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What follows is the derivation of an analytic solution for a pure heat conduction problem 
which should be useful for verification purposes. Consider a sphere of radius R at a 
constant temperature T0. I seek a solution to the homogeneous heat diffusion equation in 
spherical coordinates (exterior to the hot sphere) 
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subject to the initial and boundary conditions  
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In Eq.1, C is the specific heat, ρ is the density, and κ is the conduction coefficient. 
Specify temperature dependent forms for the specific heat and conduction coefficients as  
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where κ0 and C0 are constants and n is some exponent not necessarily an integer. If we 
substitute Eq.3 into Eq.1 and define   
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we have  
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Take the Laplace transform of Eq.5 to get  
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Now the transformed boundary conditions are  
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This ODE has the solution (for r>R) 

                                        })(exp{),(
0

00

κ

ρCs
Rr

sr

R
rs −−

Φ
=Φ  .                                     [8] 

Now perform the Laplace inversion  to get  
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For n = 0 this is an easy computational problem. But at large n it will strain the diffusion 
codes ability to accurately resolve the gradients in the material properties.  


