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A storage ring with tunable momentum compaction has the advantage in achieving different RMS bunch length with

similar RF capacity, which is potentially useful for many applications, such as linear collider damping ring and pre-

damping ring where injected beam has a large energy spread and a large transverse emittance. A tunable bunch

length also makes the commissioning and fine tuning easier in manipulating the single bunch instabilities. In this

paper, a compact ring design based on a supercell is presented, which achieves a tunable momentum compaction while

maintaining a large dynamic aperture.

1. Overview

Storage rings based on alternate strong focusing are widely used for many years in design of colliders and syn-

chrotron radiation light sources, also for linear collider damping ring design in the near term. Several focusing config-

urations have been invented and some of them applied in real ring construction and operation, including seperated-

function FODO cell, combined function FD-cell, double-bend achromat (DBA), triple-bend achromat (TBA) [1] and

theoretical minimum emittance lattice (TME) [2]. In an electron storage ring an electron will lose energy due to

synchrotron radiations in the bending elements such as dipole magnets or wiggler. Since synchrotron radiation energy

loss is compensated by the RF cavities in the ring, there exists a damping effect on the synchrotron oscillation with

the corresponding damping time. Further more, the synchrotron radiation energy loss is in the form of randomly

emitted photons, and the random quantum excitations together with the previously mentioned synchrotron radiation

damping effects result in the single-particle equilibrium energy spread and emittance.

As discussed above, the equilibrium transverse emittance is achieved when radiation damping is equal to quantum

excitation. The equilibrium transverse emittance in terms of the radiation integrals is listed below.
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where Cq = 3.83 × 10−13m, γ denotes relativistic factor, I2 and I5 radiation integrals listed below.
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where Hu = βuD′2

u + 2αuDuD′

u + γuD2

u depends on the bending and focusing structure, ρx denotes the bending

curvature in horizontal plane, ρy bending curvature in vertical plane.

Observed from the three formulae above, one notes that in order to get a smaller equilibrium emittance at a given

energy, ρ need to be large and Hu need to be small. A large ρ requirement translates into more (in number) and

∗Electronic address: yisun@slac.stanford.edu

SLAC-TN-12-004

Work supported in part by US Department of Energy contract DE-AC02-76SF00515.

SLAC National Accelerator Laboratory, Menlo Park, CA 94025



longer dipole magnets, while a small Hu push the focusing structure evolvement, such as DBA, TBA and TME.

Another version of the equilibrium emittance in terms of the bending/focusing properties is shown below.
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where θ denotes bending angle in each dipole magnet, F a dimentionless factor depending on the lattice structure

of the arc cell. Studies show that the minimum emittance could be achieved for TME arc cell with a corresponding

F = 1 [2].

In general, requirement on achieving a low emittance means employment of weaker dipole (smaller dispersion) and

stronger quadrupole (focusing). The betatron oscillation tune variation of off-momentum particles with respect to

the on-momentum particle is characterized by the chromaticity ∆ν = ξ(p)∆p/p0. The natural chromaticity from the

linear optics is always negative, ξ0 = − 1

4π

∮

Kβds. Sextupoles are pure second order magnetic elements and then

can be placed at dispersive regions where offset is proportional to momentum deviation, and provide extra focusing

for off-momentum particles. The contribution of a single sextupole magnet with length ls to the total chromaticity

is shown below, which being located at a place with dispersion D in the bending plane.

∆ξ = ±
1

4π
Dβ
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(5)

where β denotes the beta function at the sextupole location, B′′ sextupole strength, Bρ beam magnetic rigidity and

+ sign associated with the bending plane.

One observes that there is a large natural chromaticity associated with a strong focusing lattice (large K), at the

mean time β tends to be smaller and so does dispersion D. All these make the chromaticity correction sextupoles

stronger which in turn decrease the dynamic aperture which is a measure of the maximum stable phase space

amplitude in transverse planes. An adequate dynamic aperture is essential in accepting the injected beam which

usually has large emittance and energy spread, also in achieving a longer life time when stored in the ring.

There are several different approaches to evaluate and study the mechanism of dynamic aperture. One such

approach as the matrix formulae is developed by K. Brown and applied to design second order or even higher order

achromat [3]. Here we briefly review the main conclusions which are described in the following. Any optics with n

(larger than one) identical cells gives a first order achromat if the betatron phase advance equals 2π in both transverse

planes (first order transport matrix equaling unity I). When the cell number n does not equal three, the second

order geometric aberrations are also canceled. The second point is, of all the second order chromatic aberrations

only two are independent, which then can be corrected with two families of sextupoles in each transverse plane.

A general matrix notation for the transport of particles’ coordinates is shown in the following formula, which has

first order, second order and third order terms [3].

xi(1) =
∑

j

Rijxj(0) +
∑
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Tijkxj(0)xk(0) +
∑

j,k,l

Uijklxj(0)xk(0)xl(0) (6)

where second order matrix T has entries of the quadratic terms in the expansion of the final coordinates as a function

of the initial coordiantes, and third order matrix U has entries of the cubic terms.

Let any particle with coordinates (x, x′, y, y′, z, δp) passing by a second order achromat, the final coordinate would

be the same as the initial one, as R is a unity matrix and all T matrix elements equals zero (neglecting higher

order effects above three). That points to a way of evaluate and improve the dynamic aperture in a storage ring

for the ideal case, where one can simply design a ring optics which consists of second order achromats regarding

both geometric and chromatic aberrations. W. Wan developed another approach with Lie algebra to design general

achromat to arbitrary order, taking advantage of the midplane symmetry and using multipole magnets for each order

(for example, octupoles for third order achromat) [4]. The details are not discussed here.



Figure 1: First order dispersion and beta functions. Left: one FODO cell; Right: one straight section cell which contains an

RF cavity.

Recently Y. Cai has demonstrated that all driving terms up to fourth order resonance from chromaticity correction

sextupoles can be canceled out within each arc achromat section, by derivations using Lie algebraic method [5]. An

example lattice composed of TME arc cell is given, where one section consists of eight TME cell and the horizontal

and vertical betatron phase advance is chosen to be 135/45 degree in each cell.

In the following sections, a second order achromatic supercell is designed based on K. Brown’s theory [3], where

all geometric and chromatic aberrations vanish. Standard FODO cells are employed. The betatron phase advance

of this supercell can be tuned in a wide range, which then can provide a flexible momentum compaction. Storage

rings can be designed with its arc being constructed with several of such identical supercells and a decreased bending

angle for each dipole magnet. This design supresses the need to add extra dispersion suppressors between the arc

section and straight section.

2. Single cell design

First let us try to design a small compact ring with a circumference around 70 m. The design goal of the arc cell is

compact, simple and flexible. A standard FODO cell is picked as the basic unit, with a cell length roughly as 2.4 m.

The dipole length is chosen to be 0.5 m (just for this example), and the drift length is 0.25 m between each dipole

and quadrupole magnet. A quadrupole length of 0.2 m and a sextupole length of 0.1 m are adopted, which can

be made longer if necessary. There are two focusing sextupoles placed at both sides of one focusing quadrupole to

correct the linear chromaticity (second order chromatic aberrations). For the defocusing quadrupole the arrangement

is similar. This standard FODO cell maintains a midplane symmetry, as can be observed from its first order optics

shown in Figure 1 (left). The betatron phase advance equals 60 degree in both transverse planes. For other possible

ring designs, such as a synchrotron radiation light source with ultra low emittance, the dipole length can be further

increased and the dispersion will be decreased. The phase advance can be kept the same by tuning the quadrupole

strength.

The maximum and minimum β function depends on the cell length and quadrupole strength (for a standard FODO

cell), as shown below.
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where β± denotes the maximum and minimum beta functions, Lcell the FODO cell length and K1 the integrated

quadrupole strength.

In Figure 1 (right) the first order optics of a straight section cell is shown, where midplane symmetry is again

preserved. Four quadrupoles are used in each half, to match the beta function and tune the phase advance. The

straight section can be composed of such cells and the FODO cells discussed above with the dipole magnets being

replaced by drift space. The computer code MAD8 is used for optics matching [6].

3. Supercell for three phase advance

According to Brown’s theory, a supercell which consists of more than four identical cells (such as the FODO cell

discussed above) can make a second order achromat, given the betatron phase advance equaling a multiple of 2π in

both transverse planes. The second order geometric aberrations are canceled between these identical cells without

sextupole assistance. Two group of sextupoles in each cell then correct second order chromatic aberrations and do

not introduce new second order geometric aberrations. With this kind of configuration, the first order and second

order transport matrix through one supercell are listed below. One observes that any particle’s 6-D coordinates are

reproduced up to second order.

R = I (8)

Tijk = 0 (9)

Given a fixed arrangement of the dipole magnets constrained by the ring geometry, one can adjust the quadrupoles

to tune the dispersion function and the momentum compaction. A supercell which contains 12 standard FODO cells

is chosen here to construct one achromat module. Three different horizontal betatron phase advance are considered,

which are 30 degree, 60 degree and 90 degree, respectively. In all three cases, the total phase advance is a multiple

of 2π, which ensures that the overall transport matrix is a unity matrix up to second order. There are 24 dipole

magnets in each supercell.

Take a bending angle of 7.5 degree for each dipole magnet, the first order optics of such a supercell is shown in

Figure 2, for three different phase advance, respectively. The total bending angle of this supercell is 180 degree, and

its length is roughly 29 m.

4. Small ring design and dynamic aperture

The geometry of the ring takes a racetrack shape. One supercell composes of a half arc section which is almost a

half ring. For simplicity, here only two straight section cells as shown in Figure 1 (right) are used as the matching

section between the two arcs. The key point is that the phase advance in each arc section is an integer, and the

second order aberrations vanish inside each arc section. The straight section can then be used to accommodate other

components, such as injection/extraction, RF cavities, damping wigglers, and insertion devices (undulators) for light

sources. The overall betatron tune can be controlled by tuning the phase advance with quadrupole magnets in the

straight sections.



Figure 2: First order dispersion and beta functions. Top: 30 degree horizontal betatron phase advance in each FODO cell, a

total phase advance of 2π; Middle: 60 degree horizontal betatron phase advance in each FODO cell, a total phase advance of

4π; Bottom: 90 degree horizontal betatron phase advance in each FODO cell, a total phase advance of 6π.



Figure 3: First order dispersion and beta functions of an example ring design. The betatron phase advance of one FODO cell

equals 60 degree in both transverse planes.

As there are only drifts and quadrupoles in the straight section, there is no geometric aberrations induced. However,

there are chromatic aberrations contributed from the straight section which adds on the natural chromaticity. The

arc sextupoles then need to be tuned again to compensate the extra chromaticity.

One such a compact ring design is shown in Figure 3 with its first order optics, where one observes that there are

two arc sections and two short straight sections. Each dipole magnet bends the beam for 7.5 degree in the horizontal

plane. Dispersion function closes in each supercell and there are four periods of oscillations in all. After slightly

tuning the arc sextupoles to cancel the chromaticity from the straights, a unity transport matrix is achieved up to

second order, which is also confirmed numerically in MAD8 [6]. The circumference of the ring is roughly 70 m.

As discussed above, in such a ring one can easily tune the phase advance of each FODO cell to be either 30 degree

or 90 degree without moving any magnets, and achieve different momentum compaction and RMS bunch length for

a given RF system. The straight section need to be slightly tuned to match the new TWISS parameters. One need

to note that in all cases, the alpha function (derivative of beta function) is always zero at both ends of one supercell,

which is essential in making it extendable. A comparison of different key parameters between these three operating

options is listed in Table 1 below, for an electron beam at an energy of 1GeV . The RF frequency is chosen to be

200MHz.

Table I: Comparison of different key parameters between these three operating options (electron energy of 1GeV ).

Parameter unit 30 degree 60 degree 90 degree

Circumference m 70 70 70

Phase advance x/y (supercell) 2π 1/4 2/2 3/3

Tune x/y/s 2π 2.4/8.8/0.06 4.3/4.7/0.03 6.4/6.7/0.02

Natural chromaticity x/y -2.5/-6.1 -4.9/-5.6 -8.5/-8.6

RF voltage MV 2 2 2

Momentum compaction 10−2 18 5 3

Emittance µm · rad 2 0.14 0.04

Damping time ms 60 24 19

Energy spread 10−3 0.38 0.42 0.43

RMS bunch length mm 15 9 6

Dynamic aperture should ensure efficient acceptance of the injected beam with large emittance and energy spread.



Figure 4: Left: dynamic aperture of on-momentum and off-momentum (±1%) particles over 1000 turns of tracking; Right:

tune footprint in the x-y phase space over 1000 turns, horizontal tune (top) and vertical tune (bottom).

The natural chromaticity from the straight section need to be minimized which in turn requires weaker arc sextupoles.

Usually dynamic aperture is determined by single particle numerical tracking simulation. For electron storage rings,

synchrotron radiation damping plays an important role and the number of turns one need to track for dynamic

aperture depends on damping time. In general one damping time is thousands of turns, and it is sufficient to

evaluate the dynamic aperture for particles which can survive 10% − 15% of damping time.

For this compact ring running at 2GeV , one synchrotron oscillation period is roughly 70 turns, and one damping

time is corresponding to 104 turns. The full optics is then converted into the computer code Elegant [7], and the

dynamic aperture is searched at 53 different angles in x-y phase space for both on-momentum and off-momentum

particles. For each angle, a single particle is launched for tracking with its initial coordinate setting at small amplitude

to large amplitude. Momentum offset up to ±1% is considered, and the 1000 turns dynamic aperture is shown in

Figure 4 (left). One observes that in the horizontal direction a maximum value of 0.2 m is achieved, and it is 0.14 m

in the vertical direction. That translates into 104 times of equilibrium RMS beam size (104σ) at 2GeV . There is no

obvious deviation for off-momentum particles.

The tune footprint is also investigated for 1024 turns, with the results shown in Figure 4 (right). One observes

that there is no amplitude related detuning, with an initial transverse offset up to 0.15 m which is usually much

larger than the physical aperture. This small ring design has a relatively large emittance, which is 0.04µm · rad at a

beam energy of 1GeV , for 90 degree case. Due to this limitation, it may be used for a pre-damping ring or a booster

ring.

5. Conclusion and discussion

A compact ring design is presented in this paper which has a tunable momentum compaction and large dynamic

aperture, based on K. Brown’s achromat theory. One supercell consists of 12 identical FODO cells and it is a basic

module to construct a ring. As an example two such supercells are employed to construct a small ring which has a

pontential suitable for a pre-damping ring or a booster ring. The transport matrix through the arc section is always

a unity matrix up to second order. The overall betatron tune is controlled in the straight sections. The dipole length

and number can be largely increased to convert this compact ring into a low emittance ring with a circumference in

the hundreds or kilo meter range. As an example, one can increase the dipole length from 0.5m to 2.7m, and decrease

the bending angle from 7.5 degree to 0.75 degree. Twenty such new supercells could be employed to construct a low

emittance storage ring, with a geometric emittance of 0.5nm ·rad at a beam energy of 5GeV . Compared with similar



low emittance rings based on TME cells for ILC damping ring, the cost is more number of magnets and longer length

of arc sections (2 km). Reducing the beam energy to 2GeV makes 1 km arc section possible, while it still provides

a geometric emittance of 0.7nm · rad. A 120 degree FODO cell option is being investigated which may need less

magnets and shorter arc length.
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