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Abstract 

The purpose of this report is to provide a background to Synthetic Aperture Radar (SAR) 
image formation using the Polar Format (PFA) processing algorithm.  

This is meant to be an aid to those tasked to implement real-time image formation using 
the Polar Format processing algorithm. 
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Foreword 

The Polar Format Algorithm for Synthetic Aperture Radar image formation is well 
documented in the literature.  The precursor to this report was a limited distribution  
internal Sandia National Laboratories report titles “Real-time Polar-Format Processing 
for Sandia’s Testbed Radar Systems”, SAND2001-1644P, printed June 2001.   

This current report has been edited to remove references to Sandia programs and other 
limited distribution publications and sources.  It is judged that this takes away virtually 
nothing of the value of the report for the vast majority of readers.  In addition, some 
typographical errors from the first report were fixed along the way. 

This report contains no intellectual property outside of the public domain.  Its purpose 
was to summarize and educate, not to reveal any “secret sauce”.  This report just fills in a 
lot of the background that other sources tend to overlook, or otherwise leave to the 
reader. 
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1 Introduction 

There are many ways to view the process of forming an image using Synthetic Aperture 
radar (SAR) collected data. The various viewpoints illustrate or highlight different 
aspects of the process and make the certain aspects easier to understand, by perhaps 
relating them to other more familiar processes. In the end one might ask “Which is the 
‘right’ way to look at image formation?” to which the only answer is “They all are.” 
(Well, not exactly... there are certainly some less-than-right ways that tend to obfuscate 
things, in spite of their popularity.) 

However, insisting that a single right way exists (and especially that it happens to be 
‘your’ way) is akin to seeing the world through a green filter, and denying oneself the 
richness of (or the utility of) experiencing other colors. Unfortunately, this analogy is 
quite commonly applicable in the radar community, and in fact hampers advancing the 
state-of-the-art.  

This report discusses the Polar Format Algorithm (PFA) for SAR image formation, first 
described by Walker.1 A natural question is “Why use PFA processing as opposed to say 
linear range-Doppler subaperture techniques?” Though the extended answer to this 
question is beyond the scope of this report, the short answer is simply stated as “Because, 
as will be shown, the basic collected SAR phase history data is collected in a polar 
coordinate frame of the frequency space of the image, and if you don’t fix this, you will 
be limited by it, especially as resolutions approach the nominal wavelength of the SAR.” 
This is the case for techniques like the Overlapped Subaperture Algorithm (OSA). PFA 
processing does fix this, and consequently is not so limited by this (although other 
limitations exist that are not as pertinent at ultra-fine resolutions). An extensive treatment 
of the relative strengths and weaknesses of various algorithms can be found 
elsewhere.2,3,4  This report henceforth deals strictly with PFA processing. 

It is suggested that a reader who is inclined to want to fully understand the concepts 
presented herein, secure pencil and paper and derive for himself the various equations, 
using this report as a guide. This might allow the reader to ‘fill in’ the missing steps and 
understand their significance. 
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“Get your facts first, then you can distort them as you please.” 
-- Mark Twain. 
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2 Background 

Wavenumbers 

For completeness, we begin at the very beginning. There is no intent here to insult 
anyone’s intelligence, but rather to clearly define the framework of ideas for subsequent 
discussions. 

Consider a traveling wave moving in the +x direction. This can be described as 

   kxtAxtw  cos,  (1) 

where 

t = time with units seconds 
x = spatial distance with units meters 
 = frequency (temporal phase rate) with units radians/second 
k = wavenumber (spatial phase rate) with units radians/meter. (2) 

We identify the phase 

  





 






 






  x

c
tx

c
tx

k
tkxt




 1
 (3) 

where we recognize 

 
k

c


  = velocity of propagation of the wave in m/s, and furthermore 

 
k

 2
  = wavelength in meters. (4) 

The key point here is that we can (and do) speak of spatial ‘frequencies’ which are more 
appropriately called wavenumbers. 

“Why is this important?” Because radar imaging, specifically Synthetic Aperture Radar 
(SAR) imaging, is more about processing wavenumber information than about frequency 
information. What allows us to use frequency information is that wavenumber and 
frequency are related by the velocity of propagation that we claim to know (but 
sometimes really don’t, at least with sufficient accuracy and/or precision). 

While time seems to have but a single dimension, space has up to three that we know 
about. The travelling wave equation then becomes (for a planar wave front, i.e. a plane 
wave) 
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   zkykxktAzyxtw zyx  cos,,,  (5) 

where each dimension has its own wavenumber component.  In vector notation we can 
write this as 

   rkr  tAtw cos,  (6) 

where 

r = a position vector, and 
k = a wavenumber vector. (7) 

Alternatively, we can write the wavenumber vector in a magnitude-direction sort of 
format as 

nk ˆk  (8) 

where 

k  = the magnitude of the wavenumber vector, and 
n̂  = a unit vector pointing in the direction that the wave is travelling. (9) 

This allows us to write 

      rnrnr  ˆcosˆcos, ktAktAtw   (10) 

where we also realize that k is the wavenumber in the direction that the wave is 
travelling.  Clearly, in the space-time universe we live in, there is but a single frequency, 
but at least 3 wavenumber components to fully describe a travelling wave. The properties 
of SAR imaging are governed by this as well.   

Consider a two-dimensional universe with a traveling wave consistent with the 
illustration in Figure 1.  We observe the following. 

 The lines represent constant phase contours at a snapshot in time.  

 The waves are travelling perpendicular to these constant phase contours. 

 We recognize that  sinˆcosˆˆ yxn   such that we can write 

   ykxkk  sincosˆ rn . (11) 

This really describes how the phase information is oriented in the (in this case) 
universe. We will see this form again. 
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Figure 1.  Illustration of linear wavefronts for a traveling wave in a 2-D geometry. 

Now some more comments about frequency and wavenumber. 

Reconsider the 1-Dimensional traveling wave, with phase 

kxt    (12) 

where is unknown, and k and x are fixed but also unknown, but   can be measured at 
known times t. A single measurement of   at some time t = t0 is useless for estimating 
, but since we observe that  

dt

d
  (13) 

we can estimate  from observing how   changes over time. The precision of our 
estimate (i.e. frequency resolution) depends on how long in time we observe  . 
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In a similar manner, if the net phase is observed over a variety of frequencies, this 
information can be used to estimate the time of an event. That is, again consider a signal 
with phase  

kxt    (14) 

where now tis unknown, but   can be measured at known frequencies . A single 
measurement of   at some single frequency  = 0 is useless for estimating t, but since 
we observe that  

d

d
t


  (15) 

we can estimate tfrom observing how   changes over a band of frequencies. The 
precision of our estimate (i.e. time resolution) depends on how wide in frequency (i.e. 
bandwidth) we observe the phase  . 

Now consider once again a signal with phase 

kxt    (16) 

where now k is unknown, and  and t are fixed but also unknown, but   can be 
measured at known positions x. We identify the wavenumber 

dx

d
k


 . (17) 

Similarly, the way to estimate position x is to take   readings at multiple wavenumbers k 
and observe that we can calculate position x as 

dk

d
x


 . (18) 

This is exactly what SAR imaging is all about. 

In two spatial dimensions, the phase is given by 

 ykxkt yx   . (19) 

If we fix time such that  t , then this becomes 

  ykxkykxk yxyx   . (20) 
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Consequently, in order to find a unique position (x,y) we need to vary both wavenumbers 
kx and ky, but in an independent manner, so we can tell which is a result of wiggling kx, 
and which is a result of wiggling ky. But since we observe that from Figure 1 

coskkx  , and 

sinkky  , (21) 

we can rewrite the phase at a fixed time as 

   ykxk  sincos  . (22) 

and note that we can equivalently independently wiggle k and . This is exactly what a 
SAR does, where the pulse bandwidth is related to wiggling k, and the synthetic aperture 
is related to wiggling . 

Note that in three spatial dimensions we have 

zkykxk zyx    (23) 

and recognize that to extract the z position we need to independently wiggle kz. This is 
exactly what the second antenna phase center (offset in elevation) is all about in 
Interferometric SAR (IFSAR). 

Fourier Space of a Scene 

Consider a 2-dimensional scene out there with brightness (perhaps complex) function that 
varies with spatial position, say 

 yx,  = 2-D space-varying function. (24) 

If we take the 2-D Fourier Transform of this with respect to the spatial coordinates x, and 
y, we end up with a new function 

     
dxdyeyxkkS

ykxkj
yx

yx 









 ,,   (25) 

that describes how much brightness (energy) we have for specific combinations of 
wavenumbers kx and ky. That is, any particular location (x0,y0) will induce specific 
wiggles across wavenumbers kx and ky with the same energy as exists at that location. 
Equivalently, a specific set of wiggles in kx and ky at some energy level will set the 
brightness at a specific location (x0,y0).  

Consequently, if we can gather enough information in the ‘wavenumber’ domain, which 
we now also call the ‘Fourier space’ of the scene, we should be able to estimate what the 
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scene content  yx,  is. We don’t really need to know the entire Fourier space of the 
scene, but as it turns out, the size of the region that we do know ultimately sets the 
precision (resolution) with which we can estimate scene content. As we shall see, this is 
exactly what a SAR does. 

This also extends to 3-D scenes very nicely.  

The notion that only a relatively small region of the Fourier space of the scene is needed 
to form an image is well known.5 However, less appreciated is the fact that even optical 
imagery that has been appropriately ‘bandpass’ filtered yields images that are very SAR- 
like.6  
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3 SAR Imaging in a 2-D World 

Polar Format processing was first developed for Inverse-SAR (ISAR) operation, where 
the radar position was fixed and the target was placed on a rotating turn-table.1 We, 
however, will develop it from the viewpoint of a stationary scene, with moving radar. 

Consider a 2-D world where the z-dimension doesn’t exist. Furthermore, consider the 
radar geometry of Figure 2.  In this geometry we define 

s = the spatial location of a point target, with coordinates (sx,sy), 
rc = the location of the radar, with coordinates (rx,ry), and 

srr  cs  = relation of radar location to the point target location. (26) 

We will presume for convenience a linear frequency modulated (LFM) transmitted pulse 
given by 

  





 






 2

2
cosrect tt

T

t
AtX TT

  (27) 

where 

 

Figure 2.  Data collection geometry in a 2-D world. 



- 16 - 

 

 = center frequency of the transmitted pulse, 
 = chirp rate of the transmitted pulse, 
AT = amplitude of the transmitted pulse, and 
T = duration of transmitted pulse. (28) 

We note that the instantaneous frequency of the transmitted signal is 

t inst  (29) 

and that the signal bandwidth (for large time-bandwidth product signals used by most 
SAR systems) is T  rad/s, or   2T  Hz. 

The received echo will be a scaled and time delayed version of the transmitted signal, 
namely 

            





 






 

 2

2
cosrect ss

s
RsT

T

R
R tttt

T

tt
AttX

A

A
tX

 ss , (30) 

where 

AR is the nominal amplitude of the received echo, and 
(s) is the reflectivity of the target at s. (31) 

The echo delay time with respect to the target depends on the distance to the target and 
the speed of wave propagation, and is 

ss c
t r

2
 . (32) 

In reality, a scene will typically be composed of more than just a point target, which 
means that the received signal is really an integral over all s of all the responses from any 
s. That is, this is a linear system for which superposition holds. Nevertheless, to keep the 
ideas simple, we will continue with the presumption of a single point target. 

The echo delay time with respect to the scene center is given by 

cc c
t r

2
 . (33) 

For the collection geometry proposed in Figure 1, wherein the radar perfectly orbits the 
scene center at constant range, this echo delay time is also a constant. 

De-chirping this (stretch processing) and using quadrature demodulation yields a video 
signal of the approximate form 
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         sccsc
c

RV ttttttj
T

tt
AtX 






 

  exprects . (34) 

We are ignoring the residual video phase error term. We can rewrite this as 

       scRV tttj
T

t
AtX 






 

  exprects  (35) 

where cttt   just to make things look a little simpler, but it is important to note that t  
does vary over the interval T/2 to T/2. Note that the quantity  t   is again an 
instantaneous frequency expression. 

If we completely sample this interval with an Analog to Digital converter at times 

siTt   (36) 

where 

i = sample index such that 122  IiI , and 
Ts = T/I = ADC sample spacing, (37) 

then the sampled video signal becomes 

       scsRV ttiTjAiX   exps . (38) 

Note that each sample index i represents a different instantaneous frequency  iTs  .  

The time difference quantity  sc tt   can be related to ranges and expanded to  

    cossin
2

yxsc ss
c

tt  . (39) 

This expression does ignore some higher-order error terms that account for wavefront 
curvature, but is sufficient for the task at hand. Nevertheless, this can be inserted into the 
video signal expression and rearranged to 

      






   cossin

2
exp yxsRV ssiT

c
jAiX s . (40) 

Recall that if we divide a frequency by the velocity of propagation, we get a wavenumber 
quantity. Consequently, let us set 

   ikiT
c s  2

 = wavenumber whose value depends on index i. (41) 
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Note that the wavenumber is ‘wiggled’ across the index i. The scale factor 2 results from 
the round trip that is required by the pulse. One might view this as effectively cutting the 
propagation velocity in half. In any case, we can rewrite the video signal as 

          yxRV siksikjAiX  cossinexp  s . (42) 

Note the similarity of the phase to equation (22). 

A SAR will vary index i within any single pulse, and will vary  from pulse to pulse. The 
wavenumber variation in index i is defined by the bandwidth of the chirp. The variation 
in  defines the synthetic aperture. Discrete pulses from the radar define samples in . 
Let us for the moment presume constant increments in the samples of  such that 

nd   (43) 

where 

d = the angular increment in  between pulses, and 
n = an index of pulse number such that 122  NnN . (44) 

The video signal then becomes 

              yxRV sndiksndikjAniX  cossinexp,  s . (45) 

We can define wavenumber components now as functions of indices, as 

     ndiknikx sin,  , and 

     ndikniky cos,  , (46) 

and rewrite the video signal as 

        yyxxRV sniksnikjAniX ,,exp,  s . (47) 

Clearly, to uniquely resolve spatial location (sx,sy), we need to identify independent 
wiggles of  nikx ,  and  niky , , which can be done with independent wiggles of indices i 

and n.  

Each individual sample of a SAR data set (phase history) corresponds to a specific pulse 
index n, and a specific video time index i, and hence corresponds to a unique 2-D 
wavenumber. Consequently, each individual phase history sample is a unique point in the 
Fourier space of the scene. 

We now ask “So what does the data region look like in Fourier space?” More 
specifically, “At what wavenumber combinations does the collected phase history fall?” 
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We want to find at what (kx,ky) location in Fourier space do the phase history samples 
fall, if the phase history samples are identified at specific index combinations i and n. 
With malice of forethought we identify the displacement from the wavenumber origin as 

       iT
c

ikniknik syx  
2

,, 22 . (48) 

That is,  ik  is the distance of the ith sample from the Fourier-space origin.  Similarly we 
define the wavenumber location angular displacement from the ky axis as 

 
  nd

nik

nik

y

x  










,

,
atan . (49) 

That is, nd  is the angular offset of the nth sample from the negative ky axis in Fourier 
space. 

Clearly, the indices i and n are indices to samples on a polar grid in Fourier space. That 
is, the phase history sample array corresponds to Fourier space samples on polar grid 
locations. This polar raster of positions is illustrated in Figure 3.  This entire set of sample 
locations define an ‘aperture’ or ‘window’ into the Fourier space of the scene. The 
required density of the sample spacing depends (via Nyquist criteria) on the ‘space-
width’ or spatial extent of the scene. This typically depends on the antenna beamwidth 
and the radar video (or perhaps IF) bandwidth. 

In any case, all we have to do is transform this ‘wavenumber’ domain data into the 
‘space’ domain and we have an image of the scene. This is easier said than done. 

 

Figure 3.  Polar grid of phase history data locations in the Fourier space of the scene in a 2-D world. 
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3.1 General Image Transform 

Recall the video signal expression 

        yyxxRV sniksnikjAniX ,,exp,  s . (50) 

The question now is “How do we extract the space-domain image from the Fourier-
domain phase history data?” The answer, of course, is some sort of 2-Dimensional 
Fourier Transform.  

If the Fourier-space data were continuous, the transform to yield a spatial image would be 

   
yx

ykxkj
V dkdkeXyxS yx 










, . (51) 

For the discrete sampled phase history data, the 2-D Discrete Fourier Transform (DFT) 
yields 

         


i n

ynikxnikj
V

yxeniXyxS
,,

,, . (52) 

This is true for any (x,y) position in the SAR image. Typically we quantize the (x,y) 
positions to specific multiples of some pixel spacing, say where we are interested in 

   vuyx yx  ,,   (53) 

where x and y are pixel spacings in x and y directions respectively, and u and v are pixel 
indices in x and y directions respectively. Consequently 

         


i n

vnikunikj
Vyx

yyxxeniXvuS
 ,,

,, . (54) 

This formula would work just great, insofar as forming an image is concerned. It is 
limited only to the extent that equation (50) is a suitable model for the phase history data. 
It implements a 2-D matched filter to data described by equation (50). The problem is, a 
direct implementation of this equation means selecting a particular (u,v) coordinate, and 
performing a 2-D sum over all phase history samples at all combinations of indices i and 
n. This would then be repeated for every combination of image coordinates u and v that 
was of interest. This is a brute-force technique, and computationally expensive. 
Unfortunately, the non-linear nature of the Fourier kernel     vnikunik yyxx  ,,   is not 

well suited to efficient calculation by “Fast” transforms, such as the 2-D Fast Fourier 
Transform (FFT). This is because of the polar grid nature of the phase history sample 
placement in Fourier space. 
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What would be well suited is a kernel of the form ivCnuC yx   where Cx and Cy are 

constants. That is, what would really be nice is if the transform to the image domain 
looked more like 

      


i n

ivCnuCj
Vyx

yxeniXvuS ,, . (55) 

Fourier-space locations that would meet this format constitute a Cartesian grid of sample 
locations as illustrated in Figure 4, rather than the polar grid of Figure 3. With samples on 
a Cartesian grid, a 2-D DFT would work just great, and be much less computationally 
expensive.  Oh, well.... 

Note:  The 2-D DFT may be rewritten with scaled image indices to perhaps a more 
familiar form more suitable for the 2-D FFT 
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Figure 4.  Desired Cartesian grid locations in Fourier space for easy processing of phase history data. 
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3.2 Small Aperture Approximations 

If the ‘aperture’ in Fourier space is relatively small then some useful simplifying 
approximations can be made. Note that these conditions are tantamount to limiting the 
SAR images to coarser resolutions, in both dimensions.  

If the signal bandwidth is small, that is, 

 T , (57) 

and the spread of polar angles is small, 

1Nd , (58) 

then we can approximate 

    nd
c

ndknikx  2
0,  , and 

      iT
cc

iknik sy  22
0cos,  . (59) 

This allows the phase history data to be modeled by 
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This, in turn, allows the transform to the image domain to be approximated by 
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Note that this is of the form in equation (55). The assumption is that for small polar 
angles, and small signal bandwidths, a polar grid is very nearly equivalent to a Cartesian 
grid. Consequently, the image can be formed as if the Fourier space phase history 
samples were already on a Cartesian grid. This conveniently requires only the 
conventional 2-D DFT (or FFT) to make the transformation from Fourier space to image 
domain.  

This is often referred to as merely “2-D DFT processing” or “linear range-Doppler 
processing”.  It seems to work fairly well for modest scene sizes at Ku-band down to 
perhaps 1-m resolutions.  However, as resolutions begin to approach the wavelength of 
the radar, these approximations fail horribly. The polar grid nature of the phase history 
data can no longer be ignored. 
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3.3 Polar Reformatting 

Because of the finite scene extent that makes it through the antenna, presummer, IF and 
video filters, we say the data is space-limited (sort of like band-limited, but in the other 
domain). Consequently, strong correlation exists over small neighborhoods in the Fourier 
domain (phase history data). In fact we have presumed just this in selecting ADC 
sampling rates and radar PRFs to allow sampled phase history data to accurately 
represent the nature of the Fourier space of the scene.  So what???? 

This means that we should be able to guess (calculate) pretty well what the Fourier space 
values should look like between the phase history samples that we actually have. That is, 
we should be able to interpolate between the Fourier space samples we have pretty well. 
But why??? 

The data that we have is on a polar grid, but what we want is data on a Cartesian grid. 
What comes to mind is to ‘resample’ the data from the polar grid it is on, to the Cartesian 
grid that is more suitable for easy transformation to the image domain. This involves 
interpolating the phase history data to other more suitable sample points in the Fourier 
domain of the scene.  How??? 

While this can be done as a 2-D interpolation operation, it is more typically done as two 
separate 1-D interpolation operations. 

What we have is data described by 

        yyxxRV sniksnikjAniX ,,exp,  s , (62) 

where the Fourier domain samples are located at 

     ndiT
c

nik sx  sin
2

,  , and 

     ndiT
c

nik sy  cos
2

,  . (63) 

What we want is interpolation to new Fourier domain sample positions such that 

        yyxxRV siksnkjAniX  exp, s , (64) 

where the new Fourier domain samples are at locations where the wavenumber 
components use decoupled indices 

  nd
c

nkx  2
, and 

   iT
c

ik sy  2
. (65) 



- 24 - 

 

The two step process is typically implemented as follows5 

1. First we interpolate in a radial direction such that 

   iknik yy , , (66) 

that is, such that 

     iTndiT ss   cos . (67) 

This is accomplished by picking an integer index value for i’, and finding the 
corresponding non-integer value for i for which new data must be interpolated, 
and doing so for each sample index i’, and each pulse index n. For example, 
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1cos
. (68) 

Data so interpolated makes yk  independent of azimuth index n. However, in 

doing so, we have also altered somewhat the nature of xk  since it also depended 

on index i (it now depends on index i’). Now we have 

         ndiT
c

nd
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nik s
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2
, 







 
 . (69) 

These new partially reformatted wavenumber locations constitute a trapezoidal 
shape and are illustrated in Figure 5. Note how values for yk  are ‘lined-up’, but 

values for xk  still exhibit an angular increment. 

2. Second, we interpolate in the azimuth direction such that 

   nknik xx , , (70) 

that is, such that 

    ndndiTs   tan . (71) 

This is accomplished by picking an integer value for n’, and finding the 
corresponding non-integer value for n for which new data must be interpolated, 
and doing so for each new ADC sample index i’, and for each n’. For example 
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atan
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Data so interpolated makes xk  independent of ADC sample index i and/or i’. 

The final result is Fourier space data described by equation (64) and illustrated in Figure 
4. That is, the newly interpolated phase history data is laid out on a Cartesian grid in the 
Fourier space of the scene. 

 

 

 

 

 

 

 

 

Figure 5.  Trapezoidal grid of phase history data locations in Fourier space after first stage of polar 
reformatting (data interpolation). 
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3.4 Polar Reformatting with Real-time Motion Compensation 

We note that in the previous section, the 2-D interpolation operation to a Cartesian grid 
was carried out in two stages, each using 1-D interpolations. The first step adjusted the 
radial position of the wavenumber samples, and the second step adjusted the xk  position 

of the wavenumber samples. 

We also recall that the radial wavenumber distance is     iTcik s  2 , and the 

interpolation operation is an adjustment to non-integer values of index i, for the purpose 
of pulse-to-pulse adjustments in  ik . However, from this expression we also note that a 

pulse-to-pulse adjustment to  ik  might also be accomplished by pulse-to-pulse 

adjustments to any of , , and/or Ts. Let a subscript n denote adjustability on a pulse-to- 
pulse basis. Then what we really desire from the first stage of interpolation is that 

     iTiT snnsnn  0,00, cos  . (73) 

where the zero subscript denotes a nominal constant value. 

This equivalence allows us to keep ii   if we adjust on a pulse-to-pulse basis 

 n
n 


cos

0 , and  n

s
nsn

T
T





cos

0,0
,  . (74) 

Consequently, adjusting on a pulse-to-pulse basis the radar frequency n and chirp rate n 
(or equivalently ADC sample spacing Ts,n) we can collect data that already has the first 
half of the polar reformatting implemented. That is, these real-time waveform and/or 
sampling adjustments allow collecting data directly on the trapezoidal grid of Figure 5. 

The expression for the phase history data so collected becomes 

        yyxxRV siksnikjAniX  ,exp, s , (75) 

where the Fourier domain samples are located at 

     nsx iT
c

nik  tan
2

, 0,00  , and 

   iT
c

ik sy 0,00
2   . (76) 

Clearly, we have removed the dependence of yk  on index n, merely by how we collect 

the phase history data. This is a good thing. While it would be desirable to remove the 
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dependence of xk  on index i in some similar real-time manner, unfortunately we haven’t 

quite figured out how to do this yet. This would require somehow adjusting parameters 
such that 

    ndiT ns  00,00 tan  . (77) 

For reasons that will become apparent shortly, it is desirable to get ‘part-way’ there by 
choosing pulse angles n such that 

  ndn  tan . (78) 

This allows us to collect data at wavenumber locations 

    ndiT
c

nik sx  0,00
2

,  , (79) 

which says that for any ADC index value for i, that sample spacing is constant across n. 
This still describes a trapezoidal aperture in Fourier space, and is illustrated in Figure 6, 
but with the subtle difference that locations for xk  now exhibit a linear increment instead 

of an angular increment. 

 

 

 

Figure 6. Trapezoidal locations of phase history data in Fourier space resulting from real-time 
adjustments in radar frequency, chirp rate, and pulse timing. 
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That is, the expression for the phase history data so collected becomes 

        yyxxRV siksnikjAniX  ,exp, s , (80) 

where the Fourier domain samples are located at 

    ndiT
c

nik sx  0,00
2

,  , and 

   iT
c

ik sy 0,00
2   . (81) 

This is now the nature of the raw phase history data. Completing the polar reformatting is 
now simplified to merely a linear resampling across index n in the following manner.  

We interpolate in the azimuth direction such that 

  ndndiTs   00,00 . (82) 

This is accomplished by picking an integer value for n’, and finding the 
corresponding non-integer value for n for which new data must be interpolated, 
and doing so for each new ADC sample index i. For example 
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Data so interpolated makes xk  independent of ADC sample index i. 

That is, once again we have 

        yyxxRV siksnkjAniX  exp, s . (84) 

where the Fourier domain samples are located at 

    nd
c

nkx  0
2

, and 

   iT
c

ik sy 0,00
2   . (85) 

This is good. 
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3.5 Polar Reformatting using a Chirped Z-Transform 

Fourier-domain data collected on the grid of Figure 6 (trapezoidal aperture with linear 
spacing in xk ) allows some additional processing advantages. 

In the prior section we suggested that the data be resampled prior to a 2-D DFT. We note 
that a 2-D DFT is normally composed of successive 1-D DFTs, perhaps first in index i, 
and then in index n’, or vice versa. 

Clearly, beginning with data of Figure 6, one set of operations that would achieve an 
‘image’ is the following 

1. linear resampling in azimuth (index n),  

2. azimuth DFT (or FFT) across index n’, and  

3. range DFT across index i. 

We observe now that the first two of these operations can be combined into a single 
operation, namely the Chirped Z-Transform (CZT). 

This would allow the sequence of events to become 

1. azimuth CZT across index n, and 

2. range DFT across index i. 

The result of using this CZT approach on data collected as in Figure 6 is an image 
equivalent to the more traditional 2-D DFT of polar reformatted data of the more naive 
data set illustrated in Figure 3. Furthermore, this CZT approach requires no overt 
interpolation steps (although it does require the somewhat more complex CZT itself). 

Now for the details. 

DFT Background 

Consider a generic function  ty  that is sampled at a rate nf  samples per second 

to yield the indexed samples  nfny . A DFT across index n evaluates the 

spectrum of this at frequencies f, by performing 
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 . (86) 

where f is frequency in Hz. 
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Basically, plug in whatever f you are interested in, and out pops the answer. 

FFT Background 

To expedite the processing in an efficient manner, the ‘Fast’ version of the DFT 
was developed and is commonly known as the Fast Fourier Transform (FFT). Its 
architecture relies on determining specific f, that is, it requires that 

u
N

f
f n  (87) 

for some integer index u. As such, it calculates 
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Note that the frequency spacing is fixed at Nfn . 

CZT Background 

Also known as the ‘Chirp Transform Algorithm (CTA)’, the CZT is somewhat 
more general than the FFT in that it allows finding  fY  at arbitrary linearly 
spaced frequencies.7 That is, it allows for  

uf f   (89) 

for some integer index u’, where f  is an arbitrary constant. Consequently, it 

calculates 
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One might consider this as a ‘linearly resampled’ version of the FFT output where 
integer values of u’ correspond to non-integer values of u as follows 

u
f

N
u f

n
 . (91) 

What makes this significant is the frequency scaling property of the Fourier 
Transform, restated here as 
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which also applies to the FFT as 
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and  nfny   (a length N sequence) is resampled to  
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 (93) 

This allows that for a given data set, performing a FFT and then linearly 
resampling the output, is equivalent to first linearly resampling the data set 
followed by a FFT. That is, if linear resampling is involved, it can be done either 
before or after the FFT, equivalently. 

The scale factor  NN 

 

depends on any change in sequence length.  It does not 
alter the spectral shape, just the overall gain factor. 

The CZT, however, can find this resampled spectrum directly (to within a scale 
factor) by 
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This is nice, and particularly useful to SAR image formation. 
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3.6 SAR Image Formation 

Let us now return to the model for the motion compensated phase history data, namely 

        yyxxRV siksnikjAniX  ,exp, s , (95) 

where the Fourier domain samples are located at 
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,  , and 
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ik sy 0,00
2   . (96) 

We rewrite the data as 

         xxyyRV snikjsikjAniX ,expexp, s , (97) 

and expand it as 
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The first transform will be an azimuth transform across index n. Consequently, the items 
in the square brackets are constants as far as the transform is concerned. 

Let us first visit the results of interpolation with an FFT. 

Azimuth Processing using Resampling with FFT 

Now turning our attention to the exponential with index n we observe that 
resampling the data in accordance with equation (83) would yield 
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thereby eliminating any dependence on index i from this phase/frequency term. 
An FFT across index n’ of this expression would yield 
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Performing the summation yields 
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where Wn() represents the image ‘impulse response’ in the azimuth direction, that 
is, neglecting any window functions 
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n

nj
n eW , (102) 

which has the shape of a sinc() function. This clearly offers a peak response when 
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, (103) 

that is independent of index i. 

Now consider substituting a CZT for the interpolation and FFT. 

Azimuth Processing using CZT 

Now consider an application of the CZT directly to equation (98), where 
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  (104) 

If we force f  to vary with index i, that is 
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 then we have 
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Performing the summation yields 
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This also clearly offers a peak response when 
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with location that is independent of index i. 

We do note that the image impulse response (IPR) width will vary slightly as a 
function of index i, but the peak location will not. This subtle difference between 
equations (107) and (101) leads to slightly different sidelobe structures.  

However, it is also true that the CZT approach uses the entire Fourier space 
aperture, and not some cropped version of the aperture. 

To complete the image formation, we need to transform across index i. 

Range Processing with FFT 

Consider the results of the azimuth CZT, rearranged here as follows 
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Ignoring the slight fluctuation in the width of the azimuth IPR, and expanding 
    iTcik sy 0,002     yields 
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which has phase linear in index i. 

Performing a FFT across index i yields 
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This clearly offers a peak response when 
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as well as when 
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The residual phase perturbation is inconsequential to a magnitude detected image, 
but could be compensated if so desired. 

Equation (111) represents the 2-D complex IPR of a point target. 
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3.7 Complex Data Interpolation 

A comprehensive treatment of interpolation and resampling data, especially complex 
data, is beyond the scope of this report. Good references already exist.8  We do make the 
following points, however. 

 Here is a science to interpolation.  Selecting an interpolation algorithm really 
should be more than just “let’s use something convenient and see if the images 
look ok…” 

 Complex data interpolation is somewhat harder that it might first appear. A lousy 
job will add artifacts to the eventual image. 

 Interpolation is easier the more the data is oversampled to begin with. 

 In classical implementations of polar format processing, the interpolation 
operations dominate the processing times. Reducing the need for them can 
dramatically impact the image formation efficiency. 

A residual question does remain, however, and that is “Is the CZT approach, in fact, truly 
more efficient than resampling followed by a FFT?” The answer to this is beyond the 
scope of this report, but nevertheless very important. A speculative partial answer might 
be “It will depend on the specific hardware/software tools and architectures available.” 
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4 SAR Imaging in a 3-D World 

The prior sections dealt with a 2-dimensional imaging geometry. We now extend this to 
the 3 spatial dimensions that we all putter around in. Consider the extension of Figure 2 
into 3 dimensions with the addition of height, as illustrated in Figure 7. 

 

Figure 7.  Data collection geometry in a 3-D world. 

The target point has coordinates (sx, sy, sz), and the radar is elevated at an angle n. 

In a 3-D world, the radar echo video signal is still given by 

       scnsnnRV ttiTjAniX  ,exp,  s . (114) 

However, the time difference quantity  sc tt   is related to range in 3 dimensions, which 

includes target height and radar height, and must consequently be expanded to  

   nznnynnxsc sss
c

tt  sincoscossincos
2

 . (115) 

The subscript index n reflects the quantities that can (including those that we allow to) 
change from pulse to pulse during a data collection (synthetic aperture). The 
approximation here is tantamount to presuming planar wavefronts at the target, that is, no 
wavefront curvature. It is reasonably accurate over small scenes (compared to range). 

Note that if 0sin n , then this degenerates to the 2-D case of the prior section. 
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4.1 Classical Phase History Data Collection 

Consider a circular flight path orbiting the scene center.  This implies constant range 
(constant ct ), and constant grazing angle ( 0 n ).  Furthermore, consider a constant 

set of waveform parameters ( 0 n  and 0 n ), and constant ADC sampling 

( 0,, sns TT  ). 

The collected phase history data is then described by 

       000 sincoscossincosexp,  znynxRV sssikjAniX  s , 

  (116) 

or expanded into wavenumber components 

          zzyyxxRV sniksniksnikjAniX ,,,exp,  s , (117) 

where 

      nsnx iT
c

iknik  sincos
2

sincos, 00,000  , 

      nsny iT
c

iknik  coscos
2

coscos, 00,000  , and 

      00,000 sin
2

sin,  iT
c

iknik sz  . (118) 

As with the 2-D case, these wavenumber combinations define coordinates in the Fourier 
space of the 3-D scene. That is, each individual combination of index i and index n 
defines a unique wavenumber coordinate, that defines a specific point in the Fourier 
space of the scene. Consequently, a specific phase history data sample (specific sample 
from a specific pulse) defines the amplitude of a specific location in the Fourier space of 
the scene. That location is given in spherical coordinates at a distance of 
  iTc s 0,002    from the origin, at an angle from the negative ky axis of n , at an 

elevation of 0  from the (kx, ky) plane. This is illustrated in Figure 8. 

Similarly, a collection of phase history data defines a set of samples in the Fourier space 
of the scene. Data collected in the manner of this section (constant waveform parameters, 
constant elevation angle) describes a section of a cone, and is illustrated in Figure 9. 
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Figure 8.  Location in 3-D Fourier space of a single phase history data sample. 

 

Figure 9.  Location in 3-D Fourier space of a phase history data set, from multiple pulses and 
multiple ADC samples within any pulse. 
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Now for some observations on this phase history data set. 

 Our data really is 3 dimensional, that is, it corresponds to 3-D coordinates in the 
Fourier space of the 3-D scene. As such, seemingly the proper treatment of this 
data is a 3-D transform to a 3-D image of the scene. And this would be strictly 
correct. 

 However, if we were able to ‘shrink-wrap’ the data locations, we would find that 
the volume enclosed by the wrap is relatively flat (though not absolutely so). This 
implies that we have substantially better resolution in the 3-D image in two 
directions than we have in a third mutually orthogonal direction (this would be the 
‘layover’ direction). 

 A typical presumption for the scene itself is that it is a flat surface with 0zs . 
(Remember we are talking SAR here, not IFSAR.) In the 3-D scene this is a 
presumption of an impulse-like (delta function) response in the z direction. 
Consequently, the Fourier space of the data would be characterized by constant 
values in the kz direction. This means that whatever value  niXV ,  had at any 

particular point in Fourier space, the Fourier space value would be unchanged at 
some other point that had the same kx and ky values, but a different kz value. 
Consequently, this allows us to project the Fourier space data unchanged to the 

0zk  plane as in Figure 10, and simply pretend that we collected it there in the 
first place. 

 The projected data is now 2 dimensional, and can be treated as such for 
transformation to a 2-D image of the 3-D scene. The down side to this is for 
targets that really do have 0zs . The consequence is image layover and height-

of-focus problems if zs  gets too big. 
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Figure 10.  Fourier space locations of a collected phase history data set, and their projection onto the 
kz = 0 plane. 

 

The presumption that 0zs  allows the phase history model to become 

        yyxxRV sniksnikjAniX ,,exp,  s , (119) 

where 
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coscos, 00,000  . (120) 

This describes the projected data. Except for the 0cos  scale factor on the wavenumber 

components, this is precisely the same as for the 2-D case, and can be processed the same 
as well. 

The bottom line is that the projection allows us to pretend we have a 2 dimensional 
problem and form an image accordingly. The specialized data collection presumptions of 
this section would require the interpolation of the projected data to a Cartesian grid for 
efficient transformation using a 2-D FFT. 
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4.2 Generalized Data Collection with Real-time Motion 
Compensation 

Without the limitations of the prior section, the more general model for the collected 
phase history data is 

          zzyyxxRV sniksniksnikjAniX ,,,exp,  s , (121) 

where 
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The actual flight path, whatever it is, will stipulate how n  varies with n . 

Since we are interested in the projection of the data to 0zk , we are mostly interested in 

getting an ultimate phase history data set on the right ( yx kk , ) grid, whether by 

interpolation, or by motion compensation. We will presume to do as much with motion 
compensation as possible. 

Motion Compensation 

As with the 2-D case, we first want  nik y ,  to not vary with pulse index n. That is, we 

want 

     ikiknik yyy  0,, . (123) 

This implies that we want 

    00,00, coscoscos  iTiT snnnsnn  . (124) 

This is achieved if we adjust 
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which can be accomplished by 
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with 0,, sns TT  .  

This defines the radial wavenumber distance as  
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Also as with the 2-D case, a linear spacing of the Fourier domain samples in the kx 
direction is achieved by setting 
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That is, we choose sampling positions along the synthetic aperture where 

ndn  tan . (129) 

Data collected in the manner just described is modeled by 
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Remember that the presumption that 0zs  renders  nikz ,  inconsequential. 

Data collected in this manner will always project to a trapezoidal grid suitable for 
processing with a CZT. Figure 11 illustrates a broadside data collection, and figure 12 
illustrates a severely squinted data collection. Figure 13 illustrates a sinusoidal porpoising 
broadside flight path, and figure 14 illustrates a sinusoidal porpoising severely squinted 
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flight path.  All have identical projections onto the 0zk  plane, and can be processed 
identically via the CZT. 

Data collected in this manner substantially simplifies image formation for squinted 
collection geometries.9   

4.3 Image Formation using CZT 

Let us now return to the model for the motion compensated phase history data, but with 
the presumption that 0zs , namely 

        yyxxRV siksnikjAniX  ,exp, s , (132) 

where 
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We rewrite the data as 

          xxyyRV snikjsikjAniX ,expexp, s , (134) 

and expand it as 
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The first transform will be an azimuth transform across index n. Consequently, the items 
in the square brackets are constants as far as the transform is concerned. 
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Figure 11.  Fourier space locations of motion compensated phase history data from broadside 
straight-line flight geometry. 

  

Figure 12.  Fourier space locations of motion compensated phase history data from squinted straight-
line flight geometry. 
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Figure 13.  Fourier space locations of motion compensated phase history data from broadside 
porpoising flight geometry. 

 

Figure 14.  Fourier space locations of motion compensated phase history data from squinted 
porpoising flight geometry. 
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Azimuth Processing using CZT 

Now consider an application of the CZT directly to equation (135), where 
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If we force f  to vary with index i, that is we scale frequency spacing to 
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then we have 
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Performing the summation yields 
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This also clearly offers a peak response when 
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with location that is independent of index i. 
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As with the 2-D case, we again note that the image impulse response (IPR) width 
will vary slightly as a function of index i, but the peak location will not. 

To complete the image formation, we need to transform across index i. 

Range Processing with FFT 

Consider the results of the azimuth CZT, rearranged here as follows 
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Ignoring the slight fluctuation in the width of the azimuth IPR, and expanding 
     00,00 cos2  iTcik sy   yields 
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which has phase linear in index i. 

Performing a FFT across index i yields 
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This clearly offers a peak response when 
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as well as when 
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As before, the residual phase perturbation is inconsequential to a magnitude 
detected image, but could be compensated if so desired. 

Equation (143) represents the 2-D complex IPR of a point target in a 3-D geometry. 

Another minor note is that the phase in the residual exponential factor in equation (143) 
that depends on sy does not affect the normally displayed image, so is commonly ignored.  
However, this term does play a role in the image spectrum. 
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“I never said most of the things I said.” 
-- Yogi Berra. 
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5 MATLAB Implementation 

The following MATLAB function forms images using the CZT approach to Polar Format 
processing on data with real-time motion compensation applied as indicated in the 
previous section of this report.  No attempt has been made to optimize this code. 

%SARPF sar image formation, polar format processing 
% 
% cimg = sarpf(data_parms, phistdata) 
% 
% data_parms = [rc0 psi0 dalpha N w0 g0 Ts0 I rhox rhoy delx dely] 
% phistdata = phase history data 
% 
% cimg = complex image 
% 
% phistdata is a phase history data array with each row representing a 
% deramped range return.  Row number denotes azimuth sample number. 
% 
% cimg is the resulting complex image in [x,y] format, where row 
% number equates to x position, and column number denotes y position. 
 
function cimg = sarpf(parms,phistdata) 
 
c = 299.792e6; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% extract image formation parameters 
 
rc0  = parms(1);  % nominal range to scene center - m 
psi0  = parms(2);  % nominal depression angle - rad 
dalpha = parms(3); % nominal increment in tan(aperture_angle) 
N  = parms(4);  % number azimuth samples 
w0  = parms(5);  % nominal center frequency - rad/sec 
g0  = parms(6);  % nominal chirp rate - rad/sec^2 
Ts0 = parms(7);  % nominal A/D sample period - sec 
I = parms(8);  % number range samples 
rhox = parms(9);  % desired x resolution 
rhoy = parms(10); % desired y resolution 
delx = parms(11); % desired x pixel spacing 
dely = parms(12); % desired y pixel spacing 
Dx = parms(13); % desired x scene diameter 
Dy = parms(14); % desired y scene diameter 
 
[N,I] = size(phistdata); % redefine N,I based on data 
 
cospsi0 = cos(psi0); % cosine of depression angle 
lambda = 2*pi*c/w0; % nominal wavelength 
 
rhox = lambda/(2*N*dalpha*cos(psi0)); % actual resolution 
rhoy = 2*pi*c/(2*g0*Ts0*(I-1)*cos(psi0)); % actual resolution 
 
U = min(2*round(Dx/delx/2),2*round(N*rhox/delx/2)); 
     % actual number of x pixels 
delx  = min(Dx/U,rhox*N/U); % calculate actual delx 
os_az = rhox/delx;  % x oversample factor 
N_ = round(N*os_az); 
N__ = max(U,N);   % MATLAB required CZT length 
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V = min(2*round(Dy/dely/2),2*round(I*rhoy/dely/2)); 
     % actual number of y pixels 
I_ = 2*round(I*os_ra/2); % range FFT length required 
I__ = max(V,I); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% form image 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% azimuth processing 
 
disp(’  beginning azimuth processing’); 
 
argW = -j*2*pi/(N*os_az); % calculate nominal CZT parms 
argA = -j*pi*U/(N*os_az); 
 
img1 = j*ones(U,I); % reserve memory block 
 
for i=1:I, 
    beta = 1 + (g0*Ts0/w0)*(i-1-I/2); % calculate freq scale factor 
  
    x = phistdata(:,i); 
    y = czt(x,N__,exp(argW*beta),exp(argA*beta)); % perform azimuth CZT 
    y = y(1:U);         % cull meaningful data 
     
    %%% perform a phase bias correction resulting from the CZT 
    pcorr = (pi-(2*w0*cospsi0/c)*(beta*delx*dalpha*N/2) )*[-U/2:U/2-1]; 
    img1(:,i) = y .* exp(-j*pcorr); 
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% range processing 
 
disp(’  beginning range processing’); 
 
img1 = img1.’; % perform corner turn 
 
cimg = fft( img1,I_ ); % perform range FFT 
cimg = cimg((I_/2-V/2+1):(I_/2+V/2),:); % crop range swath 
 
cimg = cimg.’; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
return; 
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6 Polar Format Processing Extensions 

The basic Polar Format image formation algorithm can be extended in a variety of 
manners, to enhance its capabilities. Several of these are discussed in this section. 

Background 

The development of Polar Format processing made several presumptions along the way. 
These include the presumption of a negligible Residual Video Phase Error term in 
equation (34), and the plane-wave approximation in equation (115). The error in these 
presumptions ultimately limits the scene size that is adequately focused. However, 
several techniques have been developed to significantly mitigate the effects of these 
errors. 

Some of these are briefly discussed here. 

6.1 Residual Video Phase Error Correction 

Equation (34) should really look more like 
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The final phase term   22 sc tt   is often called the Residual Video Phase Error 

(RVPE), and is a consequence of stretch processing (deramping or demodulating with a 
common LO chirp). It can, in some cases, significantly impact the focused scene size 
achievable.10  This error term is generally dealt with in one of three possible ways. 

1) In classical Polar Format processing it is ignored outright. 

2) In some algorithms (e.g. subaperture techniques) it is approximated and ‘mostly’ 
removed. 

3) It can be removed completely by preprocessing the data. This requires for each 
azimuth sample performing a range DFT followed by a phase error correction 
followed by a range Inverse-DFT.11  This process is sometimes called a “deskew” 
operation.5  

We note that the RVPE does not exist in stepped-frequency chirps, sometimes called 
‘synthetic’ chirps. 
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6.2 Polar Format Processing with Subapertures 

The planar wavefront presumption, when we in fact truly have wavefront curvature, leads 
to phase errors in the data that depend on the spatial position of the target, or scene 
element. Consequently, the manifestation is ‘spatially-variant’ phase errors. Different 
parts of the scene exhibit different phase errors, all due to the variability in the wavefront 
curvature across the scene. 

The variations are slowly varying across the scene, which means that a neighborhood of 
locations exhibit nearly common phase errors. Consequently, neighborhoods can be 
effectively treated by a common correction or compensation. This allows subaperture 
techniques to be used to relatively efficiently mitigate the effects of wavefront curvature 
(and residual video phase errors, too). In fact, subaperture techniques can often be 
employed to do even somewhat similar things as the polar reformatting itself. However, 
subaperture techniques on truly polar reformatted data work much better yet.2 

6.3 Partial Wavefront Curvature Error Correction Between 
Transforms 

If Polar Format processing is implemented as an azimuth transform followed by a range 
transform, then an opportunity exists between the two transforms to mitigate ‘some’ of 
the effects of wavefront curvature. That is, after the azimuth transform, but prior to the 
range transform, we have an estimate of the azimuth position of target locations. 
Consequently, errors that depend on index i and azimuth location sx can be compensated 
to some degree. 

6.4 Wavefront Curvature Correction in Post Processing 

The spatial variance of the phase errors due to wavefront curvature are deterministic. 
Consequently they can be compensated by essentially deconvolving the image with the 
spatially variant response. This means that we know how to filter correctly to sharpen the 
impulse response at the various locations within the image. It is a post-processing step on 
the complex image itself and known as Space-Variant Post-Filtering (SVPF).12,13,14 

6.5 Autofocus 

Autofocus is likely required at the resolutions where polar reformatting offers significant 
advantage over other techniques (as resolutions approach the nominal wavelength of the 
SAR). An algorithm like Phase Gradient Autofocus (PGA) is generally applied after 
range compression (the range transform).5 For the CZT/DFT implementation of Polar 
Format processing, the range transform occurs after the azimuth transform, meaning that 
autofocus can’t be applied until after the complex image has been formed. That is, the 
starting place for autofocus is expected to be the formed complex image. 
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6.6 Data Prefiltering 

As resolutions approach a wavelength, the polar geometry nature of the collected phase 
history data is more problematic than wavefront curvature induced spatially variant phase 
errors. Consequently it is in this realm that Polar Format processing (or its derivatives 
and extensions) excels in comparison to other techniques.  

Since SAR hardware tends to be ‘pixel-limited’ by virtue of finite memory sizes, ultra-
fine resolution SAR images tend to be of comparatively small scene spot sizes. For 
example, a 100-m scene diameter at a 10-km range subtends less than 0.6 degrees, 
whereas antenna azimuth beamwidths are typically several times wider than that, and can 
be many tens of times wider than that. A beamwidth of 60 degrees from an L-band 
antenna would be 100 times as wide as the 100-m spot size at the 10-km range. The radar 
PRF, however, is determined by the wider antenna azimuth beamwidth. A higher PRF 
with a finite synthetic aperture length means a larger number of pulses to be collected, 
and processed. All this suggests that if we can artificially narrow the antenna beam (via 
signal processing), then we can decimate the data to smaller set, for more efficient 
processing.  We briefly review the design equations here. 

Suppose that we have a SAR system with the following parameters 

 az
 
= azimuth beamwidth of the antenna, 

 1ak = oversampling factor for the nominal Doppler bandwidth relative to az , 

 xD = azimuth diameter of the scene of interest, cxD r , and 

 2ak = new decimated-data oversampling factor relative to xD . (147) 

Now suppose that we wish to filter and decimate the phase history data to a smaller set, 
more efficiently processed. Then we define the integer decimation factor as 
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Prior to decimation, we need to filter the data in azimuth to a fractional bandwidth (two- 
sided, relative to the azimuth sampling rate of the data) of 
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Analysis suggests that for 40 dB stopband rejection, a good rule-of-thumb is for the 
azimuth prefilter to be an FIR filter with an odd number of weights such that the filter 
length is 

16  dNapf . (150) 
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6.7 Geometric Corrections 

Another aspect of wavefront curvature is geometric errors (distortions) in the image with 
respect to the actual scene. In the context of earlier discussions, one might consider these 
as the result of spatially-variant linear phase errors.  

Some geometric distortions (notably horizontal displacements of flat or zero-height 
targets) can be mitigated via the wavefront curvature corrections cited earlier. Otherwise, 
these deterministic errors can be corrected in the image by interpolation operations. 

Other geometric errors (e.g. those due to target height, such as layover) cannot be 
corrected without additional information, such as perhaps from a second SAR aperture 
(e.g. IFSAR). 
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7 Block Diagrams 

What follows are a series of block diagrams that are increasingly complex in their 
description of how to implement real-time Polar Format processing. All presume that the 
phase history data is collected in a manner that places their Fourier-space data projected 
onto a trapezoidal grid as in Figure 6. 

Figure 15 shows the minimal basic processing steps necessary to complete the polar 
reformatting and to form a complex image of the scene. Implicit in the processing is that 
the phase history data arrives one pulse at a time, that is, a vector of multiple index i 
values arrives prior to a new pulse index n being incremented. Consequently, the azimuth 
CZT must wait until an entire synthetic aperture of data is collected, and then first 
processed across the pulse index n. If each pulse generates a column of data in the phase 
history data array, and the CZT and FFT are structured to be column operations, then 
appropriate data transposes (corner-turn operations) are required. Furthermore, all 
azimuth CZT operations need to be completed prior to any range FFT operations. Figure 
16 adds some detail to the operations by explicitly showing appropriate data collection 
memories (that may also be considered corner-turn memories). Note that complex image 
data will be available in ‘range-order’ unless another corner turning operation is added to 
the output. 

 

 

Figure 15.  Minimal transforms required to complete Polar Format processing. 

 

 

Figure 16.  Minimal transforms required along with data collection (corner turn) memories. 
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Figure 17 has added an autofocus operation to the complex image, which is necessarily 
an azimuth operation. Consequently the complex image output becomes ‘azimuth-order’. 

Figure 18 adds an azimuth prefilter, that can begin its operations prior to collecting the 
entire synthetic aperture’s data. 

 

 

Figure 17.  Polar Format processing with subsequent autofocus operation. 

 

Figure 18.  Polar Format processing with prepended azimuth prefiltering operation. 
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Figure 19 incorporates Residual Video Phase Error (RVPE) correction (deskewing). 

Figure 20 shows where Wavefront Curvature (WC) corrections can be inserted. These are 
illustrated with dashed boxes to emphasize that we would never implement both of these 
at the same time. The partial correction is more efficient, but the SVPF is more complete. 

 

Figure 19.  Polar Format processing with prepended residual video phase error correction. 

 

 

Figure 20.  Polar Format processing with wavefront curvature correction. 
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Lastly, in Figure 21, geometric correction to the image is added as another post-
processing operation that might be applied. In the absence of additional information, this 
still presumes a flat earth in that it will not correct layover. This box is also dashed to 
indicate that it is a result of wavefront curvature and may not be required if the SVPF 
correction is fully implemented. 

Clearly, a spectrum of variations exist on basic polar format processing. 

 

 

Figure 21.  Polar Format processing with subsequent geometric error correction. 
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8 Point Design Examples 

The following table details two notional SAR systems for which Polar Format processing 
might be advantageous. 

 

parameter units Notional  
SAR #1 

Notional  
SAR #2 

radar band  L/S Ka 

center frequency GHz 2.45 35 

resolution desired m 0.1016 0.0203 

range m 6389 9260 

grazing angle deg 45.7 19.2 

scene azimuth diameter m 281 41.6 

scene range diameter (on ground) m 211 31.2 

antenna nominal azimuth beamwidth deg 32.4 1.35 

aperture angle required deg 54.1 15.1 

number of azimuth samples  63000 19100 

number of range (fast-time) samples  2020 2020 

azimuth decimation factor supported  12 5 
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“Moderation is a virtue only in those who are thought to have an alternative.” 
-- Henry A. Kissinger. 
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9 Conclusions 

We observe the following. 

 Polar Format (PFA) processing is mainly about recognizing that the SAR phase 
history data, when de-ramped, represents data in the Fourier space of the scene 
being imaged. Furthermore, PFA processing is about recognizing that the data 
from a 3-D scene is collected in a polar (spherical, really) geometry. Furthermore 
yet, PFA processing is about recognizing the need to get to a Cartesian data 
location array for efficient processing. 

 The polar reformatting required to implement PFA processing can be substantially 
assisted by proper real-time motion compensation, that is, proper adjustment of 
radar parameters such that the data is collected whereby it projects to a 
trapezoidal region in the kz = 0 plane. This eliminates the traditional range 
interpolation step of the two-step data resampling algorithm.  

 If, additionally, radar pulses are generated at equal increments of tan(an), then the 
azimuth resampling and transform can be combined into a Chirped Z-Transform, 
dismissing the need for any overt resampling or interpolation steps. The efficiency 
of implementing a CZT versus resampling followed by a FFT is not addressed. 

 Overall processing efficiency might be increased by artificially reducing the 
antenna beamwidth via an azimuth prefiltering operation prior to any PFA 
processing. 

 A number of additional extensions exist to enhance PFA processing. 

 

The topic of relative merits of Polar Format processing versus other image formation 
algorithms is not addressed in this report, but is extensively analyzed and treated in a 
number of other reports and publications. The results render as ‘easily defensible’ the 
choice of Polar Format processing (and derivative techniques) for cases where resolution 
approaches the nominal wavelength of the radar. 
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“The superfluous, a very necessary thing.” 
-- Voltaire. 
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