
.

.

Intelligent Automation Incorporated

CAGE100: Real-Time Multi-Port Packet
Capture System for 100 Gigabit Ethernet
Traffic

Final Technical Report

Reporting Period: Jun. 18, 2011 – Jun. 14, 2012

Contract No. DE-SC0006295
Sponsored by: DOE Office of Science
COTR/TPOC: Dr. Thomas Ndousse-Fetter

Prepared by
Shahin Farrokhnia
Ali Namazi
Babak Azimi-Sadjadi
Chujen Lin

SBIR/STTR RIGHTS NOTICE

These SBIR/STTR data are furnished with SBIR/STTR rights under Grant No. DE-SC0006295. For a

period of four (4) years after acceptance of all items to be delivered under this grant, the Government

agrees to use these data for Government purposes only, and they shall not be disclosed outside the

Government (including disclosure for procurement purposes) during such period without permission of

the grantee, except that, subject to the foregoing use and disclosure prohibitions, such data may be

disclosed for use by support contractors. After the aforesaid four-year period, the Government has a

royalty-free license to use, and to authorize others to use on its behalf, these data for Government

purposes, but is relieved of all disclosure prohibitions and assumes no liability for unauthorized use of

these data by third parties. This Notice shall be affixed to any reproductions of these data in whole or in

part.

15400 Calhoun Drive, Suite 400

Rockville, Maryland, 20855

(301) 294-5200

http://www.i-a-i.com

Page | 1 Intelligent Automation Incorporated

1 Summary

In course of the PHASE I contract we designed a complete digital system for capturing

a 10/40/100 Gigabit Ethernet frames (layer 1-4). A comprehensive design document

prepared that explains the functional and logical specification of each design element.

The 40/100 Gigabit Ethernet physical coding sub-layer is identical to 10GBASE-R

specification. Therefore for the PHASE I project where we had limited time, we

developed a 10 Gigabit Ethernet capture system. This design is complied with

10GBASE-R spec and it has many commonalities with 40/100GBASE-R specs.

Therefore in designing this system, we took a very modular design approach to

systematically migrate it to the 40/100GBASE-R spec.

The system that we developed for 10 Gig Ethernet has a PHY and a Main Capture

Engine board that are fully explained in the following sub-sections. The PHY board is

responsible to deliver a replica of receiving and transmitting signals to the main capture

engine while maintaining the connection between devices under test (DUTs). This

PHY board has a 10 Gig fan-out buffer and two 10 Gig de-serializers. These high-speed

chips were chosen from Vitesse Semiconductor, a leading supplier of IC solutions for

high-speed network system.

Since 10-Gig is a fairly new technology, for the fan-out buffer chip, we could only find

an engineering sample IC from Vitesse. At the time that we received the engineering

samples and made the first version of PHY board, there were some known issues with

the chip that were scheduled to be fixed in the next re-spin phase. Consequently, we

were not able to fully test and verify the functionality of our 10-Gig Ethernet capture

tool. However, we simulated and tested the logic design of capture engine, i.e. 10G

capture engine module, DDR3 buffer memory, and 1G Ethernet host interface. It’s

worth mentioning that we are working with the manufacturer to troubleshoot the

problem we encountered with the fan-out buffer chip.

Page | 2 Intelligent Automation Incorporated

1.1 FPGA Platform Selection and Design of PHY Board

Our very recent FPGA market study for solutions in 10 gigabit serial transceivers

shows that FPGA families with 10.3125 Gbps multi-gigabit transceivers are not only

very expensive (20k$) for a phase I project but also has a few months lead time that

would not meet our deadline for the final project demo. Therefore for the Phase-I we

decided to use a discrete 10Gig de-serializer and incorporate an affordable and yet

high-end FPGA for processing. For future development of 40/100 gig capture tool we

expect to have high speed embedded serial transceivers inside the FPGA.

1.1.1 Calculating the system clock rate inside FPGA

The serial transceivers for 10/40/100 Gig Ethernet technology deliver parallel signals

with a speed of 156.25 MHz. This speed for each physical link (10/40/100 GHz) is

derived from the following equations:

10GBASE-R : 10.3125 Ghz / 66-bit = 156.25 Mhz

40GBASE-R : 4 * 10.3125 Ghz / 4 * 66-bit = 156.25 Mhz

100GBASE-R : 10 * 10.3125 Ghz / 10* 66-bit = 156.25 Mhz

Therefore regardless of the physical link rate, the system clock speed is remained to a

constant rate of 156.25 MHz. Of course, the complexity of digital processing of each

links increase as the physical rates increase, i.e. for 10GBASE-R a single 66-bit data

with speed of 156.25 MHz has to be processed whereas for 40GBASE-R 4 sets of

66-bit data each with 156.25 MHz is processed.

This feature of Ethernet protocol has two advantages. First that it makes the design very

modular for migration to higher speeds and secondly a digital system with the speed of

156.25 MHz is very suitable to be implemented on FPGA platforms.

Based on this study, we purchased the Xilinx “ML605” Virtex-6 FPGA evaluation

board from Xilinx and has a powerful V6LX240 FPGA with a 1GB DDR3 memory

module for capture buffer, an Ethernet interface for Host Software interface, and a

high-pin and high-speed connector to connect to the PHY board. This board is shown in

Figure 1.

Page | 3 Intelligent Automation Incorporated

Figure 1. Xilinx ML605 Evaluation Board (picture is from Xilinx website)

We designed and added a PHY board to ML605 to receive a replica of signals from

DUTs and provide a parallel signal to the FPGA. The PHY board has a 2-channel

10.3125 Gbps fan-out buffer (Vitesse) and two (RX, TX) 10.3125 Gbps de-serializers.

The interface to the two devices under tests is two SFP+ optical connectors and the

interface from PHY de-serializers to the FPGA board is a 400-pin high-speed

connector. The PHY board block diagram is shown in Figure 2:

Figure 2 PHY board block diagram for 10GBASE-R

As shown in above block diagram the two devices under tests (DUT-1 & DUT-2)

connect to the PHY board via two SFP+ optical connectors. SFP+ is a typical optical

connector that supports rates up to 10 Gbps. The SFP+ connectors convert the optical

signal into electrical signal RX and TX.

For 40/100GBASE-R links the similar approach can be used. In such cases a fan-out

buffer with more channels (4 and 10 respectively) are utilized to deliver all the channels

to the FPGA. Figure 3 and Figure 4 show the block diagram for 40GBASE-R and

100GBASE-R links.

Page | 4 Intelligent Automation Incorporated

Figure 3 40GBASE-R PHY Board block diagram

Figure 4 100GBASE-R PHY Board block diagram

The RX signals from each SFP+ goes to the 10 Gbps fan-out buffer. The fan-out buffer,

VSC7111, is manufactured by VITESSE Semiconductors and can support rates up to

11.5 Gbps. The fan-out buffer makes two copies of each RX signals where one goes to

the 10G De-Serializer and the other goes to the TX signal of other SFP+. In this way the

2 DUTs are connected and the capture processing has the least effect on the signal

quality. The VSC7111 has both input signal equalization and output signal

pre-emphasis circuitries that programmable with multiples settings. This feature is

ideal for countering signal degradation over a wide variety of transmission media types

and lengths.

There are two 10G de-serializers, VSC8479, manufactured by VITESSE

Semiconductors that converts up to 10.3125 Gbps differential pair signal to a 16-pair

Page | 5 Intelligent Automation Incorporated

differential parallel signals with a rate of 625Mbps (10Gbps / 16). The two RX outputs

from fan-out buffer goes to the two de-serializers and the parallel outputs are directed to

the FPGA platform via a high-speed connector.

The PCB layout for the PHY board has been designed and manufactured in this

performance period. The PHY lay out routed on an 18-layer board and extensive care

has been taken to make sure that all signal integrity issues have been considered for 10

gig traces and other high-speed routes (32 pairs of 625 MHz LVDS signals). Figure 5

shows the PCB layout.

Figure 5 PHY PCB Layout

Page | 6 Intelligent Automation Incorporated

In order to test the system, we set up two computers with 10 Gig Ethernet cards as

devices under tests. The two computers are connected with fiber cables via capture tool

PHY board. In such test arrangment, the two computers communicate with each other

and the capture tool can monitor the traffic. Figure 6 shows the test setup and Figure 7

shows the capture tool (Phy and Main boards).

Figure 6 Test setup with 2 PCs connected via the capture tool

PC #1

PC #2

Capture Tool

Fiber Cables

Page | 7 Intelligent Automation Incorporated

Figure 7 10 Gig Capture PHY and Main board

Page | 8 Intelligent Automation Incorporated

2 CAGE-100 FPGA Design

Figure 8 shows the analyzer block diagram. The analyzer consists of four major

components: PHY Interface; analyzer engine; Memory Management Unit; Host

Interface, which are explained below.

Figure 8. CAGE-100 block diagram.

1. PHY Interface: PHY interface is responsible to deliver a copy of data stream to

the analyzer engine. For every two nodes under tests, there are two high-speed

active fan-out buffers. Each 2 by 2 switch distributes the input TX pair signal

into two TX pair signals, one goes to the analyzer and one is routed to RX signal

of others node.

2. Analyzer Engine: Analyzer engine is designed to capture, filter, and trigger on

the incoming data stream and prepare the captured data for MMU unit. The

Analyzer engine has a processing unit, Analyzer Processing Unit (APU), which

is capable of executing the instructions set by host computer. The instruction

sets define what analyzer captures, what is filtered, and when and where the

analyzer is triggered.

3. MMU: MMU is responsible to store the captured data from analyzer engine and

upload the stored data to the analyzer host interface.

4. Host Interface: Host Interface communicates with the host computer software

via Ethernet to deliver Capture program and other settings to the Analyzer and

also upload the capture samples back to the host computer.

2.1 Analyzer Engine

Figure 9 shows a flow chart of CAGE-100 capture tool.

Page | 9 Intelligent Automation Incorporated

Figure 9 Analyzer Flow Diagram.

Figure 10 shows the block diagram for the analyzer engine.

Page | 10 Intelligent Automation Incorporated

Figure 10 Analyzer block diagram

2.2 Analyzer software

The analyzer software has a Graphical User Interface (GUI) that gets the user capturing

strategy and compiles it to a set of instructions. This program is downloaded to the APU

memory via Host Interface. All the analyzer settings and options are also programmed

in this phase.

2.2.1 How APU works

When APU received the program, it will process the instructions one by one. The

program includes the patterns to be captured or to be triggered on for each state of

sequencer. There are also a limited number of detector engines, called APU-Functions

that are able to detect different patterns in received data. For each analyzer state, APU

programs the associated APU-function and wait for the event. When an APU-function

event happens, the analyzer state is advanced and APU continues to fetch next

instruction and program a new set of APU-functions until the program reaches to the

end or the sampling memory becomes full.

2.2.2 How analyzer receives the data from serial data

For both TX lanes of every link, a high speed fan-out buffer is placed on PHY board

which is able to repeat a copy of bus data to the analyzer core. This data is fed to serial

transceiver to extract the clock, and de-serialize the data. In case of 40GBASE-R, 4

streams of 66-bit data along with associated valid signal are passed to PCS Decoding

module.

Page | 11 Intelligent Automation Incorporated

When the receive channel is in normal mode, the PCS synchronization process

continuously monitors the signal lanes. Synchronization module attains block

synchronization based on the 2-bit synchronization headers on each one of the PCS

lanes. Once block synchronization is found on a PCS lane, then alignment marker

lock can be attained by searching for valid alignment markers. After alignment

markers are found on all PCS lanes, the PCS lanes can be reordered and de-skewed.

The PCS de-skew process conveys received blocks to the PCS receive process. The

PCS deskew process deskews and aligns the individual PCS lanes, removes the

alignment markers, forms a single stream, and sets a flag to indicate whether the PCS

has obtained alignment.

When the PCS deskew process has obtained alignment, the BER monitor process

monitors the signal quality if excessive errors are detected. When align status is

asserted the PCS Receive process continuously accepts blocks and generates

Then the data is descrambled with the appropriate code. Once data descrambled the

Extractor module detects block type (Control & Data) and add several protocol related

information to the data. For example, start and end control characters, payloads and

Idles are detected in this module and are aggregated to the sampled data. This process is

shown in Figure 11

Figure 11 Block diagram of PCS decoder and data & control extractor for 40GBASE-R

The sampled data together with the extracted information is queued up to be fetched by

APU. Any time that APU is ready to process incoming data, they fetch a line from

queue. To prevent queue overflow, the frequency at which the APU works is slightly

higher than the frequency of incoming data.

Page | 12 Intelligent Automation Incorporated

2.2.3 How captured data is saved into memory

After APU detected the data of interest, it passes them along with the capture command

to the memory interface module. This module is responsible to convert raw data

samples into sampling memory format. The sampling memory stores captured data

samples and some necessary information to be used by software engine. To increase the

memory bandwidth efficiency, memory interface removes redundant samples (e.g. Idle

octets).Memory Interface sends the data to MMU unit which is connected to the DDR

RAM modules. MMU generates DDR commands for saving sampling memory data

and passes them to the memory modules.

2.2.4 How data is uploaded into PC

When the sampling memory becomes full or a stop command is received from user,

APU reports Host interface to stop data capture. Then, software uploads data from

Analyzer. It sends some commands to the Host Interface which is routed to MMU.

MMU generates DDR2 commands and read data from memory and passes them to the

Host interface. Data is pushed to the Host interface queues and uploaded via Ethernet

interface.

2.2.5 APU Main

APU (Analyzer Processing Unit) is responsible for receiving Host Analyzer

programming information, programming APU functions unit, Controlling Analyzer

sequences & store parameters and finally issuing Store and Trigger commands to the

Analyzer engine.

 APU receive analyzer program from software via Host Interface.

 APU starts after receiving start command from Host Interface.

 APU stops after receiving stop command from following sources:

1. Stop command received from Host Interface.

2. Stop command received from APU (conditional stop command in

advanced analyzer).

3. Stop command when sampling memory gets full (received from MMU).

The Analyzer state machine supports up to 32 states that in each state:

 Define different capture filter.

 Set Trigger; Stop analyzer.

 Define up to 4 conditions statement. (1 IF and 3 ELSIF, Exit counter)

Page | 13 Intelligent Automation Incorporated

 Define 32-bit timer.

 Define timeout detector function.

 Two 16-bit Variables that can be ‘Inc’, ‘Dec’ and ‘Load’.

2.2.6 APU Instruction Set

Table below shows the list of instructions that APU executes. The instruction set is

programmed by software and sent through Host Interface.

Instruction Parameters Description

Pattern Function, Not, Parameters Programs a specified function

Start N/A Start Analyzer

Stop N/A Stop

Condition Condition#, Count, Mask Sets special event or events as a term of

IF or ElseIf instructions.

Wait Addr1, Addr2, Addr3, Addr4,

Control

Waits on previously defined

conditions and jump to Address x

if condition x is satisfied.

IncVar Variable# Increments variable value once.

DecVar Variable# Decrements variable value once

LoadVar Variable#, Value Loads an initial value for specified

variable.

CJump Variable#, Value, Address, Type Compares value of specified

Variable with given value and

jumps to the given address if

comparison result is true.

Comparison operator is specified

in type field.

Delay Delay value

2.2.7 APU Programming

The APU can accept 1024 instructions each of which consists of 16 bytes. An

Instruction memory allocated with depth of 1024 and width of 128 bit. Each line

contains one machine code except some functions with more than one line parameters

(e.g. Data Pattern function which needs at least three lines for its parameters).

Page | 14 Intelligent Automation Incorporated

Every line is consisted of 16 bytes and every instruction occupies some or all of them.

For instructions that do not need all 16 bytes the remained bytes are padded with zero.

The machine code for each instruction is listed in the following table:

Instruction Machine Code

Branch 00 0x02

01 Address (LSB)

02 Address (MSB)

Pattern 00 0x03

01 Function ID (MSB)

02 Function ID (LSB) odd: N1to

N2; even N2 to N1

03 Bit 0: Not

Bit (7…1): Reserved

04 Bit (7...0): Parameters (7...0)

05 Bit (7...0): Parameters (15...8)

:

15 Bit (7...0): Parameters (95...88)

Store 00 0x05

01 Bit0 = 0: Include

 = 1: Exclude

Bit1 = 1: Everything

Bit (7...2): Reserved

02-

04

Reserved

05 Bit (7...0): Store Mask of F0 to

F7

...

15 Bit (7...0): Store Mask of F80 to

F87

Trig 00 0x06

Exclude 00 0x07

01 Exclude Mask (7...0)

…

06 Exclude Mask (63...56)

Loop 00 0x08

01 Address (LSB)

Page | 15 Intelligent Automation Incorporated

02 Address (MSB)

03 Counter (LSB)

04 Counter (MSB)

Stop Analyzer 00 0x0A

Condition 00 0x0B

01 Bit (1...0) = Condition#

Bit (3...2) = Reserved

Bit (7...4) = Count (LSB)

02-

03

Bit (11...0) = Count (MSB)

Bit (15...12) = Reserved

04 Bit (2...0): Condition Mask of

T1 to T3 (used for Timer

Enable)

Bit (3): Condition Mask of

Anything

Bit (4): Condition Mask of

Timeout

Bit (7...5): Condition Mask are

Reserved

05 Bit (7...0): Condition Mask of

F0 to F7

…

15 Bit (7...0): Condition Mask of

F80 to F87

Wait 00 0x04

01 Addr1 (LSB)

02 Addr1 (MSB)

03 Addr2 (LSB)

04 Addr2 (MSB)

05 Addr3 (LSB)

06 Addr3 (MSB)

07 Addr4 (LSB)

08 Addr4 (MSB)

09 Control (7...0)

10 Control (15...8)

11 Control (23...16)

12 Control (31...24)

Page | 16 Intelligent Automation Incorporated

IncVar 00 0x0C

01 Bit 0 = Variable#

DecVar 00 0x0D

01 Bit 0 = Variable#

LoadVar 00 0x0E

01 Bit 0 = Variable#

Bit (7...1) = Reserved

02 Value (LSB)

03 Value (MSB)

CJump 00 0x0F

01 Bit 0 = Variable#

Bit (7…1) = Reserved

02 Value (LSB)

03 Value (MSB)

04 Address (LSB)

05 Address (MSB)

06 Bit (1...0) = Type

Bit (7...2) = Reserved

Start Analyzer 00 0x10

Delay 00 0x11

01 Delay (LSB)

02 Bit (3…0) = Delay (MSB)

Bit (7…4) = Reserved

Halt 00 0xFF

2.2.8 Instructions Description

2.2.8.1 Pattern {Function#, Not, Parameters}

With Pattern instruction, one can define various types of pattern within Ethernet frame

to be detected. There’s a 1-bit field that defines whether the instruction should find or

ignore the pattern.

There are three global 32-bit timers and one timeout timer are available which can set in

each state. In order to program these timers Pattern instruction must be used with

function ID of 0x01, 0x02, 0x03, and 0x04. The first three IDs are for the three timers

and the fourth one is for timeout timer. Also “Parameters” field specifies Timer Value

T.

Page | 17 Intelligent Automation Incorporated

Using Pattern instruction, we can define various types of patterns, symbols, protocol

errors and etc. In some cases, Parameters field is too big be defined in one instruction,

therefore multiple Pattern instruction maybe used to define long patterns. For long

patterns, i.e. more than 16bytes, the last parameter byte defines the instruction number

with that pattern and the last Pattern instruction number is FF.

2.2.8.2 Start Analyzer

This instruction starts the analyzer.

2.2.8.3 Stop Analyzer

This instruction stops the analyzer.

2.2.8.4 Trig {No Parameters}

This instruction is used to trigger the analyzer.

2.2.8.5 Exclude

This instruction excludes the specified pattern from being captured. Format of APU

Exclude command mask for 10GBASE-R is as follows:

Exclude Mask Position

Exclude Data Frame Payload Bit 0

Exclude Idle Bit 1

Exclude START /S/ Bit 2

Exclude TERMINATE /T/ Bit 3

Exclude ERROR /E/ Bit4

Exclude SEQUENC ORDERED_SET

/Q/

Bit5

Reserved Bit6

Reserved Bit7

Reserved Bit8

Exclude Payload Offset [11..0] Bit 27 to 16

Exclude Payload Offset indicates offset from begin of payload that should be excluded.

2.2.8.6 Jump {Address}

Unconditionally branches to the next instruction address value.

2.2.8.7 Loop {Label, Counter}

This instruction jumps to the Label if the Counter is not zero, then decrements the

Counter by one. Label field defines the next branch address.

Page | 18 Intelligent Automation Incorporated

2.2.8.8 CJump {Variable#, Value, Address, Type}

This instruction compares the value of specified variable with specified Value and

branches to any other state if the comparison is true. The Address field of CJump

instruction sets branch address and Type field sets comparison operator type.

Type field format is as follows:

 00: =

 01: > (Variable >Value)

 10: < (Variable <Value)

 11: Reserved

There are two variables that could be selected by setting or resetting of “Variable” field

of “CJump” Instruction.

2.2.8.9 LoadVar {Variable#, Value}

This instruction loads initial Value for specified variable. The Variable# field of

LoadVar instruction selects the variables.

2.2.8.10 IncVar {Variable#}

This instruction increments the variable.

2.2.8.11 DecVar {Variable#}

This instruction decrements variable value.

2.2.8.12 Condition {Condition #, Count, Mask}

Analyzer supports four IF and ELSIFs within each state. This instruction defines

condition of IF and ELSIFs. Condition# field indicates the ID of used conditions

(Condition1 (IF) with Condition# = 00, Condition2 (ELSIF1) with Condition# = 01,

Condition3 (ELSIF2) with Condition# = 10 or Condition4 (ELSIF3) with Condition# =

11). Using Condition# field, we can refer to different Condition instructions in each

state (e.g. in Control field of Wait instruction).

Also each condition parameters that are searched by analyzer is marked with Mask bits.

Note that Condition Mask bits of 0 to 2 are used for timer enabling, bit 3 is used for

Anything and bit 4 is used for Timeout. Higher bytes of instruction are used for masking

F0 to F87.

In each condition one 16-bit event counter can be set. The Count field is allocated for

this counter. In this case, Mask bits show event or events, which their occurrence must

be counted.

For each IF and ELSIF used in each state one signal Condition Instruction must be

used.

Page | 19 Intelligent Automation Incorporated

2.2.8.13 Wait {JumpAddr1, JumpAddr2, JumpAddr3, JumpAddr4,

Control}

This instruction waits on previously defined conditions and jumps to “JumpAddressX”

if condition number X is true. Additional “Control” field puts control over “Wait”

conditions. “Control” field defines next “JumpAddress” or any other transition. It

consists of:

Bit0: Condition1 is active (and so “JumpAddress1” is valid)

Bit1: Condition2 is active (and so “JumpAddress2” is valid)

Bit2: Condition3 is active (and so “JumpAddress3” is valid)

Bit3: Condition4 is active (and so “JumpAddress4” is valid)

Bit4: Set Trigger after condition 1 is met

Bit5: Set Trigger after condition 2 is met

Bit6: Set Trigger after condition 3 is met

Bit7: Set Trigger after condition 4 is met

Bit8: Stop Analyzer after condition 1 is met

Bit9: Stop Analyzer after condition 2 is met

Bit10: Stop Analyzer after condition 3 is met

Bit11: Stop Analyzer after condition 4 is met

Bit12: Set External Signal after condition 1 is met

Bit13: Reset External Signal after condition 1 is met

Bit14: Set External Signal after condition 2 is met

Bit15: Reset External Signal after condition 2 is met

Bit16: Set External Signal after condition 3 is met

Bit17: Reset External Signal after condition 3 is met

Bit18: Set External Signal after condition 4 is met

Bit19: Reset External Signal after condition 4 is met

Bit20: This bit should be set if condition1 is used but it does not jump to other

states

Bit21: This bit should be set if condition2 is used but it does not jump to other

states

Bit22: This bit should be set if condition3 is used but it does not jump to other

states

Page | 20 Intelligent Automation Incorporated

Bit23: This bit should be set if condition4 is used but it does not jump to other

states

2.2.8.14 Outport {Address, Value}

This instruction is used to set some output register including external signal and state

indication. Address field specifies registers address and Value indicates the value of

that register.

Address 0x00h is used for External signals. In this case Bit 0 of Value shows external

signal, other bits are reserved. Address 0x01h is used for state indication. Software

could mark state IDs by using this instruction with address 0x01h and proper value, and

use it during run process in order to indicate which state is being executed (e.g. (outport

1,2) means in this time state 2 is executed). The addresses 0x02 to 0x0F are reserved for

APU registers.

2.2.8.15 Store {Control, Mask}

This Instruction is used to capture specified pattern. Control field defines that selected

patterns should be captured or filtered out.

2.2.8.16 Halt {No Parameters}

This instruction indicates the end of program.

2.2.8.17 Delay {Delay}

This instruction generates three or more clocks delay in an APU program and mainly

can be used to synchronize multiple APU cores in cascade architecture. The resulted

delay by the Delay instruction is “delay value” + 3 clocks. This means the delay

parameter should be set to three less than the desired value.

2.2.9 APU programming examples

2.2.9.1 Example 1

In this example, we capture everything and trig at the beginning

Capture

 Everything

Trig-On

 Snapshot

Memory

 Entire Memory

 Pre-Trig = 50%

Page | 21 Intelligent Automation Incorporated

N

o

Instructi

on

0 1 2 3 4 5 6 7 8 9 1

0

1

1

1

2

1

3

1

4

1

5

1 start 1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2 Outport 0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3 Outport 0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

4 trig 0

6

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

5 exclude 0

7

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

6 store 0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

7 halt F

F

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2.2.9.2 Example 2

Capture

 Pattern

1. ARP Frame on both direction; N1 to N2 , N2 to N1

 Source MAC: 14:FE:B5:D9:1F:FF,

 ARP Type: “0806”,

 Target IP Address: 10:5:1:252

Trig-On

 Snapshot

Trace Memory

 Entire Memory

 Pre-Trig = 50%

Page | 22 Intelligent Automation Incorporated

N

o

Instructi

on

0 1 2 3 4 5 6 7 8 9 1

0

1

1

1

2

1

3

1

4

1

5

1 Pattern 0

3

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

4

F

E

B

5

D

9

1

F

0

0

2 Pattern 0

3

0

0

0

1

0

0

F

F

0

8

0

6

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

3 Pattern 0

3

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

4 Pattern 0

3

0

0

0

1

0

0

0

0

0

A

0

5

0

1

F

C

0

0

0

0

0

0

0

0

0

0

0

0

0

3

5 Pattern 0

3

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

4

6 Pattern 0

3

0

0

0

1

0

0

0

0

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

7 Pattern 0

3

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

4

F

E

B

5

D

9

1

F

0

0

8 Pattern 0

3

0

0

0

2

0

0

F

F

0

8

0

6

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

9 Pattern 0

3

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

1

0

Pattern 0

3

0

0

0

2

0

0

0

0

0

A

0

5

0

1

F

C

0

0

0

0

0

0

0

0

0

0

0

0

0

3

1

1

Pattern 0

3

0

0

0

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

4

1

2

Pattern 0

3

0

0

0

2

0

0

0

0

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

1

3

start 1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

4

Outport 0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

5

Outport 0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

6

trig 0

6

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

7

exclude 0

7

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1 store 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Page | 23 Intelligent Automation Incorporated

8 2 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0

1

9

halt F

F

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2.2.10 APU Functions

This component is responsible to detect patterns defined by APU through following

functions:

 Control Character detection

 Frame Pattern detection

 Data pattern detection

 Protocol error detection

As shown in Figure 12 Function Decoder decodes and enables appropriate function

based on what it is received from APU. Then any selected function (except Timer &

External Trigger functions) starts to compare data stream (received from Data Queue)

with function parameters (received from APU) and if they were matched, respected

function would set Store and Trig Signals to ‘1’ for one clock pulse period. To

accomplish this process each function utilizes some control signals (frame

Start/Terminate, block type ...) from Data Queue and from another component within

APU Function called Frame Extraction which gives additional information about

current frame (MAC address, frame type …).

Page | 24 Intelligent Automation Incorporated

Figure 12 APU Function block diagram

2.2.11 Data Queue

This component is comprised of an asynchronous FIFO and a controller that can

temporarily store SerDes extracted data stream and their relative control signals to be

further used by Analyzer engine (APU, APU functions). This queue compensates for

the inherent delay existed in fetch & decoding process of APU instructions. Figure 13

shows Data Queue block diagram.

By receiving start analyzer command from APU, store information are written into

FIFO with the 156.25 MHz clock signal and when read enable issued by APU, APU

Functions reads stored information with 200 MHz clock signal.

Page | 25 Intelligent Automation Incorporated

Figure 13 Data Queue block diagram

2.2.12 Data Alignment

“Data Alignment” component consists of series of signal pipes that adjusts output

signals of “Data Queue” component to the issued commands of APU (trig, store

commands …) and protocol errors outputs of “APU Functions”. This alignment is

necessary when these two sets of information are further used in construction of

sampling memory where any captured word or frame must be co-sited with its

pertaining protocol error and/or trig/store information.

2.2.13 Memory Interface

Memory Interface constructs the analyzer sampling memory format in which stores

SerDes derived data and some additional information like time stamp, duration and

protocol errors. Memory Interface resets with a short delay (80 ns) after receiving start

command from APU. There are two instances of Memory Interfaces, each of which

stores single node information. Depending on type of data we have three formats to be

stored in sampling memory.

1. Idle sequence that consists of idle control characters which exist outside frame

sequence.

2. Control character sequence that consists of control characters.

3. Frame sequence that consists of all Ethernet supported frames. (e.g. ARP,

UDP,TCP)

These sequences are placed in a row of 128-bit data to store two DWORDs plus some

additional information (C/D, symbol error...). Then at the end of each sequence, an

extra line with information about time stamp, duration and protocol errors is formed.

Each sequence belongs to one direction data stream. While N1 & N2 sides of Memory

Page | 26 Intelligent Automation Incorporated

Interface is constructing sampling memory data there is a state machine that sort the

received memory data and extra line according to their start time in which any sequence

from either side that starts prior to the opposite side will be sent to MMU (Memory

Management Unit) earlier. Along with Memory data and extra line, an eight-bit

command containing information about (start and end sequence, trig command and

extra line valid command) sends to the MMU.

In each Memory Interface instance, after constructing memory format data are

temporarily stored in three separate FIFOs (data, complement line, time stamp) in order

to be further read by sorting state machine. These FIFOs compensate for intrinsic delay

that exists through state machine transitions.

Figure 14 shows Memory Interface block diagram.

Figure 14 Memory Interface block diagram

2.2.14 Frame Sequence (First and Middle rows)

Frame sequence is a sequential of data that starts with Start control character /S/ and

ends with Terminate control character /T/. Each frame sequence occupies some rows of

memory. Each row stores a block of 64-bit data plus the block extra information.

Format of rows except for the last row is as defined in Figure 15:

Page | 27 Intelligent Automation Incorporated

Figure 15- Format of first row and middle rows of Frame sequence in sampling memory

Each frame sequence consists of a first row; some middle rows with overall format

similar to first row and a last row. To detect a frame sequence, at first these rows should

be recognized. Bit 11.1:0 should be checked to identify the row and then bit 11-3:2 to

find out what type of sequence i.e. frame or idle, this row belongs to.

Symbol Err (Byte 0): This field is allocated for symbol error indication. If the received

octet has symbol error, i.e. descramble error or invalid control character, the

corresponding bit in Byte 0 is set to ‘1’.

Each bit of this field indicates status of one symbol. 1 means the associated symbol has

error.

Byte

0

Description

Bit-0 Octet0 Error

Bit-1 Octet1 Error

Bit-2 Octet2 Error

Bit-3 Octet3 Error

Bit-4 Octet4 Error

Bit-5 Octet5 Error

Bit-6 Octet6 Error

Bit-7 Octet7 Error

(Byte 1): Type of data octet is defined in this field. ‘0’ for Data octet and ‘1’ for

control character octets.

(Byte 9-2): One block of data is stored in this field. Byte 10 stores D0 (Least

Significant Byte) and Byte 3 stores D7 (Most Significant Byte).

Byte 15-14 Byte13-10 Byte 9-2 C/D Byte

0

Control

Char Type

Flags Block

Contr

ol/Da

ta

Symb

ol Err

Page | 28 Intelligent Automation Incorporated

(Byte 13-10): These four bytes are reserved for flags.

Byte

10-13

Description

Bit-10.0 Octet0 is Align that removed/inserted

for clock correction

Bit-10.0 Octet1 is Align that removed/inserted

Bit-10.1 Octet2 is Align that removed/inserted

Bit-10.2 Octet3 is Align that removed/inserted

Bit-10.3 Octet4 is Align that removed/inserted

Bit-10.4 Octet5 is Align that removed/inserted

Bit-10.5 Octet6 is Align that removed/inserted

Bit-10.6 Octet7 is Align that removed/inserted

Bit-10.7 RSV

Bit-11.1:0 “00” : First row

“01” : middle row

“10” : Last row

“11” : RSV

Bit-11.3:2 “00” Frame Seq

“01” Idle Seq

“10” RSV

“11” RSV

Bit-11.4 Start of frame:Has /S/

Bit-11.5 End of frame: Has /T/

Bit-11.6 Protocol Error detected on Octet0

Bit-11.7 Protocol Error detected on Octet1

Bit-12.0 Protocol Error detected on Octet2

Bit-12.1 Protocol Error detected on Octet3

Bit-12.2 Protocol Error detected on Octet4

Bit-12.3 Protocol Error detected on Octet5

Bit-12.4 Protocol Error detected on Octet6

Bit-12.5 Protocol Error detected on Octet7

Bit-12.6 ‘0’ means octet0 excluded

Bit-12.7 ‘0’ means octet1 excluded

Bit-13.0 ‘0’ means octet2 excluded

Bit-13.1 ‘0’ means octet3 excluded

Page | 29 Intelligent Automation Incorporated

Bit-13.2 ‘0’ means octet4 excluded

Bit-13.3 ‘0’ means octet5 excluded

Bit-13.4 ‘0’ means octet6 excluded

Bit-13.5 ‘0’ means octet7 excluded

Bit-13.6 RSV

Bit-13.7 RSV

(Byte 15-14): Reserved.

2.2.15 Frame sequence (Last row)

The complement data of memory format for frame sequences places at the last row and

the format is shown in Figure 16:

Byte 15-14 Byte 13-12 Byte 11 Byte 10-9 Byte 8-4 Byte 3-0

External Signal

In

Flags Extended

Flags

Protocol

Error

Start Time (5 bytes) Duration (4 bytes)

Figure 16 Last Row Format

Duration (Byte 3-0): Duration of frame sequence, this value should be divided by

clock frequency to get duration in second. The clock frequency is 156.25e6 for

10GBASE-R.

Start Time (Byte 8-4): This value should be divided by clock frequency, i.e. 156.25e6

to calculate start time in second.

Protocol Error (Byte 10-9): List of specified protocol errors:

Byte

10-9

Description

Bit-9.0 RSV.

Bit-9.1 RSV.

Bit-9.2 RSV.

Bit-9.3 RSV.

Bit-9.4 RSV.

Bit-9.5 RSV.

Bit-9.6 RSV.

Bit-9.7 RSV.

Bit-10.0 RSV.

Page | 30 Intelligent Automation Incorporated

Bit-10.1 RSV.

Bit-10.2 RSV.

Bit-10.3 RSV.

Bit-10.4 RSV.

Bit-10.5 RSV.

Bit-10.6 RSV.

Bit-10.7 RSV.

Flags (Byte 11):

Byte 11 Description

Bit-11.1:0 “00” : First row

“01” : middle row

“10” : Last row

“11” : RSV

Bit-11.3:2 “00” Frame Sequence

“01” Idle Sequence

“10” RSV

“11” RSV

Bot-11.7:4 APU state

Flags (Byte 13-12):

Byte

13-12

Description

Bit-12.0 RSV.

Bit-12.1 RSV.

Bit-12.2 Frame direction: ‘0’ N1 to N2; ‘1’ N2

to N1

Bit-12.3 Payload status: ‘0’ stored ; ‘1’ Not

stored

Bit-12.4 Scrambling status: ‘0’ de-scrambled;

‘1’ not de-scrambled

Bit-12.5 Frame protocol type:

“00000” : ARP

“00001” : UDP

“00010”: TCP

Bit-12.6

Bit-12.7

Bit-13.0

Page | 31 Intelligent Automation Incorporated

Bit-13.1

Bit-13.2 ‘1’ frame not completely captured,

Memory full

Bit-13.3 Split frame:

“00” : not split

“01” : first split frame

“10” : middle frame

“11” : last frame

Bit-13.4

Bit-13.5 RSV.

Bit-13.6 RSV.

Bit-13.7 RSV.

External Signal In: External signals value. External Signals could be sampled at the

beginning of a sequence. In the last row of each sequence, this value is stored.

2.2.16 Idle Sequence Format

The data octets that come outside Frame sequence are stored in an Idle sequence

format. Instead of storing the exact value of idle octets, the number of valid idle octets

is stored. If the idle octet is an invalid code, the exact code is stored in the format of

frame sequence. Figure 17 shows the Idle sequence format.

Figure 17 Idle Sequence Format

Symbol Err (Byte 0): This field is allocated for symbol error indication. If the received

idle octet has symbol error, i.e. descramble error or invalid control character, the

corresponding bit in Byte 0 is set to ‘1’.

Each bit of this field indicates status of one symbol. 1 means the associated symbol has

error.

Byte 15-14 Byte13-10 Byte 9-2 Byte 1 Byte

0

Control

Char Type

Flags Number of idle octets

RSV Symb

ol Err

Page | 32 Intelligent Automation Incorporated

Byte

0

Description

Bit-0 Octet0 Error

Bit-1 Octet1 Error

Bit-2 Octet2 Error

Bit-3 Octet3 Error

Bit-4 Octet4 Error

Bit-5 Octet5 Error

Bit-6 Octet6 Error

Bit-7 Octet7 Error

(Byte 1): Reserved.

(Byte 9-2): The number of idle data octets is stored in Byte 3:2, i.e. LSB byte 2 MSB

Byte 3. If there’s any invalid idle octet the exact value is stored, i.e. Byte 10 stores D0

(Least Significant Byte) and Byte 3 stores D7 (Most Significant Byte).

(Byte 13-10): These four bytes are reserved for flags.

Byte

10-13

Description

Bit-10.0 Octet0 is Align that removed/inserted

for clock correction

Bit-10.0 Octet1 is Align that removed/inserted

Bit-10.1 Octet2 is Align that removed/inserted

Bit-10.2 Octet3 is Align that removed/inserted

Bit-10.3 Octet4 is Align that removed/inserted

Bit-10.4 Octet5 is Align that removed/inserted

Bit-10.5 Octet6 is Align that removed/inserted

Bit-10.6 Octet7 is Align that removed/inserted

Bit-10.7 RSV

Bit-11.1:0 “00” : First row

“01” : middle row

“10” : Last row

“11” : RSV

Bit-11.3:2 “00” Frame Sequence

“01” Idle Sequence

“10” RSV

“11” RSV

Page | 33 Intelligent Automation Incorporated

Bit-11.4 RSV

Bit-11.5 RSV

Bit-11.6 Protocol Error detected on Octet0

Bit-11.7 Protocol Error detected on Octet1

Bit-12.0 Protocol Error detected on Octet2

Bit-12.1 Protocol Error detected on Octet3

Bit-12.2 Protocol Error detected on Octet4

Bit-12.3 Protocol Error detected on Octet5

Bit-12.4 Protocol Error detected on Octet6

Bit-12.5 Protocol Error detected on Octet7

Bit-12.6 ‘0’ means octet0 excluded

Bit-12.7 ‘0’ means octet1 excluded

Bit-13.0 ‘0’ means octet2 excluded

Bit-13.1 ‘0’ means octet3 excluded

Bit-13.2 ‘0’ means octet4 excluded

Bit-13.3 ‘0’ means octet5 excluded

Bit-13.4 ‘0’ means octet6 excluded

Bit-13.5 ‘0’ means octet7 excluded

Bit-13.6 RSV

Bit-13.7 RSV

 (Byte 15-14): Reserved.

2.2.17 Idle sequence (Last row)

The last row of memory format for frame sequences is shown in Figure 18:

Byte 15-14 Byte 13-12 Byte 11 Byte 10-9 Byte 8-4 Byte 3-0

External Signal

In

Flags Extended

Flags

Protocol

Error

Start Time (5 bytes) Duration (4 bytes)

Figure 18 Last Row Format

Duration (Byte 3-0): Duration of frame sequence, this value should be divided by

clock frequency to get duration in second. The clock frequency is 156.25e6 for

10GBASE-R.

Start Time (Byte 8-4): This value should be divided by clock frequency, i.e. 156.25e6

to calculate start time in second.

Protocol Error (Byte 10-9): List of specified protocol errors.

Page | 34 Intelligent Automation Incorporated

Byte

10-9

Description

Bit-9.0 RSV.

Bit-9.1 RSV.

Bit-9.2 RSV.

Bit-9.3 RSV.

Bit-9.4 RSV.

Bit-9.5 RSV.

Bit-9.6 RSV.

Bit-9.7 RSV.

Bit-10.0 RSV.

Bit-10.1 RSV.

Bit-10.2 RSV.

Bit-10.3 RSV.

Bit-10.4 RSV.

Bit-10.5 RSV.

Bit-10.6 RSV.

Bit-10.7 RSV.

Flags (Byte 11):

Byte 11 Description

Bit-11.1:0 “00” : First row

“01” : middle row

“10” : Last row

“11” : RSV

Bit-11.3:2 “00” Frame Sequence

“01” Idle Sequence

“10” RSV

“11” RSV

Bot-11.7:4 APU state

Page | 35 Intelligent Automation Incorporated

Flags (Byte 13-12):

Byte

13-12

Description

Bit-12.0 RSV.

Bit-12.1 RSV.

Bit-12.2 Frame direction: ‘0’ N1 to N2; ‘1’ N2

to N1

Bit-12.3 RSV

Bit-12.4 RSV

Bit-12.5 RSV

Bit-12.6

Bit-12.7

Bit-13.0

Bit-13.1

Bit-13.2 RSV

Bit-13.3 Split frame:

“00” : not split

“01” : first split frame

“10” : middle frame

“11” : last frame

Bit-13.4

Bit-13.5 RSV.

Bit-13.6 RSV.

Bit-13.7 RSV.

External Signal In: External signals value. External Signals could be sampled at the

beginning of a sequence. In the last row of each sequence, this value is stored.

2.3 Memory Management Unit

2.3.1 Overview

There are two modules that have access to the memory buffer. The Analyzer Engine

that captures data and Host Interface that receives capture data to showing it in the

viewer. Memory Management Unit (MMU) controls these data transactions from

analyzer engine to DDR Memory and from Host Interface to DDR Memory. Figure 19

shows the block diagram for MMU with respect to the whole system.

Page | 36 Intelligent Automation Incorporated

Figure 19 Memory Management Unit

Inside MMU there are three components:

2.3.2 Analyzer Command Extractor (ACE)

The Analyzer Engine doesn’t provide the write address; rather it only generates some

commands. The MMU extracts the commands in order to generate the address and

write requests. This module is called Analyzer Command Extractor (ACE).

2.3.3 Host Interface Management (HIM)

Host Interface Management controls the data transactions between memory and Host

Interface.

2.3.4 DDR Memory Multiplexer (DMM)

DMM receives incoming requests from ACE and HIM and constructs the write/read

request to the DDR3 and deliver the read data to HIM. Figure 20 shows the block

diagram for MMU.

Page | 37 Intelligent Automation Incorporated

Figure 20: MMU block diagram

In the next subsections, you can find a brief explanation about duties of each part.

2.3.4.1 ACE

The Analyzer Engine provides ACE with data prepared by Memory Interface, i.e.

sampled data, extra information, protocol error and time stamp. Also store and trig

commands are passed from Analyzer Engine to ACE. ACE receives the data and

commands and prepares the DDR commands and data.

Figure 21 shows the block diagram for the ACE module.

Figure 21: Analyzer Command Extractor

In order to keep track of stored sample size, ACE communicates with Host Interface.

Host Interface can inform ACE with memory sample and Pre/Post trig size. ACE also

in turn can report to Host Interface with memory status, i.e. stop and trig addresses.

Incoming command vector that comes from Analyzer Engine (Memory Interface) are

as follows:

Page | 38 Intelligent Automation Incorporated

Index Name Description

0 Analyzer Start Asynchronous reset for address counter and address

Registers (Tag, End and Trig address registers).

1 Analyzer Stop Resets ACE logics.

2 Start of

Packet

Indicates start of a packet.

3 End of Packet Indicates the end of a packet.

4 Store Packet Indicates the current packet must be stored

5 Trigger Signal the post trigger counter to start counting.

6 Store Mode ‘0’ Store packets; ‘1’ Exclude packets

7 Discard Line Indicates the current line is discarded

Table 1 ACE input commands

2.3.5 HIM

All accesses of the host computer to the storage memory will be done through the host

interface unit. Host interface execute HAL commands.

Host Interface communicates with host using a 16 bits bi-directional data bus. Three

devices use this data bus: Host, MMU (using host interface) and APU. Each device has

two status bits that show the device status. Four states have been defined for each

device: IDLE, SEND, RECEIVE and WAIT. The state of a device is known using its

status bits as follows:

Status Status bits

IDLE 00

SEND 01

RECEIVE 10

WAIT 11

Table 2 HIM Bus Status

Each device can use data bus for sending its data only when the other two are in IDLE

state. Four instructions have been defined for host interface unit till now:

1. Memory read

2. Get memory status (essential address read)

3. Set memory setting (sample number and post sample number)

4. Get memory configuration.

Page | 39 Intelligent Automation Incorporated

Each instruction has a one-word (16-bits) code and up to four word parameter.

Instruction codes are as follows:

Instruction Code

Memory read 0701

Set memory setting 0702

Get memory status 0703

Get memory

configuration

0704

Table 3 MMU Commands

2.3.5.1 Memory read

 Host interface reads the requested area from storage memory, and sends them to the

host. Instruction format is as follows:

15 0

Instruction Code (0701)

Start Address (15…0)

Start Address (23 … 16)

End Address (15 … 0)

End Address (23 … 16)

The first word is instruction code. The second word is the 16 least significant bits of the

start address. The third word contains the 8 most significant bits of the start address.

The fourth word is the 16 least significant bits of the end address. The fifth word

contains the 8 most significant bits of the end address. After receiving this instruction,

the host interface will return the memory area from start address till end address.

After receiving instruction, host interface will remain in receive state until data read

from memory being ready to send.

The size of the packet is adjustable. Host interface will go to IDLE state after sending

the last packet otherwise (after sending the middle packets or first packet) it will go to

Page | 40 Intelligent Automation Incorporated

WAIT state. Each packet sending from host interface to host has a 1-word header.

Following Table shows the header of the packets.

Packet Header

First packet 001C

Middle packet 011C

Last packet 021C

Table 4: Header of the packets send from HIC to Host

2.3.5.2 Get memory status

Host interface read the essential registers contents and send them to the host. This

instruction does not have any parameter. Instruction format is as follows:

15 0

Instruction Code (021D)

After receiving this instruction, the host interface will return the content of

Start-address register, Current-address register, End-address register, Trig-Address

register, Trig-time register and Status register.

The packet returned from host interface has been shown below:

15 0

Header

RX Bank Start-Add (15 …

0)

RX Bank Start-Add (23 …

16)

RX Current-Add (15 … 0)

RX Current-Add (23 … 16)

RX End-Add (15…0)

RX End-Add (23…16)

RX Status

TX Bank Start-Add (15 …

0)

Page | 41 Intelligent Automation Incorporated

TX Bank Start-Add (23 …

16)

TX Current-Add (15 … 0)

TX Current-Add (23 … 16)

TX End-Add (15…0)

TX End-Add (23…16)

TX Status

Trig time stamp (15…0)

Trig time stamp (31…16)

Trig time stamp (39…32)

Header of this packet is “021E”. Timing diagram of the instruction is shown in

2.3.5.3 Set memory setting

 Host interface receive the sample number and post sample number values from host

and write them in sample-no and post-sample-no registers. The instruction format is as

follows:

15 0

Instruction Code (0702)

Sample No (15…0)

Sample No (31 … 16)

Post Sample No (15…0)

Post Sample No (31 … 16)

2.3.5.4 Get memory configuration

 This instruction returns constant value. The instruction format and the packet

returned by host interface are shown below.

15 0

Instruction Code (0704)

15 0

Header (0212)

0001

Page | 42 Intelligent Automation Incorporated

2.3.5.5 DMM

DDR Memory Multiplexer (DMM) is a data and command multiplexer for DDR

memory. ACE and HIM memory requests go through DMM.

There are two independent sources that can generate access requests, Analyzer and

Host Interface. Analyzer only asks for write to memory. Host Interface asks for both

read and write. DMM is responsible of collecting different requests, prioritizing them

and forwarding them all to the DDR2 controller.

2.3.5.6 DDR3 Controller

For DDR3 Controller Xilinx MIG memory controller is used.

