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(a) ABSTRACT

The objective of this project is to develop, implement, and test new deterministic
methods to solve, as efficiently as possible, multigroup neutron transport problems
having an extremely large number of groups. Our approach was to (i) use the standard
CMFD method to “coarsen” the space-angle grid, yielding a multigroup diffusion
equation, and (ii) use a new multigrid-in-space-and-energy technique to efficiently
solve the multigroup diffusion problem. The overall strategy of (i) how to coarsen the
spatial and energy grids, and (ii) how to navigate through the various grids, has the
goal of minimizing the overall computational effort. This approach yields not only
the fine-grid solution, but also coarse-group flux-weighted cross sections that can be
used for other related problems.

(b) OBJECTIVES AND ACCOMPLISHMENTS

The most difficult and unresolved aspect of deterministic neutron transport cal-
culations is undoubtedly the acquisition of practical multigroup cross sections. All
other aspects of deterministic neutron transport problems (discretizing in space, an-
gle, and time; solving the discrete equations) have been extensively studied during
the past 60 years, and have become increasingly manageable. However, this is not the
case for discretizing in energy. The reason is that the exact energy-dependent cross
sections ¥(E) are extremely “oscillatory” functions of energy E, while the multigroup
approximation is based on a simple histogram function of F.
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Figure 1: Continuous-Energy Cross Section (Black)
and a Hypothetical Multigroup Cross Section (Orange)
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Thus, it is not possible to accurately model ¥(E) unless an eztraordinarily large
number of energy groups is used — on the order of 10°. However, practical problems
require cross section sets with a much smaller number of energy groups — usually
between 10 and 100, and sometimes less than 10.

To obtain “accurate” few-group cross sections — that yield useful results for
practical problems — it is necessary for an experienced neutron data specialist to
develop them. The process by which this is done is based on the experience and
intuition of the specialist, and the results are variable. (Different experts will generate
different multigroup cross sections.) Because the process of acquiring multigroup
cross sections requires human intuition and judgment, it has not been automated.
This crucial element of neutron transport simulations remains dependent on human
experience and intuition — just as it did 50 years ago. To emphasize the importance
of these multigroup cross sections, it is well-known that no matter how accurately
the Boltzmann transport equation is discretized in angle and space, if “accurate”
multigroup cross sections are not provided, the solution of the multigroup equations
will not be useful.

The goal of this project was to make a major dent in this very old problem. The

impetus for the project was based on the following observations.

1. The fewer the number of energy groups in a multigroup problem, the more
“carefully-taylored” the cross sections must be to obtain an accurate solution.
(The more important is the human element in deriving the cross sections.)
Conversely, as the number of groups increases, the histogram-dependence of
the multigroup cross sections begins to be able to accurately model X(F), and
the input of the data specialist becomes less important. In the limit as the
number of groups tends to infinity, ¥(F) is modeled accurately, and no input

from the data specialist is required.

2. Therefore, it will be possible to define, for each material of interest to nuclear
engineers, a multigroup cross section set, with a sufficiently large number of
groups, that this cross section set would be sufficiently accurate for a large
range of problems of physical interest. The requisite number of groups G is
likely very large: probably on the order of 100,000, or more. This number of
groups is 4 to 5 orders of magnitude larger than multigroup cross sections used
for routine calculations. Nonetheless, the assumption is that if problems with
these multigroup cross section sets were solved, then there would be no need
for data specialists to generate few-group cross section sets heuristically. The
results of simulations would then (i) be no longer dependent on the skill of the

data analyst, and (ii) become much more reliable and predictive.
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3. This NEUP project was aimed at the mathematical problem of deriving an
iterative method for solving, as efficiently as possible, multigroup transport
problems with on the order of 100,000 groups. If such a method could be
formulated — especially one whose cost did not increase linearly with the number
of groups G — it would provide an impetus to the possibility of solving neutron
transport problems in a completely computer-oriented manner, without the need

for human intervention.

The work performed on this project tackled this problem with a multigrid ap-
proach, in which the solution of the “high-order” transport problem is iteratively
obtained by using a nested sequence of “low-order” problems defined on increasingly

“coarse” space-angle-energy grids. The overall strategy is depicted in Figure 2:

High-Order Multigroup Transport
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Figure 2: Multigrid Strategy in Angle, Space, and Energy

The “high-order” transport problem, with Gy energy groups and N, spatial
cells, is the problem that one ultimately desires to solve. This equation can be
solved iteratively using conventional transport sweeps. However, for problems of
typical interest, each high-order sweep would be very costly, and the number of sweeps
required to converge would be very high; consequently a simple sweep-based iteration

method would be unacceptably costly.



However, using the well-known CMFD method developed more than 20 years
ago, the iterative solution of the angle-dependent transport equation can be obtained
much more efficiently by alternating transport sweeps with the calculation of a “low-
order” angle-independent multigroup diffusion equation, with G; groups and N; spa-
tial cells, where G < Go and N7 < Ny. (This finest-grid diffusion equation can but
does not have to coarsen in space and energy — but it definitely coarsens in angle,
since the diffusion equation has no angle-dependence. Effectively, this step can be
understood as a multigrid step in which the low-order problem retains the spatial and
energy complexity, but it eliminates the angular complexity.)

Next, the finest-grid multigroup diffusion problem, with Gy energy groups and N;
spatial cells, is itself solved by a multigrid-in-space-and-energy method. A sequence

of K increasingly coarse multigroup cross section sets, having
Gy >Gy > ->Gg

groups is formulated. Also, a sequence of K increasingly coarse spatial grids, having
Ny > Ny >---> Ng

cells, is formulated. As depicted in Figure 2, the estimate of the solution of the multi-
group diffusion equation on the first coarse space-energy grid (k = 1) is accelerated
using the estimate of the solution of the multigroup diffusion equation on the next
coarser space-energy grid (k = 2), and this process continues until the coarsest k = K
space-energy grid, where the equation is solved exactly.

This is perhaps the place to emphasize that during the past 50 years, the multi-
grid method has become one of the standard iterative tools for iteratively solving
elliptic partial differential equations — in particular, diffusion equations. The method
was first developed in the mathematics community for spatial diffusion problems. For
these, the multigrid method has no real competition — it is by far the most efficient
iterative solution method known. In the 1980’s, the multigrid method was applied in
the nuclear engineering community for solving standard few-group diffusion problems.
In these applications, the emphasis was on multigrid-in-space, not on multigrid-in-
energy. (It was assumed that “accurate” few-group cross sections were provided,
and the emphasis was on solving geometrically large systems with a large number of
spatial cells.)

In our work, we assumed that the number of fine-grid spatial cells (V) and
the number of fine-grid energy groups (Ny) are both very large, and we employed a
general multigrid approach in which the fine-grid space-energy grids can be coarsened
in arbitrary ways — individually in space-or-energy, or simultaneously in space-and-

energy.



It is now possible to list and discuss the specific objectives and accomplishments

of the project; we do this next.

1. GENERATION OF MULTIGROUP CROSS SECTION SETS

The first task was to develop the ability to generate accurate multigroup
cross section sets with a very large number of groups. It was not necessary
that these cross sections be optimized for any specific class of problems, but we
did want the cross sections to be reasonably accurate, and to be obtained in
a recognizable way. Graduate student Eric Baker (who did all the implemen-
tational work on this project) used NJOY for this purpose. FEric developed a
script that directed NJOY to construct simple “1/E”-weighted cross sections on
equal-lethargy energy grids of arbitrary size (up to 10,000 groups) and format
them in a convenient manner. The familiarization with NJOY and the writing

of the script took about two months.

2. CONSTRUCTION OF THE 1D TEST CODE

At the same time, Eric was formulating the blueprint for his 1-D planar ge-
ometry multigroup test code, which would read and utilize the NJOY-generated
cross sections. His code was planned to utilize the standard 1D Gauss-Legendre
quadrature sets up to S3p, and the standard Step Characteristic spatial differ-
encing scheme. It allowed for very general geometric configurations, and for

vacuum and reflecting boundary conditions.

Also, Eric’s code allowed the user to specify (i) the coarse grids i.e. the
sequences G, G1, G, ..., Gg and Ny, N1, Ns, ..., Ng, on which a specified multi-
grid strategy would be performed, (ii) the operations that should be done on

each grid, and (iii) how the computer should navigate from one grid to the next.

The construction of this basic code took several months. However, as we
ran it, contemplated the results, and new ideas came to us, it is correct to say
that this code has been continuously under construction or revision since the

early stages of the project.

3. CONSTRUCTION OF THE 2D TEST CODE
Since the beginning of the project, we had planned to test our methodology

in 2D as well as 1D, so Eric also made plans for a separate 2D code, using
(for simplicity) a Cartesian spatial grid. This code would be based on the

discrete-ordinates Step Characteristic scheme, and would employ high-order



angular quadrature sets. Eric’s two codes were written in C++, and much of
the planning of the codes was done with the idea that as much of the 1D code as
possible would be used within the 2D code. As a result, the development of the
2D code has consistently lagged that of the 1D code. Also, we found that using
the 1D code was simpler, and that due to memory constraints it was easier for
us to run 1D problems than 2D problems. Therefore, perhaps not surprisingly,

we have used the 1D test code much more than the 2D test code.

. LINEAR VS NONLINEAR MULTIGRID

When the spatial multigrid strategy was formulated about 50 years ago, a
particular linear form of this method was developed in which the solution of a
problem posed on a coarse grid is a coarse-grid correction to the solution on the
next finer grid. Therefore, as this multigrid process converges, all the solutions

on all the coarse grids limit to zero.

However, somewhat later, a different nonlinear form of multigrid (CMFD)
was formulated in the nuclear engineering community in which the solution
of a problem posed on a coarse grid is the exact voleme-integrated solution
of the problem posed on the fine grid. (CMFD was formulated as a 2-grid
method, with one fine and one coarse grid, but the method can be expanded
to include an arbitrary number of coarse grids, in which case it acts very much
like the classic linear multigrid method.) In order to ensure that the coarse-
grid solutions converge to the exact volume integrals of the fine-grid solution,
the cross sections on the coarse grid must be expressed as proper flux-weighted
versions of the cross sections given on the fine grid. Since these are not known
at the outset, they must be calculated and iterated, along with the coarse and

fine-grid solutions.

In practice, CMFD has been used as a 2-grid method for accelerating the
convergence of a transport problem posed on an unstructured fine grid using a
low-order diffusion problem posed on a coarser Cartesian grid. In typical light
water reactors, the geometric structure of the core consists of an array of 200
to 300 fuel assemblies, in which each assembly is an array of roughly 17 x 17
fuel pins, and each fuel pin consists of a fuel region, surrounded by cladding,
surrounded by water. Figure 3 depicts a single fuel pin (which constitutes a
single Cartesian coarse cell), decomposed into five radial zones and 8 angular
zones, creating 40 fine spatial cells, on which the high-order transport equation

is to be solved:
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Figure 3: A Fuel Pin, with a Typical Unstructured Fine Spatial Grid

The number of fine spatial cells per coarse cell in this figure (40) is typical.
In practical applications of CMFD, only the top two grids depicted in Figure
2 exist. The “low-order” diffusion equation is typically solved by an algebraic
matrix-solver, which works efficiently if the number of energy groups is not too

large.

The basic point is that a multigrid strategy can be formulated either lin-
early, or nonlinearly. If linear, the solutions on a coarse grid are corrections to
the solution on the next finer grid. If nonlinear, the solutions on a coarse grid
are volume-integrals (coarse-grid representations) of the solution on the next
finer grid. In the early stages of our work, we implemented both methods, to see
if either method was advantageous. The linear method has the advantage that
the cross sections on the coarser grids are simple volume averages of the cross
sections on the finer grids. Thus, the algebra to implement the linear method
is less. However, the nonlinear method uses flux-weighted cross sections, which
although are more costly to calculate and must be updated as the iterations
progress, nonetheless preserve the physics much more precisely between the

various grids.

After considerable testing in 1D, we found that the nonlinear method
was consistently advantageous. Although the amount of algebra per iteration
required by the nonlinear method was higher, the total number of iterations

was sufficiently reduced that this method was unambiguously beneficial. Other



benefits to this approach became apparent later, and are discussed below.

5. 1D IMPLEMENTATION STRATEGIES (V-CYCLES)

Although optimized strategies of how to perform multigrid in space and
energy are still unsettled, Eric has shown that the following multigrid strategy
works well for a wide variety of problems. To describe some typical results,
consider:

(a) The high-order problem consists of the discrete-ordinates transport prob-

lem, formulated with Gy energy groups and N, spatial cells.

(b) The first coarse grid problem is the CMFD multigroup diffusion problem,
formulated with G; = Gg energy groups and N; = N;/8 spatial cells.
(The problem on this grid consists of a collapse in the angular variables

and space, but not in energy.)

(c) Next, a sequence of increasingly coarse grids is defined, first with Gy =
Go/2 groups and Ny = Ny/8 cells, then with G3 = Gy/4 groups and
N3 = Ny/8 cells, then with G4 = Gy/8 groups and Ny = Ny/8 cells, and
finally 2 groups and Ny/8 cells. In this process, the energy groups are
coarsened by a factor of 2 and the spatial grids are held constant. (The
coarsening is modified when the number of groups is not divisible by 2.)

(d) Next, a sequence of increasingly coarse grids is considered, first with 2
groups and Ny /16 cells, then with 2 groups and Ny/32 cells, and finally 2
groups and 2 cells. In this process, the energy groups are held constant at 2
and the spatial grids are coarsened by a factor of 2. (Again, the coarsening

is modified when the number of spatial grids is not divisible by 2.)

(e) The coarsest group problem is solved explicitly.

Given this setup, we define a single V-cycle to consist of performing one
transport sweep (a), followed by Gauss Seidel calculations on each of the coarser
grids (b), (c¢), (d), (e), and then followed by a prolongation from the coarser to
the finer grids. Related strategies, e.g. coarsening or refining by other than a
factor of 2 are possible, but have not been shown to be advantageous. However,
replacing steps (c¢) and (d) above by the following can be advantageous, because
it reduces the number of unknowns in the coarser grids more rapidly, and it also

reduces the overall number of coarser grids:

(¢’, d’) Next, a sequence of increasingly coarse grids is considered, first with G/2
groups and N/16 cells, then with G/8 groups and N/32 cells, then with
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G/16 groups and N/62 cells, and finally with 2 groups and 2 cells. In
this process, the energy groups and the spatial cells are simultaneously
coarsened by a factor of 2. (Again, the coarsening must be altered when

the number of groups or cells is not divisible by 2.)

We call the multigrid method in which a V-cycle consists of steps (a)-(e)
the M; method. The multigrid method in which a V-cycle consists of steps (a),
(b), (¢’, d’), (e) is denoted as the My method.

We have generated results for a large 1-D problem representing a reactor
core of width 306 cm, having 17 assemblies (15 fuel + 2 reflectors), 16 pin cells
per assembly, 24 spatial cells per pin cell, a total of 6,528 spatial cells, and
different fuel and moderator regions containing water, U02, Mox fuel, Gd fuel,

and other materials. Results were obtained for:

(A) A standard Sy sweep accelerated by a multigroup CMFD diffusion calcu-

lation solved by line relaxation in space.

(B) A standard Sy sweep accelerated by a multigroup CMFD diffusion calcula-

tion, which in turn is accelerated by a 2-group CMFD diffusion calculation.

(C) The multigrid M; method defined above. (In the CMFD calculation, en-

ergy is coarsened before space.)

(D) The multigrid M, method defined above. (In the CMFD calculation, en-

ergy and space are coarsened simultaneously.)

For each method, the problem was solved with G = 50, 187, and 640 groups.

The number of seconds required to converge each problem is given below:

G | Method A | Method B | Method C | Method D
50 81 93 75 86
187 175 156 137 132
640 1825 1434 1370 1021

Table 1: Timings (Sec) for Four Iteration Strategies

Unfortunately, the gains seen by the multigrid methods are modest. Inves-
tigation revealed that this is because for the given problem, the time required to
calculate the solution is not dominated by the time required to solve the multi-
group CMFD diffusion calculation. The multigrid-in-space-and-energy strategy

does efficiently accelerate the convergence of the CMFD equation. However,
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since the cost of solving this equation does not dominate the solution process,

the overall gain in run times for large G' are not major.

This result informed us that the cost of performing the high-order transport
sweeps was dominant, and that a more effective iteration strategy would be one
that reduced the number of high-order transport sweeps. This led to the ideas

described next.

. CMFD ACCELERATION OF WITHIN-GROUP SCATTERING

In an attempt to reduce the cost of the high-order transport sweeps, we in-
cluded — at the conclusion of each sweep in each energy group — a monoenergetic
CMFD calculation to accelerate the convergence of the within-group scattering
source. Unfortunately, this had little benefit. The reason is that within-group
scattering is significant only for relatively course groups; it becomes increas-
ingly less important as the number of groups increases. Therefore, accelerating
the convergence of this term has little effect on problems with large numbers of
groups; the cost of implementing this technique is not outweighed by a reduction

in the overall number of iterations.

. A “BOTTOM-UP” APPROACH

This has sometimes been called the “full multigrid” approach. The idea is
to minimize the total number of high-order transport sweeps by first calculating
the best possible initial guess for the high-order sweep, using information from
the coarser grids. For example, the best possible initial guess for the high-order
transport calculation on the finest (Gg, Ny) grid would arguably be the solution
of the transport calculation on the first coarse (Gq, Ny) grid; the best initial
guess for that solution would be the solution of the transport calculation on the

next coarse (Gg, N2) grid; and so on.

We spent considerable time implementing this approach, but unfortunately,
it did not perform well. The apparent reason for this is that when the calcu-
lation starts on a coarse grid, it is not possible to use the corect flux-weighted
cross sections from finer grids, because calculations on these grids have not been
done yet. Therefore, the coarse grid solutions are less accurate than they would
be otherwise. These solutions do become more accurate as the energy grid is
refined, because as the number of energy groups increases, the flux-weighting
becomes less important. In the end, this process does produce a more accu-

rate initial guess for the high-order transport calculation. Unfortunately, the
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extra expense associated with this “initializing” calculation does not lead to a
correspondingly large reduction in the number of required high-order transport
iterations.

8. HIGH-ORDER MULTIGROUP DIFFUSION INITIAL GUESS

An alternate approach is instead, to initialize the high-order (G, Ny) trans-
port calculation with the solution of the corresponding high-order (G, Ny) dif-
fusion calculation. In this case, the exact high-order cross sections are used,
and the issue of not having flux-weighted cross sections on the coarser grids is
not present. Nonetheless, this method also did not give meaningfully benficial

results.

(c) PUBLICATIONS

No publications have yet been generated by this work. The only document is
a work-in-progress, the PhD thesis of student Eric Baker. We anticipate that this
thesis will be written during the coming summer and fall, and that Eric will defend

sometime during the fall 2013 semester.
(d) OTHER RELATED INFORMATION

When the NEUP funding for this project ended in December 2012, CASL agreed
to provide funding until the end of August 31, 2013. CASL was interested in the
project because of its goal of reducing or eliminating the “Achilles Heel” of deter-
ministic transport calculations — the determination of multigroup cross section sets.
Unfortunately, our results to date are not particularly exciting. Nonetheless, certain
elements of our work, which were not part of our original research goal, are definitely
of interest. In particular:

1. In practical multigroup problems run today, an attempt is often made to acceler-
ate convergence by using a two-stage CMFD (essentially, a multigrid) approach
in which:

e The convergence of the high-order multigroup Sy problem is accelerated

by solving a multigrid diffusion problem, and:

e The convergence of the multigrid diffusion problem is accelerated by solv-
ing a 2-group diffusion problem. (The two groups correspond to fast neu-

trons, and slow neutrons.)
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In effect this method corresponds to our Figure 2, in which there are two course

grids, the coarsest one having 2 energy groups.

Much of the time this strategy works, and the solution is obtained more
efficiently. However, it often happens that this procedure is unstable (it does
not converge). In this case the only recourse is to solve the problem using the
original CMFD method, which has only the top two grids in Figure 2 and lacks

the 2-group calculation.

The work done in this thesis shows, at least experimentally, that problems
of this latter type can always be accelerated by using a sequence of energy grids
that collapses more slowly from G to 2. Experimentally, we have found that
collapsing by a factor of 4 works nicely. For example, if Gq = 32, then instead
of collapsing from 32 groups directly to 2, which is sometimes unstable, we
recommend collapsing from 32 to 8, and then from 8 to 2. The idea is simple,

but it works.

. Another important issue is that the nonlinear multigrid process employed in
our work produces not only the high-order transport solution (albeit, more
slowly than we had hoped), but it also automatically produces coarse grid flux-
weighted cross sections on each of the coarse space-energy grids. This, perhaps,
is more important than obtaining the high-order transport solution (the stated

goal of this project). This leads to our final observations:

. If it turns out to be impossible to efficiently solve transport problems with
100,000 energy groups, the problem of deriving “accurate” few-group cross sec-
tions will remain — because these kinds of cross sections are inevitably the ones
that are now, and will be in the future, used for most practical applications. It
may well be that a redirection of this project — from obtaining the high-order
transport solution as efficiently as possible, to obtaining “accurate” few-group
cross sections as efficiently as possible — would lead to a higher chance of suc-
cess. The reason: if one has the high-order transport solution, then one can
calculate any type of coarse-grid flux-weighted cross section using this exact so-
lution. However, it may be that to calculate accurate few-group cross sections,

it is not necessary to calculate the high-order transport solution.

For example, in the “bottom-up” approach described above, one deliber-
ately begins a calculation on a coarse grid, using coarse multigroup cross sections
that are not flux-weighted. The diffusion solution on this grid is obtained, and

is used to initiate the iteration process on the next finer grid. After the solution
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on this second grid has been obtained, this solution is used to initiate the itera-
tion process on the third grid; and so on. Suppose that at the conclusion of the
calculation on the second grid, and on the third grid, etc, one has the Sy solu-
tion on that grid. That solution could be used to generate flux-weighted cross
sections for the coarsest grid. Therefore, at the end of the calculation on each
increasingly fine grid, one has new flux-weighted cross sections on the coarsest
grid. Eventually, these coarsest-grid cross sections will converge. When they
do, it will not be necessary to perform calculations on any of the finer space-
energy grids. Moreover, if the convergence criterion on the coarse grid cross
sections is not too extreme, it is likely that the coarsest-grid cross sections will
have converged before the finest grid reaches 100,000 groups.

This would constitute a reconfiguration of the stated primary goal of the
project — but in a way that directly addresses the long-term problem of calcu-
lating few-group cross section sets. Even if this process were to work effectively,
other details would have to be considered. For instance, in any problem defined
on a spatial grid, the cross sections that are generated will vary slightly from one
spatial cell to another within each material region. How should the resulting
multigroup cross sections be “homogenized” across each specified region (where
a single set of flux-weighted cross sections are desired)? Although this problem
may not be simple, it seem much more tractable than the current problem of

generating multigroup cross sections by hand.

In conclusion, it must be admitted that the results of this project have
thus far been disappointing. However, the problem that we set out to solve is
very difficult. Part of this difficulty is reflected in the fact that multigroup cross
sections are obtained today in the same way they were obtained 50 years ago.
Nonetheless, we have learned a great deal about the problem, and although the
funding and the time for this project have ended, there still are ideas from this
work that may prove fruitful in the future. If possible, we will investigate at
least some of them before Eric defends his PhD thesis.
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