need to carefully establish the engineering evaluation of and nuclear
safety design criteria for safety-class and safety-significant structures, systems, and components
(SSCs) using the required evaluation guidelines.

1.1 Mission Overview

The primary mission of the DOE Office of Nuclear Energy is to advance nuclear power as a resource
capable of making major contributions in meeting the nation’s energy supply, environmental, and energy
security needs. This is accomplished by resolving technical, cost, safety, security, and
proliferation-resistance barriers through research, development, and demonstration, as appropriate. The
DOE Office of Nuclear Energy’s research and development activities will help address these challenges,
thereby enabling development of new reactor technologies that will support the current fleet of reactors
and facilitate construction of new ones.

The DOE Office of Nuclear Energy organizes its research and development activities along the
following four main objectives that address challenges to expanding the use of nuclear power:

1. Develop technologies and other solutions that can improve reliability, sustain safety, and extend the
life of current reactors



2. Develop improvements in the affordability of new reactors to enable nuclear energy to help meet the
Administration’s energy security and climate change goals

3. Develop sustainable nuclear fuel cycles
4. Understand and minimize the risks of nuclear proliferation and terrorism.

Development and licensing of improved and new forms of fuel for nuclear power production requires
testing of nuclear fuels under postulated reactor accident conditions. Significant transient testing of
nuclear fuels has not been conducted in the United States in over a decade, and there are very few test
facilities in the world where transient testing of prototype-scale fuel pins can take place.

Transient test reactors must have the ability to induce specific phenomenological changes to nuclear
fuel systems. The phenomenological changes of interest are induced by short bursts of intense,
high-power radiation. Nuclear fuel systems in this context are comprised of nuclear fuel, coolant, pumps
to circulate the coolant past the nuclear fuel, and onboard instrumentation. The nuclear fuel system being
tested is contained in an experiment assembly. The test reactor must be able to accommodate the
experiment assembly in the reactor core. The requirements of transient test reactors also include in-situ,
real-time imaging technology using a radiation detection system such as a hodoscope. This technology
provides the time evolution of fuel damage, which is key to developing a thorough understanding of the
underlying science of fuel behavior. In-situ imaging is augmented by post-irradiation examination to
confirm the condition of the fuel during and after testing.

The alternative test reactors being considered for use and being assessed by the program’s
environmental assessment include the reactor at the TREAT facility at INL’s MFC and the Annular Core
Research Reactor at Sandia National Laboratory in New Mexico.

2. FACILITY OVERVIEW

The TREAT Reactor is located within a fenced area northwest of the main MFC area at INL. TREAT
is approximately 11 miles from INL’s east boundary and 4 miles north of U.S. Highway 20. Structures
and areas adjacent to TREAT, but not included within the TREAT boundary, are the TREAT warehouse
(MFC-723), an access guardhouse (MFC-722), a material/equipment lay down area in the north portion of
the site, and interim parking in the east portion of the site for INL space battery program trailers. The
TREAT control room (MFC-724) is located about 0.5 miles southeast of the reactor building.

The TREAT facility (MFC-720; Figure 1) was constructed in 1958 to evaluate reactor fuels and
structural materials under conditions simulating various types of nuclear excursions and transient
over-power and under-cooling situations. In addition to conducting transient experiments, the TREAT
Reactor was built to allow neutron radiography of experimental capsules and fuel elements that had been
irradiated in TREAT or in other reactors. The original facility included the TREAT Reactor, below grade
fuel storage, a reactor filtration/cooling system (F/CS), and an overhead crane. The reactor first achieved
criticality on February 23, 1959. Subsequent modifications to TREAT resulted in expansion of the
building superstructure; construction of additional below grade fuel storage and experiment test loop
storage capacity; installation of a 60-ton overhead crane; addition of a collection system for suspect liquid
waste; and upgrades to facility safety and support systems (e.g., electrical, heating, ventilation, and air
conditioning) to support continued and expanded reactor operations.

The TREAT Reactor has been in a cold standby configuration since 1994. The reactor remains fueled
with control rods fully inserted and rod drive systems electrically disconnected to prevent operations.
Subsequent to reactor inactivation, the primary missions performed in the TREAT Reactor building
(MFC-720) have included storage of TREAT Reactor fuel and other nuclear materials and facility and
system maintenance, with inspection of the reactor and reactor systems as a secondary mission. Other
activities performed in the TREAT Reactor building during cold standby mode have included
demonstration of a plasma hearth treatment technology and operation of an analytical chemistry



laboratory, both are no longer in operation. The Plasma Hearth Project enclosure and miscellaneous
equipment have been abandoned in-place (south high bay). Current activities and operations performed in
the TREAT Reactor building include the following:

Inspection and surveillance of nuclear material stored in the facility
Radioactive and nuclear material receipt, storage, and handling (e.g., radioactive sources)
Non-reactor training and experiments involving radioactive material and radiation-generating devices

Maintenance of the facility structure and equipment therein.
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Figure 1. Cutaway view of the reactor building (MFC-720) at the Transient Reactor Test Facility.

2.1 Facility Structure and Layout
The TREAT facility includes the TREAT Reactor, below grade fuel and experiment test loop storage,

a reactor F/CS, and two overhead cranes. In 1988, the reactor underwent its latest upgrade, which
included installation of new instrumentation and control systems and upgrades to and refurbishment of
the rod drive systems (Figure 2). The TREAT control room (MFC-724) is located about 0.5 miles
southeast of the reactor building. The control room is connected to the TREAT Reactor building via
buried cables for transmission of operator commands and receipt of reactor status signals. The TREAT
Reactor building receives electric power from the INL grid and water supply from the firewater system
at MFC.
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Figure 2. Schematic showing the TREAT Reactor building (MFC-720) main floor layout.

3. HAZARDS IDENTIFICATION AND INTERPRETATION

The hazards that have the potential to result in an uncontrolled release of radioactive or hazardous
materials and affect the offsite public, collocated workers, facility workers, or the environment are
required to be evaluated (DOE 2002). A list of potential hazards has been developed to allow a
screening-level evaluation of potential radiologic dose consequences. The list is based on the 34-year
operating history of the TREAT Reactor and lessons learned. The preliminary identification of hazards
allows the definition of design basis accidents (DBAs) and the preliminary identification of safety SSCs
or administrative controls that could be used to prevent or mitigate the consequences of the accidents.



Credit could be taken for the safety SSCs and administrative controls in the preliminary assessment of
accident consequences. If restart of the TREAT Reactor is selected through the NEPA process, detailed
dose consequence analyses will be completed in conjunction with development of the documented safety
analysis, which will determine the final designation of safety SSCs and administrative controls.

Table 1 lists the preliminarily identified hazards and causes and possible preventative and mitigative
measures. The table is not intended to represent or meet the need of the safety basis documentation that
will be required if restart of the TREAT Reactor is selected as the preferred alternative under NEPA. If
this alternative is selected and at the time the safety basis documentation is developed, some potential
accidents may be eliminated from further consideration or others may be added.

The hazardous events, initiators, and initiator likelihoods shown in the first three columns of Table 1
primarily were garnered from historical operating experience and subject matter expert elicitation.
Because Table 1 shows a preliminary identification of hazards, detailed descriptions of each hazard event
are not presented. Based on the elicitation process, an expert judgment consequence category was
assigned to each event for facility workers, collocated workers, and members of the public. The
consequence categories shown in Table 1 are discussed in Section 3.2.

DOE guidance for NEPA accident analyses (DOE 2002) allows inclusion of mitigation in
determining the radiological risk; however, the hazard consequences provided in the following
subsections are the unmitigated values that follow INL GDE-10820, “INL Guide to Safety Analysis
Methodology,” methodology to illustrate the bounding radiological risk. The potential mitigative features
(such as an engineered feature or an administrative action) that could be required are noted in the final
two columns of Table 1.

Based on the contents of Table 1, several of the postulated events were determined to be
representative, bounding, or unique accidents. These accident scenarios, defined as DBAs, include the
following:

. Fuel clad failure (bounds all reactivity insertion accidents)

. Transport vehicle fire (bounds all fire and explosion events)

. Test loop drop (bounds all radioactive material release or direct radiation exposure events)
. Inadvertent nuclear criticality

. External events (consequences bounded by other events)

. Severe seismic event (bounds all natural phenomena hazard events)

. Events involving mechanical failure of the experiment loop while in the TREAT Reactor.

Experience in other reactor facilities indicates that these events typically represent the highest risk in
terms of likelihood and consequence.

3.1 Dose Assessment Methodology

The unmitigated dose analyses for the DBAs are summarized in the following subsections and are
based on the following dose assessment methodology that considers the transport of radiologic material
via the air pathway to downwind receptors. The methodology uses a simple Gaussian plume model to
represent transport and standard dose factors to convert the source term to radiologic impacts. Parameters
for the transport model are discussed first, followed by those necessary to parameterize the equation for
committed effective dose.
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The transport model requires an estimation of the inventory or material at risk (MAR), damage ratio
(DR), airborne release fraction (ARF), respirable fraction (RF), and leak path factor (LPF) in order to
determine the airborne source term (ST). These factors and the values of the factors are explained and
presented in “Airborne Release Fraction/Rates and Respirable Fractions for Nonreactor Nuclear
Facilities” (DOE-HDBK-3010-94) and in “Alternative Radiological Source Terms for Evaluating Design
Basis Accidents at Nuclear Power Reactors” (Regulatory Guide 1.183; NRC 2000). The five-factor
formula from DOE-HDBK-3010-94 for estimating the ST is as follows:

ST = MAR
where:

ST =

MAR =

ARF =

LPF =

X DR X ARF X RF X LPF (1)

the airborne source term: the initial source term and initial respirable source term are
products of the DR, ARF, and RF. A depleted source term after a subsequent stage of
deposition or filtration is a product of the initial source term multiplied by the leak path
factor of the specific stage.

material at risk: the amount of radioactive materials (in grams or curies of activity for each
radionuclide) available to be acted on by a given physical stress.

damage ratio: As defined by DOE-HDBK-3010-94, the DR is the fraction of the MAR
actually affected by a normal operation process or an event sequence. For example, for
normal operations involving nuclear fuel, the Nuclear Regulatory Commission Interim
Safety Guide-5 (NRC 2003, Attachment, p. 7) recommends a value for a fuel rod breakage
percentage of 1%, with a corresponding DR during normal operations of 0.01. During off-
normal (accident conditions), the recommended fuel rod breakage percentage is 10% and the
recommended DR is 0.1.

airborne release fraction: the coefficient used to estimate the amount of a radioactive
material that can be suspended in air as an aerosol and made available for airborne transport
under a specific set of induced physical stresses. ARF is specific to the series of events and
situations that are completed during the course of a potential release.

respirable fraction: the fraction of airborne radionuclides as particles that can be transported
through air and inhaled into the human respiratory system; it is assumed to include particles
that are 10-um aerodynamic equivalent diameter and less.

leak path factor: the fraction of airborne materials transported from containment or
confinement deposition or filtration mechanism (e.g., fraction of airborne material in a glove
box leaving the glove box under static conditions or fraction of material passing through a
HEPA filter).

The committed effective dose (CED) for downwind receptors, which include collocated workers and
members of the public, is estimated from the following:

CED = ST X x/Q X BR X DCF x DC )
where:
v/Q = airborne dispersion values: the y/Q values for downwind distances are site specific. For this

analysis, %/Q values were obtained from RSAC-7 modeling for instantaneous releases using
95 percentile meteorological conditions specific to INL as described in Radiological Safety
Analysis Computer (RSAC) Program Version 7.2 Users’ Manual (INL 2010). For
ground-level, point source releases along the plume centerline, airborne dispersion values are
inversely proportional to the wind speed (U) and horizontal and vertical dispersivities (cy
and o,). In this conservative, screening level dose evaluation, the wind speed was assigned a
value of 1.04 m/s instead of the higher INL average wind speed of 4.3 m/sec.
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The %/Q values for INL are given in Table 2. These were computed assuming the release occurs at
ground level and atmospheric stability class F. These locations correspond to those for collocated
workers, which are scenario dependent, and for members of the public, who are assumed to be located
south of the INL boundary. The closer INL boundary distance is used for accidents occurring at MFC and
the farther distance is used for accidents occurring at TREAT.

Table 2. INL y/Q values at various separation distances.

Distance (m) y/Q value (sec/m’) Potential receptor
100 4.08E-03 Collocated worker
300 1.21E-03 Collocated worker
770 3.87E-04 Facility or collocated worker in TREAT reactor control
building
1,000 2.80E-04 Collocated worker
5,000 4.12E-05 Public (distance from the Hot Fuel Examination Facility to
INL boundary)
6,000 3.36E-05 Public (distance from TREAT to INL boundary)
BR = breathing rate: the assumed breathing rate, described in DOE Order 440.1B, “Worker

Protection Program for DOE,” is 3.33E-4 m’/sec.

DCF = dose conversion factor: published in ICRP-68, “Dose Coefficients for Intakes of
Radionuclides by Workers,” for facility and collocated workers and ICRP-72,
“Age-dependent Doses from Intakes of Radionuclides,” for use in determining dose to
members of the offsite public.

DC = deposition coefficients: used to include plume fallout. The deposition coefficients are

9.78E-01 at 100 m and 9.03E-01 at 6,000 m, respectively.

Facility worker inhalation dose is estimated based on dispersion of airborne radioactive material into
a volume of 16,000 m’, which is the volume of the TREAT (MFC-720) high bay. The resulting facility
worker dose is expressed as:

CED = —— x 60 sec/min X BR x DCF )
16,000m

The CED for facility workers located within the TREAT Reactor building is expressed in units of
rem/min. This allows a facility worker inhalation dose to be estimated based on worker stay time, because
workers are trained to evacuate the building in the event of a radioactive material release event. Once the
workers have evacuated the building, the inhalation doses are significantly lower. In some of the accident
scenarios, the facility worker could be located in the TREAT Reactor control building, which is
approximately 770 m from the TREAT Reactor building. Facility worker doses in these scenarios are
computed using Equation 2.

The inhalation and cloud gamma doses are calculated by RSAC using the finite plume model and the
RSAC default decay time for the exponential decay function (labeled “Exposure Time” in the RSAC
gamma dose output section) of zero seconds. The default time of zero seconds allows RSAC to determine
the decay time necessary to result in 100% release.

Although a fire may be a longer duration event than other radioactive material releases, airborne
dispersion is evaluated as discussed above for an instantaneous release. This is conservative because the
airborne dispersion parameters for longer-duration events (such as fires with significant plume rise) are
lower than those for instantaneous releases.

18



3.2 Consequence Interpretation

Radiological risk is defined in terms of dose and likelihood of occurrence. In the hazards analysis that
will be conducted to support the documented safety analysis, the radiological risk will be used to
determine the need for safety SSCs for facility workers, collocated workers, and for the offsite public. In
this document, the radiological risk will be used to illustrate whether or not DBAs have the potential to
require SSCs. If it is clear that SSCs will be required, mitigation provided by the SSC could be accounted
for in determination of dose and event likelihood in subsequent analyses. They are not accounted for in
the following analyses. The radiological risk evaluation guidelines used at INL are shown in Table 3
(from GDE-10820). The consequence categories largely correspond to the U.S. Environmental Protection
Agency-recommended emergency planning action guide levels.

Table 3. Idaho National Laboratory risk evaluation guidelines.

Collocated and

Event Likelihood Facility Worker Consequences Offsite Public Consequences
Anticipated (107 to 107 /year) 5.0 rem (L) 0.5rem (L)
Unlikely (10 to 10™/year) 25 rem (M) 5 rem (M)
Extremely unlikely (10 to 10/year) 100 rem (H) 25 rem (H)

4. UNMITIGATED DESIGN BASIS ACCIDENT ANALYSES

Based on the preliminary assignment of consequence category and likelihoods shown in Table 1, the
following events were selected for analysis because they are the most representative, bounding, or unique
potential accident events:

e Reactor fuel clad failure; this event bounds all reactivity insertion accidents
e Transport vehicle fire; this event bounds all fire and explosion events

e Test loop drop; this event bounds all material handling accidents that result in radioactive material
release or direct radiation exposure events

e Inadvertent nuclear criticality
o Externally initiated events
e Impact to the core; this event bounds all scenarios involving reactor refueling events

e Drop impact to the core by the test loop; this event bounds all scenarios involving insertion or
removal of the test loops from the reactor

e Sodium fire impacting the core and experiment; this event bounds all scenarios potentially resulting
in an energetic release of material from the experiment that could impact the TREAT core.

411  Fuel Clad Failure

A fuel clad failure is most likely to provide the bounding dose consequence for operation of the
TREAT Reactor. The event is postulated to initiate during an unexpected reactivity insertion event,
resulting in temperatures that could be high enough to damage the fuel clad and release fission products
from the TREAT core fuel assemblies. This evaluation considers that a portion of the reactor core is
heated to a sufficiently high temperature to permit the release of 65% of the fission product inventory as
fuel assembly boundaries (fuel cladding) are breached. The likelihood category of the potential initiating
events is unlikely.

The MAR in this scenario includes the radionuclide inventory of the conservative TREAT core
configuration (INL 2013, Appendix E). The unmitigated analysis for this event takes no credit for safety
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features that could mitigate the consequences. For the unmitigated analysis, the conservative TREAT core
MAR is assumed to be the entire core inventory for a 20-year operating history (one week after it has
ended), plus the inventory produced by the special testing program and an additional 2,500-MJ transient.
The 20-year inventory is based on the assumption that for 20 years, the reactor core has been operated
weekly at a steady-state power level of 120 kW for a period of 4 hours and has produced a 5,000-MJ
transient. The number of transients (1,040) during the 20-year period is approximately 18% in excess of
the number of transients estimated by the user community for the lifetime of the facility, and each
transient is approximately 22% in excess of the 100% design energy transient of the reactor. The special
testing program inventory is based on the assumption that for 33 and 1/3 days, the reactor has produced a
3,500-M1 transient once every 8 hours for a total of 100 transients. Values used to estimate the source
term for uptake in this event are shown in Table 4.

Table 4. Release factors for a fuel clad failure caused by excessive reactivity, resulting in airborne
releases.

Radionuclide DR ARF RF LPF ADJ* Applicable Release Scenario
Noble gases and 6.50E-01 1.00E+00 1.00E+00 1.00E+00 6.50E-01 All materials in the gaseous
halogens state can be transported and
inhaled

Actinides 6.50E-01 5.00E-04 5.00E-01 1.00E+00 1.63E-04 Plutonium exposed to thermal
stress (DOE-HDBK-3010-94,
p. 4-2)

Uranium and 6.50E-01 1.00E-03 1.00E+00 1.00E+00 6.50E-04 Uranium metal exposed to

fission products thermal stress (DOE-HDBK-

3010-94, p. 4-3)

a. ADJ =  Net adjustment = DR*ARF*RF*LPF.

DR = 0.65 (based on engineering judgment of the amount of material in the region of the core
impacted from a reactivity insertion accident).

ARF = Noble gases and halogens are assumed to be gaseous and available for transport. Values for
actinides, uranium, and fission products are taken from DOE-HDBK-3010-94 and are
applicable to noncombustible solids exposed to thermal stress.

RF = Noble gases and halogens are assumed to be gaseous and available for inhalation. Values for
actinides, uranium, and fission products are taken from DOE-HDBK-3010-94 and are
applicable to noncombustible solids exposed to thermal stress.

LPF = 1.0 (standard assumption for assessment of unmitigated consequences in DOE facilities and
activities and is appropriate for a fuel clad failure event in an unconfined space).

ADJ = Net adjustment = DR*ARF*RF*LPF. This is provided for comparison between scenarios.

Using appropriate values for each factor give the inhalation and cloud gamma dose consequences
shown in Table 5. The doses shown do not credit safety SSCs or administrative controls. Doses assume
the facility worker is located in the TREAT Reactor building, which is unlikely.

Dose evaluation guidelines (EGs) for the public and facility workers are 5 and 25 rem, respectively,
for unlikely event initiators. As shown in Table 5, the conservative screening dose does not exceed the
EG for the public. The conservative screening dose EG for collocated workers is exceeded. The
conservative screening dose for the facility worker exceeds the EGs for an unlikely event if they are
located in the TREAT Reactor building. This event would only occur during transient testing or during
the cool down period following a transient test. Therefore, the doses at 770 m are applicable for facility
workers and collocated workers because they all would be located in the TREAT Reactor control
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building. This relocation qualifies as a specific administrative control. At 770 m, doses relative to those
shown in Table 5 would be reduced by specific administrative controls that could be enforced to mitigate
the consequences of such an accident, which could include evacuation from the TREAT Reactor control
building.

Table 5. Conservative screening doses for fuel clad failure.

Collocated Worker (rem) Offsite Public
Facility Worker at 6,000 m
MAR Source (rem/min) At 100 m At300 m At 770 m (rem)
CED 5.1E+01 1.8E+02 5.3E+01 1.7E+01 9.2E-01
_ Core Cloud gamma - 1.1E+02 3.3E+01 1.0E+01 6.8E-02
inventory
Total 5.1E+01 2.9E+02 8.6E+01 2.8E+01 9.9E-01

41.2 Transport Vehicle Fire

The lifting and handling of shipping containers requires the use of a transport vehicle. These vehicles
introduce the potential for a vehicle fire that is postulated to occur during transport or during transfer
container loading/unloading operations. The assessment of dose consequences assumes that a transport
vehicle fire is caused by a fuel leak and ignition, resulting in a breach of the experiment test loop transfer
cask. This evaluation only considers material that is affected by thermal stresses from the fire as the
transfer cask boundaries are breached. The likelihood category of the initiating event is anticipated.

The MAR in this scenario is the bounding radionuclide inventory of the experiment assembly (INL
2013, Appendix E). The unmitigated analysis for this event takes no credit for safety features that could
mitigate the consequences. For the unmitigated analysis, the experiment test loop MAR is assumed to be
the contents of 2.7 kg (7 advanced oxide pins) of mixed oxide (75% UQO, -25% PuO,) at a burn-up level
of 9%, then allowed to decay for 1 year as discussed in TEV-1832, “Overview of Anticipated Transient
Test Experiments.” Values used to estimate the source term for uptake in this event are shown in Table 6.

Table 6. Release factors for airborne releases from a transport vehicle fire.

Radionuclide DR ARF RF LPF ADJ Applicable Release Scenario
Noble gases and  1.00E-01 1.00E+00 1.00E+00 1.00E+00 1.00E-01  All materials in the gaseous
halogens state can be transported and
inhaled

Actinides 1.00E-01 5.00E-04 5.00E-01 1.00E+00 2.50E-05 Plutonium exposed to thermal
stress (DOE-HDBK-3010-94,
p. 4-2)

Uranium and 1.00E-01 1.00E-03 1.00E+00 1.00E+00 1.00E-04 Uranium metal exposed to

fission products thermal stress

(DOE-HDBK-3010-94, p. 4-3)

DR = 0.1 (based on engineering judgment of the amount of material impacted from an engulfing
fire, where the source material contains low amounts of combustibles and originates within
multiple layers of protection).

ARF = Noble gases and halogens are assumed to be gaseous and available for transport. Actinides,
uranium, and fission products are taken from DOE-HDBK-3010-94 and are applicable to
noncombustible solids exposed to thermal stress.
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RF = Noble gases and halogens are assumed to be gaseous and available for inhalation. Actinides,
uranium, and fission products are taken from DOE-HDBK-3010-94 and are applicable to
noncombustible solids exposed to thermal stress.

LPF = 1.0 (standard assumption for DOE facilities and activities and is appropriate for a fire event in

an unconfined space).
ADJ = Net adjustment = DR*ARF*RF*LPF.

Using the appropriate values for each factor give the inhalation and cloud gamma dose consequences
shown in Table 7.

Table 7. Conservative screening doses for a transport vehicle fire.

Collocated Worker (rem) Offsite Public at
Facility Worker 6,000 m
MAR Source (rem/min) At100m At300m At770 m (rem)
CED 3.9E-02 1.0E-01 3.0E-02 9.5E-03 1.2E-03
Testloop 0 4 gamma : STE-06  1.7E-06  S.4E-07 1.8E-07
iventory
Total 3.9E-02 1.0E-01 3.0E-02 9.5E-03 1.2E-03

Dose consequence EGs for the public and collocated and facility workers are 0.5 and 5 rem,
respectively, for anticipated events. As shown in Table 7, the conservative screening doses do not exceed
the EG for the public, collocated workers, or facility workers. No controls would be needed to protect the
public and workers and none have been credited in this analysis.

41.3 Test Loop Drop

This scenario evaluates the consequences of a radioactive material release that could result if a test
loop is breached accidentally. This could occur if the test loop were to be severely impacted by an object
or if the loop impacted a stationary object during transfer. The severe impact is most likely initiated by a
failure of the reactor building crane or of the reactor building structures supporting the crane during loop
handling operations. Crane failures could result from structural/mechanical failures, electrical failures,
and operator errors; it is assumed that the reactor building support structure could fail during an
earthquake. The impact is assumed to cause a total breach of all fuel containment barriers. Depending on
whether a loop or a test train is involved and whether the accident occurs before or after the experiment
transient, these barriers could consist of one of the casks, the loop secondary vessel, the loop primary
vessel, the security can, or the fuel pin cladding. The likelihood categories for initiating events are
unlikely for a seismically induced event and anticipated for an event initiated by operator error or
mechanical failure.

The MAR in this scenario is the bounding radionuclide inventory for the experiment assembly. The
unmitigated analysis for this event takes no credit for safety features that could mitigate the consequences.
For the unmitigated analysis, the experimental test loop MAR is assumed to be the contents of 2.7 kg
(7 advanced oxide pins) of mixed oxide (75% UO, -25% PuQ,) at a burnup level of 9% that is allowed to
decay for 1 year. Values used to estimate the source term for uptake in this event are shown in Table 8.

DR = 1.0 (based on engineering judgment of the amount of material impacted from a test loop
impact).

ARF = Noble gases and halogens are assumed to be gaseous and available for transport. Actinides,
uranium, and fission products are taken from DOE-HDBK-3010-94 and are applicable to the
spill of powders, assuming that the energy of the event is sufficient to generate powder from
the solid radioactive material.
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RF = Noble gases and halogens are assumed to be gaseous and available for inhalation. Actinides,
uranium, and fission products are taken from DOE-HDBK-3010-94 and are applicable to the
spill of powders, assuming that the energy of the event is sufficient to generate powder from
the solid radioactive material.

LPF = 1.0 (standard assumption for DOE facilities and activities and is appropriate for an impaction
event in an unconfined space).

ADJ = Net adjustment = DR*ARF*RF*LPF.

Table 8. Release factors for airborne releases from a test loop drop.

Radionuclide DR ARF RF LPF ADJ Applicable Release Scenario
Noble gases and 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 All materials in the gaseous
halogens state can be transported and

inhaled
Actinides, 1.00E+00 2.00E-03 3.00E-01 1.00E+00 6.00E-04 Solids exposed to free-fall spill
uranium, and and impaction stress
fission products (DOE-HDBK-3010-94, p. 4-9)

Using appropriate values for each factor give the inhalation and cloud gamma dose consequences
shown in Table 9.

Table 9. Conservative screening doses for a test loop drop.

Collocated Worker (rem) Offsite Public
Facility Worker at 6,000 m
MAR Source (rem/min) At100m At300m At770 m (rem)
CED 2.5E+00 8.8E+00 2.6E+00 8.3E-01 2.5E-01
Testloop 04 gamma 1 I.IE-04  33E05  1.0E-05 3.5B-06
iventory
Total 2.5E+00 8.8E+00 2.6E+00 8.3E-01 2.5E-01

Dose consequence EGs for the public and facility workers are 5 and 25 rem, respectively, for unlikely
events and 0.5 and 5 rem for anticipated events. As shown in Table 9, the dose EG is not exceeded for the
public. The conservative screening dose for facility workers could exceed the EG for an unlikely event
when an exposure time is greater than about 10 minutes. The conservative screening dose for facility and
collocated workers could exceed EGs for an anticipated event. Therefore, safety SSCs and/or specific
administrative controls may be required as shown in Table 1. However, they have not been credited in the
screening level dose results shown in Table 9.

4.1.4 Inadvertent Nuclear Criticality

DBAs in this category include violations of mass, geometry, or moderation controls. If restart of the
TREAT Reactor is selected as the preferred alternative, the nuclear criticality double contingency
principle applicable to Hazard Category-2 facilities will be satisfied. This requires that two or more
independent, concurrent, and unlikely upsets in process conditions must occur before an accidental
nuclear criticality could occur. Evaluations will be conducted during development of the preliminary
documented safety analysis to determine the need for criticality safety requirements (i.e., specific
packaging configurations for high-fissile materials) pertaining to this facility.

415 External Event

Events in this category include plane crash, vehicle crash, and adjacent building fire/explosion. Plane
crashes at INL are considered to be beyond extremely unlikely due to diversion of air traffic and based on
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air transportation safety information. Vehicle crashes and adjacent building fire/explosions will not have a
significant impact on the radiologic sources at TREAT. Therefore, there is no anticipated release of
radioactive material from this category of accidents should they occur.

41.6 Impact (Natural Phenomena) to the Core

This scenario considers the dose consequences following the impact of a fuel assembly that results
from a failure of the reactor building crane or of the reactor building structures that support the crane
during fuel handling operations. Crane failures could result from structural/mechanical failures, electrical
failures, and operator errors; reactor building support structure failures are most likely to result from
earthquakes. This accident could occur when the fuel assembly is over the core, over the fuel pit area, or
over the floor area. The worst-case accident would be the drop of a fuel assembly over the core during
insertion or removal, leading to the breach of the dropped fuel assembly and subsequent breaching of four
surrounding fuel assemblies in the core. The radiological release consequences of the latter two cases are
bounded by the first, with its five fuel assembly release. The impact is assumed to cause a total breach of
all fuel containment barriers in the impacted core area. The likelihood categories of initiating events are
unlikely for a seismically induced event and anticipated for an event initiated by operator error or
mechanical failure.

The MAR in this scenario consists of the radionuclide inventory from five TREAT fuel assemblies,
with the fuel assemblies corresponding to the conservative core configuration (INL 2013, Appendix E).
The unmitigated analysis for this event takes no credit for safety features that could mitigate the
consequences. For the unmitigated analysis, the five fuel assemblies are considered to be 5% of the entire
core inventory for a 20-year operating history (one week after it has ended), plus the inventory produced
by the special testing program and an additional 2,500-M1J transient. The 20-year inventory is based on
the conservative assumptions that for 20 years, the reactor core has been operated weekly at a steady-state
power level of 120 kW for a period of 4 hours and has produced a 5,000-MJ transient. The number of
transients (1,040) during the 20-year period is approximately 18% in excess of the number of transients
estimated by the user community for the lifetime of the facility, and each transient is approximately 22%
in excess of the 100% design energy transient of the reactor. The special testing program inventory is
based on the conservative assumptions that for 33 and 1/3 days the reactor has produced a 3,500-MJ
transient once every 8 hours for a total of 100 transients. Values used to estimate the source term for
uptake in this event are shown in Table 10.

Table 10. Release factors for airborne releases from a seismic event.

Radionuclide DR ARF RF LPF ADJ Applicable Release Scenario
Noble gases 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 All materials in the gaseous
halogens state can be transported and

inhaled
Actinides, 1.00E+00 2.00E-03 3.00E-01 1.00E+00 6.00E-04 Solids exposed to free-fall
uranium, and spill and impaction stress
fission products (DOE-HDBK-3010-94,
p.4-9)
DR = 1.0 (based on engineering judgment of the amount of material released from a fuel assembly

impact, resulting in a breach of all fuel containment barriers).

ARF = Noble gases and halogens are assumed to be gaseous and available for transport. Actinides,
uranium, and fission products are taken from DOE-HDBK-3010-94 and are applicable to the
spill of powders, assuming the energy of the event is sufficient to generate powder from the
solid radioactive material.
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RF

Noble gases and halogens are assumed to be gaseous and available for inhalation. Actinides,
uranium, and fission products are taken from DOE-HDBK-3010-94 and are applicable to the
spill of powders, assuming the energy of the event is sufficient to generate powder from the
solid radioactive material.

LPF

1.0 (standard assumption for DOE facilities and activities and is appropriate for an impaction
event in an unconfined space).

ADIJ = Net adjustment = DR*ARF*RF*LPF.

Using appropriate values for each factor give the inhalation and cloud gamma dose consequences
shown in Table 11.

Table 11. Conservative screening doses for an impact to the TREAT Reactor core.

Facility Collocated Worker (rem) Offsite Public
Worker at 6,000 m
MAR Source (rem/min) At 100 m At 300 m At 770 m (rem)
Five fuel CED 3.9E+00 1.4E+01 4.2E+00 1.3E+00 7.0E-02
assemblies 4 samma ; 8.7E+00 2.6E+00 8.3E-01 5.3E-03
Total 3.9E+00 2.3E+01 6.7E+00 2.2E+00 7.5E-02

Dose consequence EGs for the public and facility workers are 5 and 25 rem, respectively, for unlikely
events. As shown in Table 11, the conservative screening doses do not exceed the EGs for the public. The
EG for collocated workers is not exceeded at 100 m. The conservative screening doses for a facility
worker could exceed the EG for this unlikely event for exposure times greater than about 6.5 minutes.
The conservative screening dose for facility and collocated workers do exceed the EG for an anticipated
event. Therefore, safety SSCs and/or specific administrative controls may be required as shown in Table
1. However, they have not been credited in the screening level dose results shown in Table 11.

41.7 Drop Impact to the Core and Experiment

This scenario considers the dose consequences following an impact to TREAT Reactor fuel
assemblies as the experiment assembly is being inserted or removed from the reactor. As with a TREAT
Reactor fuel insertion accident, this scenario could result from a failure of the reactor building crane or of
the reactor building structures supporting the crane during experiment handling operations over the
reactor. Requirements for this scenario include (1) the experiment is in or being inserted into the core,
(2) the crane is above the core and experiment, and (3) the crane fails. Crane failures could result from
structural/mechanical failures, electrical failures, and operator errors; reactor building support structure
failures could result from earthquakes. The impact is assumed to cause a total breach of fuel containment
barriers in the impacted area and all experiment fuel barriers. Depending on whether a loop or a test train
is involved and whether the accident occurs before or after the experiment transient, barriers protecting
the experiment could consist of one of the casks, the loop secondary vessel, the loop primary vessel, the
security can, or the fuel pin cladding; for the reactor fuel assemblies, barriers could consist of the fuel
cladding.

The likelihood category of the initiation of a seismically induced event is unlikely and it the category
is anticipated for an event initiated by operator error or mechanical failure. The unmitigated analysis for
this event takes no credit for safety features that could mitigate the consequences.

The MAR in this scenario consists of the radionuclide inventory of five potentially damaged TREAT
fuel assemblies, with the fuel assemblies corresponding to the conservative core configuration plus the
bounding inventory of the experiment as follows:
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The MAR for the five fuel assemblies is taken from the entire conservative core configuration
inventory (INL 2013, Appendix E) for a 20-year operating history (one week after it has ended), plus
the inventory produced by the special testing program and an additional 2,500-M] transient. The
20-year inventory is based on the conservative assumptions that for 20 years, the reactor core has
been operated weekly at a steady-state power level of 120 kW for a period of 4 hours and has
produced a 5,000-M1J transient. The number of transients (1,040) during the 20-year period is
approximately 18% in excess of the number of transients estimated by the user community for the
lifetime of the facility, and each transient is approximately 22% in excess of the 100% design energy
transient of the reactor. The special testing program inventory is based on the conservative
assumptions that for 33 and 1/3 days, the reactor has produced a 3,500-MJ transient once every

8 hours for a total of 100 transients.

The MAR for the experimental test loop is assumed to be the contents of 2.7 kg (7 advanced oxide
pins) of mixed oxide (75% UO, -25% PuQ,) at a burnup level of 9% that is allowed to decay for
1 year.

Values used to estimate the source term for uptake in this event are shown in Table 12. The factors

are consistent with a drop scenario and differ from those for an incident including fire (Table 6). Fire is
not expected to occur in this scenario, based on the following analysis:

The total sodium contained in a MARK-III test loop is about 3.3 kg (3 L). Before the test loop is
removed from the core, the loop sodium is allowed to solidify (freeze) by cooling the test loop below
the melting point (97.8°C). The ignition temperature of sodium in the air depends on the area of
surface exposed: vapor ignites at room temperature (25°C); droplets at about 250°F (121°C); and an
agitated pool at 400°F (204°C). As a result of sample decay heat, some of the sodium near the test
fuel region may remain molten, suggesting that much less than 3.3 kg of sodium would be available
to combust.

- For conservatism, we consider the complete oxidation of 3.3 kg of molten sodium. Given the
enthalpy of sodium combustion (828 kJ/mol) and the molecular weight (62 g/mol), combusting
3.3 kg of sodium would release about 4.4E+07 J.

Heat sink effects will reduce the temperature of any released sodium. If the molten sodium contacts
the metallic uranium or steel, the metal-sodium interface temperature will be at or below the sodium
melting point. For loop rupture while the experiment is within the reactor, the steel in the experiment
assembly and reactor, concrete making up the reactor structure, and uranium shielding will provide
the heat sink.

- For the purposes of illustration, assume that the bulk temperature of 150°C is the temperature at
which molten sodium would burn in a pool. This is between the combustion temperature for
droplets and an agitated pool.

- The heat capacity of steel is 420 J/kg°C and the density is 7.8E+03 kg/m’.

- To raise the temperature from the bulk sodium temperature of 97.8 to 150°C (52.2°C), the
required net heat sink capacity would be 6.99E+05 J/°C, corresponding to 2,000 kg of steel after
applying the steel heat capacity.

- 2,000 kg of steel is equivalent to 0.26 m’, which when compared to the steel contained in the
experiment assembly or reactor components is very small.

This shows that there is every expectation that any sodium released from the loop would solidify prior
to catching fire. Therefore, catching the experiment fuel on fire is simply not likely to occur.

Catching the reactor fuel or carbon on fire is even more remote given that it is difficult to achieve
conditions for self-sustained combustion of graphite (NUREG/CR-4981 1987). If some small portion
of the sodium were to catch fire, the reactor fuel fire would be diffusion limited, slowing the release
of radionuclides from the fuel and resulting in lower peak air concentrations and effective dose.
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Table 12. Release factors for test loop plus reactor core airborne release.

Radionuclide DR ARF RF LPF ADJ Applicable Release Scenario
Noble gases 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 All materials in the gaseous
halogens state can be transported and

inhaled
Actinides, 1.00E+00 2.00E-03 3.00E-01 1.00E+00 6.00E-04 Solids exposed to free-fall spill

uranium, and
fission products

and impaction stress
(DOE-HDBK-3010-94, p. 4-9)

DR = 1.0 (based on engineering judgment of the amount of material that could be released from a
test loop impact on the reactor fuel assembly, resulting in a breach of all fuel containment

barriers).

ARF = Noble gases and halogens are assumed to be gaseous and available for transport. Actinides,
uranium, and fission products are taken from DOE-HDBK-3010-94 and are applicable to the
spill of powders, assuming that the energy of the event is sufficient to generate powder from
the solid radioactive material.

RF = Noble gases and halogens are assumed to be gaseous and available for inhalation. Actinides,
uranium, and fission products are taken from DOE-HDBK-3010-94 and are applicable to the
spill of powders, assuming that the energy of the event is sufficient to generate powder from
the solid radioactive material.

LPF

event in an unconfined space).

ADJ

Net adjustment = DR*ARF*RF*LPF.

1.0 (standard assumption for DOE facilities and activities and is appropriate for an impaction

Using the values for each factor given in Table 12, the inhalation and cloud gamma dose

consequences were computed as shown in Table 13.

Table 13. Conservative screening doses for impact of the reactor core by the experiment.

Collocated Worker (rem) Offsite Public
Facility Worker at 6,000 m
MAR Source (rem/min) At 100 m At 300 m At 770 m (rem)

Core inventory CED 3.9E+00 1.4E+01 4.2E+00 1.3E+00 7.0E-02
Cloud gamma - 8.7E+00 2.6E+00 8.3E-01 5.3E-03

Total 3.9E+00 2.3E+01 6.7E+00 2.2E+00 7.5E-02

Test loop CED 2.5E+00 8.8E+00 2.6E+00 8.3E-01 2.5E-01
inventory Cloud gamma - 1.1E-04 3.3E-05 1.0E-05 3.5E-06
Total 2.5E+00 8.8E+00 2.6E+00 8.3E-01 2.5E-01

Total CED 6.4E+00 2.3E+01 6.8E+00 2.2E+00 3.2E-01
Cloud gamma - 8.7E+00 2.6E+00 8.3E-01 5.3E-03

Total 6.4E+00 3.2E+01 9.3E+00 3.0E+00 3.2E-01

Dose consequence EGs for the public and facility workers are 5 and 25 rem, respectively, for unlikely
events. As shown in Table 13, the conservative screening doses do not exceed the EGs for the public. The
conservative screening doses for facility workers would exceed the EGs for an unlikely event when the
exposure time is greater than 4 minutes. The conservative screening doses for collocated workers at
100 m also would exceed the EG, but collocated workers located further than about 300 m from the
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TREAT Reactor building would have adequate protection. Therefore, safety SSCs and/or specific
administrative controls may be required as shown in Table 1. However, they have not been credited in the
screening level dose results shown in Table 13.

41.8 Sodium Fire Impacting the Core and Experiment

This scenario considers the dose consequences that could occur if the experiment assembly fails while
it is inserted in the TREAT Reactor. The worst-case failure event would involve the 3 L (3.3 kg) of
sodium contained in the cooling loops. Contents of the sodium loop are designed to be contained at the
maximum expected internal pressure and temperature (ANL 1979a, 1979b). However, it is possible that
over-pressuring the experiment package could occur, initiated by (1) excessive heat, 2) loss of heat
rejection capability, and (3) degradation/failure of the sodium loop in the experiment package. It also is
possible that an accident could be initiated by an air-sodium reaction within the cooling loops caused by
operator error or leaks of sealing surfaces (i.e., ports or flanges) of the experiment package.

Sodium self ignites in air at a range of 100 to 320°C, depending on the physical circumstances
(e.g., small static pool or agitated small pool) (SNL 2010) (Berkeley 1972). The maximum operating
temperature of the TREAT Reactor is approximately 600°C. If heat rejection in the experiment package is
insufficient, allowing the internal temperature to rise above the self-ignition temperature, the liquid
sodium in the cooling loop could burn in the presence of air. The sodium combustion reaction equations
provided by Morewitz (1979) are:

Sodium Oxide Reaction: 4Na (1) + O, (g) = 2Na,O (s)
Sodium Peroxide Reaction: 2Na (1) + O, (g) = Na,0, (s)
Sodium Hydroxide Reaction: 2Na (1) + 2H,0 (g) = 2NaOH + H,

In the air-cooled TREAT Reactor, minimal water vapor would be expected and the production of
sodium hydroxide would be unexpected. The sodium oxide reaction dominates the combustion reaction
because most of the sodium reacted with the air produces Na,O. However, higher energy release is
associated with the production of sodium peroxide. The amount of sodium oxidized would depend on the
availability of air within the sodium loops.

If the molten sodium is retained in the primary containment of the experiment loop, the availability of
air would be limited to the amount not purged and replaced with inert gas as the experiment is assembled.
Leakage of air into the experiment assembly will not occur because the internal inert gas pressure is
higher than atmospheric. Therefore, the amount of sodium oxidized would be small and limited by the
availability of air. The oxidation rate would be diffusion limited and would occur over a relatively long
time period. It is likely that there would be no radiologic release from either the reactor core or
experiment fuel.

If molten sodium is released from the primary containment into the secondary containment and the
secondary containment holds, the oxidation process could be more rapid and the experiment assembly
could become over pressurized, potentially damaging the fuel in the experiment and the surrounding
reactor fuel elements. Release of molten sodium into the reactor cavity would be noted by the sensors and
the reactor would be shutdown. Catching the reactor fuel or carbon on fire is unlikely given that it is
difficult to achieve conditions for self-sustained combustion of graphite (NUREG/CR-4981 1987). If
some small portion of the sodium were to catch fire, the reactor fuel fire would be diffusion limited,
slowing the release of radionuclides from the fuel and resulting in lower peak air concentrations and
effective dose.

The likelihood for this event historically has been mitigated by the design and construction
requirements of the MARK-III test assembly and pre-testing prior to insertion into the reactor. Based on
the 25-year transient testing history of TREAT, there has never been a loss of containment from an
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experiment. Therefore, the initiating event likelihood category is unlikely based on an estimated 500 tests
during the operating history.

The MAR in this scenario consists of the radionuclide inventory of six TREAT fuel assemblies,
which is determined by the space occupied by the sodium loop experiment while in the core plus the
bounding inventory of the experiment as follows:

e The MAR for the six fuel assemblies is based on the area occupied by a sodium loop while in the
core. The core inventory corresponds to that for a 20-year operating history (one week after it has
ended), plus the inventory produced by the special testing program and an additional 2,500-MJ
transient. The 20-year inventory is based on the conservative assumptions that for 20 years the reactor
core has been operated weekly at a steady-state power level of 120 kW for a period of 4 hours and has
produced a 5,000-M1J transient. The number of transients (1,040) during the 20-year period is
approximately 18% in excess of the number of transients estimated by the user community for the
lifetime of the facility, and each transient is approximately 22% in excess of the 100% design energy
transient of the reactor. The special testing program inventory is based on the conservative
assumptions that for 33 and 1/3 days, the reactor has produced a 3,500-M1J transient once every
8 hours for a total of 100 transients.

The analysis assumes that fire ensues and affects the experiment fuel and reactor fuel. This is a
conservative assumption and is not likely to occur for the following reasons:

o After the onset of combustion, the molten sodium will be released from the test assembly where it
will cool on contact with the reactor components.

e Given the self-combustion temperature required to ignite the TREAT fuel (discussed in
Section 4.1.7), an experiment fire is not expected to cause the TREAT fuel to burn.

Other values used to estimate the source term for uptake in this event are shown in Table 14. The
ARF and RF factors for the experiment are consistent with an incident, including fire (Table 6); although
based on event likelihood and the analysis provided for the accident in Section 3.2.7, fire is not expected
to occur.

Table 14. Release factors for a sodium fire that results in airborne releases.

Applicable Release
Radionuclide DR ARF RF LPF ADJ Scenario
Noble gases 6 assemblies in core  1.00E+00 1.00E+00 1.00E+00 1.00E+00 All materials in the
and halogens  100% damage to gaseous state can be
experiment transported and inhaled
Actinides 6 assemblies in core  5.00E-04 5.00E-01 1.00E+00 2.50E-04 Plutonium exposed to
100% damage to thermal stress
experiment (DOE-HDBK-3010-94,
p. 4-2)
Uranium and 6 assemblies in core  1.00E-03  1.00E+00 1.00E+00 1.00E-03 Uranium metal exposed
fission 100% damage to to thermal stress
products experiment (DOE-HDBK-3010-94,
p-4-3)

DR = 0.1 (based on engineering judgment of the amount of material impacted from an engulfing
fire, where the source material contains low amounts of combustibles and originates within
multiple layers of protection).
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ARF = Noble gases and halogens are assumed to be gaseous and available for transport. Actinides,
uranium, and fission products are taken from DOE-HDBK-3010-94 and are applicable to
noncombustible solids exposed to thermal stress.

RF = Noble gases and halogens are assumed to be gaseous and available for inhalation. Actinides,
uranium, and fission products are taken from DOE-HDBK-3010-94 and are applicable to
noncombustible solids exposed to thermal stress.

LPF = 1.0 (standard assumption for DOE facilities and activities and is appropriate for a fire event in

an unconfined space).
ADJ = Net adjustment = DR*ARF*RF*LPF.

Using the values for each factor given in Table 14, the inhalation and cloud gamma dose
consequences were computed as shown in Table 15.

Table 15. Conservative screening doses for a sodium loop fire also impacting the reactor core.

Collocated Worker (rem) Offsite Public
Facility Worker at 6,000 m
MAR Source (rem/min) At100m  At300m  At770 m (rem)

Core inventory CED 4.7E+00 1.7E+01 4.9E+00 1.6E+00 8.5E-02
Cloud gamma - 1.0E+01 3.0E+00 9.7E-01 6.3E-03

Total 4.7E+00 2.7E+01 7.9E+00 2.5E+00 9.1E-02

Test loop CED 3.9E-01 1.0E+00 3.0E-01 9.5E-02 1.2E-02
inventory Cloud gamma - 57E-05  1.7E-05  5.4E-06 1.8E-06
Total 3.9E-01 1.0E+00 3.0E-01 9.5E-02 1.2E-02

Total CED 5.1E+00 1.8E+01 5.2E+00 1.7E+00 9.7E-02
Cloud gamma - 1.0E+01 3.0E+00 9.7E-01 1.8E-02

Total 5.1E+00 2.8E+01 8.2E+00 2.6E+00 1.2E-01

Dose consequence EGs for the public and facility workers are 5 and 25 rem, respectively, for unlikely
events. As shown in Table 15, the conservative screening doses for members of the public do not exceed
the EGs. The dose EG for a collocated worker at 100 m is exceeded for unlikely events. The screening
level doses for facility workers could exceed the EGs for an unlikely event for exposure times greater
than about 5 minutes. However, this event would only occur during transient testing or during the
cool-down period following a transient test. Therefore, the doses at 770 m are applicable for facility
workers and collocated workers because they all would be located in the TREAT Reactor control
building. This relocation qualifies as a specific administrative control. At 770 m, doses relative to the
conservative screening doses could be reduced by other specific administrative controls not credited in
this screening-level evaluation.
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