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Abstract

A technique of locating a ground-based radio frequency (RF) emitter using receivers on a
constellation of satellites is described and analyzed. A reference emitter near to the emitter of
interest is required so that differences in carrier phase of the emitter of interest and the reference
emitter can be measured. This technique is related to differential carrier phase techniques used
in Global Positioning System (GPS) based high accuracy surveying applications.
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1 Introduction

The first step in most Global Positioning System (GPS) receivers is to demodulate the signal,
losing all of the information in the carrier signal. One of the exceptions to this rule is in high
precision surveying, where the carrier phase information is used to do relative positioning. Relative
positioning is where a reference receiver is put in the field, near a rover receiver we would like to
locate. The location of the rover receiver is located relative to the position of the reference receiver.
By using the carrier phase information, it is possible to determine relative positions to a small
fraction of the wavelength of the carrier wave (which is about 0.2 meters). In a typical setting, the
reference receiver is about 10 km away from the other receiver, and the surveys often take up to 15
minutes.

The purpose of this LDRD was to investigate if carrier phase information could be used to
improve the accuracy of low bandwidth emitter geolocation systems used at Sandia.

The systems we are concerned with would differ from the systems used for doing GPS-based
surveying in four significant ways. They would:

• Locate emitters rather than receivers.

• Have signal durations of seconds rather than minutes or hours.

• Use fewer satellites, and possibly use altitude information.

• Often have much lower bandwidth and therefore less geolocation accuracy than GPS, ie give
answers to many multiples, rather than a small fraction, of the wavelength.

We have thought about the first of these points, and believe that it is not a significant factor.
Once one understands CPRP (Carrier Phase Relative Positioning), it is clear that the second and
third of these points are severe restrictions. In particular, using a 1 second signal compared to
a 15 minute signal makes the integer ambiguity resolution problem (to soon be discussed) much
harder. The last point on our list appears as though it should make the problem easier. At first sight
this does not appear to help us. The way CPRP is usually done, it appears as though you can get
extremely accurate answers if you can resolve the integer ambiguity, but no increase in precision
is obtained if the integer ambiguity cannot be resolved. One of the main conclusions of our work
is that this is not the case when carrier phase information is applied to low-bandwidth emitter
systems. That is, it is possible to use the carrier phase information to improve our solutions (giving
answers to multiples of the wavelength) even when the integer ambiguities cannot be resolved.

In CPRP, distances are measured using the carrier phase information. This results in expres-
sions for distances of the form

d = (φ +n)λe (1)

7



whereφ is phase, in units of cycles, that can be measured very accurately ,n is an integer ambiguity,
andλe is the emitter wavelength. Here we have not made clear what distances we are referring to,
but it will become clearer in §2.

When doing CPRP we need to solve for both the relative position of the rover andN − 1
integer ambiguities. HereN is the number of satellites used in the survey. This results in a system
of equations (see §2 ) of the form

Az+Bn = b (2)

wherez is the vector giving the relative position of the rover relative to the reference,n is a
vector of the integer ambiguities, andb is the vector of phase measurements. This results in an
overdetermined system of equations. If we fix the vectorn we can solve this as an overdetermined
system of equations forz. Once the least squares solution to this system is found, we can compute
the error as a function ofn. This is a quadratic function ofn, which in §3 we show can be written
as

E(n) = (n−nc)
T M (n−nc)+E0 (3)

Most discussions of CPRP assume that it is clear that we should try to minimize the function
E(n) over all values of the integers. Though this is plausible, we believe that a careful examination
of why this is a good thing to do is crucial to understanding the limitations on CPRP.

A crucial step in understanding the limitations of CPRP comes from the realization that the
system of equations (2) is under determined if there is only a single epoch. In §3 we show that if
we only take measurements at a single point in time, this system of equations has a three dimen-
sional nullspace. If the satellite baseline is non-zero, then we have an overdetermined system of
equations. The only way these statements can be compatible with each other is if the condition
number of our system goes to infinity as the baseline goes to zero. The result of this is that the
matrixM in Eqn. (3) will have three eigenvalues that are very small for small values of the satellite
baseline. In §7 we will show that these eigenvalues are proportional to the square of the satellite
baseline.

One of the first conclusions from this observation is that if the baseline is large enough, the
system of equations in Eqn. (2) will be well conditioned. In this case any value ofn that gives low
residuals must be close tonc. In this case we would get accurate answers if we considered Eqn.
(2) as an overdetermined system of equations without imposing the fact thatn had to be an integer.
Though this is in agreement with common knowledge in the CPRP community, we do not know of
any presentation that clearly outlines why this is so.

When the satellite baseline is small, as a result of thethree small eigenvalues ofM, there is
a three dimensional surface imbedded inN −1 dimensional space on which we will give small
residuals. Since the true valuesn0 of the integer ambiguities will give a small residual, this implies
that this low dimensional surface must pass by very close to the pointn0. However, it would be
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somewhat of a fluke for this surface to pass through some other value of the integers. For this
reason, it is unlikely that other integers will give low residuals.

In order to understand the limitations on CPRP it is necessary to make the argument in the last
paragraph more precise. To do this we first realize that the sheet we have described has a finite
thickness that is proportional to the measurement errors of our system. That is, if we want to find
other integers that have errors as small as the true solution, it is not necessary that they be on our
sheet, but only within a distance ofδφ of it, whereδφ is the size of the phase measurement errors
in our system. Furthermore, the extent of the sheet is not infinite. The extent of the sheet depends
both on the errorsδφ in our system, and on the size of the three small eigenvalues ofM. For
example, if one of the small eigenvalues isµ1 (with eigenvectoru1), then if we go a distanceL
away fromnc in the directionu1, the error will beL2µ1. When this gets to be as large asδφ2, the
points further than this that are on our sheet will be giving residuals larger than those forn0.

From the discussion in the last paragraph, we see that our sheet has a volume inN −1 dimen-
sional space. This volume will grow as the baseline decreases. When ths volume gets to be on the
order of the unit cell inN−1 dimensional space, it will become very likely that integers other than
n0 will be inside of this volume. When this is the case, it will be nearly impossible to resolve the
integer ambiguity in CPRP.

It is well known in the CPRP literature that the integer ambiguity problem gets harder as the
baseline gets shorter. One of the basic questions we had going into this LDRD was if as the
baseline gets extremely short, it merely becomes computationally difficult to resolve the integer
ambiguity, or if it actually becomes impossible to resolve the ambiguity. The arguments in the last
few paragraphs show that it is in fact meaningless to try to resolve the integer ambiguity when the
satellite baseline is too short. In particular, even if we could search over integers infinitely rapidly,
we would end up finding so many integers that gave small values of the residual, that we would
have no way of distinguishing these from the true solution.

In §6 we show that the integer ambiguity problem becomes unsolvable when

| ds |
| s | ≈ K (δφ)(2N+4)/6 (4)

whereK is a constant depending on the geometry. Here| ds | is the length that the satellites have
moved during the survey, and| s | is the distance that the satellites are away from the center of the
earth.

The main conclusion of this report is that despite the fact that it is not possible to do integer
ambiguity resolution when the satellite baseline is short, in low bandwidth systems it is still possi-
ble to get very significant improvements. This results from the fact that in such systems the time of
arrival (TOA) system of equations is typically well conditioned but will have very large TOA errors
in terms of wavelengths. This is opposed to systems where we use the carrier phase. In this case
we have poorly conditioned systems that have very small range errors. As we shall see, for many
of the system parameters of concern, it is highly desirable to use the carrier phase information.
Furthermore in §5 we will show that in such situations it is possible to use altitude information
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without seriously degrading our measurements errors.

The errors we expect to get out of carrier phase geo-location can be written as

| dx |= Cδφ
| s |
| ds |λe (5)

here the quantityλeδφ gives the size of the measurement errors in meters, the term| s | / | ds |
gives the amplification of the errors due to the poor conditioning, andC is a constant depending on
the satellite geometry.
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2 Formulation

In this section we formulate the problem of determining the position of a radio frequency (RF)
emitter on earth using a constellation of satellite-borne receivers. In this RF emitter geolocation
application the space-based receivers measure the instantaneous carrier phases of an emitter of
interest (EOI) and a nearby reference emitter (REF). To estimate the position of the EOI we find
the EOI location and a set of whole cycles of phase that most closely predict the differences of
observed phases taken at two or more time epochs. It is significant that the phase difference in the
present, higher accuracy approach, is between emitters, rather than between time epochs as was
the case with the technique developed in [1].

To better understand the differential emitter location technique consider the following equation
for the carrier phase, measured in cycles, at time epocht0 for the nth satellite located atsn(t0)
which has a phase-locked loop (PLL) that is tracking the carrier phase of the EOI.

ϕn(t0) =
‖xe −sn(t0)‖

λe
+ In −Ln (6)

Hereλe is the wavelength of the EOI,xe is the location of the EOI,In is undesired phase contribu-
tions from the ionosphere andLn is the integer number of wavelengths in the path. The measured
phase is wrapped, i.e. a value less than one cycle, andLn is the unknown integer cycles of phase
along the propagation path. In other words ignoring any phase constants introduced by the trans-
mitter or receiver which will be removed by differencing operations the measured fractional phase
(in cycles) plus the integral number of cycles is equal to the number of wavelengths in the propa-
gation path plus the ionosphere effects.

The preffered way to measure carrier phase is to lock a PLL to the reconstructed carrier and
then measure the phase of the PLL numerically-controlled oscillator (NCO) which has a much
higher signal-to-noise (SNR) than the signal itself.

In typical cases where the wavelength, or equivalently the center frequency, is not known ac-
curately enough, it will be necessary to estimate the emitter frequency from a frequency of arrival
(FOA), the satellite position and velocity and an estimate of the emitter position. This makes the
determination of emitter position and frequency an iterative process.

Writing a similar equation for phase of the reference emitter at the same satellite and epoch
gives

θn(t0) =
‖xr −sn(t0)‖

λr
+ In −Mn (7)

whereλr is the wavelength of the REF,Mn is the unknown integer cycles of phase in the path and
xr is the known location of the REF. Reference emitter wavelength can be determined from REF
position and a REF FOA. Note that we have assumed the same ionosphere effects in both (6) and
(7). This is an approximation justified by the assumptions that the EOI and REF locations and the
wavelengths are not too different.
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We now difference equations (6) and (7) which eliminates the ionosphere perturbation giving

δn (t0) =
‖xe −sn (t0)‖

λe
− ‖xr −sn(t0)‖

λr
+Pn (8)

whereδn (t0) = ϕn (t0)−θn (t0), andPn = Mn −Ln. We now do a second difference to eliminate
any differences in phase introduced by the RF hardware. This second difference is betweenN −1
satellites with respect to an arbitrarily chosen reference satellite. The doubly-differenced equations
are of the form

∆n (t0) =
‖xe −sn (t0)‖

λe
− ‖xr −sn(t0)‖

λr
− ‖xe −sN (t0)‖

λe
+

‖xr −sN(t0)‖
λr

+Kn (9)

where∆n (t0) = δn (t0)−δN (t0), andKn = Pn −PN, for n = 1 toN −1. This givesN −1 equations
but there are 3 more unknowns than equations since theN −1 integers,Kn, and 3 elements ofxe
are all unknown. We need more equations than unknowns so we continue to track phase with the
PLL and write equations analogous to the above at additional time epochs. Even a single addi-
tional epoch will suffice since we can write the equations in terms of the same integer wavelength
variables as in the equations for the first epoch. If we have counted the cycles of phase tracked by
the PLLs fromt0 to t1 we can write

ϕn (t1) = ( fe − fn) t1+
‖xe−sn(t1)‖

λe
+ In −Ln (10)

where we have taken time to be measured fromt0 = 0, and wherefe = c/λe is the carrier frequency
of the EOI (c is the speed of light) andfn is the frequency that thenth satellite will convert to
baseband. Similarly

θn (t1) = ( fr − fn)t1+
‖xr −sn(t1)‖

λr
+ In −Mn (11)

where fr = c/λr is the REF carrier frequency. Note thatϕn (t1) andθn (t1) are not wrapped phase
measurements likeϕn (t0) andθn (t0), ie we count cycles of phase after the initial epoch. Subtract-
ing (11) from (10) gives

δn (t1) = ( fe − fr)t1+
‖xe −sn (t1)‖

λe
− ‖xr −sn(t1)‖

λr
+Pn (12)

Taking a second difference with respect to the Nth satellite gives the doubly-differenced equa-
tions at this epoch as

∆n (t1) =
‖xe −sn (t1)‖

λe
− ‖xr −sn(t1)‖

λr
− ‖xe −sN (t1)‖

λe
+

‖xr −sN(t1)‖
λr

+Kn (13)
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Our overdetermined system consists of (9) and (13) forn = 1 to N − 1 which gives 2N −
2 equations in theN + 2 unknownsxe and Kn. Using more epochs would give an even more
highly overdetermined system. This system of non-linear systems of equations can be solved in the
least-squares sense using the iterative Gauss-Newton procedure. This technique refines an initial
guess which could be obtained by estimating emitter position from time or frequency of arrival
measurements, or simply using the reference emitter location. This procedure would produce a
float solution, ie whereKn is a floating point solution that approximates the desired integer. In
cases where better accuracy is achievable, e.g. long signal durations, the so-called fixed solution
(true integer) can be found from the float solution using the LAMBDA algorithm [2].

We digress breifly to discuss the error associated with uncertainty in the emitter and reference
wavelengths. A phase error on a path of lengthR due to a deviation in carrier frequency of∆ f
is R · ∆ f/c wherec is the speed of light. Using the maximum GPS path length of 26000 km
and a frequency uncertainty of 0.1 Hz gives a phase error of about 3 degrees. Fortunately the
second difference will remove most of this. Since the phase from the emitter to satellite N is
subtracted from the phase of the emitter to the other satellites the residual phase error will be given
by ∆R ·∆ f/c where∆R is the path length difference which has a maximum value of 5600 km for
GPS. This reduces the phase error to 0.67 degrees for each of the two frequency estimates that
must be made. Note that it would be best to choose satelliteN to best cancel the errors, e.g. select
it such that its range is close to the average range.

In many situations of interest it is possible to linearize equations (9) and (13). In particular,
suppose that we define

z =
xe −xr

λe
(14)

In this case linearizing Eqn. (9) assumingz is small linearizing Eqn. (9) we get

(

xr −sn(t0)
| xr −sn(t0) |

− xr −sN(t0)
| xr −sN(t0) |

)

·z+Kn = cn (15)

where

cn = ∆n(t0)−
| xr −sn(t0) |

λe
+

| xr −sn(t0) |
λr

+
| xr −sN(t0) |

λe
− | xr −sN(t0) |

λr
(16)

Linearizing Eqn. (13) we get

(

xr −sn(t1)
| xr −sn(t1) |

− xr −sN(t1)
| xr −sN(t1) |

)

·z+Kn = dn (17)

where
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dn = ∆n(t1)−
| xr −sn(t1) |

λe
+

| xr −sn(t1) |
λr

+
| xr −sN(t1) |

λe
− | xr −sN(t1) |

λr
(18)

Combining these equations we end up with a linear system of equations of the form

Az+Bn = b (19)

wheren is the array ofN −1 integer ambiguities.

In this report we will be mainly concerned with the case where we only have two epochs. In
this case we have

A =

(

S1
S2

)

(20)

B =

(

I
I

)

(21)

whereI is theN −1 dimensional identity matrix.
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3 The Three Dimensional Low Residual Surface

3.1 The Covariance Matrix

If we fix n in Eqn. (19) and solve the over determinied system forz , we will get residual errors in
our equations. That is, we solve the overdetermined system of equations

Az = b−Bn (22)

which has the least squares solution (using unit weighting)

zn = (AT A)−1AT (b−Bn) (23)

For a given ofn, the residual is given by

e(n) = Azn +Bn−b = Hb−Gn (24)

where
G = HB (25)

H =
(

A(AT A)−1AT − I
)

(26)

the squared error can be written

E(n) = (Gn−Hb)T (Gn−Hb) (27)

The errorE(n) is a quadratic function ofn. This can be written as

E(n) = (n−nc)
T M (n−nc)+E0 (28)

where
M = GT G, (29)

nc is the vector that minimizesE(n), andE0 is E(nc).

We would like to choosen so that we minimizeE(n). In the next section we will elaborate on
why restrictingn to be an integer helps us get more accurate solutions. Assuming that we want to
minimizeE(n) subject to the constraint thatn is an integer, we should be able to determinen by
doing a brute force search through all possible values ofn. The lambda method is a method for
doing this as efficiently as possible.
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It should be noted that we have enough equations so that we havean overdetermined system for
z andn when we treat the elements ofn as continuous (not necessarily integer ) variables. Solving
this system gives us a good enough estimate forn that we do not need to search over a huge range
of ambiguities (in each variableni) Although, due to the fact that we are searching over anN −1
dimensional space (if we haveN satellites), this could lead to a very expensive computation if we
are not clever about our search.

3.2 Results Assuming G is Well Conditioned

In order to understand why the integer ambiguity process only makes sense ifG is poorly condi-
tioned, we begin by assuming that it is not.

We know that if we substitute the true values for the integer ambiguitiesn = n0 , and the true
solutionz= z0 into our equations, then we will get a low residual. That is, the correct solution will
satisfy

Az0 = b−Bn0 +δb (30)

whereδb is an error vector. We will write

| δb |= δφ (31)

We will suppose thatδφ is small enough so that when we multiply it by the wavelengthλ we get
a number that is on the order of 1cm. In particular,δφ will be on the order of.01. This shows that
if we solve the overdetermined system of equations

Az+Bu = b (32)

where we treatu as a continuous variable, then we are guaranteed of finding a solution that has a
residual as small asδφ . Let (zc,uc) be the least squares solution to this set of equations.

We now consider two cases where we solve the overdetermined system forz with n having two
different values. When we setn = uc, we get the residuale(uc) which we know will have a norm
less thanδφ . Also , when solve the system withn = n0, we will also get a residual that is on the
order ofδφ . It follows that we must have

e(uc)−e(n0) = G(uc −n0) (33)

If we square both sides, we get

(e(uc)−e(n0))
T (e(uc)−e(n0)) = (uc −n0)

T M(uc −n0) (34)
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We know that the left hand side of this last equation is small (on the order of(δφ)2. If the
matrixM does not have any small eigenvalues, then in order to get a small quantity on the right we
must have

n0 ≈ uc (35)

To be more precise, we have

| uc −n0 |< δφ/
√

µ (36)

whereµ is the smallest eigenvalue ofM. If M is not close to being singular, then the integer
ambiguity problem is extremely simple, and probably not even necessary. In particular , we will
get an excellent guess ton0 by merely usinguc.

The difference between the solutionzc where we letn be a continuous variable, andz0 where
we constrainn to be an integer is the solution to the overdetermined system of equations

A(z−z0) = B(uc −n0) (37)

Assuming that this least squares system is well conditioned, the answers forzc andz0 will be
close to each other.

3.3 Why is M Nearly Singular

When carrying out simulations on the matrices that would arise from doing relative positioning, it
is found that the matrixM has three eigenvalues that are small. The eigenvalues get to be smaller
the closer the satellite positions at the first and last epochs re to each other.

When doing relative positioning, we haveN different satellites. Each of these satellites has
M different epochs. The position of each satellite at the different epochs are all closely clustered
around the position of the satellite at the first epoch (relative to the distance that the satellite is
away from the point being located). We will now show that if the positions of the satellites are the
same at all epochs, then the matrixM will in fact have three eigenvalues that are identically zero.
This shows that when we perturb the satellites away from this degenerate situation, we will have
three eigenvalues that are small.

From Eqn. (29) we see that a vectoru is a null vector ofM if and only if it is a null vector of
G. A vectoru will be a null vector ofG if for that value ofu we can solve the overdetermined
system of equations

Az+Bu = 0 (38)

To see this note that the least squares solution toAz = −Bu is given by

z(u) =
(

AT A
)−1

AT Bu (39)
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the error in solving this equation isAz(u)+ Bu. This error will be equal to zero iff and only if
Gu = 0. If the satellites are all at the same position at all epochs, then the equationAz+Bu = 0,
gives usM copies of a single set of equations. In particular, this equation is justM copies of the
equation

A0z+u = 0 (40)

where this last set of equations gives the equations in Eqn. (38) that correspond to the first epoch.
Note that the matrixB gets replaced by the identity matrix in Eqn. (40). For any vectorz1 in our
three dimensional space of vectorsz we can trivially find a vectoru1 such thatAz1 +u1 = 0. that
is, we merely chooseu1 = −Az1. Sincez is a three dimensional space, this will give us three
linearly independent vectors(zk,uk) that will satisfy Eqn. (38), and hence we will have three
linearly independent vectorsuk,k = 1,4 that satisfyGuk = 0¡ and hence that satisfyMu k = 0.

In the relative positioning problem, we know that if we choosen = n0 (wheren0 are the true
but unknown ambiguities, we will get a low residual. However, sinceM is nearly singular, we see
that there will be values ofu that are not necessarily extremely close touc that will also give a
small residual. In particular, if we set

u = n0 +
3

∑
k=1

akuk (41)

whereuk are the eigenvectors ofM associated with the small eigenvalues ofM , then we will
also get small residuals, even if the values ofak are not small (this can be made more quantitative).
We see that there are many different values of the vectoru that are close (but not too close) ton0

that will give us small residuals. However, if we have more than four satellites, it is unlikely that
any of these vectors will actually take on integer values except for the case where we setak = 0.
Thus in this case, if we search over integer values ofu we expect to only find one value where we
get a low residual.

This already gives insight into the integer ambiguity problem. If we have 7 satellites, it might
at first appear that we need to search over a six dimensional space of integers in order to find the
best set. This could be extremely time consuming even if we have restricted our set of integers
to a range of about 100 integers in each dimensional. However, we see that we in fact only have
to search over a three dimensional space. in particular, we can vary the parametersak (a three
dimensional space), and try to find values that are close to an integer.

3.4 Some Simulations

Here we present some simulations to illustrate the points we have been making. These simulations
were carried out using 7 satellites. They were placed randomly (although visible from the points
being located) at a distance of 4 earth radii away. The reference point was put atpT

0 = (0,0,1)
(measured in earth radii) , and the relative position of the point being located wasrT = (2.e−
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3,0,0). Random directions for the satellite velocities were given, that were perpendicular to the
vector from the center of the earth to the satellites.

Table (1) gives the unit vectore1 pointing from the center of the earth to the satellite, and the
vectore2 giving the direction of the initial satellite velocity. We do not believe that there is anything
special about this configuration, but given the values in the table for the sake of completeness.

In these simulations, we use 100 equally spaced epochs. The angleδα gives the change in the
angle swept out by the satellites during the survey. In tables (2) and (3) we give results for sweep
angles that vary between those for a 4 hour survey, and just a bit under one second. In particular,
we set

δα =
16α0

4k (42)

whereα0 is the sweep angle for a 15 minute survey.

Table (2) shows how the condition number ofGT G varies as we change the sweep angle. We
clearly see the condition number increasing as the sweep angle diminishes. We also show the
eigenvalues ofGT G. As predicted, there are three small eigenvalues, and three that are order unity.
As the sweep angle gets smaller, the small eigenvalues get smaller, and the ones that are order one
stay nearly the same.

Table (3) show how the errors in or relative position vary as we change the sweep angle. The
errorsecont show how the error varies when we treatn as a continuous variable. In this case we see
that for a 4 hour survey little additional accuracy is given by using the fact thatn must have integer
values. In this case, the additional accuracy obtained by assumingn has integer values could be
obtained by rounding the continuous value to the nearest integer.

In Table (3) we also show the values ofedisc. This is the error we get if we assume that we
can some how resolve the integer ambiguity. As we see ,this error does not grow as the sweep
angle diminishes. This shows that the ill conditioning in our problem is only involved with finding
the integer ambiguity. That is, if we know the integer ambiguity, our problem does not get worse
conditioned as the sweep angle goes to zero.

In table (3) we also show how far away the true integer ambiguity is from that calculated by
treating the vectorn as a continuous variable. In particular,∆Ncont gives the largest component (in
absolute value) of the vectoru−n, whereu is the vector obtained ‘by treatingn as a continuous
variable in our least squares problem, andn is the true integer ambiguity. In this table we also
show how this quantity varies after transforming our equation using the transformation found by the
lambda algorithm. The results is given by∆Nlambda. We see that the lambda algorithm significantly
decreases the number of integers we need to search over.
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N e1 e2

1 ( 3.88e-01, 5.01e-01 ,7.74e-01 )(7.62e-01, 2.98e-01, -5.75e-01 )
2 ( -1.50e-01, 3.18e-02 ,9.88e-01 )(8.19e-01, -5.56e-01, 1.42e-01 )
3 ( 3.32e-01, -1.06e-02 ,9.43e-01 )(-9.32e-01, -1.56e-01, 3.26e-01 )
4 ( 2.29e-01, 3.60e-01 ,9.05e-01 )(-9.36e-01, 3.37e-01, 1.03e-01 )
5 ( 1.39e-01, 2.01e-01 ,9.70e-01 )(-2.87e-01, 9.45e-01, -1.55e-01 )
6 ( 2.22e-01, -5.03e-01 ,8.35e-01 )(-9.28e-01, -3.73e-01, 2.15e-02 )
7 ( 1.32e-01, -1.24e-01 ,9.83e-01 )(-9.77e-01, -1.82e-01, 1.08e-01 )

Table 1. . This gives the positions and the directions of the ve-
locities used in showing how the condition number of our problem
varies with the baseline. The vectore1 gives the unit vector from
the center of the earth to the satellite. The vectore2 gives the di-
rection of the velocity.

k δα cond(GT G λ
0 2.17e+00 2.04e+01 ( 4.91e+00, 1.26e+01 , 3.14e+01 1.00e+02, 1.00e+02 , 1.00e+02 )
1 5.41e-01 1.25e+02 ( 8.02e-01, 7.37e+00 , 4.94e+01 1.00e+02, 1.00e+02 , 1.00e+02 )
2 1.35e-01 1.06e+03 ( 9.39e-02, 1.65e+00 , 1.04e+01 1.00e+02, 1.00e+02 , 1.00e+02 )
3 3.38e-02 1.48e+04 ( 6.74e-03, 1.37e-01 , 5.11e-01 1.00e+02, 1.00e+02 , 1.00e+02 )
4 8.46e-03 2.30e+05 ( 4.35e-04, 8.97e-03 , 3.00e-02 1.00e+02, 1.00e+02 , 1.00e+02 )
5 2.11e-03 3.65e+06 ( 2.74e-05, 5.66e-04 , 1.85e-03 1.00e+02, 1.00e+02 , 1.00e+02 )
6 5.29e-04 5.83e+07 ( 1.72e-06, 3.55e-05 , 1.15e-04 1.00e+02, 1.00e+02 , 1.00e+02 )
7 1.32e-04 9.32e+08 ( 1.07e-07, 2.22e-06 , 7.20e-06 1.00e+02, 1.00e+02 , 1.00e+02 )

Table 2. This shows how the condition number ofGT Gvaries
with the baseline. The baseline is proportional toδα . We have
chosenδα = 16α0/4k, whereα0 s the sweep angle for a fifteen
minute survey. The vectorλ gives the eigenvalues ofG. We see
that there are three small eigenvalues that get smaller as we de-
creaseδα . The other three eigenvalues stay nearly constant as we
changeδα .
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k δα econt edisc ∆Ncont ∆Nlambda

0 2.17e+00 5.76e-02 2.62e-02 1.16e-02 1.16e-02
1 5.41e-01 1.21e-02 1.96e-02 7.53e-03 1.58e-02
2 1.35e-01 5.71e-02 1.65e-02 1.84e-02 2.52e-02
3 3.38e-02 2.55e-01 1.69e-02 6.12e-02 3.59e-02
4 8.46e-03 1.04e+00 1.71e-02 2.28e-01 8.37e-02
5 2.11e-03 4.19e+00 1.71e-02 8.93e-01 1.22e-01
6 5.29e-04 1.68e+01 1.71e-02 3.55e+00 3.13e-01
7 1.32e-04 6.71e+01 1.71e-02 1.42e+01 4.51e-01

Table 3. . This shows how the errors vary as we change the
baseline. The baseline is proportional toδα . We have chosen
δα = 16α0/4k, whereα0 is the sweep angle for a fifteen minute
survey. The errorecont is the error in the relative positionr (in
meters) we get if we treat the integer ambiguities as a continu-
ous variable. The erroredisc is what we get if we use the correct
value for the vectorn when solving for the relative positionr . The
number∆Ncont gives the largest difference between the true integer
ambiguity and the one calculated treatingn as a continuous vari-
able. The number∆Nlambda gives the same quantity , but after one
has applied the transformation (found by the lambda method) to
our system of equations.
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4 Float Solutions and Carrier Phase Geo-Location

Classically integer ambiguity resolution is used as a crucial element in carrier phase geo-location.
The float solution, which is obtained by treating the integer ambiguities as continuous variables,
is used to get an initial estimate of the integer ambiguities. One then uses a technique such as
the lambda algorithm to determine the integer ambiguities, and this information is then used to
determine the position of the object being located to a fraction of a wavelength.

We will now show that when locating emitters, it is possible to use the carrier phase information
to improve the accuracy even when the satellite baselines are quite short. We do this without
resolving the integer ambiguity, and hence obtain solutions that are only accurate to quite a few
multiples of the wavelength. However, due to the fact that our location without using carrier phase
is much less accurate than this, this can result in a significant improvement in accuracy.

In this section we will discuss how to arrive at Eqn. (5) in the introduction that gives the error
in the float solution when using carrier phase geo-location. We will discuss the errors for the case
of four satellites, where the problem is precisely determined (not over-determined).

As discussed in §3, Eqn. (19) is underdetermined when the satellite baseline is identically
zero. In the case of four satellites, this will result in a precisely determined but ill-conditioned
system when the baseline is small. Using an argument almost identical to that in §3, our linearized
equations will have three small eigenvalues. Using an analysis almost identical to that in §7, it can
be shown that the three small eigenvalues of our linear system can be written as

µk = ck
| ds |
| s | ,k = 1,2,3 (43)

whereck are constants depending on the geometry, and| ds | is the change in satellite position, and
| s | is the distance from the satellite to the emitter. Here we are using one of the four satellites to
determine this number, the distance for the other satellites can be considered as contributing to the
calculation ofck.

As discussed in more detail in §5, when solving a linear systemCp = c, the error in the so-
lution can be computed by expanding both the solutionp and the error vectorc in terms of the
eigenfunctions ofC. When we do this we find that ifC has some small eigenvalues, then the errors
in c will be amplified by 1/µk whereµk are the small eigenvalues. For the case of carrier phase
geo-location, the errors on the right hand side of Eqn. (19) are proportional to

| δb |= λeδφ (44)

whereλe is the wavelength of the emitter, andδφ is the size of the errors in the phase measure-
ments. Combining Eqn. (43) with Eqn. (44) we arrive at the expression in Eqn. (5) for the error in
the float solution.

It should be emphasized that if we were to use TOA measurements, we would have well con-
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ditioned systems (assuming the GDOP is good), but very large measurement errors. When using
carrier phase information, we have poorly conditioned systems, depending on the ratio| ds | / | s |,
but very low measurement errors. This can result in significant improvements over the TOA mea-
surement errors depending on the details of the system parameters.
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5 The Effect of the Altitude Constraint

Here we are concerned with the question of whether it is possible to use a low precision altitude
constraint along with very high precision carrier phase information without seriously degrading
the solution error. When no altitude constraint is used, we have seen that for small baselines we
get a poorly conditioned system of equations that has small errors in the data. We will be partic-
ularly interested in comparing the case where we have four satellites to the case where we have
three satellites and an altitude constraint. When we replace one of the satellites with an altitude
constraint, we still have nearly dependent vectors for our equations giving the phase information.
The question is if the data from the altitude constraint (which has much larger errors) will pollute
the solution so that we end up getting poor answers. We will formulate this problem in general
abstract terms, and show that the answer is no.

5.1 Formulation of Problem

We will consider problems of the form

C(ε)p = c(ε) (45)

where

C(ε) = C0 + εC1 (46)

and

C0 =

(

R0

sT

)

(47)

C1 =

(

R1

0T

)

(48)

c(ε) =

(

εa
α

)

(49)

We will assume thatR0 has a three non-trivial left null vectors.

qT
k R0 = 0 k = 1,3 (50)

In this problemc(ε) represents the errors in the data, andp(ε) represents the error in the so-
lution. The parameterε represents a small parameter representing the baseline. The matrices
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Rk,k = 0,1 represent the equations associated with the phase data, and the vectorsT is the lin-
earized equation associated with the altitude date. The fact that there are three left null vectors
corresponds to the fact that when the baseline is zero, we have 3 linearly independent null vectors.
We have scaled our error vector so that the errors associated with the phase measurements are on
the order ofε, but the errors in the altitude are on the order of unity. We want to know if asε goes
to zero, we get errors that are on the order of unity. We will see that this is in fact the case.

5.2 Solution Using Left and Right Eigenvectors

Our arguments will depend on solving systems of linear equations using the left and right eigen-
vectors of our matrix. We will begin by reviewing this solution process. Suppose we have a system
of precisely determined linear equations withm equations inm unknowns.

Cp = c (51)

Generically we expect the matrixC to havem linearly independent eigenvectors

Cuk = µkuk, k = 1,m (52)

We will also have left eigenvectors satisfying

vT
k C = µkv

T
k , k = 1,m (53)

Generically these can be normalized so that

〈vi,u j〉 = vT
i u j = δi j (54)

When solving the equation

Cp = c (55)

we can write the solution by expanding bothp andc in terms of the eigenvectorsuk.

p = ∑ pkuk (56)

c = ∑ckuk (57)

Substituting these expressions into Eqn. (55) and using the fact thatuk is an eigenvector ofC, we
get

pk =
ck

µk
=

〈vk,c〉
µk

(58)
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5.3 Perturbation Expansion for Small Values ofε

We now do a smallε perturbation expansion of the solutionp(ε) for the problem formulated in
§5.1. In particular, we assume we are solving the problem where we have three satellites and an
altitude contraint. This will give us a system of 5 equations in 5 unknowns. We will see that the
solution is order one asε goes to zero. For small values ofε we can write

µk(ε) = µkε + ..,k = 1,3 (59)

Eqn. (58) shows that even though the eigenvaluesµk are orderε, we will get solutions that are
orderε provided the right hand side is on the order ofε. However, in the problem formulated in
§5.1, the last component ofc(ε) is order one. It thus appears as though we might get answers that
are on the order of 1/ε in this case. We will now see that this is not the case.

In particular we consider the solutions to

C(ε)p(ε) = e5 (60)

where

e5 =













0
0
0
0
1













(61)

We will see that the solutions to this equation will be order one because the inner product ofe5
with the left eigenvectorsvk(ε) associated with the three small eigenvalues is orderε. To show
this note that the left eigenvectorsqk in Eqn. (50) imply that ifvk(ε) are the left eigenvectors of
C(ε) then

vk(0) =

(

qk

0

)

k = 1,3 (62)

We will suppose that these are the only left null vectors thatC0 has. For a random vectors this
will generically be the case. We will once again have three eigenvalues that are zero forε = 0, and
they will generically be linear inε for small values ofε.

Note that
vT

k (0)e5 = 0,k = 1,3 (63)

It follows that

〈vk(ε),e5〉 = O(ε),k = 1,3 (64)
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Using Eqn. (58), this shows that the solutionp(ε) to Eqn. (60) will be orderε asε goes to
zero.
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6 The Limits to Integer Ambiguity Resolution

Here we will give a very simple argument explaining why it is not possible to resolve the integer
ambiguity when the satellite baseline is too small. We have shown that the residual error can be
written as

E(n) = (n−nc)
T M (n−nc)+E0 (65)

wherenc is float solution. We have shown that the matrixM has several eigenvalues that are nearly
unity, and three that are small, and get smaller as the baseline decreases.

We will suppose that the phase measurement errors are on the order ofδφ , and the size of
the three small eigenvalues ofM are on the order ofε. In particular, we suppose that when we
substitute the true solutionn0 we get the residual

E(n0) ≈ δφ2 (66)

We know that the true answern0 must be an integer, and must line on the low residual surface.
If

δφ << ε (67)

Whenε is small, we will get residuals that are on the order of those given byn0 if

n = n0 +
3

∑
k=1

αkak (68)

and

ε
3

∑
k=1

α2
k ≤ δφ2 (69)

The three dimensional volume of this sheet will be on the order of

Vs =

(

δφ√
ε

)3

(70)

Suppose we haveN satellites. We can stray from this low residual surface in the otherN −1
directions byδφ and still have a residuals that is as low asδφ2. With this in mind, the low residual
surface actually becomes a low residual shell that has a finite thickness. The thickness of this shell
(in N +2 dimensional space is given by
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tS = δφ N−1 (71)

The total volume of this shell where we get residuals as low asδφ2 is given by

V = Vs × tS =
δφ N+2

ε3/2
(72)

A reasonable conjecture is that the probability of having an integer lie on this low residual shell
will get to be very close to unity when the volume of this shell gets to be on the same order of
magnitude as the unit cell of integers inN +2 dimensional space.

this will be the case when

ε = δφ (2N+4)/3 (73)

In §7 we show that

ε ≈ | ds |2
| s |2 (74)

whereds is the distance that the satellites move, ands is the distance from the satellites to the point
bieng located. With this in mind, we see that a rough estimate for how much the satellites can
move and still resolve the integer ambiguity is given by

| dx |
| s | = Kδφ (2N+4)/6 (75)

HereK is a constant that is order unity, and depends on the particular geometry of our satellites.
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7 The Eigenvalues as a Function of the Baseline

7.1 Problem Setup

We will consider the case of two epochs. The overdetermined system of equations can be written
as

Ax +Bu = b (76)

where

A =

(

S1

S2

)

(77)

and

B =

(

I0

I0

)

(78)

In this system, the vectorx represents the relative position divided by the wavelength, andu
gives the integer ambiguities. The matrixI0 is theN −1 byN −1 dimensional identity matrix.

If the satellite baseline is short, thenS1 andS2 will be nearly equal to each other. We will write

S1 = S0 +dS ,S2 = S0−dS (79)

where

S0 =
S1 +S2

2
(80)

dS=
S1−S2

2
(81)

For short satellite baselines, the matrixdS will be nearly linearly proportional to the timedt be-
tween the epochs.

We are interested in the the eigenvalues of the matrix

J = (HB)T HB (82)

where
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H = I −A
(

AT A
)−1

AT (83)

where

I =

(

I0 0
0 I0

)

(84)

H is symmetric and idempotent, which means it satisfies

H2 = H HT = H (85)

Using this, and the fact thatH = HT , we can write

J = BT HB (86)

It follows that we can write

J = 2I −4ST
0

(

AT A
)−1

S0 (87)

This can further be written as

J = 2
(

I −S0
(

ST
0 S0 +dST dS

)−1
ST

0

)

(88)

7.2 Perturbation Theory

If dS= 0, then Eqn. (88) shows that for any vectorz we have

JS0z = 0 (89)

The matrixS0 is an(N −1)×3 dimensional matrix, and will typically have a three dimensional
range, so there will be a three dimensional null space ofJ. That is,J will have three zero eigen-
values. The matrixST

0 will typically have anN −4 dimensional null space. Ifq is any vector in
this null space, then Eqn. (88) shows that ifdS= 0, we will haveJq = 2q. This shows that the
matrix J will have N −4 eigenvalues that are equal to 2. WhendS 6= 0, the zero eigenvalues will
become small eigenvalues. We are particularly interested in knowing how these eigenvalues scale
as we change the timedt between the epochs.

We will use the fact that ifε is a small parameter, then to first order inε we have(I + εC)−1 ≈
I − εC. Using this, and assumingdS is small we can write
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(

ST
0 S0 +dST dS

)−1
=

(

I −
(

ST
0 S0

)−1
dST dS

)

(

ST
0 S0

)−1
(90)

It follows that we can write

J = J0+dJ+ ... (91)

where

J0 = 2
(

I −S0
(

ST
0 S0

)−1
ST

0

)

(92)

and

dJ = 2S0
(

ST
0 S0

)−1(

dST dS
)(

ST
0 S0

)−1
ST

0 (93)

We would like to find out how the zero eigenvalues change when we add the perturbationdJ to
our matrix. WhendJ = 0, the eigenvector can be written as

u0 = S0z (94)

wherez is an arbitrary vector. When we add a small perturbation toJ we get

u = S0z+du (95)

Heredu is an infinitesimally small vector. Collecting the lowest order terms in the expression

(J0+dJ)(S0z+du) = λ (S0z+du) (96)

we get
dJS0z−λS0z = −J0du (97)

Since the matrixJ0 is singular, this can only have a solution if the quantity on the left hand side
of Eqn. (97) is orthogonal to all the vectors in the null space ofJT . This is equivalent to requiring
that

ST
0 (dJS0z−λS0z) = 0 (98)

This can be written as

(

2dST dS−λST
0 S0

)

z = 0 (99)

This is a three dimensional eigenvalue problem for determining how the three zero egeinvalues
of J change under a perturbation. It should be noted that the entries in the matrixS0 are on the
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order of unity, while the entries in the matrixdS are on the order of| dsk | / | sk | wheresk is the
position of a satellite. This shows us that the eigenvaluesλ will be on the order of

λ ≈ | dsk |2
| sk |2

(100)

That is, the eigenvaluesλ will be on the order of the square of the distance the satellites have
moved divided by the distance to the satellites.

33



References

[1] L.A. Romero, J.J. Mason, C.L. Leger, and S.M. Patel. Phase-Based Emitter Geolocation.
Sandia Labs Report, SAND2010-6670, 2010.

[2] P.J.G. Teunissen. The least squares ambiguity decorrelation adjustment: a method for fast GPS
integer ambiguity estimation.Journal of Geodesy, 70:65–82, 1995.

34



DISTRIBUTION:

1 MS 0359 D. Chavez, LDRD Office, 01911 (electronic copy)
1 MS 0899 Technical Library, 9536 (electronic copy)

35



36



v1.38




