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Abstract

A numerical study aimed to evaluate different precondéignwithin the Trilinod f pack
andM. packages for the Quantum Computer Aided Design (QCAD) nwal Poisson prob-
lem implemented within the Albany code base and posed on tteav® Flat 270 design ge-
ometry is performed. This study led to some new developmiAttany that allows the user
to select arML preconditioner withzZol t an repartitioning based on nodal coordinates, which
is summarized. Convergence of the numerical solutions ct@dpwithin the QCAD compu-
tational suite with successive mesh refinement is examméda metrics, the mean value of
the solution (arL.® norm) and the field integral of the solutiob?(norm).
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1 Introduction

The Quantum Computer Aided Design (QCAD) project, fundedh®yLDRD program (project
#151297), aims to develop computational tools that en&lglel€sign and analysis of few-electron,
low-temperature quantum devices at specific regimes, anlitdée the discovery of quantum dot
structures [2]. The project uses as leverage the high-pedioce parallel computing resources
available at Sandia, as well as a number of existing Sandiaa® tools, including the Trilinos
solver library, the Dakota optimization toolbox, the Cubisher, and the SIERRA toolkit. QCAD
is implemented in the Albany code base, under the Agile Corapts strategy of Trilinos. Within
this framework, a suite of computational tools that focumesind the efficient numerical solution
of the non-linear Poisson equation and coupled Poissom8ictyer equations has been developed.

In recent months, the QCAD computational suite has beentaddyy analysts to help with the
design of actual quantum devices to be constructed in a ladze $hese analysts require timely
and accurate predictions to aid their designs, there is mativation to improve the code’s per-
formance without sacrificing any robustness. There is alstvation to validate the solutions
computed within the code. Toward this effect, the presestudent summarizes the results of a
numerical study aimed to address the following questions:

1. Which choice of preconditioner within the Trilina$ pack (ILU) [5] and M. (algebraic
multi-grid) [3] packages minimizes the total solve time loétlinear systemsAk = b) that
arise from the discretization of the governing equatior&st(ion 2)

2. Do the solutions computed within the QCAD computationgtiesconverge with successive
mesh b—) refinement? (Section 3)

In answering these questions, opportunities to identifysM® improve the Albany code base
through new development were sought. The first part of theemigal study led to the develop-
ment of a new capability within Albany that allows the useis@ect an\L preconditioner with
Zol t an repartitioning based on nodal coordinates. This choicere¢gnditioner can greatly ac-
celerate convergence for large problems run on a large nuaflocessors, and could benefit
numerous applications implemented within Albany. The sdgoart of the numerical study was
of particular interest due to the nature of the Cubit-geteertetrahedral meshes used to discretize
the quantum devices that are of interest. The irregularesiofphese devices (Figure 1) makes
them difficult to mesh. This reality makes the generationled” meshes a genuine possibility.
A numerical convergence study with respect to mesh refinemeuld validate in some sense the
meshing algorithm employed as well as put confidence in th&isos obtained from the QCAD
computational suite.

In this document, attention is restricted to the “Ottawat 240" device design (Figure 1), a
modification of the original Ottawa device design [4]. Theide is discretized using four-node
tetrahedral finite elements, generated using the Cubit imgs$bol. The governing partial differ-
ential equation (PDE) is a non-linear Poisson equationclvhkiescribes the large population of
atoms/molecules of which a device is composed.
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Figure 1. Sample quantum device model

The remainder of this document is organized as follows. i@e& describes thef pack andM
preconditioners considered in the preconditioner peréoree study, as well as the new develop-
ment within Albany that was motivated by this study. Totaklar solve and total preconditioner
creation time$ for each preconditioner considered are reported for problef three sizes: a
“small” problem of~ 1 million tetrahedral elements, a “medium” problemroB8.5 million tetra-
hedral elements, and a “large” problem=o69 million tetrahedral elements. The two finer meshes
were generated through a successive mesh refinement ofigheabr= 1 million four-node tetra-
hedral “coarse” mesh, that is, by splitting all elementshi@ original “coarse” mesh evenly in all
directions. This successive mesh refinement can be achieabit using the command:

refine volume all numsplit N

(a) Original “coarse”  (b) nunsplit 1 (c) nunsplit 2
mesh

Figure 2. Mesh refinement

whereN is the level of successive mesh refinement (e.g\ # 1 each element will be refined
once in each direction, il = 2 each element will be refined twice in each direction, etguFe
2). All runs were performed on the 160-TFlop Red Sky clust&amdia. The “small”, “medium”

lincluded in the total linear solve time.



and “large” problems were run in parallel on 16 processonmsa@es), 128 processors (16 nodes)
and 1024 processors (128 nodes) respectively. These poycaisd node counts were selected
so that for each problem size, each processor had the sameenwhelements, and all eight
processors of each node were occupied. Scalability witheasto problem size and processor
count is examined.

Section 3 presents the results of a numerical convergendg sf the QCAD solution with respect
to successive mesh refinement, performed in the manneriloedabove. The convergence of
two quantities of interest, the mean value of the soluticch #we field integral (the integral of the
solution over the domain), was considered specifically. diiserved rates of convergence of these
guantities are compared to the expected theoretical cgamee rates. Conclusions are offered in
Section 4.



2 Preconditioner Performance Study

This section summarizes the results of a study aimed at &vaduthe relative performance of
different preconditioners available through the Trilinépack andM. packages for a QCAD non-
linear Poisson problem posed on the Ottawa Flat 270 devioengiy. Twelve basic precondi-
tioner types are considered: nihepack preconditioners and thrééd. preconditioners (Table 1).
Thel f pack preconditioners are effectively ILU preconditioners, atiffler in the over| ap and

| evel -of -fill options. The\L preconditioners are algebraid multi-grid preconditieneased
on three default preconditioner types available indh@ackage SA (classical Smoothed Aggrega-
tion), DD (classical smoothed aggregation based on two-level DoBegomposition), an@D- M
(three-level algebraic Domain Decomposition). For a detiadiscussion of thedd pack andM.
options, the reader is referred to thigpack andM. user guides, [5] and [3] respectively.

Table 1. Summary of preconditioners evaluated

Preconditioner# Type | Parameters
1 overlap = 0,level-of-fill =0
2 overlap = 1,level-of-fill =0
3 overlap = 2,level-of-fill =0
4 overlap = 0,level-of-fill =1
5 i fpack | overlap = 1,1 evel-of-fill =1
6 overlap = 2,level-of-fill =1
7 overlap = 0,level-of-fill =2
8 overlap = 1,level-of-fill =2
9 overlap = 2,level-of-fill =2
10 default type = SA
11 M default type = DD
12 default type = DD-M

By perusing the/L users’ guide [3], the reader may observe thatMhpreconditioner package has
a number of options and parameters that may be specified hystre and/or over-written from
the default settings. In an effort to optimize the perforogaf theM. preconditioners, it is worth-
while to explore several of these options. To this effeate¢hvariants of th&L preconditioners
introduced in Table 1, referred to as A, B and C, are consitlefidhe parameter lists for these
preconditioner options are summarized in Table 2 for theifipecase of arbA default precondi-
tioner. The C variant preconditioner employs the matribaréponing option available through the
Trilinos Zol t an package. Essentially, repartitioning uses informatiooualbhe mesh coordinates
to perform dynamic load-balancing of coarse-level masricethe multigrid preconditioner. With
repartitioning, message passing latency on the coarskdande improved, and the well-known
problem of the coarsening rate dropping as the number ofawka per processor becomes small
can be avoided. Providing the user with the option to seledilapreconditioner withZol t an
repartitioning required some non-trivial new developmeithin Albany. Functions that identified
and communicated the, y, z) coordinates of a problem’s underlying mesh were added &iiegi
Albany classes.
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NOX Mean Linear Solve Time (s) over Procs

QCAD Ottowa Flat 270 problem (ML settings A)
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Figure 3. | f pack vs. M. preconditioners withhL settings A

Figures 3-5 depict thBel os total linear solve times and total preconditioner creatiores for
the ninel f pack preconditioners and the thrée preconditioners summarized in Table 1. The
preconditioners in Figure 3 have the settings A; the\L preconditioners in Figure 4 have the
settings B; theVL preconditioners in Figure 5 have the settings C. With settings that are effec-
tively the default\L settings (settings A), thil. preconditioners are outperformed by tHeack
preconditioners by a large margin on the finest mesh coreid@able 3). The performance of
the ML preconditioners improves when thggr egati on: type is changed tancoupl ed-M S
(settings B); however thid. preconditioners still do not outperform thepack preconditioners on
the finest mesh (Figure 4). Inspection of the verbose outpat theM. package suggested that the
situation may be improved by introduciZgl t an repartitioning based on nodal coordinate, and
the Albany code base was modified to allow this option, asudised above. The reader may ob-
serve an extraordinary speedup in the total linear solvgegxbnditioner creation times for tive
preconditioners with repartitioning (settings C) (Figaje With settings C, th&L preconditioners
achieve a factor speedup of more than two relative tol figack preconditioners foall mesh
resolutions considered. More specifically, for a problestiitized by~ 8.6 million tetrahedral
elements, run on 128 processors on the Red Sky cluster:

e The linear solves were.2-545 times faster with ahL preconditioner plugol t an reparti-
tioning (settings C) compared to &hpack preconditioner.

e The linear solves with abL preconditioner pluZol t an repartitioning (settings C) were 2
times faster than with a “black bo¥L preconditioner (settings A).
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NOX Mean Linear Solve Time (s) over Procs

QCAD Ottowa Flat 270 problem (ML settings B)
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Figure 4. | f pack vs. M. preconditioners withL settings B
For a problem discretized by 64 million tetrahedral elements, run on 1024 processorb®Red
Sky cluster:

e The linear solves were.2-279 times faster with ahL preconditioner pluZol t an reparti-
tioning (settings C) compared to &hpack preconditioner.

e The linear solves with akL preconditioner plugol t an repartitioning (settings C) were®
times faster than with a "black bo¥L preconditioner (settings A)

The M. preconditioner option witlZol t an repartitioning (settings C) is therefore recommended
for all problem sizes.

Figure 6 shows the preconditioner number (Table 1) versus

total linear solve time
# elements per processor

(1)

for the three problem sizes considered. If the problem dgaéfectly with the number of pro-
cessors, the value (1) would be the same for all problem sindsprocessor counts. Figure 6
indicates that scalability for this problem could be imprdv The reason for the suboptimal scala-
bility demonstrated in this figure is at the present time wvikm, and may be investigated in future
work.
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NOX Mean Linear Solve Time (s) over Procs
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Table 2. Summary of ML settings evaluated (for example of
default val ues: SA)

ML settings A

<Par amet er Li st nane="M.">
<Par aneter nane="Base Method Defaults" type="string" val ue="none"/>
<Par amet er Li st name="M. Settings">
<Par anmet er name="default val ues" type="string" val ue="SA"/>
<Par amet er name="snoot her: type" type="string" val ue="Chebyshev"/>
<Par amet er name="smoother: pre or post" type="string" val ue="both"/>
<Paraneter nane="coarse: type" type="string" val ue="Amesos-KLU"'/>
</ Paranet erList]>
</ Par anet er Li st >

ML settings B

<Par anet er Li st nanme="M.">
<Par amet er name="Base Method Defaul ts" type="string" val ue="none"/>
<Par amet er Li st name="M._ Settings">
<Paraneter nane="default values" type="string" val ue="SA"/>
<Paraneter nane="snoother: type" type="string" val ue="Chebyshev"/>
<Par amet er nanme="smoother: pre or post" type="string" val ue="both"/>
<Par amet er nanme="coarse: type" type="string" val ue="Anesos-KLU'/>
<Paraneter nane="coarse: max Size" type="int" value="512"/>
<Par amet er nanme="aggregation: type" type="string" val ue="Uncoupled-MS"/>
</ Par anet er Li st >
</ Par anet er Li st >

ML settings C

<Par anet er Li st name="M.">
<Par anmet er name="Base Method Defaul ts" type="string" val ue="none"/>
<Par amet er Li st name="M._ Settings">
<Paraneter nane="default values" type="string" val ue="SA"/>
<Paraneter nane="snoother: type" type="string" val ue="Chebyshev"/>
<Par amet er nanme="smoot her: pre or post" type="string" val ue="both"/>
<Par amet er nanme="coarse: type" type="string" val ue="Anesos-KLU"'/>
<Par amet er nanme="coarse: max size" type="int" val ue="512"/>
<Parameter name="repartition: enable" type="int" value="1"/>
<Parameter name="repartition: partitioner" type="string" value="Zoltan"/>
<Paramet er name="repartition: Zoltan dimensions" type="int" value="3"/>
<Parameter name="repartition: max mn ratio" type="double" value="1.3"/>
<Parameter name="repartition: mn per proc" type="int" value="1000"/>
</ Par anet er Li st >
</ Par anet er Li st >
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3 Convergence Study

x 10* QCAD Ottawa Flat 270 — Mean Value Convergence QCAD Ottawa Flat 270 - Field Integral Convergence
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Figure 7. Mesh convergence of mean value and field integral

Attention is now turned to the mesh convergence of the soiut the QCAD non-linear Poisson
problem posed on the Ottawa Flat 270 geometry discretizéu aviour-node tetrahedral mesh.
Two metrics are used to study mesh convergence: the meae ohlhe solution, and the field
integral of the solution (the integral of the solution ovee tdomain). The former quantity is
effectively anL'(Q) norm, and the latter is effectively arf(Q) norm. From basic finite element
theory, the expected convergence rates in these normsuientmle tetrahedral finite elements are
one and two respectively [1]. Since an analytical form of éxact solution to this problem is
not available, the relative errors were measured with @sjoea converged reference solution,
computed numerically on a mesh sf552 elements obtained by executing tleéi ne vol une
all nunsplit 3 Cubitcommand on the coarsest { million element) mesh considered. Given
Uref, the computed solution on the reference mesh (in this ceeenean value of the solution or
the field integral), the relative error was computed as:

Uref — UN
Eref = M (2)
| Uref]

whereuy is the solution computed on a meshNftetrahedral elements. Subfigures (a) and (b)
in Figure 7 illustrate respectively the convergence of tbleiteon mean value and field integral
with respect to successive mesh refinement. Although thdisnlappears to be converging in
both metrics, the reader may observe that the convergetesase below the rates expected from
theory. Most likely, this can be attributed to an insuffi¢lgraccurate reference solution. A fur-
ther convergence study, perhaps in a different metric, neawdrthwhile to undertake in future
validation studies.
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4 Conclusions

The present document summarizes the results of a numerazaqditioner and convergence study
for a QCAD non-linear Poisson problem posed on the OttawiaZ+la design geometry. This do-
main is discretized with four-node tetrahedral elemenitisgithe Cubit mesher tool. Finer meshes
are generated by successively refining an initial “coarseSim For the preconditioner study, nine
| f pack and threeVL preconditioners are evaluated. Three sets of options &kithdefault type
preconditioners are considered. It is found that by selgcinM. preconditioner with reparti-
tioning based on nodal coordinates using Zbkt an package, the total linear solve time can be
improved relative to the previously-employeithack preconditioner by a factor of more than two
for problems posed on coarse as well as fine meshes. Thisweptioerefore recommended for all
problem sizes, and is now available in Albany thanks to soevedevelopment. A scalability plot
generated for this problem illustrates that the total lirsgdve time does not scale optimally with
the problem size and processor count. The reason for thisciear at the present time and may
be the subject of future work.

Following the preconditioner performance study, a conseog study with respect to successive
mesh refinement is performed. The convergence is measutes imetrics, the mean value of
the solution and the field integral. For the convergenceystadreference” solution computed
numerically on a very fine mesh is taken in place of an exacitti®wol, as the exact solution to this
problem is not available in closed analytic form. The cogeece study suggests convergence in
both metrics, albeit at rates slightly below the expectesbtétical rates. It is recommended that
future work include further convergence testing for vdiioia purposes, perhaps in metrics other
than the ones considered herein.
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