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I.  Introduction 
 A crucial issue for any long pulse, high temperature tokamak is the 
appearance of neoclassical tearing modes (NTMs).  NTMs are slowly growing 
non-ideal MHD instabilities that produce magnetic islands at low order rational 
surfaces.  The free-energy source for the instability is the bootstrap current which 
can produce islands when resistive MHD predicts stability (Δ’ < 0).  Unlike many 
MHD instabilities, NTMs are metastable; they are linearly stable but nonlinearly 
excited at sufficient amplitude.  When excited, NTMs can produce island widths 
that are substantial fractions of the minor radius (for βθ values of interest to most 
tokamak experiments), cause significant reduction of energy confinement, and 
potentially lead to locked modes, loss of H-mode and/or disruption.  Empirical 
observations indicate that the critical beta for neoclassical tearing mode onset 
scales with normalized ion gyroradius ρ*=ρi/a, an extremely unfavorable scaling 
for most large tokamaks including ITER.  Hence, methods to suppress the 
growth and appearance of NTMs are required.  A prominent and highly 
successful method for NTM suppression is through the application of localized 
current drive in the magnetic island region.   To date, the preferred tool of choice 
is electron cyclotron current drive (ECCD).  Since various uncertainties in 
theoretically predicting the nonlinear island width threshold, seed island 
mechanisms, and the required RF suppression properties, NTM physics is one of 
the key MHD science questions to be addressed in a burning plasma experiment.  
In this document, we outline the beginnings of a program to address modeling 
issues of relevance to the coupled RF/MHD problem using a coupled 
theoretical/ computation approach.   
 The most commonly used paradigm for modeling NTMs is through the 
use of modified Rutherford equations.   Such a treatment is valid if the magnetic 
island width exceeds the linear layer width.  In this limit, the nonlinear J X B  
forces overwhelm the inertia and the vicinity of the rational surface can be 
treated as in nearly MHD equilibrium (relative to Alfven times) and slowly 
evolving on the resistive diffusion time through the island region.  The 
quasineutrality equation (∇.J=0) in the vicinity of the island in the zero pressure 
gradient limit (J⊥ =0) is given by 
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B ⋅ ∇ J||

B
= 0, 

which has the solution  
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 
J = f (Ψ*)

 
B , 

where f is a function of the helical flux surface label Ψ∗.   In order to find f, 
resistive Ohm’s law can be used 
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where the bracket denotes an average over helical magnetic surfaces.  The only 
surviving term from the average over the parallel electric field is due the induced 
electric field from the temporally growing magnetic island producing 
perturbation.  If the island width is small relative to the minor radius, an 
asymptotic matching process, as used in the linear theory, can be employed.   
The conventional resistive-MHD prediction with zero pressure gradient leads to 
an island evolution equation of the form 

� 

dw
dt

= η
µo

k1Δ '   

where w is the island width, η is the plasma resistivity, µo the permeability of free 
space, k1 (~ 1.2) and Δ’ is the asymptotic matching index.   For unstable tearing 
modes (Δ’ > 0), the island width grows linearly in time and ultimately saturates 
due to quasilinear flattening of the current profile.   
 The electron viscous stress tensor modifies the Ohm’s law used in fluid 
theory.  Neoclassical theory accounts for the effect of inhomogeneous magnetic 
fields.  In axisymmetric toroidal geometry, this leads to a damping of the electron 
fluid flow in the poloidal direction that ultimately produces a neoclassical 
modification to the Spitzer resistivity and a bootstrap current, a parallel current 
driven by cross field density and temperature gradients.    The inclusion of 
neoclassical physics in Ohm’s law leads to the possibility of pressure induced 
magnetic islands.  The addition of the neoclassical modification to Ohm’s law 
leads to a modified Rutherford equation of the form 

� 

dw
dt

= ηnc

µo

k1[Δ '+Δ bs(w)] 

that produces a new term to the island evolution equation and accounts for the 
trapped particle correction to the plasma resistivity.  In the large island limit, the 
new term scales as Δbs ~ Dnc/w with Dnc ~ ε0.5βθ Lq/Lp.  Essentially, this is a measure 
of the local bootstrap current on the helical magnetic surfaces outside the island 
separatrix with Lq = q/q’, Lp= - p/p’.   The physics of this instability can be 
understood as a consequence of the self-consistent deformation of the bootstrap 
current profile.  As the island grows, the pressure profile equilibrates along the 
helical field lines of the magnetic island.  This leads to a helically resonant 
flatspot in the bootstrap current profile inside the island separatrix.   This 
produces a magnetic resonant perturbation that is destabilizing in conventional 
tokamak operation with q’ > 0.  When Δ’ < 0, the saturated island width is given 
by 

� 

wsat = Dnc

(−Δ ')
, 

which can be an appreciable fraction of the minor radius. 
 For islands sizes smaller than the characteristic saturated value, a number 
of additional physical effects modify the island behavior.   Diamagnetic currents, 



polarization currents and ion viscous forces produce contributions.  Including 
these effects in the quasineutrality relation gives the relation 
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B2 ),  
where the ion viscous stress includes contributions from both parallel and 
gyrovisosity.  Inverting the B.∇ operator on the lwft side yields additional 
parallel currents that affect island evolution.  Including these effects yields a 
modified Rutherford equation of the form 

� 

dw
dt

= ηnc

µo

k1[Δ '+Δ bs(w) + Δ int (w) + Δ pol (w)] 

where the effects of resistive interchange and neoclassical polarization physics 
enter in through Δint(w) and Δpol(w),  respectively.   All of the terms on the right 
depend on the details of the model used; but are typically sub-dominant to the 
first two terms when the island is large.  However, they give important 
corrections when the island width is small. 
 Of particular relevance to NTM physics is the effect of anisotropic heat 
flux, namely the competition between parallel and perpendicular diffusion.  As 
mentioned previously, the NTM destabilization mechanism depends upon the 
self-consistent equilibration of pressure profiles along field lines.  For sufficiently  
virulent cross-field transport (or sufficiently weak parallel transport), self-
consistent flattening of the pressure profile in the island region does not occur 
and the neoclassical tearing instability is not active.  Analysis of a temperature 
evolution equation with phenomenological cross-field (χ⊥) and parallel (χ||) heat 
diffusivities yields a characteristic island width ~ (χ⊥/χ||)0.25 below which does 
not allow effective pressure profile equilibration.  This effect introduces a finite 
island width threshold.  Magnetic islands that are smaller than this threshold 
value are not sufficiently destabilized by the bootstrap current for NTM physics 
to occur.  Neoclassical polarization effects can also produce magnetic island 
thresholds, although a precise understanding of this effect is a topic of research.   
Crudely, the neoclassical polarization effects are important when the island 
width is comparable to the ion banana width.   For islands below this 
characteristic value, the ion response is non-local and a more detailed kinetic 
theory needs to be worked out.  Again, this is a topic of research. 
 In order for the NTM growth to be initiated, a magnetic island most be 
introduced at a level larger than the threshold value.   This is referred to as the 
seeding problem.  There are a number of theories for how seeding might occur; 
none of these are universally accepted as accounting for all of the experimental 
observations. 
 In an effort to combat the deleterious effects of the neoclassical tearing 
mode, a campaign to use localized current drive [principally electron cyclotron 
current drive (ECCD)] was initiated.   The effect of an RF induced force on the 
electron fluid has principally two effects, the modification of the bulk current 
profile (hence effecting Δ’) and the addition of a new term in the island region 
that alters the modified Rutherford equation. 

� 

dw
dt

= ηnc

µo

k1[Δ '+Δ bs(w) + ...+ ΔRF (w)], 



The RF term depends upon the profile of the RF source in the island region.  The 
optimal case corresponds to an RF induced source located inside the island 
separatrix that essentially replaces the “missing” bootstrap current.   The analytic 
modeling that lead to the above equation used a modified Ohm’s law of the form 
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 
E +
 v ×
 
B = ηJ + ...

 
F rf  

with Frf = Frf(x,t)B.  The scalar F is a prescribed function of space.   While 
qualitative details remain to be worked out, the simple analytic modeling has 
compared rather favorably with the growing experimental work in this area.  
ECCD stabilization of NTMs has been demonstrated on a number of tokamaks 
and is anticipated to be the tool of choice for stabilizing NTMs in ITER. 
 
II.  Elements of simulating NTM/RF modeling 
 We propose a multi-level approach for simulating the interaction of an RF 
source with magnetic islands in a toroidal plasmas.   Crudely, there are three 
levels of sophistication that can be pursued somewhat in parallel.    

• The first approach is a computational effort somewhat paralleling 
the simple analytic approach to model the interaction RF with 
magnetic island evolution by inserting an analytically chosen form 
for a source term in the Ohm’s law.    

• In the second approach, a phenomenological evolution equation 
will be used to describe the temporal and spatial structure of the 
source term.    

• In the third approach, a more rigorous analytic problem will be 
solved where the inclusion of RF effects are treated as closure 
problems.  The modified equations can then be implemented in 
numerical simulations.   

In the second and third approaches, interfaces with the RF codes will be needed. 
 From the discussion of the effect of RF on magnetic islands, one will note 
that the RF term essentially enters the modified Rutherford equation as an 
additional term (as it enters in Ohm’s law); the RF currents do not directly affect 
the neoclassical drive (at least to lowest order).  Hence, information on the 
stabilizing properties of the RF terms can also be obtained from resistive MHD 
calculations without neoclassical or two-effects included.   
 It is important that computational efforts examining the long time scale 
behavior of tearing instabilities be re-initiated.  Prior calculations of isolated 
resistive MHD and neoclassical tearing modes can be revisited with the newer 
versions of the fluid codes.   Past modeling efforts in NIMROD for studying 
physics centered on using a “heuristic” model for the neoclassical electron 
viscous stress.  Efforts to improve this closure scheme as well as efforts to include 
two-fluid, gyroviscous, etc. effects continue as part of the CEMM project.   As 
these advancements materialize, more sophisticated fluid treatments of magnetic 
island physics can be used.  
 
a.  Phenomenological model for the RF current source 

The simplest way to include the effects of RF current drive in a fluid code 
is to add an additional term to Ohm’s law, 
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E +
 v ×
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B = ηJ + ...

 
F rf = η(

 
J −
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with Frf = −ηJrf (x,t)B / B , and the scalar Jrf a function to be specified.   Such a 
calculation should allow the easiest and most direct comparison to the analytic 
theory described above.  The crucial aspects of the current source are its 
amplitude, current channel width relative to the island width and the phase of 
the current source relative to the island phase.  
 
b.  Phenomenological evolution equation for the RF current source 
 At a higher level of sophistication, an evolution equation for the quantity 
Jrf can be used.   One can view this approach is to include a simple RF “box” 
where information from the RF code enters.  This approach basically models the 
work by Giruzzi and co-workers who used an additional evolution equation in 
the fluid evolution that accounts for a separate field quantity.   Here, the physical 
effect of rapid parallel equilibration along the helical field lines is accounted for.   
While there are different versions of these types of models, one version is given 
in the form  

� 

∂JRF
∂t

+ χ||∇ ||
2Jrf + χ⊥

2∇⊥
2 Jrf + ν rf Jrf = S. 

where the source term S is where RF codes deposit information.   Due to its 
similarity with the temperature evolution equation, there is experience in solving 
equations of this form with highly disparate rates of cross-field to parallel 
diffusion.  In steady state, rapid equilibration along field lines leads to an RF 
source that is distributed along the field line.  Precise details for the exact nature 
of S and various coefficients need to be more properly defined. 
 An additional concern with approach is that since the above equation 
couples to other fluid variables, new normal modes can appear in the system.  
These modes could lead to unstable feedback and produce numerical 
instabilities.  If this becomes an initial, modified or new computational 
approaches made need to be developed. 
 
c.  Closure scheme for modeling RF modifications to fluid equations 
 While the options described in the prior two sections allow for an “easy” 
introduction into the RF/island coupling problem, it is desirable to derive a more 
rigorous model for use in the simulation.   The approach described here 
describes the problem as a closure issue.   The fluid equations are evolved with 
the addition of extra RF sources coupled with a closure scheme modified by the 
RF physics.   
 To begin with, let’s consider a kinetic equation in the form 

� 

df
dt

= C( f ) + Q( f ),  
where the left side is the usual kinetic operator in phase space, C(f) is the collision 
operator and Q(f) represents the contribution due to RF induced fields.   For 
many applications of interest (such as ECCD), we can model Q(f) as a quasilinear 
diffusion operator of the form 
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where the diffusion tensor D is needed from RF codes.  Taking moments of our 
kinetic equation, we are left with the usual fluid equations augmented by 
additional terms from the RF source 
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where conventional notation is used.  The additional terms due to the RF are 
given by 
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F s

rf = d3 v ms
 v sQ( f s),∫
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2
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with an assumption that the RF produces no particles. 
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Q( f ) = ∂
∂
 v 
⋅
 
J rf ⇒ d3 v Q( f ) = 0,∫  

and the variable v’ is used to denote the deviation of the phase space velocity 
from the fluid variable.  It is important to point out that the additional RF terms 
appear simply as functions of three spatial dimensions and time.   
 At this point, the above fluid equations are exact.  However, we do have 
to address the usual closure problem; calculations for the stress tensors and heat 
fluxes are needed.   Since we are mostly interested in the RF modification to 
Ohm’s law, it seems the closest analogy is with the Spitzer problem.   This 
problem proceeds as a perturbation theory in the small quantity E/ED where ED 
is the Dreicer electric field.   Since, we imagine the RF contribution is comparable 
to E, we assert the following balance neE ~ Frf.    
 Since we are imagining the RF terms are in some sense small, we can 
assert that to lowest order the distribution is Maxwellian with small corrections.  
While this may be a poor assumption for some types of RF heated plasmas, for 
the case of electron cyclotron current drive, this is a good approximation. With 
this assertion, note that the RF contributions to the fluid equations can now be 
written 

  

� 

 
F s

rf = d3 v ms
 v sQ( f s) =∫ d3 v ms

 v sQ( fMs)∫
Ss

rf = d3 v 1
2

msvs
' 2Q( f s)∫ = d3 v 1

2
msvs

' 2Q( fMs)∫
 

to good approximation.  With the identification of a proper quasilinear diffusion 
operator, Frf and Srf are now expressed as functions of low order fluid moments 
and RF physics. 

It’s important to note that with this approach, the only thing that is 
needed from the RF codes is the form for D as a function of the phase space 
variables.   The procedure is the fluid code hands the state variables of interest to 
the RF code, the RF code subsequently determines the tensor D as a function of 
three spatial variables, speed, pitch angle and time and returns this information 
to the fluid code to determine Frf, Srf and Q(f) for use in  determining the closures 
and fluid evolution. 



Using a Chapman-Enskog-like (CEL) approach, a kinetic equation for the 
distortion F away from the Maxwellian is derived which can subsequently 
solved to obtain q and π .   We write 
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f = fM + F = n( x ,t)[ ms

2πT(  x ,t)
]3 / 2e

−
ms v ' 2

2T (
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where F has no density, momentum or temperature moments.  Following the 
usual CEL procedure where the fluid equations are used to evaluate dFM/dt, we 
have 
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where the species subscript is suppressed for simplicity.   Since F is a small 
distortion, the collision operator on the right side can be linearized.   The … bits 
on the right denote the “usual” CEL source terms due temperature and flow 
gradients that drive heat flows and viscous stresses.   The important modification 
from the RF contribution enters as additional source terms on the right side.   
 To make further progress, one needs to solve the kinetic equation.   
Efficient and accurate solutions to equations of this form have been a topic of 
interest to the CEMM project (mostly through Eric Held’s efforts).    Solutions to 
the above equations should also be amendable to approaches under 
investigation.  
 As a particularly important limit, one could re-examine the equivalent 
Sptizer problem augmented by the RF contributions.  For simplicity, let’s only 
consider the solution along the magnetic field and further assume we are looking 
at time independent, homogeneous plasmas.   The parallel Ohm’s law (electron 
equation of motion) of interest is given by 

� 

0 ≅ −neE || + R|| + F||
rf . 

where a number of terms/effects are dropped for simplicity.  Note the closure 
problem for this case is due to the moment of the collision operator that has the 
form 

� 

R|| = neηoJ ||+meneν e
3

5neTe
q||e + ..., 

with η0 = ne2/meνe (not the Spitzer resistivity).  Hence q|| (and higher order 
moments) require a solution to the kinetic equation.   One can solve the kinetic 
equation using the usual prescription of expanding F in terms of Laguerre 
polynomials, take moments and solve the resultant matrix equation.  This will 
lead to solutions for the higher order moments in terms of J, E, Frf, etc. For the 
conventional Spitzer problem, it is sufficient to only go to matrices of dimension 
~ three to obtain good agreement.  For the problem with the RF term, it is not 
clear if this is the case.  Further work is required. 
 Clearly, there are further extensions to this Spitzer-like problem that need 
to be addressed.   These include, calculations in a bumpy cylinder, calculations in 
toroidal equilibrium, time-dependent processes, multiple length scale 
expansions, etc.   Nonetheless, the closure scheme outlined above can lead to 
important insights as to how the more exact problem can be addressed.    
 



III.  Summary 
 To make progress on the problem of RF induced currents affect magnetic 
island evolution in toroidal plasmas, a set of research approaches are outlined.  
Three approaches can be addressed in parallel.  These are: 

• Analytically prescribed additional term in Ohm’s law to model the 
effect of localized ECCD current drive 

• Introduce an additional evolution equation for the Ohm’s law 
source term.   Establish a RF source “box” where information from 
the RF code couples to the fluid evolution 

• Carry out a more rigorous analytic calculation treating the 
additional RF terms in a closure problem. 

These approaches rely on the necessity of reinvigorating the computation 
modeling efforts of resistive and neoclassical tearing modes with present day 
versions of the numerical tools.   

For the RF community, the relevant action item is 
• RF ray tracing codes need to be modified so that general three-

dimensional spatial information can be obtained.   
Further, interface efforts between the two codes require work as well as an 

assessment as to the numerical stability properties of the procedures to be used.  
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The NIMROD extended MHD code1 has been modified to include the effects of RF 

on MHD evolution.  It has been demonstrated that a viable model for the interaction of 
RF (ECCD) with MHD can be constructed.  The relevant details of the physics of 
localized ECCD deposition are captured by this model. Localized current drive induces 
Alfvénic disturbances along magnetic field lines, resulting in helical and spatially 
fluctuating current filaments at short times and a net flux-surface-averaged current on 
longer timescales.  This average current is responsible for modifications of the matching 
index !" , while the helical filaments arising at short times interfere with or enhance the 
helical currents associated with the tearing mode structure to influence the growth.  
Favorable comparisons with the results of Pletzer and Perkins2 have been demonstrated; 
the optimal position for RF deposition is verified to be immediately outside the initial 
rational surface on which the mode grows, and the destabilizing effects induced by the 
shift of this surface in response to RF perturbations are correctly produced. 

We believe that this work is an important step forward in the development of 
integrated, predictive models for ECCD/MHD interactions (such as, for example, might 
be used to determine optimum NTM stabilization approaches in ITER).  Our model 
utilized toroidally symmetric ECCD deposition, with the poloidal localization of the RF 
fields being given essentially as an ad hoc function.  The former assumption, though 
clearly not appropriate in all cases, has been used successfully to explain experimental 
observations3 and is a useful approximation for plasmas undergoing rapid toroidal 
rotation. A more realistic model (which is a topic of ongoing research) could utilize data 
from ray tracing codes to determine the amplitude and spatial localization of the ECCD-
induced electromotive forces.  NIMROD's magnetic geometry, for instance, can be 
exported to the GENRAY/CQL3D [39] code4, which can then calculate ray trajectories 
and power deposition associated with a particular ECCD configuration.  The physics of 



these coupled simulations can then be cross-checked against the conclusions of this work 
for consistency, and effects arising from the development of accurate closure models 
(which account for the effects of RF on the higher-order velocity moments) can also be 
compared with these results to determine the additional physics imparted by the closures. 
These developments, along with the rigorous verification of self-consistency among 
collision operators, quasilinear operators, and fluid equations, will serve as future steps of 
importance in the development of an integrated ECCD/MHD model. 

A draft of a paper on this subject for submission to Physics of Fluids is attached. 
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Abstract

A model which incorporates the effects of electron cyclotron current
drive (ECCD) into the magnetohydrodynamic (MHD) equations is imple-
mented in the NIMROD code [C. R. Sovinec et al., J. Comp. Phys. 195,
355 (2004)] and used to investigate the effect of ECCD injection on the
stability, growth, and dynamical behavior of magnetic islands associated
with resistive tearing modes. Predictions of the model are shown to quan-
titatively and qualitatively agree with numerical results obtained from
the inclusion of localized ECCD deposition in static equilibrium solvers.
The complete suppression of the (2, 1) resistive tearing mode by ECCD is
demonstrated. Consequences of the shifting of the mode rational surface
in response to the injected current are explored, as are the consequences
of spatial ECCD misalignment. We discuss the relevance of this work to
the development of more comprehensive predictive models (in support of
existing/future experiments, e.g. ITER) for ECCD–based mitigation and
control of neoclassical tearing modes.

1 Introduction

Neoclassical tearing modes (NTMs) are slowly growing, metastable, nonideal
magnetohydrodynamic instabilities which produce magnetic islands at low–
order rational surfaces in toroidal plasmas [1, 2]. These modes arise when
magnetic perturbations at such surfaces induce local flattening in the plasma
pressure profile which is sufficient to depress the local bootstrap current. The
modified current profile amplifies the initial perturbation, and island–shaped
structures within the plasma’s magnetic configuration broaden until nonlinear
saturation is attained. When present, NTMs can slow plasma rotation [3],
reduce core electron density and temperatures [4, 5], and possibly lead to dis-
ruption [6, 7, 8]. Various methods for their mitigation and control have been im-
plemented in existing experiments, including the suppression of large–amplitude
magnetic perturbations (e.g. sawtooth or fishbone modes) which initially excite
the NTM [9, 10], or the introduction of static magnetic perturbations which in-
terfere with mode structure [11, 12]. Of greatest relevance to this work, however,
is a highly successful experimental approach involving the application of exter-
nal current drive to replace the “missing” bootstrap current within magnetic
islands.
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In general, one can show that radio frequency (RF) waves injected into
a plasma can yield localized currents (e.g. electron cyclotron current drive,
hereafter ECCD) or heating (ion/electron cyclotron resonance heating, here-
after ECRH/ICRH) if these waves are suitably selected to resonate with ion or
electron cyclotron motion [13]. Initial theoretical applications of this principle
to the suppression and control of NTMs [14, 15] demonstrated that localized
ECRH or ECCD applied at the O–point of magnetic islands could reduce is-
land saturation widths. Subsequently, experimental results have shown [16]
that the latter of these approaches more efficiently reduces the size of existing
islands, and the complete stabilization of low–helicity NTMs via the application
of localized ECCD within the islands has been demonstrated on several devices
[17, 18, 19, 20]. Such experiments may rely on sophisticated active feedback
control to locate and drive time–modulated current in island O–points of the
rotating plasma [10, 12, 21, 22, 23], or may continuously drive current whose
spatial alignment is tailored to yield a net stabilizing effect on the NTM [24].
Considerable efforts have been made to determine an optimal strategy for NTM
mitigation and control in the ITER device [15, 21, 25, 26] utilizing these two
approaches.

Although efforts to suppress and/or control NTMs in existing experiments
have met with notable success, the development of predictive computational
models to simulate the interaction of MHD with ECCD and other forms of RF
remains a significant challenge [27]. In part, this is due to the disparity in the
relevant timescales; the Alfvén time characterizing MHD phenomena may vary
by orders of magnitude from both the more rapid electron cyclotron period and
the slower resistive timescales associated with NTMs. Further complexities in-
clude the calculation of self–consistent propagation trajectories of RF waves as
they pass through the plasma’s magnetic geometry — which may be perturbed
by the growth of islands — as well as the accurate calculation of RF–modified
heat transport and its effect on the pressure profile and bootstrap current [28].
In addition, the internal consistency of the bounce–averaged Fokker–Planck RF
operator with the collision operator and the kinetic equation (from which fluid
moments are derived) must be ensured; the latter two entities involve distribu-
tion functions of three spatial and three velocity–space coordinates, while the
Fokker–Planck operator is a function of only one spatial and two velocity–space
coordinates [29] in the low–collisionality regime of interest. Finally, the effects
of RF energy and momentum transfer to the plasma must be included in the
calculation of numerically viable neoclassical closures for the MHD equations.

While recent work on various aspects of the ECCD/MHD coupling problem
appears promising (e.g., in the development of closures [30], theoretical founda-
tions [31], and self–consistent forms of the fluid equations and the collision/RF
operators [32, 33]), we choose to direct the focus of this work toward a more el-
ementary question — how will an externally imposed electromotive force in the
MHD Ohm’s law influence the behavior of magnetic islands? It can be demon-
strated (see Appendix A) that the dominant term in a coupled ECCD/MHD
model appears in this form in the Ohm’s law. We show that the resultant system
of equations, though not fully self–consistent, demonstrates the basic physical
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principles associated with this particular RF/MHD coupling, agrees quantita-
tively and qualitatively with the work of other authors, and provides insight
applicable to the development of more comprehensive simulation models for the
mitigation and control of NTMs [27].

Section II of this paper presents equations which model the coupling of
ECCD with MHD, and shows that the study of resistive (rather than neoclas-
sical) tearing modes allows the exploration of physics issues relevant to this
coupling. An analytic example is presented in simple geometry which demon-
strates the physical effects induced by RF deposition, and the persistence of
these effects in toroidal geometry is demonstrated. In section III, we implement
the model of ECCD/MHD coupling in the NIMROD code [34, 35] and consider
the long–time effects of localized current deposition on the stability properties
of the plasma equilibrium. We show that complete suppression of the (2,1) re-
sistive tearing mode can be achieved through adequate alignment of the ECCD.
Physical consequences associated with the shifting of the mode rational sur-
face in response to localized current drive are also considered, and the need for
accurate radial alignment of the induced current (discussed experimentally by
Ref. [21]) is demonstrated. Section IV discusses the response of the plasma to
ECCD deposition on shorter timescales; the growth of resistive tearing modes
is shown to have significant variability in response to the transient phenomena
induced by the current drive. Finally, section V summarizes key results and
discusses the relevance of this simulation model to the more general problem of
simulating ECCD stabilization of NTMs.

2 The coupled ECCD/MHD model

In this work the RF–modified MHD equations take the form

∇ ·B = 0 (1)

∇×B = µ0J (2)

∇×E = −∂B
∂t

(3)

∂ρ

∂t
+∇ · [ρu] = 0 (4)

ρ
∂u
∂t

+ ρ(u · ∇)u = −∇p+ J×B−∇·
↔
Π (5)

E + u×B = ηJ +
Frfe
n|qe|

(6)

3
2
n

(
∂T

∂t
+ (u · ∇)T

)
+ p∇ · u = −∇ · q−

↔
Π: ∇u +Q ; (7)

the origins of the various terms are summarized in Appendix A and the refer-
ences therein. Here, the electric and magnetic fields E and B vary as functions
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of both space and time, as do the mass density, velocity, current, pressure, and
temperature (ρ,u,J, p, and T ) associated with the conducting fluid of the MHD
model. The quantities µ0 and η respectively represent the vacuum permeability
and the plasma resistivity, while the heat flux q and the anisotropic stress ten-
sor Π are associated with the closure schemes discussed in Appendix A. The
final term in Eq. (6) is nonstandard and models the ECCD interactions with
the plasma. It can be envisioned as an electromotive force induced by the RF
on the conducting fluid. In this work we will stipulate that this term has the
form

Frfe
n|qe|

= −ηλBf(x, t)
µ0

. (8)

where λ has units of inverse length and is associated with the ECCD amplitude,
while f(x, t) is a dimensionless function stipulating the spatial and temporal
localization of RF deposition. This form is physically reasonable, as one expects
the induced emf to induce current parallel to magnetic field lines on the resistive
timescale τR ∼ µ0/η. A simple analytic model can be constructed to verify this
effect and explore its consequences.

2.1 Plasma response — cylindrical model

Consider a plasma bounded by a cylindrical domain of radius a which is periodic
in length L. Neglecting stresses, heat fluxes, and collisional heating (q,Π, Q)
in Eqs. (1 – 7) for simplicity, and in the absence of RF, it is easy to show that
an equilibrium with constant magnetic field B0 = B0ẑ, pressure p0 = n0T0, and
density ρ0 exists, with zero equilibrium velocity u0, electric field E0, current J0,
and RF injection f0(x, t). In this section, equilibrium and perturbed quantities
will be subscripted with zeros and ones respectively [with the exception of the
subscripts denoting the order of the Bessel functions J0(x) and J1(x), which
may appear in either equilibrium or perturbed quantities but will always be
preceded by the symbol J ]. Now suppose that an RF perturbation is abruptly
introduced into this equilibrium, with f1(x, t) taking the form

f1(x, t) = η(t)J0

(rα1,0

a

)
[K1 +K2 cos(kz)] . (9)

Here η(t) is the unit step function, k ≡ 2π/L, J0 is the aforementioned Bessel
function of order zero (whose pth zero is given by αp,0), and K1,K2 are constant.
This form is chosen because the equilibrium “flux surfaces” in this problem are
individual field lines in the ẑ direction; the physics of interest is the plasma’s
response as the RF induces current within a flux surface parallel to the field.
Explicitly defining a flux–surface averaging operator

〈•〉 ≡ 1
L

∫ L

0

• dz , (10)

one may denote the fluctuation as δf1 = f1 − 〈f1〉 and observe that the z–
independent component of f1 (the K1 piece) represents its flux–surface average,
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while the cos(kz) component (K2 piece) represents a spatial fluctuation about
this average. We will demonstrate that the responses of the plasma to the RF’s
flux–surface averaged component 〈f1〉 and fluctuating component δf1 differ in
important ways.

Linearizing Eqs. (1 – 7) and using Fourier–Laplace transforms, it can be
shown that the perturbed density and pressure are zero, while the other per-
turbed quantities are given by

B1 = B0η(t)J1 (x)
λa

α

(
K1(1− e−γt) +

K2γ

ω
e−Ωt cos(kz) sin(ωt)

)
θ̂ (11)

u1 = vA
η(t)
S
J1 (x)

λα

k
K2 sin(kz)

[
e−Ωt

(
cos(ωt) +

Ω
ω

sin(ωt)
)
− 1
]
θ̂(12)

E1 = vAB0
η(t)
S
J1 (x)

λα

k
K2 sin(kz) · (13)[

1− e−Ωt cos(ωt) +
(

Ω− γ
ω

)
e−Ωt sin(ωt)

]
r̂ (14)

− vAB0
η(t)
S
J0 (x)λa · (15)[

K1e
−γt +K2 cos(kz)

(
1− γ

ω
e−Ωt sin(ωt)

)]
ẑ (16)

J1 =
B0

µ0
η(t)J1 (x)

γλka

ωα
K2 sin(kz)e−Ωt sin(ωt)r̂ (17)

+
B0

µ0
η(t)J0 (x)λ

(
K1(1− e−γt) +

K2γ

ω
e−Ωt cos(kz) sin(ωt)

)
ẑ (18)

wherein vA ≡ B0/(µ0ρ0)1/2 is the Alfvén velocity, S ≡ τR/τA is the Lundquist
number [with τA ≡ a/vA being the Alfvén time and τR ≡ µ0a

2/η � τA the
resistive diffusion time], α = α1,0, x ≡ rα/a, and we have introduced the
quantities (each with units of inverse time)

Ω ≡ α2 + k2a2

2τR
(19)

ω ≡ (k2v2
A − Ω2)1/2 (20)

γ ≡ α2

τR
. (21)

Now consider the component of the linearized Ohm’s law, Eq. (6), which is
parallel to the equilibrium field B0 = B0ẑ and given by

E1z = ηJ1z −
ηλB0f1

µ0
. (22)

Using the flux–surface averaging operator, we can explicitly write the averaged
(∼ K1; z–independent) and fluctuating (∼ K2; z–dependent) pieces of this
equation as
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−vAB0
η(t)
S
J0(x)λae−γt︸ ︷︷ ︸
〈E‖〉

= η
B0

µ0
η(t)J0(x)λ

(
1− e−γt

)
︸ ︷︷ ︸

〈J‖〉

−ηλB0

µ0
η(t)J0(x)︸ ︷︷ ︸
〈f〉

, (23)

−vAB0
η(t)
S
J0(x)λa cos(kz)

(
1− γ

ω
e−Ωt sin(ωt)

)
︸ ︷︷ ︸

δE‖

=

η
B0

µ0
η(t)J0(x)λ

γ

ω
e−Ωt cos(kz) sin(ωt)︸ ︷︷ ︸
δJ‖

−ηλB0

µ0
η(t)J0(x) cos(kz)︸ ︷︷ ︸

δf

, (24)

wherein K1 and K2 have been dropped for conciseness in the respective equa-
tions. Consider Eq. (24), the fluctuating parallel Ohm’s law. As the RF
abruptly turns on, z–dependent electric fields are immediately induced to counter
its effects. Shear Alfvén waves are also launched along the equilibrium field lines;
these waves are associated with fluctuating parallel currents and electric fields
in this geometry (ω ∼ kvA since S � 1). These waves gradually damp away
on the the resistive timescale, leaving only the original, spatially varying par-
allel electric fields to smooth away the spatially varying electromotive forces
imparted by the RF.

The flux–surface averaged parallel Ohm’s law, Eq. (23), behaves differently.
Initially, z–independent electric fields also arise to counter the RF electromotive
forces [as was the case in Eq. (24)]. However, rather than persisting at long
times, these fields subsequently decay on the resistive timescale. As they do so,
a flux–surface averaged parallel current flow — the “driven current” referred
to in the ECCD acronym — arises to preserve the relationship in the parallel
Ohm’s law.

From this, a number of important general conclusions may be drawn about
the linear behavior of the plasma in response to the newly–added RF term in
Ohm’s law. In the long–time limit of many resistive diffusion times,

(a) current flow parallel to the equilibrium magnetic field lines is
induced, with amplitude proportional to the flux–surface average of
the RF drive; and

(b) static parallel electric fields are induced to smooth RF–induced
spatial variation about this average.

At short times, however,

(c) parallel electric field is induced in response to the flux–surface
averaged component of the RF drive, while

(d) spatial variations about this average are smoothed both by in-
duced parallel electric fields and Alfvénic currents, both of which
vary rapidly in time.
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In toroidal geometry, wherein general plasma equilibria cannot be written
in explicit analytic forms, the physical effects of the RF drive can nevertheless
be determined by the principles above. Toroidal magnetic equilibria can be
characterized by the safety factor q(ψ), a flux–surface function expressing the
ratio of toroidal to poloidal transits of the device experienced by a closed field
line on that flux surface. On rational surfaces, the value of q(ψ) is a ratio of
small integers; a given field line closes on itself after a relatively small number
of toroidal transits of the device. It is these surfaces on which tearing modes
arise and near which RF deposition is desirable to counter them. RF–induced
current drive which intercepts field lines on rational surfaces will, according to
the principles above, launch co– and counter–propagating Alfvén waves along
helical field line paths. On a timescale much shorter than the resistive time,
these waves will meet at the point opposite their launch point on the helix and
nonlinearly beat together (an effect ignored in our analytic model). However,
as these waves are associated with the (helical) equilibrium field line, and the
resistive diffusion time is slow, the structure of the resulting current perturbation
remains helical.

Using the NIMROD code, this helical structure can be simulated. In Figure
1 a computational grid and an axisymmetric equilibrium profile for the parallel
current µ ≡ µ0J·B/B2 (which monotonically decreases toward the plasma edge)
are shown for a typical tokamak geometry. NIMROD uses a finite element
representation in the poloidal plane, enabling grid packing about the q = 2
and q = 3 rational surfaces; q is monotonically increasing toward the plasma
edge and will be shown in Figure 3a. We restrict the RF source term to a be
narrow Gaussian function in the poloidal plane (centered at the q = 2 surface on
the outboard midplane) and to span only one–tenth of the tokamak’s toroidal
extent. We then evolve the MHD equations over several thousand Alfvén times
and examine the resultant modifications to the µ profile. Figure 2 demonstrates
that the profile perturbations (obtained by subtracting off the axisymmetric
equilibrium of Figure 1 from the total profile) indeed have a helical structure
consistent with the localization of the RF near the q = 2 surface; poloidal cross–
sections separated by π radians in the toroidal angle contain µ profiles whose
maxima are rotated by π/2 radians relative to one another.

On nonrational surfaces, which are covered ergodically by a single field line,
localized RF deposition also excites Alfvén waves propagating in both direc-
tions along field lines intercepting the deposition region. The timescale on
which nonlinear wave beating occurs varies considerably in this case; waves
may make relatively few or relatively many transits of the device [depending
on the local value of q(ψ)] before meeting up with their oppositely–directed
counterparts. Because this disparity between deposition at rational and nonra-
tional surfaces potentially introduces a broad range of timescales, the studies
of short– and long–time effects of ECCD deposition presented hereafter in this
work use sources which are toroidally symmetric. In this case, the “helical”
current perturbations associated with the deposition exhibit the same toroidal
symmetry as their launch points, and nonlinear wave beating occurs on the same
timescale for both rational and nonrational surfaces. This approach enables one
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Figure 1: The axisymmetric, equilibrium parallel current profile µ = µ0(J ·
B)/(B · B) for a toroidal plasma, along with the finite element mesh used to
simulate the evolution of the RF/MHD equations in the NIMROD code. (For
clarity, only every third gridline is shown in the mesh.) The simulations utilize
mesh packing about the q = 2 (inner) and q = 3 (outer) rational surfaces.

to classify short– and long–time effects of ECCD deposition in the context of
the Rutherford equation for island growth, which we now discuss.

2.2 The Rutherford equation

The growth of magnetic islands generated by tearing modes in tokamaks can
be described heuristically by a Rutherford equation [36], appropriately modified
to include the neoclassical effects associated with toroidal geometry. Such an
equation can be written (following Ref. [37]) in the form

dw

dt
=
ρ2
s

τR
(∆′ + ∆′bs + ∆′curv + ∆′pol + ∆′ECCD + ∆′H) (25)

In this equation, w is the width of the magnetic island, ρs is the value of
the radial coordinate ρ (in the toroidal geometry) at the rational surface, and
τR ≡ a2µ0/η is the conventional resistive diffusion time of the plasma (with a
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Figure 2: In the presence of a poloidally and toroidally localized RF source,
helical perturbations to the µ profile of Figure 1 arise as the MHD equations
are evolved forward in time. Here, the RF is deposited in a narrow Gaussian
peak on the q = 2 surface at the outboard midplane. Toroidally, the RF is
bounded to span only one–tenth of the toroidal coordinate ξ; Alfvén waves are
launched along the magnetic field lines intercepted by the RF deposition.

now a representative scale length on the order of the minor radius). The match-
ing index ∆′ is the fundamental parameter associated with resistive tearing
modes; it measures the discontinuity in the radial logarithmic derivative of the
poloidal flux at the rational surface (quantifying the free energy attainable by
reconnective alteration of the magnetic topology). The subscripted ∆′ quanti-
ties represent the contribution of various RF and neoclassical effects (bootstrap
current destabilization, curvature and polarization current stabilization, and the
effects of ECCD injection and heating from ECRH) to the island evolution. The
detailed form of the majority of these terms will be unimportant for this work,
but the method by which the terms enter the Rutherford equation — namely,
as additive corrections to the original ∆′ term — is important. It implies that
the physics underlying the ECCD/MHD interaction is independent of neoclas-
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sical effects. The neglect of these effects, and the complicated closure schemes
associated with them, greatly simplifies numerical simulations.

After dropping the term related to resonance heating (in keeping with the
assumptions in Appendix A), a representative Rutherford equation for the study
of ECCD effects in MHD is given by

dw

dt
=
ρ2
s

τR
[∆′ + ∆′ECCD] . (26)

Though we do not explicitly solve this equation, its components can be associ-
ated with the physical effects demonstrated in section 2.1. The matching index
∆′ can be determined from the (toroidally symmetric) magnetic equilibrium.
It has a constant value on any particular flux surface, from which the stability
properties of the equilibrium (in the absence of RF) may be deduced. Con-
sequently, only the flux–surface averaged component of the injected ECCD —
which arises at long times — can influence its value. For initially unstable equi-
libria, the ∆ECCD term must therefore capture physics relevant to interactions
of the growing mode with the helical, short–time, transient perturbations in-
duced by the ECCD. It should be noted here that the metastability associated
with neoclassical tearing modes is not present in this model; though the short–
time fluctuations associated with ECCD injection may induce tearing mode–like
structures in initially stable equilibria, the long–time behavior of the system will
be determined by the matching index ∆′.

The remainder of this work will focus on the influence of the parameters
characterizing our RF deposition model on the growth rates of resistive tearing
modes. We consider these effects both at the long timescales associated with
∆′ modification and the short timescales associated with the ∆′ECCD term of
Eq. (26).

3 Effects of ECCD deposition on resistive tear-
ing modes — the long–time limit

As previously noted, the initial linear behavior of resistive tearing modes is gov-
erned by the matching index ∆′, which depends only on the properties of the
plasma equilibrium. When the matching index is adequately large (> 0 in the
case of resistive tearing modes) on a particular rational surface, reconnection
occurs and magnetic islands are formed; the current perturbations associated
with the island exhibit the same helicity as the field lines of the rational surface.
Initially, the island widths increase exponentially; however, nonlinearly driven
eddy currents soon begin to supersede the role of plasma inertia in the island
growth, leading to slower growth which is algebraic in time [36]. Ultimately, a
saturated state — a fixed island width — is attained, as the free energy obtain-
able from additional rearrangement of the magnetic topology (via additional
helical current flow) becomes comparable with the energy required to accomo-
date this new topology (i.e., to bend field lines outside the island; see [38]). We

10



0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

sqrt(ψpol)

In
itia

l q
 p

ro
file

0 0.05 0.1 0.15 0.2

−10

−5

0

Time (s)

ln
 [∫

 (B
2 / 2

µ 0) d
V]

   Fourier components of magnetic energy

 

 

n=1
n=2
n=3

Figure 3: (a) The initial q profile for the toroidal plasmas considered in this work.
The equilibrium is unstable to (m,n) = (2, 1) tearing modes, which occur at
the q = 2 rational surface (initially located at

√
ψpol = 0.525). (b) The growth

of various Fourier components (corresponding to variation in toroidal angle ξ)
of the volume–averaged magnetic energy as the MHD equations are evolved
in time. The n = 1 component predominates, initially growing exponentially
and then saturating. (Note that other tearing modes are also present, but the
amplitudes of these modes are comparatively small.)

demonstrate the simulation of this mode in NIMROD in Figure 3b; RF effects
are not included in this simulation. The growth of the n = 1 Fourier component
of the magnetic energy (associated with the helical structure of the magnetic
field perturbations in the island) is initially exponential, but is followed by a
period of slower growth and saturation. Hence, in the absence of RF, the ini-
tial growth of the islands is dictated by the toroidally symmetric equilibrium
profiles, while their ultimate width is governed by helical perturbed currents.

Because the resistive tearing mode obtains its free energy from current pro-
file gradients, the toroidally averaged, normalized parallel current profile µ is
a useful diagnostic of its behavior. In Figure 4 we demonstrate this effect; on
average, the initial µ profile (monotonically decreasing toward the plasma edge)
undergoes a net flattening due to current perturbations near the q = 2 rational
surface (positioned at the cross in the lower portion of the figure) as the tearing
mode grows and saturates. Hence, the flattening of the profile near the rational
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Figure 4: Time evolution of the toroidally–averaged µ profile in the absence
of ECCD. The rational surface from which the tearing mode grows is initially
located at

√
ψpol = 0.525. (inset) Close–up of the toroidally–averaged µ profile

as the tearing mode grows and saturates (compare with Figure 3b). The position
of the rational surface is denoted by a cross; as the mode saturates, a local
flattening of the µ profile is observed near this point.

surface can be associated with stability, and additional stabilizing or destabi-
lizing contributions may result from RF–induced current perturbations which
locally flatten or steepen this profile.

The modification of ∆′ by the ECCD is particularly easy to simulate using
the NIMROD code [34]. Relative to a known toroidal equilibrium, NIMROD
uses a high–order finite element representation to describe perturbed physical
quantities in the poloidal plane and a bounded Fourier representation to de-
scribe the variation of these quantities with respect to toroidal angle. One may
consequently express an arbitrary perturbed physical quantity (e.g., pressure,
field components, etc.) in the form

δA(R,Z, ξ, t) =
N∑

n=−N
δAn(R,Z, t)einξ ; (27)

the toroidally symmetric perturbations induced by the RF can thus be con-
structed by initially evolving only the n = 0 components of the MHD equations

12



(1)–(7) forward in time. This approach preserves axisymmetry while suppress-
ing the growth of tearing modes, which depend on helical perturbations. It is
conveniently compatible with the earlier stipulation that the RF perturbation
exhibit toroidal symmetry (to avoid discrepancies between currents driven on
rational and nonrational surfaces). The ECCD deposition must approach some
time–independent steady state if the long–term modification of ∆′ is to be de-
termined. Consequently, the simulations in the remainder of this work use an
ECCD model [following Eq. (8)] with

f(x, t) = exp

(
− (R−Rrf )2 + (Z − Zrf )2

w2
rf

)
g(t) (28)

with

g(t) =
[

1
2

tanh
(
t− to
tp

)
+

1
2

tanh
(
to
tp

)]
. (29)

Subscripted quantities in Eqs. (28 – 29) are simulation parameters, with wrf
denoting the characteristic width (“spotsize”) about a central deposition point
(Rrf , Zrf ). Following an offset to, the time–dependent term ramps up from zero
to asymptotically approach unity on a timescale tp ≈ τR.

Our simulations proceed as follows: beginning with an equilibrium state
which is stable to ideal MHD perturbations and unstable to the (m,n) = (2, 1)
resistive tearing mode, we evolve the axisymmetric Fourier components of the
MHD equations in response to ECCD injection of the form (28) – (29). Af-
ter several resistive times, the perturbations induced by the RF relax to a
time–independent state, yielding a modified equilibrium. Toroidally asymmet-
ric Fourier components of the MHD equations are then permitted to evolve,
enabling the growth of the tearing mode. Because the mode growth rate is pro-
portional to some near–unity power of ∆′, comparison of the growth rate in the
presence or absence of RF reveals the influence of the applied RF on the mode
stability. In essence, this approach uses NIMROD’s dynamical modeling capa-
bility to address questions very similar to those posed by Pletzer and Perkins
[24], who used the (static) code PEST-3 to calculate ∆′ modifications due to
toroidally symmetric, poloidally Gaussian current profiles injected at or near
the mode rational surface.

As noted in the aforecited work by Pletzer and Perkins, one primary effect of
RF–induced currents is to modify the position of this rational surface; perturbed
currents yield perturbed magnetic fields and q profiles. We explore this effect
explicitly in Figure 5, wherein the ECCD profiles of the above procedure are
Gaussian and have half–width wrf = 0.037 m. The injection is centered about
equally spaced radial coordinates on the outboard midplane (Zrf = 0). The
ECCD amplitudes λ for the various datapoints are chosen such that the ratio of
ECCD–induced toroidal current to initial toroidal current (from the equilibrium
configuration) ranges from 1–4%. One can estimate the percentage P of the RF
which is deposited inboard from the original position R2,1(= 2.027 m) of the
rational surface by integrating Eq. (28) over all Z and all R < R2,1 to obtain
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Figure 5: Shift of the position of the q = 2 rational surface in response to ECCD
deposition peaking at various amplitudes and locations. All radial coordinates
lie on the outboard midplane. The solid line denotes the original position R2,1

of the rational surface. Radial outward shifts are induced by deposition centered
inboard from (and even slightly outboard from) this surface; such shifts must be
accounted for in determining optimal ECCD alignment. The ECCD deposition
is Gaussian with half–width wrf = 0.037.

the result P = 0.5 + 0.5 erf[(R2,1 − Rrf )/wrf ]. Outward shifts of the q = 2
surface arise even when upwards of 80% of the RF deposition occurs outside
the initial rational surface; the latter result is consistent with Figure 2 in the
treatment by Pletzer and Perkins [24].

La Haye [21] has noted the critical need for accurate spatial alignment of
RF deposition for the mitigation and control of NTMs, and examination of the
modified growth rates which result from ECCD–induced alterations of ∆′ at
long times in our model also affirm the need for accurate spatial alignment of
the RF. In Figure 6, we show the growth rates for various values of the RF am-
plitude parameter λ when RF is applied at the deposition points noted above
(the poloidal spotsize remains at wrf = 0.037 m). Relatively minor modifica-
tions to the growth rate occur for RF deposition which is misaligned with the
rational surface (see, e.g., the “+” or “>” markers in the plot), indicating that
RF deposition is a highly inefficient stabilization mechanism for large misalign-
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Figure 6: Modified linear growth rates of the (2, 1) tearing mode as ECCD
is deposited on the plasma outboard midplane. The ECCD drives toroidal
current whose steady–state value, relative to the equilibrium toroidal current,
determines the current ratio; the initial position of the rational surface on the
outboard midplane is at r = 2.027 m. Deposition far from the rational surface
has relatively little influence on the growth rate, while significant destabilizing
effects on mode growth are caused by deposition near the rational surface on
the inboard side. The mode can be stabilized completely for large current ratios
if ECCD deposition occurs near the rational surface on the outboard side.

ments with the rational surface. More notable effects occur when the peak RF
deposition occurs just inside the rational surface (the “o” and “∗” markers) or
just outside this surface (the “<” markers). In the former cases, the growth rate
of the tearing modes is significantly increased; the current profile of the plasma
has been altered in a destabilizing manner (an obviously undesirable effect). In
the latter case, however, the deposition of RF just outside the rational surface
completely stabilizes the tearing mode at long times. These results are also
consistent with Figure 6 in the work by Pletzer and Perkins, wherein highly
localized Gaussian current perturbations (σ = 0.03, in their notation) cause
significant destabilizing effects inside the rational surface but are stabilizing
outside.

Because the ultimate influence of the ECCD on islands generated by resis-
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Figure 7: Low–order Fourier components of the volume–integrated magnetic
energy for an equilibrium unstable to the (2,1) resistive tearing mode. ECCD
injection appropriately applied on the outboard midplane yields a slow, but
increasingly rapid, reduction in the n = 1 magnetic energy as the discharge
evolves. This reduction is associated with the reduction of the width of magnetic
islands since Emag ∼ w4). Complete stabilization of the mode is achieved by
t ≈ 0.38 s.

tive tearing is governed by its long–time effects on the ∆′ term of Eq. (26), the
complete stabilization of (2, 1) tearing modes — even those which have grown
to their nonlinear saturation point — can be modeled. We have seen that RF
which is injected just outside the rational surface (Rrf = 2.053 in Figure 6)
preemptively renders the plasma equilibrium stable to tearing modes at RF in-
put powers > 1%. Application of the same RF parameters in the presence of
saturated tearing modes, therefore, ought to yield stability as the transient be-
haviors associated with the ∆′ECCD term of Eq. (26) decay in time, and this is
confirmed in Figures 7 and 8 (for which the current ratio IRF /I0 ≈ 3%). In Fig-
ure 7, various low–order Fourier components of the volume–integrated magnetic
energy are plotted as the discharge evolves. Initial linear and Rutherford–type
growth of the (2, 1) magnetic islands raises the n = 1 magnetic energy to a
saturated state at approximately t = 0.09 seconds. Subsequently, as the ECCD
amplitude begins to rise, the value of the magnetic energy (which can loosely
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Figure 8: Island structure at various points in the discharge of Figure 7. The
saturated state of (2, 1) and (3, 1) magnetic islands, before ECCD is applied, is
shown on the left plot. Roughly three resistive times elapse between this plot
and the plot on the right; the vanishing of the (3, 1) islands and the reduced
widths of (2, 1) islands can be seen as the plots are compared. Ultimately, the
islands vanish altogether due to the RF.

be associated with Emag ∼ w4 where w is the island width) begins to decay
at a consistently increasing rate. Explicit plots of the saturated (2, 1) island
structure (∼ 13 cm wide) are given in Figure 8a, which also reveals the presence
of less prominent (3, 1) islands (the equilibrium is also weakly unstable to this
mode). Figure 8b, obtained at roughly three resistive times after its counter-
part, shows that the width of the (2, 1) island is reduced in response to the RF
and that the (3, 1) island has completely vanished. By t = 0.35 s, Poincaré plots
similar to those of Figure 8 reveal no island structures at all.

The shift in the position of the rational surface in response to RF injection
also has important effects on the stabilization or destabilization of the tearing
mode. The growth rates corresponding to deposition peaked at rrf = 1.979
in Figure 6, for example, initially are highly destabilized by low–amplitude RF
injection, but increasing the RF amplitude (and thus the current ratio) appears
to have little effect for current ratios above 2%. Figure 9 demonstrates the
reason for this effect; the RF steepens the µ profile just inside the rational surface
(leading to instability), but as the RF power is increased, the position of the
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Figure 9: Toroidally averaged µ profile of the plasma in response to RF pertur-
bations of increasing current ratio CR ≡ IRF /I0 (as in Figures 5 – 6) centered
at Rrf = 1.979 m. (Inset) Crosses denote the (2, 1) rational surface position
for each profile (increasing numbers correspond to increasing current ratios).
Although the RF perturbations initially steepen this profile near the rational
surface (a destabilizing effect), the rational surface position shifts radially out-
ward as the RF power is increased. Thus, the steepening cannot persist, and
further increasing the current ratio (as the “o” markers of Figure 6 indicate)
has relatively little influence on the growth rate.
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rational surface is shifted outward away from the profile modifications. A more
meaningful consequence of this phenomena can be seen in Figure 10, wherein
the long–time effects of RF drive peaked just outside the rational surface (rrf =
2.053) stabilize the mode completely at high input powers. Here, the µ profile
flattens at the rational surface; its slope becomes less and less negative, even
becoming positive for high current ratios. However, as the RF power/current
ratio is increased, the position of the rational surface again shifts outward. At
higher RF powers, as it crosses the peak of the RF–induced perturbation of µ,
its slope will again become negative, and instability will result. This effect is
also present in Figure 6 of Pletzer and Perkins (the black diamonds in their
plot); the destabilizing effect of RF deposition centered on the rational surface
and applied at increasingly high powers arises from the associated outward shift
of the rational surface.

We surmise from these results that ∆′ stabilization of the resistive tearing
modes in this model is highly sensitive to the location of the ECCD deposition
(as is also the case in experimental efforts to suppress their neoclassical counter-
parts). In a sense, one is attempting to hit a moving target; the ∆′–stabilizing
effect of RF is maximized by highly localized deposition just outside the mode
rational surface, but the surface itself also moves in response to the RF pertur-
bation. Nevertheless, we have demonstrated that complete stabilization of the
mode is possible, provided that the RF is applied at the appropriate place and
that sufficient time has elapsed for the flux–surface averaged parallel currents
to be the dominant term in the parallel Ohm’s law. We now consider the effects
of the ECCD at short times, when the latter assumption is invalid.

4 Effects of ECCD deposition on resistive tear-
ing modes — the short–time limit

In addition to the long–time effects of ∆′ stabilization discussed in the previous
sections, the short–time effects of the ∆′ECCD term in Eq. (26) can influence
the growth of resistive tearing modes. The helical current fluctuations induced
by RF deposition at short times, which are associated with Alfvén wave propa-
gation on the plasma flux surfaces, compete with the helical currents associated
with the mode itself as it grows, and can either counteract or reinforce these
currents depending on their orientation relative to the magnetic island.

In experiments, the use of ECCD to suppress or mitigate the effects of tear-
ing modes can proceed either preemptively (wherein plasma profiles anticipated
to exhibit tearing instabilities are tailored by the use of RF so that these in-
stabilities do not arise) or reactively (wherein the detection of island structures
within the plasma triggers the application of RF to appropriately counter them).
The former technique is more closely associated with the ∆′ stabilization of the
previous section; we are applying RF to an unstable profile in an effort to alter
the profile before the instability arises. The latter (reactive) technique, how-
ever, is more closely tied to ∆′ECCD stabilization, as it is desirable to counter
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Figure 10: Toroidally averaged µ profile of the plasma in response to RF per-
turbations of increasing current ratio centered at Rrf = 2.053 m. (Inset) The
(2, 1) rational surface positions are again marked with crosses. RF perturbations
initially flatten the profile near the rational surface, yielding a net stabilizing ef-
fect. As the current ratio increases, however, the position of the rational surface
moves outward in

√
ψpol toward the RF–induced peak in 〈µ〉. Instability will

result if the RF power is sufficiently large, due to the change in profile shape as
the peak is crossed.

the growth of existing islands on a short, rather than long, timescale. As a
means of illustrating the differing physics associated with these processes, we
repeat the procedure of the previous section and initially evolve only toroidally
symmetric components of the MHD equations. However, we allow the growth
of the tearing mode after only short times have passed. The induced, flux–
surface averaged parallel current which alters ∆′ rises to 99% of its peak value
very slowly in these cases — roughly twenty resistive times elapse before the
∆′ modification has neared its peak value [agreeing qualitatively with Eq. (23)
in that the rise time for the current is a resistive time multiplied by a constant
(geometric) factor]. Thus, if the tearing mode is allowed to grow after only one
or two resistive times have passed, we may expect that the dominant effects on
the mode growth will arise from the ∆′ECCD term of Eq. (26).
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IRF /I0 Rrf γ1 γ2 γ20

0.0000 — 371.88 371.88 371.88
0.0100 1.942 683.89 660.31 518.49
0.0200 1.942 888.35 781.23 539.39
0.0300 1.942 1021.72 800.50 480.94
0.0400 1.942 1135.77 799.41 397.78
0.0098 1.979 1100.91 1094.48 834.50
0.0196 1.979 1754.99 1659.61 1039.10
0.0295 1.979 2334.12 2061.38 1113.18
0.0394 1.979 2868.37 2350.39 1088.91
0.0097 2.016 390.29 465.04 543.45
0.0193 2.016 809.85 1089.22 1197.43
0.0290 2.016 1689.10 2207.50 1854.23
0.0387 2.016 2919.87 3516.81 2250.62
0.0095 2.053 104.18 86.03 13.39
0.0190 2.053 29.32 0.00 0.00
0.0286 2.053 187.45 79.15 0.00
0.0381 2.053 522.13 524.81 0.00
0.0094 2.090 453.34 448.92 389.69
0.0187 2.090 494.42 485.79 417.78
0.0281 2.090 546.98 515.96 452.30
0.0374 2.090 593.47 560.39 509.67

Table 1: Growth rates of the (2, 1) tearing mode in response to RF deposition
of various powers and locations on the outboard midplane. The RF rise time
tp [see Eq. (29)] is 0.064, which is equal to the resistive time τR; the growth
rate γ1 is calculated when the RF attains 99% of its maximum value. After
an additional τR has elapsed, γ2 is calculated; the growth rate in the long–
time limit (corresponding to ∆′ modification of the equilibrium profile) is given
by γ20 (approximately 20 resistive times are required to drive the flux–surface
averaged toroidal current up to 99% of its maximum value).

Table 1 demonstrates the effect of the ∆′ECCD term in Eq. (26) on the growth
rate of the tearing mode in the simulations which have been discussed so far; the
results bear some similarity to the long–time ∆′ modifications discussed previ-
ously. Deposition markedly outside the mode rational surface (Rrf = 2.090), as
in the long–time limit, appears to elevate the tearing mode growth rates slightly
at short times, though the change is relatively small. However, for Rrf = 2.053,
wherein the long–time ∆′ modifications yield stability or extremely slow growth,
low–power RF injection reduces the growth rate but does not stabilize the mode
at short times. In addition, RF amplitudes inducing current ratios > 3% (which
are stabilizing in the long–time limit) initially act to destabilize the mode at
short times. The destabilizing effect is (again) a consequence of the rational
surface shift in response to the RF, as was noted in Figure 10. It occurs at
lower input powers here because the rational surface does not attain its shifted
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value immediately; rather, it moves through regions of the profile which may
promote stability or instability as it approaches its final state.

In general, deposition just inside the rational surface is destabilizing both at
long and short times; in the latter case the destabilization may be quite extreme
(approaching an order of magnitude increase in the growth rate, in a number
of cases). In such cases, the short–time behavior of the mode indicates that
radial alignment of the RF deposition will also be detrimental in the long–time
limit. Short–time reductions of the mode growth rate in response to low RF
input powers, however, can serve as a signature of proper alignment leading to
eventual long–time stability.

5 Summary and conclusions

In this work, we have demonstrated that a viable model describing the inter-
action of RF (in the form of ECCD) with MHD can be constructed. We have
also shown that relevant details of the physics of localized ECCD deposition are
captured by this model despite its lack of full self–consistency (in that local heat-
ing effects and the effects of RF in the MHD closure are neglected). Localized
current drive induces Alfvénic disturbances along magnetic field lines, resulting
in helical and spatially fluctuating current filaments at short times and a net
flux–surface averaged current on longer timescales. This average current is re-
sponsible for modifications of the matching index ∆′, while the helical filaments
arising at short times interfere with or enhance the helical currents associated
with the tearing mode structure to influence the growth. Favorable comparisons
with the results of Pletzer and Perkins [24] have been demonstrated; the opti-
mal position for RF deposition is verified to be immediately outside the initial
rational surface on which the mode grows, and the destabilizing effects induced
by the shift of this surface in response to RF perturbations (which also arise in
the former work) are correctly produced.

We believe that this work is an important step forward in the development
of integrated, predictive models for ECCD/MHD interactions (such as, for ex-
ample, might be used to determine optimum NTM stabilization approaches in
ITER). Our model utilized toroidally symmetric ECCD deposition, with the
poloidal localization of the RF fields being given essentially as an ad hoc func-
tion. The former assumption, though clearly not appropriate in all cases, has
been used successfully to explain experimental observations [21] and is a useful
approximation for plasmas undergoing rapid toroidal rotation. A more real-
istic model (which is a topic of ongoing research) could utilize data from ray
tracing codes to determine the amplitude and spatial localization of the ECCD–
induced electromotive forces. NIMROD’s magnetic geometry, for instance, can
be exported to the GENRAY/CQL3D [39] code, which can then calculate ray
trajectories and power deposition associated with a particular ECCD config-
uration. The physics of these coupled simulations can then be cross–checked
against the conclusions of this work for consistency, and effects arising from the
development of accurate closure models (which account for the effects of RF

22



on the higher–order velocity moments) can also be compared with these results
to determine the additional physics imparted by the closures. These develop-
ments, along with the rigorous verification of self–consistency among collision
operators, quasilinear operators, and fluid equations, will serve as future steps
of importance in the development of an integrated ECCD/MHD model.
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A The coupled RF/MHD equations

In this section, we discuss the sense in which Eqs. (1 - 7) accurately approximate
the fully self–consistent interaction of RF ECCD injection with MHD. Because
detailed treatments of the derivation of MHD equations can be found elsewhere
(e.g., [40]), we provide only a brief sketch of how the derivation is modified in
the presence of RF.

The starting point for the derivation of MHD equations is a kinetic equation
for the distribution function f̃α = f̃α(x,v, t) of species α;

∂f̃α
∂t

+ v · ∇f̃α +
qα
mα

[
Ẽ(x, t) + v × B̃(x, t)

]
· ∂f̃α
∂v

= C(f̃α) , (30)

wherein the electric and magnetic fields Ẽ(x, t) and B̃(x, t) are determined by
Maxwell’s equations (containing charge and current densities from these dis-
tribution functions as source terms). When localized ECCD is applied, both
the distribution function and the fields can vary on the rapid timescales associ-
ated with the propagation of RF waves through the plasma. (We place a tilde
over quantities which may vary on this timescale). The dynamics of interest,
however, concern the slower, self–consistent interaction of fields and distribu-
tion functions which give rise to two–fluid and MHD phenomena. To proceed,
one may average over a few wave periods of the rapid timescale (denoted 〈·〉t)
and make a quasilinear approximation [41, 42] for the ECCD effects. Heuris-
tically, the kinetic equation for the short–time–averaged distribution function
fα ≡ 〈f̃α〉t then takes the form

∂fα
∂t

+ v · ∇fα +
qα
mα

[E(x, t) + v ×B(x, t)] · ∂fα
∂v

= C(fα) +Q(fα) , (31)

wherein the ECCD/MHD interaction is represented by the Q(fe) operator. The
ions are presumed to be unaffected by the RF, i.e. Q(fi) = 0, and one observes
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that the rapid time variation has also been removed from the electromagnetic
fields. As velocity moments of the kinetic equation are taken to obtain the
fluid/MHD equations, we obtain velocity–space integrals over Q(fe).

A.1 Zeroth velocity moment

The direct integration of Eq. (31) over the velocity space yields a continuity
equation for the ion and electron fluids. Since ECCD ordinarily neither creates
nor destroys particles in fusion plasmas, the velocity–space integral of Q(fe)
must be zero; both the two–fluid and MHD continuity equations [see Eq. (4)]
are unaffected by the RF.

A.2 First velocity moment

The product of mαv and the kinetic equation (31), when integrated over the
velocity space, yields momentum equations for the ion and electron fluids,

mαnα
∂uα
∂t

+mαnα(uα ·∇)uα = −∇pα−∇·
↔
Πα +nαqα[E+uα×B]+Rα+Frfα

(32)
wherein the subscripted quantities n,u, p,Π,R, and Frf are respectively the
density, velocity, scalar pressure, anisotropic pressure tensor, and momentum
transfer due to collisional friction/RF injection for species α. Summing Eq. (32)
over species yields an MHD momentum equation which is similar to Eq. (5),
but which contains an additional term representing the transfer of momentum
from RF waves to electrons. Because of the large mass ratio, this additional
term is small enough relative to the ion momentum that its neglect is justifi-
able. However, the corresponding term cannot be dropped in the MHD Ohm’s
law [obtained from the electron version of Eq. (32)] because it may be of the
same order as the plasma’s (small) electric field. Assuming that a small–ion–
gyroradius approximation can be used to drop diamagnetic and Hall terms, the
Ohm’s law takes the form

E + u×B = ηJ +
Frfe
n|qe|

(33)

where the final term on the right–hand side incorporates the RF effects. The
Frfe term has the explicit form

Frfe =
∫
me(v − ue)Q(fe)d3v , (34)

and captures the dominant physics of the ECCD/MHD interaction.

A.3 Second velocity moment

Integration of the product of mα(v−uα) · (v−uα)/2 with the kinetic equation
(31) yields an equation for the temperature Tα of a given species;

24



3
2
nα
∂Tα
∂t

+
3
2
nα(uα·∇)Tα+nαTα∇·uα = −∇·qα−

↔
Πα: [∇uα]+Qα+Srfα , (35)

wherein the subscripted quantities q, Q, and Srf represent the heat flux, col-
lisional heating, and RF heating experienced by fluids of species α. Summing
this equation over species and dropping small terms (which relate to the small
difference between ion and electron velocities) yields the standard MHD equa-
tion (7) describing the evolution of plasma temperature, as well as a new term
representing the effects of localized electron heating imparted by the ECCD.
As was the case in the momentum equation, however, the net influence of this
heating can be neglected in light of the mass ratio and the generally small effect
of collisional ion heating (to which ECCD–induced heating may be compared)
to the plasma temperature evolution.

A.4 Closures

In addition to the complexities of the standard MHD closure problem [32], the
calculation of a physically consistent closure for our coupled ECCD/MHD model
must take into account the presence of the quasilinear RF operator Q(fe) in the
kinetic equation. In general, the closure problem entails the determination of
values for heat fluxes (q) and stresses (Π) as functions of lower–order fluid
moments. In this work, the effects of the quasilinear operator on the closure
are not considered; rather, we utilize the approximate Braginskii closures of the
NIMROD code to determine q and Π. Specifically, we have

Π ≡ −ρν∇u (36)

q ≡ 3n
2
χ · ∇T (37)

χ ≡ κ‖b̂b̂+ κ⊥(I− b̂b̂) (38)

wherein n is the number density, I is the unit tensor, and b̂ is the direction of the
local magnetic field. The numerical parameters ν, κ‖, and κ⊥(� κ‖) represent
kinetic viscosity and parallel/perpendicular heat diffusivity; in this work, typical
values for these parameters are respectively 4.3× 10−2, 4.3× 107, and 4.3× 101.

A.5 Summary

As demonstrated above, the most significant alteration to the conventional sys-
tem of resistive MHD equations by localized ECCD deposition is the additional
term on the right–hand side of Ohm’s law, Eq. (33). From the single–fluid
MHD perspective, one may associate this term with an electromotive force den-
sity induced by the RF waves on the fluid, and a meaningful approximation to
the fully self–consistent ECCD/MHD problem is thus obtained by determining
the response of the resistive MHD system to this emf. Our approach in this
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work, therefore, has been to (a) specify a form for this term which is reasonably
consistent with ECCD deposition profiles in experiments, (b) determine the re-
sponse of tearing modes arising in the model ECCD/MHD system to various
RF inputs, and (c) check the consistency of the system against known results.
In doing so, we gain insight into the physical processes which will arise in more
comprehensive simulation models.
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 UW-Madison SWIM Slow MHD Campaign - FY 2009 Report 
   Notable accomplishments 
	
   •NIMROD	
  and	
  GENRAY	
  can	
  now	
  export	
  their	
  data	
  structures	
  to	
  one	
  another,	
  
enabling	
  GENRAY	
  to	
  calculate	
  ray	
  trajectories	
  in	
  NIMROD	
  equilibria	
  and	
  NIMROD	
  to	
  
calculate	
  local	
  ECCD	
  deposition	
  from	
  GENRAY	
  ray	
  data.	
  	
  Robust	
  methods	
  for	
  
processing	
  of	
  ray	
  data	
  (calculation	
  of	
  relevant	
  volume	
  elements;	
  interpolation	
  of	
  
discrete	
  ray	
  data	
  onto	
  NIMROD's	
  finite	
  elements)	
  have	
  been	
  developed	
  and	
  tested. 
	
   •NIMROD	
  interfacing	
  with	
  the	
  Integrated	
  Plasma	
  Simulator	
  framework	
  is	
  
well	
  under	
  way.	
  	
  Component	
  script	
  logic	
  for	
  coupled	
  NIMROD/GENRAY	
  simulation	
  
has	
  been	
  developed;	
  at	
  present,	
  these	
  scripts	
  run	
  NIMROD's	
  preprocessing	
  utilities	
  
and	
  interface	
  GENRAY	
  to	
  the	
  plasma	
  state.	
  	
  Coupled,	
  IPS-­‐driven	
  simulations	
  are	
  
anticipated	
  imminently	
  as	
  work	
  on	
  the	
  NIMROD	
  interface	
  proceeds.	
  
	
   •Quantitative	
  agreement	
  with	
  the	
  tearing	
  mode	
  stabilization	
  work	
  of	
  
Pletzer/Perkins	
  [Phys.	
  Plasmas	
  6,	
  1589	
  (1999)]	
  has	
  been	
  obtained;	
  as	
  well,	
  the	
  role	
  
of	
  rational	
  surface	
  motion	
  in	
  response	
  to	
  ECCD	
  deposition	
  has	
  been	
  shown	
  to	
  
account	
  for	
  previously	
  unexplored	
  destabilizing	
  effects	
  (presented	
  in	
  that	
  work)	
  
induced	
  by	
  large	
  ECCD	
  amplitudes	
  at	
  the	
  unperturbed	
  rational	
  surface	
  position.	
  	
  
	
   •Initial	
  studies	
  of	
  MHD	
  response	
  to	
  RF	
  deposition	
  models	
  have	
  shown	
  good	
  
agreement	
  with	
  Hegna/Callen	
  [Phys.	
  Plasmas	
  4,	
  2940	
  (1997)]	
  predictions	
  for	
  island	
  
size/response	
  and	
  with	
  ECCD	
  alignment	
  studies	
  of	
  La	
  Haye	
  et	
  al.	
  [Nucl.	
  Fusion	
  48,	
  
054004	
  (2008)].	
  	
  Complete	
  suppression	
  of	
  the	
  resistive	
  tearing	
  mode	
  by	
  adequately	
  
aligned	
  ECCD	
  of	
  sufficient	
  amplitude	
  has	
  been	
  demonstrated	
  by	
  a	
  model	
  case.	
  
	
  
    Publications 
	
   •T.	
  Jenkins	
  et	
  al.,	
  "Calculating	
  electron	
  cyclotron	
  current	
  drive	
  stabilization	
  of	
  
resistive	
  tearing	
  modes	
  in	
  a	
  nonlinear	
  MHD	
  model",	
  in	
  review	
  at	
  Phys.	
  Plasmas.  
	
   •C.	
  C.	
  Hegna	
  and	
  J.	
  D.	
  Callen,	
  "A	
  closure	
  scheme	
  for	
  modeling	
  rf	
  modifications	
  
to	
  the	
  fluid	
  equations",	
  accepted	
  by	
  Phys.	
  Plasmas.	
  
	
  
   Conference Presentations 
	
   •T.	
  Jenkins	
  et	
  al.,	
  "Modeling	
  of	
  RF/MHD	
  coupling	
  using	
  NIMROD	
  and	
  
GENRAY",	
  APS-­‐DPP,	
  Dallas,	
  Texas,	
  November	
  2008.	
  	
  Also	
  presented	
  at	
  NIMROD	
  
team	
  meeting	
  and	
  CEMM	
  meeting,	
  Dallas,	
  TX,	
  November	
  2008.	
  
	
   •T.	
  Jenkins	
  et	
  al.,	
  "Modeling	
  of	
  RF/MHD	
  coupling	
  using	
  NIMROD,	
  GENRAY,	
  
and	
  the	
  Integrated	
  Plasma	
  Simulator",	
  APS	
  April	
  Meeting/Sherwood	
  Fusion	
  Theory	
  
Conference,	
  Denver,	
  CO,	
  May	
  2009.	
  
	
   •T.	
  Jenkins	
  et	
  al.,	
  "Modeling	
  ECCD	
  stabilization	
  of	
  resistive	
  tearing	
  modes",	
  
NIMROD	
  team	
  meeting,	
  Denver,	
  CO,	
  May	
  2009.	
  	
  Also	
  presented	
  at	
  CEMM	
  meeting,	
  
Denver,	
  CO,	
  May	
  2009.	
  
	
   •T.	
  Jenkins,	
  "ECCD-­‐induced	
  resistive	
  tearing	
  mode	
  stabilization	
  and	
  rational	
  
surface	
  motion",	
  NIMROD	
  team	
  meeting,	
  Madison,	
  WI,	
  July	
  2009.	
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The work conducted by Tech-X Corporation employees via subcontract
#7213-001 from the University of Wisconsin-Madison, in furtherance of
the research goals outlined in the Center for Simulation of Wave Interac-
tions with Magnetohydrodynamics proposal (U.S. DoE Office of Science
Award Number DE-FC02-06ER54899), is summarized. The research is
shown to adequately address the research goals in the proposal and State-
ment of Work, in conjunction with ongoing research funded by SWIM via
direct contract with Tech-X Corporation.



1 Overview of the SWIM project

The Center for Simulation of Wave Interactions with Magnetohydrodynamics
(SWIM) was begun in 2005 with two major scientific objectives:

• To improve understanding of interactions that both RF wave and particle
sources have on extended MHD phenomena, and substantially improve
capability for predicting and optimizing the performance of burning plas-
mas,

• To develop an integrated computational system for treating multi-physics
phenomena with the required flexibility and extensibility to serve as a
prototype for the Fusion Simulation Project, address the mathematics
issues related to the multi-scale, coupled physics of RF waves and extended
MHD, and optimize the integrated system on high performance computers.

In furtherance of these goals, project efforts have been directed along three
major lines of research:

• IPS development campaign — Development of the Integrated Plasma
Simulator, a computational platform that allows efficient coupling of a
broad range of fusion codes, is flexible enough to allow exploration of
various physics models and solution algorithms, that permits convenient
user access and access to experimental data, and that is robust to evolv-
ing physics, code development, and developments in computer hardware.
The IPS contains components to calculate wave propagation and absorp-
tion in all relevant frequency regimes, to calculate the modification of the
plasma velocity distribution from sources (RF, neutral injection and par-
ticles), and to calculate profile and magnetic evolution (assuming closed
flux surfaces), as well as linear MHD stability models and reduced models
of non-linear MHD events.

• Fast MHD physics campaign — Research addressing long timescale
discharge evolution in the presence of sporadic fast MHD events. The
primary physics focus is to allow the development of optimized burning
plasma scenarios, via the use of 3D nonlinear extended MHD codes, and
to improve understanding of how RF can be employed to achieve long-
time MHD stable discharges and control sawtooth events.

• Slow MHD physics campaign — Research modeling the direct inter-
action of RF and extended MHD for slowly growing modes. The primary
physics focus is to improve the understanding of how RF waves (primarily
ECCD/ECRH) can be employed to control neoclassical tearing modes.

The work discussed in this report centers on the Slow MHD physics cam-
paign, for which initial work was performed at the University of Wisconsin-
Madison by the author (Dr. T. Jenkins). In early 2010, Dr. Jenkins left
UW-Madison and began working for Tech-X Corporation; work relevant to UW-
Madison’s portion of the Slow MHD campaign was subsequently subcontracted
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to Tech-X beginning in March 2010. Funding for SWIM was subsequently ex-
tended by one year; since Tech-X was already receiving funding directly from
SWIM, funds for this final year were reallocated directly to Tech-X (rather than
going through UW-Madison). Hence, this report is unusual in that the funding
period covers neither the beginning (conducted at UW-Madison from 2007-2009)
nor the end of the research effort (to be conducted at Tech-X in 2011 and early
2012), and its designation as a ”Final Report” should be construed only to mean
that it provides a detailed summary of the current status of SWIM research at
the conclusion of the UW-Madison subcontract. The work summarized herein
was conducted by Dr. Jenkins, except as noted.

For background, we now summarize the initial work on the SWIM project
which was performed at UW-Madison (prior to the beginning of the Tech-X
subcontract). In addition to becoming familiar with NIMROD (a 3D nonlin-
ear extended MHD code) and GENRAY (a ray tracing code that calculates
propagation trajectories and power deposition of RF waves in a plasma), Dr.
Jenkins conducted work in which ad hoc RF sources (designed to approximately
mimic source terms one would obtain from a self-consistent RF/MHD model)
were added to NIMROD. These simulations primarily used toroidally symmetric
RF sources. Although this simplifying approximation is primarily applicable to
plasmas with very high toroidal rotation velocities, it provides a reasonably sim-
ple model in which the various timescales of the RF/MHD stabilization problem
can be compared. The effects of these RF sources on resistive tearing modes
were investigated and a paper was published [T. G. Jenkins et al., ”Calculat-
ing electron cyclotron current drive stabilization of resistive tearing modes in
a nonlinear MHD model”, Phys. Plasmas 17, 012502 (2010)] summarizing key
findings. Key results from this paper include the following:

1. NIMROD’s ability to simulate the axisymmetric evolution of the plasma
toward an RF-modified steady-state is consistent with the results of Plet-
zer and Perkins [A. Pletzer and F. W. Perkins, Phys. Plasmas 6, 1589
(1999)], and the ∆′ destabilization observed in the latter work is shown
to arise as a consequence of RF-induced rational surface motion.

2. The complete suppression of nonlinearly saturated islands by appropri-
ately aimed RF sources is possible, with this suppression occurring on
the inductive timescale (the timescale on which the RF induces plasma
current and creates a new, toroidally symmetric steady-state).

3. The short- and long-time responses of the mode rational surface to nearby
RF perturbations were investigated, and short-time indicators of favorable
RF alignment for toroidally localized sources were specified.

In addition to the aforementioned computational work, theoretical calculations
detailing how the RF physics (in the form of quasilinear diffusion coefficients)
enters the MHD equations were begun. As well, initial work began on the devel-
opment of IPS component scripts (designed to transfer data between GENRAY
and NIMROD) for the coupled simulations.
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2 Research objectives from the Statement of Work

Research objectives from the Statement of Work, compiled at the beginning of
the Tech-X subcontract, are listed in this section, together with commentary on
how these objectives have been fulfilled or will be fulfilled.

1. Year 1

(a) Finish the coupling of NIMROD to the IPS framework (developed by
the SWIM Project’s CS team).

This task was successfully completed. It involved two major efforts -
coupling NIMROD to the Plasma State (a datastructure accessible by
all codes which use the IPS framework, through which data common
to the coupled codes can be accessed) and the creation of an IPS
component script that could run NIMROD under IPS control.

For the Plasma State interface, new subroutines were written in NIM-
ROD to define relevant Plasma State variables, various coordinate
transformations were carried out (as necessary) to transfer NIMROD
data into Plasma State-like representations, and the NIMROD build
system was modified to detect and link Plasma State libraries appro-
priately as needed. Additional variables necessary for this particular
RF/MHD coupling were also added to the Plasma State.

For the IPS component script development, a python script was cre-
ated through which NIMROD, together with its preprocessors and
plotting routines, could be run via IPS commands. Simulations were
run to verify that this script behaved as expected; in the process, ben-
eficial experience with the setup and execution of IPS simulations was
gained.

(b) Couple GENRAY’s quasilinear operator to NIMROD, using the IPS
framework. Develop an analytic model to verify the accuracy of the
code coupling.

This task was successfully completed, but was very time-consuming.
First, the theoretical calculation detailing how the RF physics (in the
form of quasilinear diffusion coefficients) enters the MHD equations
was completed. The quasilinear operator was shown to have the form

Q(fα) = − ∂

∂v
·
{

ε2qα
(2πL)3mα

∫
[E∗RFm(k)+

v × [k×E∗RFm(k)]

[ω(k)− iΓ(k)]

]
fαRFm(k,v) d3k

}
(1)

with

fαRFm(k, v⊥m, v‖m, φm) = −iGαm[ERFm(k) ·U0α]
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+

∞∑
p=−∞

∞∑
n=−∞

{
Jn (zαm)E‖mv‖m + E+

mv⊥mJn−1 (zαm)

+E−mv⊥mJn+1 (zαm)
} iLαmGαmei(p−n)φmJp (zαm)

Hαm − nΩαm
(2)

and wherein

Hαm(k,v) ≡
[
ω(k) + iΓ(k)− k‖mv‖m

]
(3)

zαm(k,v) ≡ k⊥mv⊥m
Ωαm

(4)

Gαm(k,v) ≡ qαfMαm(v)

T0α[ω(k) + iΓ(k)]
(5)

Lαm(k,v) ≡ [ω(k) + iΓ(k)− k ·U0α] (6)

fMαm(v) = n0α(x, t)

(
mα

2πT0α(x, t)

)3/2

·

exp

(
−mα[v −U0α(x, t)] · [v −U0α(x, t)]

2T0α(x, t)

)
(7)

The Jn(z) functions are Bessel functions. GENRAY calculates ray
trajectories for a particular value of k, yielding a Dirac delta function
in the k-integral. Thereafter, the velocity integrals can be carried out
to yield modified Bessel functions and (by use of windowed Fourier
transforms and the Plemelj formalism) quantities that depend on
the wavenumber spectrum of the electric field of the RF waves. The
L−3 factor in the quasilinear coefficient is related to the various scale
lengths of the problem. Because the spatiotemporal scales of the
RF physics are considerably smaller than the spatiotemporal scales
of MHD phenomena, short-wavelength RF quantities beat together
to yield ponderomotive-like quasilinear diffusion on the MHD scales.
The volume described by L−3 can be thought of as a portion of the
collective bundle of rays which GENRAY introduces to the NIMROD
plasma; it contains a direction of propagation in one dimension and
an area-perpendicular- to-flow in the two orthogonal dimensions. The
full quasilinear operator, after integration, contributes terms to the
momentum and energy equations of MHD, as well as to Ohm’s law.
These terms are given by

Frfe =
ω2
pe

ω

P

N‖

e−ξ
2

(N · σ)π5/2

(
N

c

) √
me√
Te

e−λ

23/2
·{

|e‖|2In(λ)ξ2 + |e+|2[λIn(λ) + (n− λ)In−1(λ)]

+|e−|2[λIn(λ)−(n+λ)In−1(λ)]+ξ(e‖e
∗
++e∗‖e+)

√
λ√
2

[In−1(λ)−In(λ)]
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+ ξ(e‖e
∗
− + e∗‖e−)

√
λ√
2

[In(λ)− In+1(λ)]

+ (e∗+e− + e∗−e+)[λIn+1(λ) + (n− λ)In(λ)]
}

(8)

Srfe =
ω2
pe

ωc

P

N‖

e−ξ
2

(N · σ)π5/2

√
me√
Te

e−λ

23/2
·{

|e‖|2In(λ)ξ2 + |e+|2[λIn(λ) + (n− λ)In−1(λ)]

+|e−|2[λIn(λ)−(n+λ)In−1(λ)]+ξ(e‖e
∗
++e∗‖e+)

√
λ√
2

[In−1(λ)−In(λ)]

+ ξ(e‖e
∗
− + e∗‖e−)

√
λ√
2

[In(λ)− In+1(λ)]

+ (e∗+e− + e∗−e+)[λIn+1(λ) + (n− λ)In(λ)]
}

(9)

wherein P is the power content of the RF wave at a particular ray
point, σ is the area-perpendicular-to-flow at that point, n is the har-
monic number of the cyclotron resonance, In is a modified Bessel
function, N = kc/ω is the index of refraction, ω is the wave fre-
quency, and

ξ =
(ω − nΩe)

k‖

√
me

2Te
(10)

λ =
N2
⊥ω

2Te
c2meΩ2

e

(11)

e‖ =
E‖√
|E|2

(12)

e+ =
Ex + iEy√
|E|2

(13)

e− =
Ex − iEy√
|E|2

. (14)

All other terms have their conventional meanings. The RF terms
enter the MHD equations in the Ohm’s Law, momentum, and energy
equations (respectively) in the following manner, with conventional
notation being used:

E + u×B = ηJ +
Frfe
n|qe|

(15)

ρ
∂u

∂t
+ ρ(u · ∇)u = −∇p+ J×B−∇ ·Π + Frfe (16)

3

2
n

(
∂T

∂t
+ (u · ∇)T

)
+ p∇ · u = −∇ · q−Π : ∇u +Q+ Srfe (17)
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In order to evaluate these quantities, it is necessary to evaluate the
area- perpendicular-to-flow corresponding to a given point on a given
ray in the ray bundle. Essentially, this means we are collecting in-
formation about the rays collectively as well as individually. The
appearance of the ratio P/σ⊥ in the quasilinear terms is reassuring;
for a fixed volume of space, an increased ray density implies both a
reduced power-per-individual-ray (assuming the total power injected
remains fixed) as well as a smaller area- perpendicular-to-flow corre-
sponding to each individual ray. By implication, convergence can be
achieved as the number of rays is increased. To calculate these areas,
and the quasilinear diffusion coefficients, a separate code (QLCALC)
was written. QLCALC interfaces with the QHULL computational
geometry package to calculate the area elements. It first takes the
projection of the GENRAY ray data into a particular plane, and finds
the Delaunay triangulation of the data in that plane. It then finds the
outer boundary of the triangulation and reflects triangles with two
vertices on this boundary about the line containing these vertices; see
Figure 1 for further details. This constructs a set of ”ghost points”
outside the original dataset piercing the plane, bounding this dataset
and ensuring that the area corresponding to the outermost rays of
the GENRAY bundle will be finite. QLCALC then calls QHULL rou-
tines to find the Voronoi mesh corresponding to the original+ghost
data; this mesh defines the vertices which subdivide the plane into
polygons containing the set of nearest-neighbor points of the original
data. The calculation of the area of these polygons is then trivial,
and the area elements are obtained.

QLCALC also reads GENRAY data and correctly inserts the fields,
wavenumbers, frequency, etc. into the above formula, enabling the
calculation of quasilinear diffusion coefficients locally along the rays
in the ray bundle. However, the data must then be interpolated
to NIMROD’s datastructures, which differ from the (effectively un-
structured) GENRAY mesh in that NIMROD uses a finite-element,
grid-based representation in the poloidal plane and a pseudospec-
tral (Fourier) representation in the toroidal direction. The projec-
tion of the GENRAY ray bundle into NIMROD’s poloidal planes, as
shown in Figure 2, is resolved by NIMROD’s grid without substan-
tial difficulty. However, because the GENRAY rays may intersect the
poloidal plane at points other than NIMROD gridpoints, a weighted
cubic spline method (Shepard’s algorithm) was used to construct a
spline fit to the GENRAY data at the crossing points. The fitting
function was then evaluated at NIMROD gridpoints to transfer the
data into the NIMROD representation. Cubic polynomial and co-
sine basis functions were compared and shown to give comparable,
physically reasonable results.

Toroidal resolution of the data is a somewhat more difficult prob-
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Figure 1: An example of the mesh created from the GENRAY data points (blue).
Using the QHULL package, the Delaunay triangulation of this data (not shown)
is constructed, and the outermost triangles are then reflected across the convex
hull to form ghost points (shown in red). The Voronoi diagram (black) of the
GENRAY and ghost datasets is then created, and the areas of Voronoi cells are
calculated. Inclusion of ghost points ensures the finite area of the outermost
Voronoi cells.

lem. NIMROD’s toroidal representation effectively corresponds to
a set of toroidal collocation points (planes) through which the ray
bundle may or may not pass; further, the region of large quasilinear
diffusion within the ray bundle may not correspond to the crossing
points within the planes (see Figure 3 for details). Conventionally,
NIMROD uses 32-64 modes (and thus, the equivalent number of col-
location planes) for high- resolution runs; this resolution is generally
adequate for the long-wavelength MHD instabilities conventionally
studied in NIMROD simulations. However, adequate resolution of
the data shown in the figure would require 512 modes. While this
figure is within the realm of possibility, the computational cost is
high; further, the wastefulness of resolving the entire torus simply
for the sake of capturing a few gridpoints suggests an alternative ap-
proach. Toroidally averaging the GENRAY data and then spreading
the resultant function out over the lower-resolution collocation planes
should not interfere with the salient physics of tearing mode stabi-
lization; as the modes in question [typically with helicity (2, 1)] have
scale lengths on the order of halfway around the torus, the spreading
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Figure 2: A plot of the magnitude of the quasilinear operator from the GEN-
RAY ray bundle, superimposed on NIMROD’s finite element mesh, shows the
localized nature of the source. In the poloidal plane, the adequate resolution of
the quasilinear diffusion coefficient presents little difficulty, though only a few
gridpoints are affected by the diffusion.

of the GENRAY data to encompass a sixth of the torus does not
seem unreasonable. More generally, one can spread according to

F (R,Z, φ) =

[
1

2π

∫ 2π

0

F (R,Z, φ′) dφ′
]
g(φ) ; (18)

we have had success with functions of the form

g(φ) =
2π

φc
cos

(
π(φ− φ0)

2φc

)2

. (19)

Because of NIMROD’s dealiasing scheme, the function width φc must
be large enough (in realspace) that the Fourier space representation
is narrowed and the coefficients cut off by the dealiasing are negligibly
small. Should the function be too narrow in realspace, the wide tails
that result in the Fourier space are cut off, and Gibbs-like phenomena
result in the ensuing realspace representation (corresponding to an
unphysical induced current in undesirable regions of the simulation
domain). Typically, distributions which intersect six or more poloidal
planes do not suffer from these dealiasing effects.

IPS component scripts were successfully written to run GENRAY,
together with QLCALC and nimset (run as a preprocessor for GEN-
RAY to get a compatible equilibrium file), and to pass data appropri-
ately from NIMROD to the other codes. In addition, a driver script
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Figure 3: A plot of the magnitude of the quasilinear operator from the GENRAY
ray bundle, superimposed on the poloidal planes corresponding to NIMROD’s
toroidal pseudospectral representation, shows the localized nature of the source.
Without greatly increasing the toroidal resolution, and thus the computational
cost, the data shown will not be resolved by NIMROD. The computational cost
of increased toroidal resolution can be circumvented by toroidal spreading of
the diffusion coefficients onto the planes shown here.

was written to control the simulation from beginning to end, running
NIMROD’s preprocessor, NIMROD, GENRAY, QLCALC, an IPS
monitoring component, and two NIMROD plot packages simultane-
ously and in the correct order. The data transferred between codes
has been examined and shown to be physically reasonable, with the
rms energy transferred from GENRAY’s ray bundle having amplitude
and sign consistent with the added energy appearing in the NIMROD
plasma in the presence of RF. Further, more detailed benchmarks are
planned with the CQL3D code, though these will likely be deferred
until the physics of RF/MHD closures can be included in the simula-
tions in more detail. In any case, the requirements for this task have
been satisfied.

(c) Perform tearing mode simulations that explore the effect of ECCD
source modulation at low plasma beta.

This task was completed to a point, whereupon it was determined
that additional work outside the scope of the task list would be neces-
sary to enable its successful completion. Initial simulations compar-
ing the effects of time-modulated and nonmodulated ECCD, using
the ad hoc model for current sources, were first conducted. In Fig-
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ure 4, one such simulation is shown, using a toroidally localized RF
source which extends 1/10 of the way around the torus and is offset
radially inward from the original rational surface by 0.05 cm. Here,
magnetic energy is plotted, which can be thought of as synonymous
with the width of the magnetic islands. When the unmodulated RF is
introduced (dashed line), the island width decreases, first slowly and
then quite sharply. However, after dipping below a certain threshold
(corresponding quite well with the threshold at which islands can be
detected numerically), the islands immediately grow again. This be-
havior can be explained by careful examination of the Poincaré plots
of the islands. In Figure 5, a closeup of the Poincaré map of the
plasma during the initial decrease of the mode amplitude is shown,
together with the superposed full-width-half-maximum of the Gaus-
sian source in this plane. One observes that the magnetic island,
initially possessed of (2, 1) helicity, is being pinched at its O-point
such that the helicity becomes (4, 2); the RF is introducing addi-
tional X-points through reconnection. In Figure 6, the creation of
the new X-point is confirmed; this Figure shows the Poincaré map
near the time of maximum (2, 1) mode suppression. The suppression
occurs via the (4, 2) island creation; because the saturation width of
the (4, 2) tearing modes is considerably smaller, the mode amplitude
is continually reduced (decreasing blue dashed line in Figure 4). How-
ever, after decreasing below a certain threshold, the (2, 1) mode grows
rapidly again with a differing toroidal phase. Essentially, the RF has
demanded that an X-point occur at the injection location, and the
plasma obliges by growing a (2, 1) mode (a mode against which the
equilibrium is unstable) around the prescribed X-point. The initial
presence of the island O-point at the prescribed location means the
plasma must first reduce the (2, 1) island width before slipping the
phase. Observations of this phase-slipping behavior were also made
in early DIII-D tearing mode experiments [private communication,
R. J. La Haye, 2009].

It was hypothesized that the introduction of time-varying RF as the
island suppression occurred would preclude the creation of an X-
point at any particular point in the plasma, and a number of numer-
ical experiments were conducted to this end. Returning to Figure 4,
the introduction of sinusoidally varying RF (within the envelope de-
scribed by the RF dependence of the unmodulated simulations) was
attempted but was found not to have significant influence in the sup-
pression of already-saturated (2, 1) islands (solid blue curve). Some
attempts were made to adjust the sinusoidal frequency of the RF, but
it became clear that more careful effort would be required than could
be obtained by prespecifying the numerical behavior of the RF at
the simulation outset. In addition, the motion of the rational surface
(discussed earlier) necessitates the movement of the RF deposition
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Figure 4: Time-modulated RF injection using ad hoc sources at the O-point of
saturated islands is compared with unmodulated injection at the same location.
In the unmodulated case, the mode is suppressed only temporarily due to a
relocation of the island O and X-points. The presence of RF effectively demands
that an X-point be created at the deposition location; from an initially saturated
(2, 1) island, a (4, 2) island arises due to the new X-point (see Figure 5). The
islands then shrink, as the (4, 2) island saturation width is less than that of the
(2, 1) islands. Ultimately, the (2, 1) mode vanishes altogether, but then regrows
with an X-point at the location of the RF injection (see Figure 6), effectively
slipping the phase of the X-points in the poloidal plane.

region in space as well as in time, as the islands evolve in response to
the RF. To this end, it was concluded that a numerical Plasma Con-
trol system needed to be developed which could both detect the mode
and calculate the RF parameters necessary for its mitigation. Such
a control system is used in the DIII-D tokamak [D. A. Humphreys
et al., Phys. Plasmas 13, 056113 (2006)], and to achieve fidelity with
existing experiments, corresponding developments are necessary from
the simulation point of view. The development of this control system
will be discussed later in further detail.

2. Year 2

(a) Find a high-beta equilibrium which is more experimentally relevant to
NTM simulations (where pressure effects, including bootstrap current
terms, are important.) Begin simulations with this equilibrium.

This task turned out to be very difficult. Though at the time of the
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Figure 5: Poincaré mapping (with the points comprising the Poincaré section
being connected for visualization purposes) of the plasma of Figure 4 when
unmodulated RF sources are introduced. The source extends one-tenth of the
way around the torus and has a Gaussian profile in the poloidal plane (whose
full-width-half-maximum occurs at the black circle). The island contours are
shown in blue and the flux surfaces in red. The RF pinches island contours
inward and eventually forms an X-point at the island center (formerly occupied
by the O-point; see Figure 6), thus changing the island helicity from (2, 1) to
(4, 2) and altering the stability properties of the mode.

writing of this report it not been completed, efforts continue under
the ongoing Tech-X SWIM funding. Generally speaking, the difficul-
ties are associated with the precise definition of ”experimental rele-
vance”. For instance, numerical experiments by Takahashi et al. [R.
Takahashi, D. P. Brennan, and C. C. Kim, Nucl. Fusion 49, 065032
(2009)] were able to successfully generate a (2, 1) tearing mode with
experimentally relevant values for plasma beta, but the pressure pro-
files associated with these equilibria vastly differed from experimen-
tally observed profiles. In like manner, our numerical experiments
with the generation of (2, 1) tearing modes have been successful only
when the plasma beta was extremely low, though the values for other
plasma profiles have been plausible. A number of consultations with
Dylan Brennan (University of Tulsa) have led to somewhat promis-
ing avenues of exploration, and it may be the case that the equilibria
of Takahashi et al., though dissimilar in the pressure profile, may
suffice to demonstrate the relevant physics. Generally, however, the
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Figure 6: The eventual result of the applied RF of Figure 5 is the creation of an
X-point at the point formerly occupied by the island O-point, yielding a (4, 2)
island in place of the original (2, 1) island. The plasma is stable against (4, 2)
islands, and the mode consequently shrinks; the (2, 1) island is then regrown
with the X-point occurring at the location of the RF deposition.

onset of the tearing mode in the high-beta neoclassical regime is not
well-understood. In any case, work toward an acceptable solution to
the problem (in conjunction with researchers external to the SWIM
project for whom the problem is also of interest) continues under the
ongoing funding.

(b) Develop a synthetic soft X-ray diagnostic for NIMROD. Perform de-
tailed analysis of the physics of tearing mode stabilization, and com-
pare with experimental results.

This task was motivated by a desire to explore various methods by
which data from existing plasma diagnostics could be used in the de-
tection and mitigation/control of magnetic islands. Essentially, one
wants to use the data from various diagnostics in a feedback loop,
as dictated by a control system of some kind; the amplitude, spa-
tiotemporal dependence, and type of feedback that the control sys-
tem should give is determined from a study of the physics associated
with the diagnostic measurements.

As has already been noted, the development of a plasma control sys-
tem was determined to be a needful aspect of this research that was,
nevertheless, not specified in the initial task list. Consequently, our
efforts toward this particular task, rather than focusing specifically
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on the development of a soft X-ray diagnostic, have centered on the
development of a numerical control system as a whole. Such a sys-
tem should carry out specific tasks (mode amplitude detection, spa-
tiotemporal localization of magnetic island O-points, calculation of
appropriate RF parameters by which current can be driven at these
points, etc.), and these tasks should be carried out modularly (sev-
eral separate approaches to accomplishing a particular task should be
possible, e.g. one may detect the position of island O-points directly
from the code, or by data from a synthetic diagnostic). The control
system logic will depend on the output from these various tasks; ul-
timately, the goal is to not only suppress the magnetic islands, but
to do so rapidly and efficiently by taking advantage of the available
data and our knowledge of the relevant physics.

A schematic of the initial numerical Plasma Control System (here-
after PCS) is shown in Figure 7. Initially, a synthetic signal from
Mirnov coils is constructed from NIMROD data. The pseudospec-
tral representation which NIMROD uses in its toroidal direction make
the construction of this signal relatively easy; Bz perturbations at a
point on the outboard midplane at the plasma edge, in the Fourier
representation, constitute the real and imaginary parts of the signal.
In the presence of a tearing mode, a signal of the form

Bz(outboard midplane, n = 1) ∼ Aeγtei(ωt+φ) (20)

is obtained, where A is the mode amplitude, ω is the plasma toroidal
rotation frequency (the mode rotates with the plasma), γ is the mode
growth rate, and φ is the initial phase of the signal. Curve fits to the
time history of the signal can be used to determine these parameters;
once the mode amplitude rises above a certain threshold, the mode
is deemed large enough to warrant intervention. The O-point of the
island is found, the new input parameters for GENRAY (the RF
code) are calculated, GENRAY is run, and the signal is then sent to
NIMROD that the arrival of new RF data is imminent.

At this point, a number of issues should be mentioned.

• Islands rotate as the plasma rotates.
Because of the delay between the time in which the island is
detected and the time at which GENRAY has finished execut-
ing, it may not (depending on the plasma rotation frequency)
necessarily be true that the island is still at the point where we
have determined that RF should be deposited when NIMROD
gets the new RF data. This issue can be dealt with; since the
rotation frequency is known, NIMROD can be directed to wait
until rotation brings the island into the deposition region again.

• O-point detection can be done via several methods, but only a
few are consistent with experimental approaches.
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NIMROD data can be used to calculate the location of island
O-points exactly, at any time in the simulation. Experimental-
ists have no such recourse; rather, the position of island centers
are inferred from diagnostics (e.g. motional Stark effect diag-
nostics, which use the splitting of emission lines via the Stark
effect to determine local magnetic fields). To achieve greater
fidelity with experiments, one should take both approaches in
developing a numerical PCS; in addition to “seeing what the ex-
perimenter sees”, we also wish to verify that the experimental
interpretations of the data are correct. Consequently, our initial
development of the PCS includes a routine that finds the exact
locations of O-points within NIMROD data. We are also in-
vestigating methods to develop a synthetic diagnostic that more
closely mirrors experimental signals associated with this aspect
of mode detection.

• Islands may grow, be suppressed, and grow again.
The PCS must account for the possibility that it will repeatedly
have to turn on and off, suppressing tearing modes at various
toroidal phases (and, possibly, rotation frequencies and growth
rates, depending on how the plasma profiles evolve throughout
the simulation) repeatedly as the simulation evolves.

• The RF signal in NIMROD must build up over a finite length of
time.
Instantaneous introduction of RF sources terms in the NIMROD
equations causes numerical difficulties; new source terms must
rise smoothly up from zero rather than abruptly appearing. This,
however, differs little from experiments; finite ramp times for the
RF power (associated with the characteristic timescales for the
gyrotron power supplies) are also present there. Consequently,
NIMROD has been modified to accept ON/OFF signals from
the PCS, in certain cases, and to include RF data (when the ON
signal is received) by ramping it up in a smooth fashion rather
than by abruptly introducing it into the fluid equations. Figure
8 demonstrates the finite ramp time of the RF signal as it turns
on and then off, along with corresponding mode suppression and
regrowth.

• The PCS may not be able to initially hit the island O-point in
cases of low rotation.
In experimental devices, the gyrotrons which generate the RF
waves operate at fixed frequencies. Because the dominant mag-
netic field in the tokamak is toroidal and decreases as 1/R, where
R is the major radius, the cyclotron resonance for a fixed fre-
quency occurs on a cylindrical surface whose axis corresponds to
the tokamak center stack. If toroidal plasma rotation is absent
or occurs at low frequencies (as is projected to be the case in
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Figure 7: Schematic of the numerical Plasma Control System and its interaction
with GENRAY and NIMROD in the coupled simulations.

the ITER device), it is possible for islands to grow in regions
where island O-points are inaccessible to the gyrotron (i.e. the
quasistationary locations of the O-points in the poloidal plane
where RF is deposited may not intersect the cylindrical resonant
surface).
Experimentally, this issue can be resolved by the use of resonant
magnetic perturbations, which (if appropriately selected) can be
used to steer the island into regions accessible by the gyrotron [F.
Volpe et al., Phys. Plasmas 16, 102502 (2009)]. To simulate this
technique numerically is a challenging, though not insurmount-
able, problem; for the moment, the use of rotating plasmas has
deferred the issue.
More generally, alignment of the RF deposition with the island
O-point can be accomplished by altering the plasma position
within the vacuum vessel, by minor variation of the toroidal field
(to change the location of the resonant surface), or by steering
the RF beam using mirrors. Of these techniques, only the lat-
ter is suitable for our purposes; NIMROD would require exten-
sive refactoring to accommodate time-varying equilibria over the
course of the simulation.

Our recent work has focused on developing the PCS, with the afore-
mentioned issues in mind, and testing it in coupled simulations to
verify robustness. This work will also continue under Tech-X’s SWIM
funding. The soft X-ray diagnostic mentioned in the task summary is
anticipated to become a component of the PCS as this development
proceeds.

(c) Perform NTM simulations with integral closures (being developed by
E. Held at Utah State University).

This task has not been completed because the development of the
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Figure 8: Logarithm of the magnetic energy of various Fourier components of
the NIMROD plasma, together with the normalized amplitude of electron cy-
clotron power injected at the island O-point. The growth in the n=1 component
of magnetic energy corresponds to (2, 1) island growth. When the amplitude
threshold is exceeded, the PCS detects mode parameters and injects RF at the
island O-point in an effort to suppress it. The RF is ramped up according to
physically reasonable timescales associated with the gyrotron power supplies.
Upon suppression of the mode, the PCS turns off and the mode grows again
(the PCS remains off thereafter).

integral closures has not been completed (in retrospect, this task has
made unwarranted assumptions about the speed at which the clo-
sure problem could be solved, and its dependence on the efforts of
unfunded SWIM participants compounds the difficulties.). Though
the development of suitable RF/MHD closures is a more difficult
problem than originally expected, Dr. Held has made considerable
progress in the development of numerical methods to solve the rele-
vant drift-kinetic equation. Numerical experiments to represent the
kinetic distortion on velocity grids in speed and pitch-angle coor-
dinates have been fruitful, and the development of preconditioning
methods to efficiently calculate the effect of the linearized Coulomb
collision operator on the kinetic distortion function has likewise met
with success. In the meantime, Tech-X efforts have focused on de-
veloping a qualitative understanding of the physics that accurate
closures will contribute to the problem. (The collisional friction, for
instance, can be shown to depend on the electron heat flux [S. P.
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Hirshman and D. J. Sigmar, Nucl. Fusion 21 (1981)] in the form

Rei = η

[
J +

3eqe
5Te

]
(21)

and thus, even in the absence of RF physics, can influence the resis-
tivity in the Spitzer problem.) Qualitatively, the physics associated
with ECCD can be categorized [G. Giruzzi et al., Nucl. Fusion 39,
107 (1999); N. J. Fisch, Rev. Mod. Phys. 59, 175 (1987)] into three
distinct effects:

• Wave-electron parallel momentum exchange. This is represented
by the Frfe term of Eq. (16). This term drives only about a third
of the total driven current of ECCD due to its resonance with
the perpendicular component of the velocity. The time scale for
this term is the time scale due to the gyrotron [G. S. Nusinovich
et al., IEEE Trans. Plasma Sci. 32, 841 (2004)], which is on the
order of 10 − 100 µs and is dominantly determined by the time
scale of the voltage supplies.

• Asymmetric collisionality. Because energy is deposited into the
perpendicular component of the electron distribution function,
the distortion gives an asymmetric resistivity that causes current
to be driven. This is the Fisch-Boozer effect [N. J. Fisch and A.
H. Boozer, Phys. Rev. Lett. 45, 720 (1980)] and is the dominant
mechanism for the current drive.

• Selective electron trapping. For resonant particles near the trapped-
passing boundary, energy deposited into the electrons can cause
passing electrons to become trapped, thus decreasing the total
current. This is the Ohkawa effect [T. Okhawa, General Atomics
Report GA-A13847 (1976)].

These terms are often termed “currents”, in the same way the elec-
tron stress tensor term in the moment equation is termed the boot-
strap current, because they all have collisional dependency similar to
the ηJ term.

The Fisch-Boozer current can be described using a drift kinetic equa-
tion without the drift terms. Solutions of the kinetic distortion equa-
tion without the drift terms [E. D. Held, Phys. Plasmas 11, 2419
(2004)] show that the dominant effect is on the parallel heat flux.
This is consistent with the modifications of collisional friction occur-
ring through heat flux modifications in the standard ηJ term (as seen
in Eq. 21). The Ohkawa term is a modification of the trapped par-
ticle effects, and requires the inclusion of the drift terms in the drift
kinetic equations to be correctly calculated. This is the drift-kinetic
term required to give a correct calculation for the bootstrap current.
Because the trapped particles will also reduce the parallel heat flux
[E. D. Held et al., Phys. Plasmas 10, 3933 (2003)], the Ohkawa cur-
rent requires the stress tensor and heat flux terms to be calculated
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from a drift kinetic equation that contains the correct drift terms [J.
J. Ramos, Phys. Plasmas 17, 082502 (2010)].

We anticipate that as numerical/theoretical work on the closure prob-
lem proceeds, the increased capability of NIMROD to handle various
aspects of the RF/MHD closure problem can be employed to further
develop and verify our qualitative understanding of the physics. This
work will continue under the present SWIM funding at Tech-X.

(d) Collaborate with experimentalists in validating the model, such that
the validity of these results and their extrapolation to ITER is well
understood.

This task is in process and will continue under current SWIM fund-
ing. We have been in contact with DIII-D personnel to discuss the
operations of the control system on that device, and are using the
insight gained to further develop the PCS and apply it in realistic
experimental scenarios.

3 Other activities

In addition to our ongoing efforts in the development of the PCS, and our
continued interaction with non-SWIM and non-funded SWIM participants (in
pursuing experimentally relevant equilibria near the stability boundary for the
(2, 1) neoclassical tearing mode and solutions to the self-consistent RF/MHD
closure problem), a number of other ongoing projects relevant to SWIM goals
were accomplished during the funding period. A number of improvements to the
SWIM monitoring portal interface were suggested and implemented based on
the research presented herein (by SWIM personnel not directly funded under
this grant), and further work relating to the visualization of data from the
coupled simulations with the VisIt software has been, and continues to be,
pursued in collaboration with Allen Sanderson (University of Utah). In addition,
initial theoretical work generalizing the derivation of the quasilinear operator to
relativistic regimes (of relevance to eventual ITER modeling) has been carried
out and likewise continues under current funding.

4 Conclusion

As previously noted, the period of performance for this subcontract encompasses
neither the beginning nor the end of the SWIM project, as is reflected by the
as-yet- incomplete status of a number of the projects discussed herein. However,
based on the information presented here, in conjunction with the proposed task
list and the evolving needs and goals of the SWIM project, we believe that the
work funded by this subcontract has been satisfactorily completed and that the
funds expended in the pursuit of that work have been responsibly dispensed.
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