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A. INTRODUCTION

Electrons confined to two-dimensional Landau levels (LL) exhibit a host of intriguing
phenomena. The most notable among these is the fractional quantum Hall effect. The
recent discoveriesof quantum Hall plateaus in the first excited 1L have focused attention on
a new breed of quantum Hall states. Among these are paired "superconductíng" states (at
5/2 and 3/8 LL fillings) and their generalization to higher groupings of particles (at 12/511
filling) and other possible novel states at 7/3 and 8/3 fillings. In addition, ultra-cold atoms in
rapidly-rotating traps share similar characteristics with the electron systems and provide yet
another probe of collective phenomena in condensed matter. Atoms, unlike electrons, come
in both fermion and boson flavors. Remarkably, they also allow tuning of the inter-atom
interaction potential by means of Feshbach resonance. Many of the states described above
for electrons can in principle be seen in the boson atom systems with dipolar interactions.
Numerical calculations were carried out to investigate a number of outstanding questions in
both systems.

These projects aimed to increase our understanding of the properties of and prospects
for non-Abelian states[l] in quantum Hall matter[2, 3]. Experimentally, these states may be
realized in both the first excited Landau level (LL) of a two-dimensional electron system in
high magnetic fields and in rapidly rotating trapped atomic Bosegases[4,5]. In the first case,
a prime candidate for a non-Abelian state is the 5/2 effect[6-8]. Following the finding[9-11]
that the Moore-Read (MR) non-Abelian state[l] is relevant to the 5/2 effect, there has been
considerable progress in elucidating various properties of this state. As with all paired states,
the quasi-particles of the MR phase cany a charge of lI*e/2[1], where v" = li - 2 :=: 1/2 is
the partial filling of the n = 1 Landau level. Recent experiments[12-14] report detection
of charge e/4 quasi-holes, which is a direct confirmation of the pairing nature of the state.
Howeverthere are many other candidates, such as the ws,s,1[15]státe or even a strong pairing
phase (condensation of charge 2e bosons into a v = 1/8 boson Laughlin[16] state), which
have this property.

Another example of a non-Abelian state[17J may be the plateau at 12/5 LL filling[8],
which by all indications is extremely weak. The mobility gap for the quasi-particle excitation
obtained by transport measurements is 70 mK. Although many experiments see a clear
minima in prom at 12/5, only in the very high mobility sample[8]has a plateau been resolved,
Other prominent plateaus in the n = 1 Landau level are at 8/3 and 7/3 fillings[7,8]. A recent
measurement of the gap for 7/3 is 600 mK[8]. It is interesting that the gap ratio of 12/5 to
7/3, in the same sample, is approximately 0.12. This relative weakness of 12/5 to 7/3 is in
disagreement with the predictions of composite fermion theory[18] and experiments[19] in
the lowest LL for 2/5 and 1/3. Such a discrepancy, together with the existence of a strong
plateau at half filling, and the reentrant[20) (widely believed to be crystalline[21__:25])phases
strongly suggests that the electronic environment in the n = l LL is fundamentally different
from the lowest LL. This in turn may indicate that either the 7/3 or 12/5 (or both) are
unrelated to their counterparts in the lowest LL, which has piqued interest in studies of new
candidates for the 12/5 filling. One such possibility is a state which is the generalization
of pairing to clusters of k particles by Read and the PI[26]-the so called Zk parafermion
sequence, the first two members of which (k = 1 and 2) are the Laughlin and MR states.
Again, as in the case of 5/2, numerical evidence[17]supports a non-Abelian phase in a region
of parameter space which is near the physical Coulomb value for the n = 1 LL. Contiguous
to this phase is the Jain 12/5 composite fermion state[27] which is stabilized as the short
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range part of the Coulomb potential (the Vi pseudo-potential) i~ stiffened. Unlike the MR
state, which can be constructed as a Pil) - ipy BCS-type pairing of fully polarized composite
fermions[l, 28}, the Zs parafermion state for 12/5 is unrelated to composite fermions and
will be breaking new ground if it is confirmed experimentally.

Apart from the fundamental physics perspective, non-Abelian states offer the potential
for quantum computation[29-33]. For k =F 1, 2, and 4, the parafermion sequence supports
universal quantum computation, which is, in part, responsible for the surge of interest in
non-Abelian Hall states. For the MR wavefunction the non-Abelian statistics has been
directly verified [34-36] .

In parallel with studies of electron systems, boson quantum Hall states have been studied
in relation to rapidly rotating trapped atomic Bose gases at ultracold temperatures [37,
38J. Cooper et. al.[4J were the flrst to numerically study such systems using the contact
potential. This potential produces the Laughlin state at li = 1/2 and obtains a large
overlap with the MR state at v = 1. It also shows strong gaps and very good overlaps with
the parafermion sequence. Unfortunately, the system sizes were far too small for concrete
conclusions. For just the short-range contact potential, the case for MR remains strong
but is, at best, inconclusive for the za state and beyond. The parafermion states, Zs and
Z4, however, become robust in the presence of dipolar interactions[5, 39J. For example, a
Chromium condensate[40J under rapid rotation may be a prime candidate for such phases
since Chromium atoms possess permanent dipole moments. Despite considerable progress
in rapid rotations, experiments have not yet reached the correlated regime. Nonetheless, the
realization of non-Abelian phases in systems with generic interactions is highly significant.

B. COMPLETED WORK

In this section the completed work is described in some detail. Also included is a list of
the PI's contributions as an invited speaker in national and international conferences. This
list is given first:

I. Invited Talks at National and International Conferences

1. Participated in the EPQHS. International Worksop on " Emergent Phenomena in
Quantum Hall Systems", held in Taos, New Mexico, July.7-9, 2005.

2. "Za Parafermion Incompressible State of Rapidly-Rotating Bosons With Dipolar Inter-
actions", talk presented at the "Low D Quantum Condensed Matter 2005" workshop,
held in Amsterdam July 25-30, 2005.

3. "Universality of Edge Tunneling Exponents of Fractional Hall Liquids", presented
at the 2006 APS March Meeting "Quantum Hall Edges" Symposium March 2006,
Baltimore, Maryland.

4. "Finite-Size Studies of Non-Abelian Hall States" , presented at the ínternatíonál confer-
ence on "Strongly Correlated Low Dimensional Systems", July2006, Ascona, Switzer-
land.
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5. "Non-Abelian Phases in Atomic Bose Gases and. Quantum Hall Systems", presented
at the international workshop on "Interactions, excitations and broken symmetries in
quantum Hall systems", October 2006, Max Planck Institute, Dresden, Germany.

6. "Non-Abelian Hall Phases in Fermi and Bose gases", presented at the international
workshop on "Emergent Phenomena in Quantum Hall Systems-2:FQHE beyond the
First 25 Years", held June 13-16, 2007, the Pennsylvania State University, University
Park, Pennsylvania.

7. "Non-Abelian phases in Fermi and Bose gases: a finite-size perspective", presented
at the international workshop on "Quantum Phases of Matter", held June I-August
31, 2007 (attended June 18-July 1, 2007), the Kavli Institute of Theoretical Physics,
Chinese Academy of Sciences, Beijing, China.

8. "Non-Abelian phases in High Landau levels and atomic Bose Gases", presented at the
"Workshop on Topological Phases of Condensed Matter", held October 24-26, 2008,
the Institute for Condensed Matter Theory, the University of Illinois, Urbana, Illinois.

II. Publications

.. ,.,:'.,"'.'. The following manuscripts have appeared in print:
..f·..·..._·.(•.~·,"··\ . ~-. -Ó: . . . . •

1. "Exact diagonalization study of domain structure in integer filling factor quantum Hall
ferromagnets", E. H. Rezayi, T. Jungwirth, A. H. MacDonald, and F. D. M. Haldane
Phys. Rev. B 67, 201305R (2003).

2. "Disorder-Driven Collapse of the Mobility Gap and Transition to an Insulator in the
Fractional Quantum Hall Effect", D. N. Sheng, X. Wan, E. H. Rezayi, K. Yang, R. N.
Bhatt, and F. D. M. Haldane, Pbye. Rev. Lett. 90, 256802. (2003).

3. "Coexistence of Composite Bosons and Composite Fermions in 1/ = 1/2+1/2 Quantum
Hall Bílayers", S. H. Simon, E. H. Rezayi, and M. V. Milovanovic, Pbys. Rev. Lett.
91, 046803 (2003). .

4. "Universality of the Edge-Tunneling Exponent of Fractional Quantum Hall Liquids",
X. Wan, F. Evers, and E. H. Rezayi, Phys. Rev. Lett. 94, 166804 (2005).

5. "Mobility gap in fractional quantum Hall liquids:Effects of disorder and layer thick-
ness" , Xin Wan, D. N. Sheng, E. H. Rezayi, Kun Yang, R. N. Bhatt, F. D. M. Haldane,
Pbys. Rev. B 72, 075325 (2005).

6. "Incompressible Liquid State of Rapidly Rotating Bosons at Filling Factor 3/2", E.
H. Rezayi, N. Read, and N. R. Cooper, Phys. Rev. Lett. 95, 160404 (2005).

7. "Vortex Lattices in Rotating Atomic Bose Gases with Dipolar Interactions", N. R.
Cooper, E. H. Rezayi, and S. H. Simon, Phys. Rev. Lett. 95, .200402 (2005).

8. "Vortex lattices in rotating atomic Bose gases with non-local interactions", N. R.
Cooper, E. H. Rezayi, and S. H. Simon, Solid State Comm. 140 (2), 61 (2006).
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9. "Competing compressible and incompressible phases in rotating atomic Bose gases at
filling factor 1/ = 2, N. R. Cooper and E. H. Rezayi, Phys. Rev. A 75, 013627 (2007).

10. "Construction of a paired wave function for spinless electrons at filling fraction v =
2/5", Steven H. Simon, E. H. Rezayi, N. R. Cooper, and 1. Berdnikov, Phys. Rev. B
75,075317 (2007).

11. "Generalized quantum Hall projection Hamiltonians", Steven H. Simon, E. H. Rezayi,
and Nigel R. Cooper, Phys. Rev. B 75, 075318 (2007).

12. "Pseudopotentials for multípartícle interactions in the quantum Hall regime", Steven
H. Simon, E. H. Rezayí, and Nigel R. Cooper, Phys. Rev. B 75, 195306 (2007).

13. "Bipartite entanglement entropy in fractional quantum Hall states", O. S. Zozulya,
M. Haque, K. Schoutens, and E. H. Rezayi, Phys. Rev. B 76, 125310 (2007).

14. "Density Matrix Renormalization Group Study of Incompressible Fractional Quantum
HaU States", A. E. Feiguin, E. Rezayi, C. Nayak, and S. Das Sarma, Phys. Rev. Lett.
100, 166803 (2008).

!
¡

15. "Paired composite fermion phase of quantum Hall bilayers at v = .~+ ~",Gunnar
Möller, Steven H. Simon, and Edward H. Rezayi, Phys. Rev. Lett. 101, 176803
(2008).

I
i

I
i
I
!

16. "Trial Wavefunctions for 1/ = ~+~for Quantum Hall Bílayers", Gunnar Möller, Steven
H. Simon, and Edward H. Rezayi, Phys. Rev. B 79, 125106 (2009).

17. "Non-Abelian quantized Hall states of electrons at filling factor 12/5 and 13/5 in the
first excited Landau level", E. H. Rezayi, N. Read, Phys. Rev. B 79, 075306 (2009).

18. "Spin polarization of the 1/ := 5/2 quantum Hall state", A. E. Feíguin, E. Rezayi, Kun
Yang, C. Nayak,S. Das Sarma, Phys. Rev. B 79, 115322 (2009).

III. Description of the published work

1. Tilted Fields and Domain Walls in Quantum Hall Ising Ferromagnets

Tilting the magnetic field away from the direction perpendicular to the plane of a two-
dimensional electron gas can trigger transitions between highly correlated ground states of
the system. Such a transition seems to have appeared[41] in high (v = 6, for example) com-
pletely filled Landau levels at an extreme tilt angle of 82 degrees. The transport becomes
highly anisotropic and, taken at face value, seems to indicate a quantum phase transition to
a broken symmetry state previously observed at half-filled Landau levels (at 9/2 and 11/2
fillings). These arise purely from electron-electron interactions. However, there is an addi-
tional single-body component here that needs to be taken into account. The experimental
anomaly occurs at a tilt angle that lines up the lowest Landau level of the second subband
(iv = 0, i = 2) with the first excited Landau level of the first subband (N = 1, i = l).
These have opposite spins and we found no trace whatsoever of a broken symmetry ground
state (GS)j instead the GS at this point is always uniform and can be described as an Ising
ferromagnet (with complete Z2 symmetry). The self-consistent local-spin-density-functional
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approach (LSDA) was used (with the appropriate sample parameters) to calculate the sin-
gle particle wavefunctions and their energies as well as the interaction potential v(qrc, qy) in
the presence of the tilted field. The latter was then used in many-particle calculation of a
finite-size system to investigate the nature of the GS. A clear domain wall excitation was
found above the Ising ferromagnetic GS, which was dominant in the system size we studied.
The proliferation of such domain walls at the critical tilt angle could account for the mag-
netotransport anomalies. This is because charge transport occurs along the walls, which
will be oriented either parallel or perpendicular to the in-plane field. The determination of
the precise domain wall orientation relative to the tilted field requires much larger sizes as
the differences in the energies are very small. It can best be determined by a self-consistent
Hartree Fock rather than a full many-particle calculation. Experimentally, the domain walls
are parallel to the in-plane field as this is the "easy" direction for conduction.

The results were published in Physical Review B as a Rapid Communications(publication
1).

2. Calculation of Quantum Hall Conductance for 1/ =: 1/3

I

In this work we have carried out a quantitative study of the effects of random disorder
in the fractional Hall regime. This is the first such calculation of its kind. It was first
recognized by Thouless and co-workers, in the case of the integer filling, that the Hall
conductance is related to a topological invariant called the first Chern integer on the torus.
This number is obtained by calculating the Berry phase in the parameter space of twisted
boundary conditions (as formulated in references 20 and 21). Because of the topological
order of fractional quantum Hall states, the GS at 1/3 is 3-fold degenerate in the absence of
disorder on the torus. In addition, by inserting flux quanta through the "donut" hole of the
torus, one can cycle through the GS manifold[44]. Thus; there is no physically meaningful
distinction between the members of the GS manifold and one needs to assign the average
Chern number to each of the ground states. For the quantum Hall state at 1/3 filling this
number would be 1/3, with very little fluctuation. On the other hand, deviation from 1/3
and/or large fluctuations in this number will signal the collapse of the quantum Hall state.

In a finite size system, disorder will lift these degeneracies into quasi-degeneracies; how-
ever below the mobility gap, the group of 3 near-degenerate levelswill have a robust (total)
Chern number (of 1) and thus a quantum Hall conductance (average Chern number) of 1/3.
At or above the mobility gap this trend breaks down and these states can no longer support
dissipationless current flow. Thísprovides a reliable numerical method for finding the mobil-
ity gap. We obtained the mobility gap as a function of random disorder (provided disorder is
not too weak) and found the critical disorder for destruction of quantum Hall states. Using
standard models for electron scattering from the disorder potential, we obtained (for an in-
finitely thin layer) the dependence of the experimental gaps[45, 46] on the sample mobility.
The overall trend agreed with the experiments but the theoretical gaps were shifted up in
energy. Including a more realistic 2-D layer with a finite thickness obtained much better
agreement with experiment.

The first paper was published in Physical ReviewLetters and a longer paper incorporating
layer thickness and variants of the disorder potential was published in Physical Review B
(publications 2 and 5).
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9. A Double Layer Quantum Hall State at 1/T = 1/2 + 1/2 Filling

The quantum Hall effect in bi-layer systems at a total filling factor of one continues to at-
tract considerable interest. One important aspect of this problem that remains controversial
is the nature of the correlated to uncorrelated transition. Experimentally such a transi- .
tion is seen in the transport[47, 48] (as well as the tunneling[49]) as the inter-layer distance
is varied. In the strongly correlated phase (small layer separation), the system develops
inter-layer coherence and shows a plateau in the magneto- transport. For large separation
(experimentally, de ;:::1.7 magnetic lengths e) the ground state consists of two uncorrelated
composite fermion (CF) Fermi liquid states without a Hall plateau. The correlated phase is
described by the so called one-one-one state (\lI111), which can be interpreted in a number
of equivalent ways: as a BEC of ínterlayer excitons, a pseudo-spin planar ferromagnet, or
a quantum Hall condensate of interlayer composite bosons (OB) (an electron in one layer
binding a zero of the wavefunction in the other layer). Unfortunately, in the absence of a
microscopic picture for the transition, it is notoriously difficult to extract its nature from
brute-force numerics. Accordingly, we constructed a series of wavefunctíons (on the order
of the number of particles) that smoothly interpolate between the two phases, from \li111 in
the correlated regime to two uncorrelated CF Fermi liquid states in each layer. The under-
lying physical picture is that of two inter-penetrating CF and OB liquids in the transition
region. While a phase-separated two-fluid model will predict a first order transition[50],
our wavefunctions give a continuous transition. We have tested these wavefunctions against
the exact ground state as a function of the distance and indeed find that they describe the
transition region rather well; our wavefunctions (in a 5-electron per layer system), with O,
I, 2, 3, 4, and 5 CF states, progressively describe the actual ground state as the distance
was increased through its critical value.

The results of this study have been published in Physical ReviewLetters (publication 3).

4· Universality of Edge Tunneling Exponent at 1/9 Landau Level Filling

It has been argued by Wen[51] that quantum Hall states describe a novel phase of con-
densed matter that possesses topological order. This is more subtle than the order associated
with broken symmetry, which is commonly described by a measurable order parameter. A
possible method of "measuring" the topological order is by tunneling into the edge of a
quantum Hall fluid. In this case, as a consequence of the topological order, the physics of
the edge is described by a chiral Luttinger liquid[52] (instead of a normal Fermi liquid) and
the tunneling I - V characteristics will be non-Ohmic: I ocva. The exponent is determined
by the bulk and, for states at fillings 1/3, 2/5 or nj(2n + 1), œ = 3. For 1/3 filling this
exponent has been verified for the Laughlin state; however a smaller non-universal value
was reported for the GS of the more generic Coulomb potential. This deviation was largely
attributed to the long-range nature of the Coulomb potential. (The Laughlin state is the
(zero energy) GS of an ultra-short-range interaction potential.) If true, this directly contra-
dicts the concept of topological order and undermines many of the phenomena associated
with it (such as the edge physics of quantum Hall states or the possibility of using quantum
Hall fluid excitations for topological quantum computing[32]).

Motivated in part by this and in part by the actual measurements[53-55] that reported
differing non-universal values, we investigated the conditions under which such deviations
could occur. In particular we studied the effects of the edge confining potentials on œ.
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For a strong confining potential (such as a hard edge) the exponent always deviated from
the universal value while for weak confining potential the exponent was 3. On the other
hand we did not find any evidence for dependence of the exponent on the range of the
interaction potential. Our findings are completely consistent with topological order and
provide a plausible explanation of variations in the experimental exponents; they appear to
be the result of different edge confining potentials.

This paper was published in Physical Review Letters (publication 4).

5. Rapidly-Rotating Ultra-Cold Atoms: Broken Symmetry and Highly Correlated states

Rotating Bose-Einstein condensates (BECs) have shown fascinating ground states with
crystalline arrangements of vortices. These occur in weakly interacting Bose gases where
the dominant scattering is short-ranged and in the s-wave channel. This is modeled by
a repulsive contact pseudo-potential. Such a model exhibits the vortex lattice phases ob-
served in experiments. The recent discovery of BEC in chromium has opened the door to
the experimental study of boson systems with dipolar interactions. Accordingly we have un-
dertaken a study of possible phases of rotating atoms where both contact as well as dipolar
interactions are present. Our study is restricted to states within the lowest Landau level.
Such a condition can now be experimentally achíevedjôô], which makes the new phases we
find accessible to direct experimental probing. These, plus studies of incompressible fluids
of vortices, are described below.

Background: A stationary quasi-two-dimensional trap with parabolic confinement, in the
absence of interactions, is described by a 3-dimensional asymmetric harmonic oscillator with
wU» W.L = wo. Here the parallel direction is along the rotation axis and is taken to be the
z-axis. At low temperatures, KbT« TiwU,the motion along thez...axisis quenched (and will
. be neglected) and becomes quasi-two-dimensional in the x - y plane. There is now a series
of wavefunctíons of the form wm(z) oczm exp (-zz/4), where m is the angular momentum,
z = x+iy is the complex coordinate, and the overbar indicates complexconjugation. Except
for m = 0, which is the non-degenerate ground state, m > O describes excited states of the
trap with energy Em = (m+l)liwo. When rotated at angular velocityno along the z-axis and
in the rotating frame, the Hamiltonian is Legendre transformed to Hrot::::: H - noL;o where
Lz is the total angular momentum. In the rotating frame, the single particle energy of the
above series becomes: €m = li(m+ l)(wo - no) + lino. As no approaches the trap frequency
Wo, one recovers the lowest Landau level physics[37, 38], except that the underlying particles
are Bose atoms. It is in fact remarkable that the conditions of the lowest Landau level have
already been achieved experimentally[56]. For low temperatures, the low energy interactions
among atoms can be modeled by an 8-wavecontact pseudo-potential g ¿i<J ö(fi - rj), where
g:= 47rTi2as/m, as is the a-wave scattering length and m is the atom mass. The conditions of
lowest LL occupation will be maintained as long as the interactions are sufficiently weak Ol'

the system is sufficiently dilute. It is assumed throughout that these conditions are satisfied.
Another remarkable property of this system is that the strength of the potential can be

altered by means of the Feshbach resonance[57]. It is assumed that the strength of the s-wave
scattering potential is tunable, particularly when dipolar interactions are considered. In this
lowest LL regime, the physics of the problem is controlled by the interaction potential and
the filling factor u, which in this context is defined as v = N/Nv, where N'II is the number of
vortices and N is the number of atoms. For a lowdensity of vortices[58] a vortex lattice phase
is readily observed[59]. It is instructive to draw a parallel to the fractional quantum Hall
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effect (FQHE) where, at low electron densities, a Wigner crystal is formed. Thus the filling
factors in the two problems, loosely speaking, seem dual to one another: Ilatom '" l/IIFQHE'

At a sufficiently high density of vortices, on the order of the density of the particles, the
vortex lattice is unstable and the system enters the highly correlated regime of FQHE. The
best estimate of the critical filling for an s-wave contact potential model is Ilerit Rj 6. For
II> lIcrit and an s-wave pure contact potential, a hexagonal vortex lattice was observed by
Cooper et. al.[4] For longer range potentials, however, the phase diagram of the system is
considerably enriched. This new physics is the subject of 4 publications (6-9).

Broken Symmetry Crystalline States: We studied the broken symmetry states by mini-
mizing the Gross-Pitaevskii energy functional under the constraint of no admixing of the
excited Landau level states. We also imposed periodic boundary (or toroidal) conditions
(PBC). This geometry is particularly well suited to detection of crystalline phases in numer-
ical calculations. Our goal was to investigate the effect of dipolar interactions. As a result
of varying the parameter that quantifies the relative strength of the s-wave component (Vo
pseudo-potential) to the dipole potential (defined by a = V2/Vó, where V's are Haldane
pseudo-potentials), we indeed found several different crystalline phases. In addition to the
previously discovered hexagonal lattice, we found square lattices as well as phases with
stripe order. When we added a d-wavecomponent to the tunable a-wave potential, we found
qualitatively the same physics as in the full dipolar potential. Only quantitative differences
were observed. This indicates the new phases are quite robust and quantum phase transi-
tions, driven by a, occur when dipolar-type longer-range potentials are added to the s-wave
potential. .

Correlated States of vortices: Attempts by the PI to extend the calculations of Cooper
et. al.[4] to larger systems at II ;" 3/2 filling failed to produce concrete evidence of an
incompressible Hall state. For example, the pair correlation function for 24 bosons on the
sphere shows a rather widely oscillating tail[5], which is more consistent with a broken
symmetry crystalline order than the exponential decay (to the background value at large
distances) expected of a gapped phase. Strictly speaking, this does not rule out a gapped
phase¡ it may merely indicate a rather weak (very small gap) incompressible phase when
the system size is smaller than the correlation length of the system. The latter length scale
determines the smallest system size beyond which the large N physics is seen. On the other
hand, the inclusion of the dipolar interaction, when 0.2 ::;;a ::;;0.4, has a dramatic effect[5].
It produces the doublet of ground states (excluding the center of mass degeneracy of 2)
on the torus expected of the Z3 non-Abelian state. The ground states also obtain a huge
overlap with the doublet of the Z3 parafermion states (publication 6). 'A similar, but weaker,
signature is seen for the Z4 state (publication 9).

6. A Paired State at v = 2/5 and a New Sequence of Wavefunction8

The theoretical investigation of the FQHE usually employs a "grounds up" approach[16,
27] that starts with a microscopic wavefunctíon, as in the BOS theory of superconductivity,
from which the physical properties of the state are deduced. However, there are several
components that are essential to this type of investigation. These include having a special
positive semi-definite Hamiltonian[60] for which the proposed model state is the unique zero-
energy ground state. Numerical studies of such Hamiltonians are (and have been) critical to
understanding many of the properties of the state, including the topological order[51], the
nature of quasi-particle statistics, etc. There is, in addition, the most important question of
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whether the system is gapped in the bulk. This is rather difficult to address by any method
other than numerical calculation; although it has been argued that the system will be gapless
if the corresponding conformal field theory (CFT) (for which the wavefunction in question is
a correlator) is non-unitary[28, 61J. Even numerical calculation may not reach large enough
system sizes to provide a definitive answer, but the trend from the 4 or 5 smallest system sizes
becomes fairly apparent. Often the model Hamiltonians include p-body interactions, with p
reaching as large as 5 or 6, which are non-trivial to study systematically. In publications 10-
12 we developed some very useful tools for this purpose. We have classified and catalogued
p-body Hamiltonians in terms of the appropriate projection operators. This method is
vastly superior to the common practice of using the derivatives ofmany-body delta-function
potentials. It becomes physically transparent which kind of many-particle correlations are
favored and which are projected out. It is also much.more efficientnumerically. In addition,
in publication 6 we have extended the idea of pseudo-potentials to p-body Hamiltonians that
go hand-in-hand with these projection operators. Haldane's original formulation of pseudo-
potentials was for 2-body Hamiltonians. Our formulation will be useful in calculating LL
mixing effects for states in high Landau levels.

Finally, using these tools we attempted to determine whether there are any new sequences
of correlated states of quantum Hall fluids that involve pairing, or more generally, k;'particle
grouping correlations that are distinct from the parafermion sequence. In publication 5 we
proposed such a new sedes which has LL fillings of v = k/(2k+ 1), k > 1 (and their particle-
hole conjugates) for fermions and v = k/(k + 1) for bosons. Surprisingly, these fillings are
identical to the Jain sequence[27]. Even the charge-flux shift S (defined as NI/>= v-IN - S)
is the same for both. In fact, for k = 2, one obtains a very large overlap with Jain's 2/5
state. Bernevig and Haldane[62] have argued that the two differ only by the presence of a
quasi-hole and quasi-particle pair and are therefore closely related. However, it appears that
our sequence of wavefunctions may be correlators of non-unitary conformal field theories (for
example, at 2/5 the corresponding CFT is the minimal model M(5,3)[63, 64]) and can not
describe bulk phases of matter[61J. They may be critical states appropriate to quantum
critical points. These issues were first raised by Read[28] in connection to the Hollow-Core
model[65]. Numerical studies are consistent with a gapless phase and show a rather fast
drop of the gap with system size. This raises an interesting question as to where exactly
such a critical state fits in the quantum Hall phase diagram. Even more mysterious is the
connection to Jain's state since the latter is known to describe a gapped phase of quantum
Hall matter. Understanding these and related issues willpossibly shed light on the conditions
that stabilize Hall states in general and non-Abelian Hall states in particular.

7. Topological Order and Entanglement Entropy

Entanglement (von Neumann) entropy, a concept developed in information theory, pro-
vides a measure of the degree of quantum entanglement between two parts of a system. It
can yield useful information about the nature of the underlying state, as well as the degree
of correlations. It is becoming a standard tool for studying highly correlated systems and
their phase transitions[66, 67]. The entanglement entropy of a subsystem A with the rest
of the system B is defined as SA = -TrpA In{PA}, where the density matrix of subsystem
A, PA = TrBP, is obtained from the density matrix of the total system, p, by tracing over
the degrees of freedom of the rest of the system B. The PI's interest here was in studying
topological phases of quantum HaUmatter. Such phases are characterized by their topo-
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logical order. In a pair of remarkable papers[68, 69J, it has been shown that entanglement
entropy, or more precisely topological entanglement entropy, carries the signature of the
topological order. By an appropriate partitioning of the system and tracing over the "exte-
rior" variables, it can be shown that the topological entanglement entropy scales with the
boundary length L of the two subsystems: S = r¡L - 'Y, with the remaining terms vanishing
in the limit L -+ oo. Furthermore, 'Y is universal and independent of system size or other
geometrical parameters and is related to the total quantum dimension of the system D by
'Y = In{D}, where D = l~ad~ ~ 1 and the da's are the quantum dimensions of sectors of
the topological field theory. They can be determined by the fusion rules of the fundamental
anyons, labeled by a's, of the theory. For Abelian states, 'Y is less than one but it exceeds
one for non-Abelian Hall states. The topological entanglement entropy can, therefore, detect
whether the state is Abelian or non-Abelian. In addition, the spectrum of PA conveysmore
detailed information, such as the number of quasi-holes or edge states[70J. Using a some-
what different partitioning method, Haque[71] et. al. obtained the entanglement entropy
for the Laughlin state at 1/3 filling. Following this method, with the PI's collaboration, the
calculations were extended to the Moore-Read state. We studied up to an l8-electron size
system; extrapolation to infinite size yields 'Y ~ 1.1± 0.3, in agreement with the exact value
of In(VS) = 1.0397. The calculation was done on the sphere and extrapolation to infinite
size was performed in two steps. First we chose a block of orbitals starting from the north
pole and extrapolated the entropy to infinite size while keeping the number of orbitals in the
north pole fixed. Then these extrapolated entropies were plotted against the square root of
the number of orbitals at the north pole. The intercept yields -'Y. However the error in the
extrapolated SA increases with the number of orbitals kept, introducing large uncertainties
In the value of 'Y. The error can be somewhat controlled by using the algorithm of Bulirsh
and Stoer (publication 13).

8. Density Matrix Renormalization Group Studies of Incompressible Hall States

An extremely successful method for solving one-dimensional problems with short-range
interactions is the Density Matrix Renormalization Group[72, 73J(DMRG). It is essentially a
decimation scheme that successively thins out the high energy degrees of freedom, obtaining
an effectiveHamiltonian for the low energy degrees of freedom. The key step is to split the
problem into a system and an environment. One then obtains the density matrix of the
system after integrating out (or tracing over) the environment. Then a new enlarged system
is constructed from the largest p eigenvalues of the density matrix plus newly added states.
The steps are repeated until a convergence criterion is satisfied and the number of states kept
controls the accuracy. We used the finite-size DMRG in momentum space[74J. While this
technique has been applied to studies of both broken symmetry and incompressible states
on the torus[25, 76J, no calculations of the gap have been reported. We applied the method
to the u = 5/2, quantum Hall state using the spherical geometry where larger size systems,
compared to the torus, can be achieved. The work was done in collaboration with Adrian
Feiguin. Our goal was to push the previous results for the gap of the 5/2[10, 75], as well as
calculations of ground state properties, to as large a system size as possible. The calculation
is made difficult by the proximity of the system to a critical point of phase transition. For
example, experiments have shown that tilting the field away from the direction perpendicular
to the 2-D electron layer causes a transition to an insulating state, which exhibits strong

11



1.2 g(r) MR, N=20

1.0 /
•.I'lfI.'I.MJ'f,":I;.'- -,

0.8 Coul, N=20
Caul, N=18

0.6
0.4
0.2

r
0.0

O 2 4 6 8 10 12 14

FIG. 1. Pair correlations for the Coulomb potential + óV¡(= 0.035) compared to MR g(r). The
oscillations in the tail are more strongly suppressed for N = 20, indicating the system is converging
to the large N limit at or past 20-electron sizes. The addition of óVí_ is to avoid the phase boundary
region near the pure Coulomb value, which introduces crystalline-like features (see pub. 14) in finite
size systems.

anisotropies in the longitudinal transport coefficients Rxx and Rw' This transition has also
been seen numerically. The largest system size that was achieved is 26 electrons. Our
calculated gap for charged excitations, which is measured in the transport experiments, was
slightly higher than the previous estimate of Morf. Both calculations were carried out using
spherical geometry with Coulomb interactions appropriate for the first excited Landau level.
We did not account for the finite layer thickness of the experimental samples nor any LL
mixing effects. All of these corrections are expected to reduce the gap. Another effect that
has been neglected in all previous calculations, including ours, is the finite extent of the
quasi-holes. As alluded to earlier, if the state at 5/2 is paired, then every added flux creates
a pair of charge e/4 quasi-holes. To properly account for the repulsion of two charge e/4
objects, the working assumption so far has been to subtract the. repulsive energy from the
gap by treating the quasi-holes as a pair of point charge-e/d particles pinned at opposite
poles of the sphere. This causes a serious overestimation of the gap. Even in the best of
circumstances, when the potential is tuned to maximize the overlap with the model Moore-
Read quasi-hole excitations, the spatial extent of the quasi-holes for the Coulomb potential
is comparable to the system size and they do not interact as point objects. However the
DMRG calculations appear to suggest that convergence may be reached a few sizes beyond .
the 20-electron system, which has been corroborated by exact calculations (Fig. L) for
N = 20[77]. Thus a more reliable result for the gap will need to address sizes of at least
N = 20, 22, 24, and possibly 26. We have reported a summary of our results in publication
14.
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9. A Paired Phase in Bilayer Systems at Total Filling Factor IJ = 1/2+ 1/2

The quantum HaU effect at liT = 1 has continued to attract considerable attention over
the past few years. It is one of the most enduring systems in the lowest LL, exhibiting an
inter-layer coherent phase for small layer separations and a correlated-uncorrelated phase
transition at a separation of d Ri 1.7 magnetic lengths. The coherent phase, characterized
as a particle-hole superfluid or a planar x-y pseudo-spin ferromagnet, has been thoroughly
investigated.

Previously we proposed[78] (publication 3) a two-fluid model: a composite boson super-
fluid and composite fermion normal fluid. We constructed a series of wavefunctions for fixed
numbers of composite bosons and composite fermions whose sum equals N/2-the number
of electrons in one layer of an equally balanced bilayer system. This model obtains very
large overlaps for almost the entire range of interIayer distances except for a small, but fi-
nite, region at intermediate distances. Our construction has two main features; it describes
a continuous, probably second order, transition to the uncorrelated regime and it does not
address any possible correlated state of composite fermlons. This conclusion is in agreement
with experiments which strongly suggest a continuous transition. In a thermodynamic sys-
tem beyond the transition, it is plausible that composite fermíonswill dominate the physics
and the possibility of a correlated state of OF's should not be ruled out. Bonesteel et.
al. [79, 80J have already addressed this question and have proposed a BOS-type inter-layer
pairing of composite fermions. To investigate this possibility, we 'assumed a BOS state 'but
adjusted the pairing part of the wavefunction to fit the numerical data. Excellent agreement
was obtained by fiting 3 to 4 parameters in the pairing wavefunction. The only difference
with the proposed wavefunctíons was that the pairing here is Pro + ipv instead of Pœ - ipv'
The BOS type wavefunctions have a trivial limit, (v(k) = O), at which point one recovers the
non-interacting Fermi sea of composite fermions. Thus care needs to be exercised to avoid
confusing a paired phase with a Fermi liquid phase. Our numerical calculations have unmis-
takably identified a Pro + ipv paired phase, which appears to be contiguous to the inter-layer
coherent phase as predicted by Bonesteel at al. This phase is stabilized for intermediate
distances in a finite region past the transition from the inter-layer coherent phase. Thus,
there is an intervening weak pairing Abelian phase. A short summary of the results has
been published in Physical Review Letters and a longer, much more comprehensive paper
has been published in Physical Review B (publications 15 and 16). .

10. Finite-Size Studies of quantum Hall effect at 12/5 and 13/5

As stated earlier, the results of finite-size calculations for up to 18 electrons at 13/5
. (which by particle-hole symmetry has the same spectrum as 12/5) does support the zs,
non-Abelian, parafermion phase which, in the interaction parameter space, is contiguous to
the L1 Jain's phase. The non-Abelian phase is stabilized for softer short-range repulsion
and makes a direct transition to the Abelian phase, changing the topological order. Such
transitions are expected to be continuous, but it is difficult to determine, with any degree
of certainty, the order of the transition with finite-size calculations. These results have been
published in Physical Review B (publication 17).
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11. Spin Polarization of the 5/2 State

One important issue for the 5/2 effect is its spin polarization. Initially the destruction of
the 5/2 plateau upon tilting the magnetic field was interpreted to mean that.the underlying·
state is spin-singlet or possibly partially polarised. Tilting necessitates an overall increase
in the magnitude of the B-field. Since the perpendicular component of B must remain fixed
to maintain the same filling factor, the accompanying increase in the Zeeman energy was
thought to drive the state into a compressible phase, leading to the disappearance of the
quantized plateau. Subsequent numerical studies, however, have shown that the 5/2 state
may be very close to a stripe ordered state and a transition to the latter can be driven by
the tilted field, as has been observed experimentally. This state of affairs does not rule out
an accompanying spin transition when the field is sufficiently tilted. More current direct
measurements of polarization have not been definitive in establishing the spin state of the
5/2 effect. The direct evidence for full polarization comes from numerical studies. Morf
compared only the energies of fully polarized and spin-singlet states at 5/2 (for 12 electrons)
and found the former to be lower even if the Zeeman energy is excluded. Strictly speaking,
this comparison does not rule out a ground state at partial polarization. The problem was
revisited in order to address this question as well as to go beyond the l2-electron size. In
a series of exact diagonalization and DMRG calculations, which extended system sizes to
N=14 for both spin-singlet and partially polarized states with polarization P ::::1/2, we
found the polarized state is lowest in energy even when the Zeeman energy is excluded. The
full excitation spectrum for 10 electrons shows a spin-wave mode consistent with a fully
spin-polarized incompressible state. These results are reported in publication 18. .
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