
Final Report

Development of Parallel Computing Framework to

Enhance Radiation Transport Code Capabilities for Rare

Isotope Beam Facility Design

Funded by DOE under DE-FG02-07ER41473

M. A. Kostin (PI)1, N. V. Mokhov2 and K. Niita3

1Facility for Rare Isotope Beams, Michigan State University, 640 South Shaw Lane,

East Lansing, MI 48824, USA

2Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

3Research Organization for Information Science and Technology, Tokai-mura,

Naka-gun, Ibaraki-ken 319-1106, Japan

Funding received in k$

 FY 07/08

Michigan State University 98

Total 98

Abstract
A parallel computing framework has been developed to use with general-purpose radiation transport

codes. The framework was implemented as a C++ module that uses MPI for message passing. It is

intended to be used with older radiation transport codes implemented in Fortran77, Fortran 90 or C.

The module is significantly independent of radiation transport codes it can be used with, and is

connected to the codes by means of a number of interface functions. The framework was developed

and tested in conjunction with the MARS15 code. It is possible to use it with other codes such as PHITS,

FLUKA and MCNP after certain adjustments. Besides the parallel computing functionality, the framework

offers a checkpoint facility that allows restarting calculations with a saved checkpoint file. The

checkpoint facility can be used in single process calculations as well as in the parallel regime. The

framework corrects some of the known problems with the scheduling and load balancing found in the

original implementations of the parallel computing functionality in MARS15 and PHITS. The framework

can be used efficiently on homogeneous systems and networks of workstations, where the interference

from the other users is possible.

Existing Parallel Computing Capabilities of Radiation Transport Codes

Used for RIA R&D and FRIB
It is a conventional knowledge that calculations performed for shielding applications can be time

consuming. A number of reasons may be responsible for that, for example the amount of shielding

material in models, and comprehensive modeling of the physics processes. Various biasing and variance

reduction techniques have been developed over the time to deal with this problem. Another way to

mitigate the problem is to use parallel computing capabilities which become available with rapidly

growing computational resources. Most of radiation transport codes today are capable of performing

calculations on parallel computers.

This project was developed for needs of design of RIA and FRIB project. Two main radiation transport

codes that we used are MARS15 [1]-[3] and PHITS [4].

In the original MARS15 parallel framework, described in reference [5], only a linear topology of

processes implemented, where one master process receives data consequently from a number of

workers. When the data are sent is determined by the master process only. Each worker process does

not have any predetermined number on maximum number of events it needs to process. This

configuration allows a great flexibility when the system is used on a network of workstations where the

calculation speed is different on each workstation. Despite of this flexibility, a problem arises sometimes

at the end of calculations when a total requested number of events (Ntotal) is almost reached. Since each

worker does not have a pre-set limit on the number of events it is allowed to calculate, it is possible that

the number of events a worker processed since the last data exchange is too great. It this case this local

data cannot be used anymore. In this case this process is dropped out, and the rest of calculations is

finished using a smaller number of worker processed. And if the number of dropped processed is large,

the rest of the calculations must be carried out by only a small fraction of processes. In some instances

we found that this scheduling artifact leads to a significant increase in the computation time. An

illustration of this problem is shown in Figure 1.

The scheduling in the PHITS code is performed in a different way. All calculations are carried out in

batches. Each process has a fixed number of events to process. When that number of events is

processed, the data are sent to the master process. The only function of the master process is the

bookkeeping, it does not run calculations. This is illustrated in Figure 2 which shows a load of Linux

cluster. This self-scheduling approach eliminates the load balancing problem like the one described

above that persists in the MARS15. But the drawback of this approach is inability to use all resource

efficiently on a network of workstations where each process can have a different execution speed. In

this case, since the data is received from the worker processes consequently (linear topology), the

master process has to wait for the slowest process, and effectively the execution speed of all the

processed becomes that of the slowest one.

Figure 1 Schematic of data exchanges that illustrate the problem of worker processes terminated if the number of calculated
events exceeds a limit. Ni

k is the counter of processed events in each process where i is the index of exchange cycle and k is
the rank of the process (the master process is assumed to have the rank 0). The counter of processed events is reset in the
workers after each data exchange. Ntotal is total number of events requested by the user to complete the calculations.

Figure 2 Chart that shows a load of a Linux cluster with PHITS calculations. The master process in PHITS original framework
only collects data.

Another radiation transport code FLUKA [6] (not used in RIA R&D or FRIB design) does not offer a

parallel computing at all. FLUKA users need to run a number of single-CPU calculations and then to post-

process and merge the results of these calculations.

The code MCNP/MCNPX [7] uses a framework by concept similar to that of PHITS. It employs self-

scheduling approach.

Out of all these codes only MCNP offers a checkpoint facility which allows restarting calculations from a

checkpoint. Whereas MARS and PHITS save some intermediate results during calculations, these cannot

be used to restart the calculations if those are prematurely terminated.

All the discussed radiation transport codes use a linear topology of processes in which the master

process receives the data from the workers consequently one by one. The communications between the

processes become a bottleneck if a number of processes is large (the effect is expected to be significant

at a few thousands processes) and the efficiency of the parallel computing degrades. This could be

mitigated with more advanced topologies (for example with a tree-like topology), but it was not yet

implemented in any of these codes.

Description of New Framework

Implementation Language
The original idea was to make this new framework as much independent of radiation transport codes it

could be used with as possible. Most of these codes were developed over long periods of time, and

were implemented in FORTRAN77 for the most part. FORTRAN77 data structures must be handled

explicitly in a parallel code which negates the whole idea of the framework independence from any

particular radiation transport code. For example, the data handling in the original MARS15 framework

needed to pack/unpack data or create derivative types require code that does it by calling MPI functions

for each MARS15 data array explicitly. And any time the list of arrays is changed, or dimensions of the

arrays are changed, these functions must be modified in order to accommodate the recent update. This

is inconvenient and error prone. An alternative way for the framework implementation is to segregate

the parallel computing functionality into a software module written in a language that supports the

mechanism of pointers. This way, any action with data structures such as packing and unpacking buffers

or creating derived types can be done in a single loop over the pointers. This concept is illustrated in

Figure 3 and Figure 4. C++ was chosen among several considered candidates because there are freely

distributed compilers for C++, it can be mixed with FORTRAN77, and the language features allows a

good code structure for the framework. FORTRAN90/95 would be another appropriate choice, but there

were not freely available compilers when the project was started. A commonly used in the scientific

community compiler gcc [8] did not support FORTRAN90/95 at the time.

Figure 3 Schematics of the data array arrangement in a FORTRAN77 legacy code with associated array of pointers in the new
framework. Any data manipulation in the framework can be performed as a loop over the pointer instead of doing it for each
array separately and explicitly.

Figure 4 Two examples of pseudo-code. The part of the left shows an example of packing MARS15 data arrays into MPI
buffer. Any time arrays added or removed, or their order is changed, or array sizes are changed, one must explicitly make
changes in this code. The code on the right does the same packing of the data into a buffer but uses the pointers to the
arrays (not available in standard FORTRAN77). The entire structure on the left is now collapsed into a single loop. The order
in which the arrays will appear in the buffer and their sizes are specified at initialization.

Middleware
A comprehensive study of the available middleware was performed during our previous research

work [5]. To summarize, a number of candidates were considered: MPI [9],[10]; CORBA [11]; sockets and

PVM [12]. CORBA provides extensive functionality and is appropriate for distributed computing

applications, but it is also relatively hard to use and its communication overhead may be significant.

Sockets involve little overhead for communications but much of the necessary high-level functionality is

absent. PVM has a long and successful history. The MCNP collaboration [7] however recommended MPI

over PVM, having had substantial experience with both the packages. Also, given our experience, we

could conclude that MPI is the best choice for this particular type of application. Besides being

considered as a standard for programming parallel systems, the MPI functionality seems to match data

structures and the code structure of the considered radiation transport codes quite well. It can use low

level protocols such as TCP/IP which imposes little communication overhead. MPI is available for

machines of all architectures – massive parallel clusters, commodity clusters and networks of

workstations. Freely distributed implementations of MPI such as Open MPI [13] and MPICH [14] are

available together with a number of commercial implementations with performance optimized by the

vendors for their systems.

Code Architecture
The current version of the framework offers only a linear topology of processes. There is only one group

of the processes with one master process and an arbitrary number of worker processes. Each process

replicates the entire geometry and uses the same settings of a studied system. The parallelization is job-

based, i.e. processes are running independently with different initial seeds for the random number

generator. The exchange of results between the master and workers is initiated by the master according

to the scheduling algorithm which will be described later. Besides performing the control task, the

master also runs event histories. This is different from the framework originally implemented in the

PHITS code. This feature is important for systems with a small number of processors.

Figure 5 'Linear' topology of processes. There is one master process and an arbitrary number of workers.

It is quite obvious that each event in a radiation transport code is independent from other events. This

differs from calculations on meshes where each new round does depend on results of previous

iterations. This feature makes the processes in the framework loosely-coupled, and allows information

exchange sessions (rendezvous) as often or rare as we choose without performance penalties. This also

results in a better scalability compared to tightly-coupled calculations on meshes.

During the information exchange sessions the worker processes are inquired consecutively according to

their ranks. In order to avoid possible interference with the running event histories, the workers probe

the signals from the master in an asynchronous mode. A worker starts processing the next event if no

signal from the master is received at the time of the probing. The master can also send out a signal to

stop calculations if the required number of events has been reached. All the intermediate information is

transferred from a worker to the master in a single round. The worker will pack and send a buffer with

service information containing the number of processed events and the seeds for the random number

generator (needed for the checkpoint facility), with the contents of arrays, and with the contents of data

containers.

The data containers are another part of the framework. They were developed to replace the deprecated

single-precision HBOOK histogram package [15] used in the MARS15 code. There are no limitations on

the buffer size because it is dynamically allocated in the framework. All communications are performed

in the MPI standard mode except for the signal probing mentioned above. The order of all the

corresponding ‘send’ and ‘receive’ function calls is carefully matched in order to avoid a deadlock.

We were previously experimenting with various methods of information exchange between the

processes [5]. Among the methods considered there were sending the data with MPI functions for array

elements positioned contiguously in the memory, sending with the MPI functions for packing and

unpacking buffers, and sending data with derived types. The data arrays in the radiation transport codes

are generally positioned in a number of common blocks, therefore they are not in contiguous memory.

The use of the first method would result in excessive communications, since each array should be sent

separately. The other two methods can be used for data located in arbitrary places. The sending data

with derived types involves some overhead to build such types, but this happens only once before the

calculations are started. This is an appropriate method in case when the communications occur

frequently. In our case, however, the processes are loosely coupled with information exchange sessions

to be rare. In addition to that, the checkpoint facility requires functionality to pack and unpack the data

to and from a buffer anyway. This is the same functionality as required for the second method.

Therefore the second method is used in the framework.

Scheduling and Load Balancing
Scheduling is an important issue that is directly related to performance, scaling and fault tolerance.

Since the communications are quite expensive for the current generation of commodity clusters, an

obviously simple approach to the design of the framework would be reducing the amount of

communications as much as possible. In the most extreme case this means collecting the information

from the worker processes only once at the end of calculations. Moreover, the performance can only be

good if the communication time, Tm (the subscript ‘m’ stands for ‘messages’), is much smaller than the

computation time, Tc. On the other hand, the rendezvous must be frequent enough in order to provide

some fault tolerance – it is important to be able to restart the computations from the last checkpoint if a

system failure occurs. The frequent rendezvous are also useful to obtain most recent information about

the calculation speed of each process in order to adjust the load of the process and to achieve a better

load balancing.

The scheduler in the framework compromises between these two issues. It decides when to suspend

the computation and to start a rendezvous. The decision is based on the knowledge of an estimated

time needed for the rendezvous and time needed to process one event, T1. The master process may wait

for a response from a worker for a long time during rendezvous in case of long histories. This waiting

time may significantly prolong the rendezvous. For the framework to be effective, the time between the

rendezvous has to be significantly longer than max{Tm , T1}.

In the first implementation of the parallel computing functionality in the MARS15 code [5], a worker

process is terminated at a rendezvous if the number of locally processed histories combined with the

number of events already collected by the master is in excess of the total number of requested events.

This would most probably to happen when the jobs are close to their end. Time to the next rendezvous

has to be shortened to avoid that and to use the resources more effectively. In the opposite case, the

master or a smaller group of the remaining processes will have to process the rest of histories by

themselves. This may lead to a sizeable computation time increase if the number of terminated

processes is large and the balance of events is still significant. This problem was illustrated in section

Existing Parallel Computing Capabilities of Radiation Transport Codes Used for RIA R&D and FRIB. An

attempt was made to take into account this effect by adjusting the two previous time conditions:

T = min{100 × max{T1 , Tm },0.8 × Tend , 1 hour}, (1)

where T is the time to the next rendezvous, Tend is estimated time to the end of calculations taking into

account the speed of each process. The requirement of 1 hour is based on a human factor. The exchange

time must not exceed a sizeable fraction of a working day. This is to let people deal with potential

problems in their models. The numerical factors 100 and 0.8 are parameters that can easily be changed.

We have found however after several years of use that the situation when the master finishes the

calculations itself still occurs. Further improvements are required despite the fact that the above

scheduling algorithm offers a great load balancing.

The scheduler in the parallel computing implementation in the PHITS code does not have this problem

at all. All calculations are performed in batches where each worker gets a fixed number of events to

process, and the situation when the master must process an excessive number of histories is not

possible. Each process ‘knows’ ahead of time how many events it needs to process, and stops when this

number is reached. This is an example of self-scheduling also implemented in the MCNP code. This

approach works well on homogeneous systems, but is quite inefficient on network of workstations and

systems where each processor may have different performance or interference from the other users is

possible.

The new framework implements features from both scheduling mechanisms. The scheduling still works

as defined in (1), but each process now also knows the maximum number of events it is allowed to

process. This mixed scheduling still provides a great flexibility in load balancing that allows the

framework to be used on a network of arbitrary workstations, and also deals with the scheduling

problems described above.

Figure 6 illustrates a communication time scheme. The first rendezvous occurs in a fixed time period of

10 s. The fixed time period is needed to calculate trial values for T1, Tm and Tend. These values are

calculated at the end of each rendezvous later on, with T1 calculated for each process. Schematics of the

data exchange between a worker and the master process is shown in Figure 7 and is explained above.

The buffer used to send data between the processes is exhibited in Figure 8. It normally includes three

parts: process header with a number of processed events and seeds for the random number generator;

contents of data arrays (these arrays are typically placed in the common blocks); and contents of the

data container (which can be used to replace the HBOOK histograms in MARS15). The same buffer is

also used by the checkpoint facility which will be described later. In the latter case, the buffer will

include the number of processes in the job. There is also space reserved for data structure that would

describe a topology of the processes. This space is not currently used because only one topology has

been implemented, and these data are not needed at this moment.

Figure 6 Time scheme of communications between the processes.

Figure 7 Schematics of the data exchange between the master process and a worker process.

Figure 8 The structure of the buffer used to send data from a worker process to the master process. The same buffer is also
used by the checkpoint facility. In this case the number of processes in a calculation job and the topology of processes is
included. The space for the topology is currently reserved but not used because only one topology has been implemented in
the framework.

Checkpoint Facility
It is not unusual that a computational job terminates prematurely and has to be restarted from the

beginning. This may occur due to a variety of reasons such as power outage, problems with batch

systems, etc. This may cause a significant loss of time since the computational jobs are time consuming

and may take days to complete. Moreover, the radiation transport codes are under constant

development. The recent code modifications sometimes make the codes unstable which may results in

job terminations. Regular debugging techniques are not appropriate in this case because it may take

many days to reach a problematic event.

These problems can be mitigated with a checkpoint facility that was developed as a part of the

framework. The facility allows restarting calculations from a recent checkpoint and not from the very

beginning. A checkpoint is represented with a file with all the information necessary to restart

calculations. The information is saved into two files alternately, so that if the system fails during the

framework saving the checkpoint file, then the previous file would still be available. The checkpoint

facility works both in the parallel and single process regimes. The files are saved after each information

exchange session in the case of parallel computation. In the single process regime, however, the user

defines how often he is willing to use this functionality. The framework was designed to allow merging

several files into a single one, thus allowing combining results from several calculations as long as the

machine word formats are the same. This option is not completely functional at this time and will

require a further development. Currently the facility imposes no limitations in what regime a checkpoint

file can be used regardless of how it was created. For example, it is possible to obtain a checkpoint file in

the parallel computation regime, and to use it to restart calculations in the single process regime.

It is appropriate to say now that the existence of the checkpoint facility changes the strategy of how the

calculations can be performed. The number of events needed to obtain statistically significant results is

rarely known a priori. It is customary to estimate the required number of events using short test

calculations. If these estimates are not accurate enough, the required statistical significance is not

achieved, and the calculations must be restarted from the very beginning after appropriate corrections

are made. The necessity to restart the calculations from the beginning may cause significant delay in

obtaining results is some instances. With the checkpoint facility, however, it is not an issuer anymore,

because the statistics can always be improved ‘on-the-fly’.

Handling FORTRAN Arrays
The part of the framework that works with FORTRAN arrays through the pointers is hidden from the

FORTRAN users. The only function that is available to the FORTRAN users is registration of arrays. These

arrays must have a global scope (be in common blocks), otherwise the pointers to these arrays will not

be valid. All other functions are used by the framework only (although they can be accessed from a C++

code if added to the radiation transport codes). This part of the framework is organized as a module.

There is a single pointer manager that is built as a global object that cannot be copied. The manager

keeps track of all the registered arrays. The manager recognizes the following FORTRAN types: INTEGER,

REAL, DOUBLE PRECISION. The functions that can be used from the inside of the module include the

registration of an array; reset the array contents to zero; read the contents from a buffer and save it into

the array; read the content from a buffer and add it to the existing contents; write the contents to the

buffer; and calculate the size of the array and memory size needed for this array.

Data Containers/Histograms
The data containers module was originally designed to replace the deprecated third party library

HBOOK [15] in MARS15. The HBOOK is single precision software that is no longer officially supported.

The data containers (or histograms) are organized as a module with a single global manager object. The

users can book the containers and access their functionality via interface functions. The containers are

all in double precision (although other types can be added), and are available as 1-D (one index), 2-D

(two indexes) and 3-D (three indexes, for example X, Y and Z). There is also one-dimensional container

with variable bin size. Each bin in a container keeps both the mean value and variance of a stored value

(for example particle flux), and thus can also be used as a bookkeeping tool for the radiation transport

codes. For example, two arrays in MARS15 that keep the mean values and variances of the star density

can be replaced with a single container. In principle, all the bookkeeping of most the values that the

radiation transport codes collect and keep in the common blocks can be outsources to the data

container module in a uniform manner. The containers are stored in the dynamic memory therefore

there is no hardcoded limit on the number and the size of the data arrays that can be stored. The data

containers can be saved in a separate file which can be further converted into an HBOOK file or a ROOT

file or any other format. Converter programs are outside of the scope of this project, and are needed to

be developed separately.

Each data container/histogram is identified with two parts: a numerical identifier and a character

identifier. For the histogram identifier to be valid, it must have a positive numerical part and any (empty

or not empty) character part, or the numerical part equal to zero and the character part which is not

empty. The numerical part cannot be negative. It would normally be sufficient to keep only the

character identifier. The numerical part was introduced for consistency with the HBOOK package in

order to minimize code changes where HBOOK is used. The character part of the identifier was included

for compatibility with the ROOT package.

The following functionality is currently supported. The FORTRAN users can check if a histogram with a

specified identifier exists, book or delete a histogram, access histogram attributes, fill histogram, reset

the contents to zero. There is also additional functionality that is available to the framework exclusively:

read or write a whole histogram or contents only from/to a buffer, read the contents from a buffer and

add to the existing contents, calculate the memory size needed to store the histogram.

Performance Test
A performance test was conducted on the NSCL’s DOEHPC Linux cluster. The cluster consists of 16 dual

CPU nodes. Each CPU is a 2.6 GHz AMD Opteron™ 252 processor with 1024 kB of cashe memory. The

nodes are equipped with 4 GB of memory and connected via a 1 Gb/s network. The MPICH2

implementation of MPI was used for the message passing. The test jobs were managed by the TORQUE

Resource Manager [17]. The test was conducted using a MARS15 model consisted of one hundred

geometry zones. The performance test measured the speedup as a function of the number of used

processors. The test demonstrated the speedup close to linear on a small number of processes (up to

32) (see Figure 9). The test could not be conducted on a larger number of processors due to the limited

resources.

Figure 9 Speedup of the framework in the tested configuration.

Framework Limitations
The framework is meant to be used in situations in which only the master process generates the output

of results. The framework must be used with care in other scenarios. For instance, the user may want to

generate a list of particles crossing a surface. In this case the output files with the particle lists generated

by each process must be named uniquely to avoid corruption of the output data. The framework does

not provide any facility in which such lists can be redirected to and saved by the master process.

The framework also assumes an unlimited input for all the nodes and processes, i.e. each process on

each node must be able to read input files required by radiation transport codes. Although it is

technically possible to implement a framework where only the master process reads in the input files

and distribute the parameters to the worker processes, this configuration is considered outside of the

scope of this work.

The authors realize that the performance tests were carried out using limited available resources. The

framework speedup with currently implemented linear topology of processes may significantly degrade

or even plateau out on massive parallel systems when the number of used processes is very large. This

speedup degradation due to increased communication time can be significantly mitigated with

considered but not yet implemented multilevel (‘tree-like’) topology. In the ‘tree-like’ topology, the

master process (level 0) gathers results from a limited number of level 1 processes, which also act as

masters for their own groups of processes (level 2), and so on (see Figure 10 for example). The number

of levels in principal is not limited. For practical purposes, however, it is most likely that the number of

levels can be limited to two: one master process of level 1 manages worker processes on a single

computer node, and sends processed data to the master process of level 0 (main master process).

The following pieces of software need further development: a program that mixes a number of

checkpoint files and produces a single output checkpoint file; a converter of a file with data containers

into a HBOOK file; a converter of a file with data containers into a ROOT file. These programs are free

standing and are used separately from any of the radiation transport codes.

Figure 10 Example of an arbitrary tree-like topology of processes.

Conclusion
The new parallel computing framework was designed, implemented and tested with the MARS15 code.

It was tested on the NSCL small commodity cluster and demonstrated a good performance on a small

number of processors. The framework offers a good load balancing for each process so that it can be

used effectively not only on homogeneous systems but also on networks of workstations. The

framework performs better than the original implementations of parallel computing in MARS15 and

PHITS. It also offers the checkpoint facility that can be used both in multiple and single process

calculations. There is a potential to increase the efficiency of the framework through a new multilevel

topology of processes (needs development), although this improvement may only be noticeable for very

large parallel systems.

References
[1] N.V. Mokhov, “The MARS code system user's guide”, Fermilab-FN-628, Fermi National Accelerator

Laboratory (FNAL) (1995)

[2] N.V. Mokhov and S.I. Striganov, “MARS15 overview”, Proc. Hadronic Shower Simulation

Workshop, Fermi National Accelerator Laboratory (FNAL), September, (2006); AIP Conf. Proc., 896,

50-60 (2007)

[3] MARS code system, http://www-ap.fnal.gov/MARS

[4] K. Niita, T. Sato, H. Iwase, H. Nose, H. Nakashima and L. Sihver, "PHITS-a particle and heavy ion

transport code system", Radiat. Meas., 41, 1080-1090 (2006).

[5] M.A. Kostin and N.V. Mokhov, “Parallelizing the MARS15 code with MPI for shielding

applications”, Radiat. Prot. Dosim., 116, 297-300 (2005); FERMILAB-CONF-04-054-AD, Fermi

National Accelerator Laboratory (FNAL) (2004); hep-ph/0405030, http://arxiv.org

[6] G. Battistoni, S. Muraro, P.R. Sala, F. Cerutti, A. Ferrari, S. Roesler, A. Fasso`, J. Ranft, “The FLUKA

code: Description and benchamarking”, Proceedings of the Hadronic Shower Simulation Workshop

2006, Fermilab 6--8 September 2006, M. Albrow, R. Raja eds., AIP Conference Proceeding 896, 31-

49, (2007)

[7] A General Monte Carlo N-Particle Transport Code (MCNP), http://mcnp-green.lanl.gov

[8] Gnu Compiler Collection, gcc, http://gcc.gnu.org

[9] Message Passing Interface forum, http://www.mpi-forum.org

[10] Message Passing Interface standard, http://www.mcs.anl.gov/mpi

[11] Object Management Group (OMG), http://www.omg.org

[12] Parallel Virtual Machine (PVM), http://www.csm.ornl.gov/pvm/pvm_home.html

[13] Open MPI, http://www.open-mpi.org

[14] MPICH2, http://www.mcs.anl.gov/research/projects/mpich2

[15] HBOOK, http://cernlib.web.cern.ch/cernlib/packlib.html

[16] ROOT, An Object-Oriented Data Analysis Framework, http://root.cern.ch

[17] TORQUE Resource Manager, http://www.clusterresources.com/products/torque-resource-

manager.php

http://www-ap.fnal.gov/MARS
http://arxiv.org/
http://mcnp-green.lanl.gov/
http://gcc.gnu.org/
http://www.mpi-forum.org/
http://www.mcs.anl.gov/mpi
http://www.omg.org/
http://www.csm.ornl.gov/pvm/pvm_home.html
http://www.open-mpi.org/
http://www.mcs.anl.gov/research/projects/mpich2
http://cernlib.web.cern.ch/cernlib/packlib.html
http://root.cern.ch/
http://www.clusterresources.com/products/torque-resource-manager.php
http://www.clusterresources.com/products/torque-resource-manager.php

