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Summary of the Phase I Program 
Calabazas Creek Research, Inc. (CCR) proposed to implement heat transfer and stress analysis 
into CCR’s 3D beam optics code Beam Optics Analyzer (BOA).  For the Phase I program, CCR 
proposed to develop a heat transfer solver and verify performance. Implementation of stress 
analysis was planned for the Phase II program, if funding was approved. The tasks for the Phase 
I program were as follows: 
 

1. Implement a 3D linear heat transfer solver with automatic and adaptive meshing 
2. Examine and validate the new heat transfer solver accuracy and performance by 

comparison with known solutions and convergence 
3. Improve the accuracy and smoothness of the power density fields at the terminal surfaces 
4. Design GUI windows for heat transfer problems 

 
Details for each task are provided later in this report. A summary for each task is presented 
below. 
 
Task 1. Implement a 3D linear heat transfer solver with automatic and adaptive meshing 
 
This task was successfully completed. A fully functional heat transfer solver was integrated with 
beam optics analysis. It uses a single CAD model for all analysis types. It is easy to use, simple 
to mesh, and accurate when using adaptivity. This solver is now included with the BOA 
distribution. 
 
Task 2.  Examine and validate the new heat transfer solver accuracy and performance by 
comparison with known solutions and convergence 
 
Two analytical cases were simulated using the heat transfer solver. The model was compared 
with the analytical solution for both temperature profiles and heat transfer rates. Excellent 
agreement was demonstrated, confirming the solver’s accuracy. The convergence rate matched 
the theoretical prediction. 
 
Task 3. Improve the accuracy and smoothness of the power density fields at the terminal surfaces 
 
This task was completed successfully with implementation of the global L2 projection. This 
provides the quadratic shape function for future upgrades of the field solver. 
 
Task 4. Design GUI windows for heat transfer problems 
 
The GUI screens were successfully designed in the Phase I program. In addition, the screens 
were actually built and integrated into the BOA product and are available for code users.  

Summary 
The Phase I program completed all proposed tasks. In addition, the heat transfer solver was 
implemented into the BOA product, along with GUI screens and post processing capability.  
These features are now available to BOA users.  
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Identification and Significance of the Problem or Opportunity, and Technical 
Approach 
Calabazas Creek Research, Inc. (CCR) developed and currently markets Beam Optics Analyzer 
(BOA) in the United States and abroad. The project was funded by the U.S. Department of 
Energy SBIR program [1].  BOA is a 3D, charged particle optics code that solves the electric and 
magnetic fields with and without the presence of particles [2, 3, 4, 5].  It includes automatic and 
adaptive meshing to resolve spatial scales ranging from a few millimeters to meters.  It is fully 
integrated with CAD packages, such as SolidWorks, allowing seamless geometry updates.  With 
these capabilities, CCR includes iterative procedures for optimization [6, 7], including a fully 
functional, graphical user interface (GUI) [8, 9]. Recently, time dependent, particle in cell (PIC) 
capability was added, pushing particles synchronically under quasistatic electromagnetic fields to 
obtain particle bunching under RF conditions [12]. CCR added the heat transfer solver during 
this Phase I program [11]. 
 
A high power RF source often consists of a thermionic emitter, focus electrode, mod-anode, 
anode, and collector.  The electrons dissipate their energy on some terminal planes, e.g. the 
collector walls in the form of heat, which can be quantified by a power density field. In existing 
state-of-the-art analysis tools, the particle simulator is required to output the power density field 
in a proprietary format as a boundary condition for another simulation package for heat transfer 
analysis.  This requires the designer to re-import the CAD drawings into the heat transfer 
package, re-specify the boundary conditions and material properties, and re-mesh before 
performing the analysis to obtain the temperature and stress information.  This is time consuming 
and prone to many errors due to importing geometry and solution fields from one analysis tool to 
another.  It is also expensive to purchase and maintain two different sets of analytical tools and 
the auxiliary codes interfacing the two.  
 
In the Phase I program, Calabazas Creek Research. Inc. investigated the integration of heat 
transfer analysis with particle simulation in a single package.  The package uses the same 
geometry imported from CAD, requiring input of material properties and boundary conditions 
only once. Mesh generation was automatic for all solvers, including the electromagnetic and 
thermal solvers. 
 
The Phase I effort focused on developing higher orders of interpolation of the power density 
field and implementation of the heat transfer solver in BOA.  Particular emphasis focused on 
integration of the initial meshes, since the particle simulator is more interested in the vacuum 
region, while the heat conduction analysis only concerns solid regions.  BOA uses the same 
CAD model for both analyses, so it must generate two different meshes: one with and one 
without the vacuum region. CCR was able to achieve all proposed goals of the program and 
more. The technical achievements in Phase I are described in the sections that follow. 
 

Results of the Phase I Program 
The main goal of the Phase I program was to implement a higher order power density field and 
3D linear heat transfer field solver. The program not only provided an accurate and robust heat 
transfer solver but also integrated it into BOA. Specifically the Phase I objectives were: 
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• Implement a 3D finite element heat transfer solver with adaptivity 
• Determine the accuracy of the linear heat transfer field solver to provide the basis for 

development of higher order solvers in Phase II 
• Provide more accurate and smoother power density fields 
• Define the geometry using the same CAD model, while maintaining different meshes, 

and interfacing the power density field between the particle simulator and heat transfer 
solvers 
 

These objectives were achieved using modern programming techniques and algorithms. All 
programming was in C++ and parallelization in OpenMP, utilizing state-of-the-art multi-core 
technology. Both x86 and x64 versions are supported. The GUI design and implementation used 
Microsoft Foundation Class (MFC). 
 
There were four specific tasks proposed for the Phase I program: 
 

• Implement a 3D linear heat transfer solver with automatic and adaptive meshing 
• Examine and validate the new heat transfer solver accuracy and performance using 

comparison with known solutions, including order of convergence verification 
• Improve the accuracy and smoothness of the power density fields at the terminal surface 
• Design GUI windows for specifying boundary conditions, material properties, and post-

processing. 

The technical achievements of each task are described below.  

 

Task 1. Implement a 3D linear heat transfer solver with automatic and adaptive meshing 
The Phase I program successfully integrated a steady state, 3D, linear heat transfer, finite 
element solver into Beam Optics Analyzer with auto meshing and adaptivity. The new solver is 
fully integrated with beam optics analysis, allowing seamless switching between analysis types. 
It is also fully parallelized with OpenMP.  
 
Before describing the solver implementation and performance, integration issues are discussed. 
The main goal of the program is to create an intuitive, user friendly, design tool, requiring as 
little user input as possible to simulate the initial design. This is achieved by using the same solid 
model for all analysis types, including beam optics, heat transfer, and stress analysis. 
Unfortunately, the domain for the particle simulator is the vacuum region, while the domain for 
the heat transfer simulation is the solid regions. Thus, the heat transfer mesher and solver must 
isolate the vacuum region and model only the solid regions. For example, BOA imports a single 
solid model from SolidWorks, shown in Figure 1. This electron gun includes a focus electrode, 
mod anode and capped anode. The anode cap is included to capture the beam for the later heat 
transfer analysis. 
 
BOA uses the same solid CAD model for all analysis types. For magnetostatics , electrostatics 
and beam optics analysis, it creates a background region enclosing the model.  As an option, the 
user can suppress the background region and select symmetry to reduce computational resources, 
as shown in the GUI window. In this case BOA creates a separate companion model including 
the background region and required symmetry for each analysis type, although electrostatics and 
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beam optics use the same companion model. The original model is untouched; however, if it is 
modified by the Optimizer or the user, BOA automatically updates the companion models and 
the prescribed boundary conditions. The mesher in BOA generates different meshes appropriate 
for each analysis type. The left side of Figure 2 shows the initial mesh for the beam optics 
analysis with the background enclosure, and the right side shows the heat transfer mesh, where 
only the solids are considered. The beam optics mesh comprises 289,152 tetrahedra, 578,700 
faces and 49,348 vertices; however, the heat transfer comprises only 11,704 tetrahedra, 24,995 
faces and 2,864 vertices. Maintaining internally separate meshes dramatically reduces the 
computer resource requirements when integrating heat transfer with beam optics. 
 

 
Figure 1 A mod anode electron gun imported from SolidWorks  
 

 
Figure 2 Initial mesh (a) for beam optics (b) for heat transfer 
 
Computational resources can be reduced further by making non-critical components invisible to 
the mesher without modifying the original CAD model, as shown in Figure 3. Here the emitter, 
focus electrode, and mod anode are removed from the heat transfer analysis. This feature will be 
implemented in Phase II. 
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Figure 3 Future implementation mesher where only critical parts specifiable by users to be included in simulation 
 
Starting with a mesh, such as in Figure 2b, the heat transfer analysis solves the steady state heat 
equation 
 
 f∇ =q  (1) 

where f is the heat input per unit volume, and q is the heat flux vector defined in terms of 
temperature gradient by the generalized Fourier law: 
 
 Tκ= − ∇q  (2) 

where the conductivities κ are given functions of x. This conductivity matrix is assumed positive 
definite. The heat transfer currently assumes the most common, isotropic materials in which the 
thermal conductivity is single valued for all three spatial directions.  Anisotropic materials will 
be added in the Phase II program. To close the problem, the heat equation must also satisfy the 
prescribed Dirichlet and Neumann boundary conditions 
 
  (3) 0                  on dT T= Γ

 0          on s nq− ⋅ = Γq n  (4) 

Across region interfaces of different materials, the following continuity condition for the normal 
component of the heat flux vector without the surface heat density must also be met: 
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 ( )1 2 0− ⋅ =q q n  (5) 

Instead of working with the strong form above, the finite element approach in BOA works with 

its variational or weak form. One can discretize the problem domain as 
0

eln
e

e=

Ω = ΩU where Ωe is 

the element domain to obtain the integral, weak formulation from the strong form 
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1 1
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Solving for T in Eq. (6) requires more specialization of the trial solutions and weighting 
functions, particularly in the element domains. A typical member of the weighting functions in 
each element is assumed to have the form 

   (7) ( ) ( )
1

enn

a
a

W N
=

= ∑x x

where Na is the interpolation or shape function associated with element node number a, wa is a 
constant, and nen is the number of element nodes. These are required to be linearly independent 
throughout. Likewise, for trial solutions 

   (8) ( ) ( )
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where  is the unknown temperature at element node a and  aT

   (9) ( ) ( )0
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Similarly,  

  ( ) ( )
1

enn

a
a

f N
=

= ∑x fx  (10) 

  ( ) ( )0
1

enn

s a
a

q N
=

=∑x x saq  (11) 

Substituting Eqs. (7) to (11) into Eq. (6) yields 
 

  ( ) ( )
1 1

    
el el

e e e
n

n n

a b b a c c a c sc
e e

N N d T N N f d N N q dκ
Ω Ω Γ

= =

∇ ⋅ ∇ Ω = Ω+ Γ∑ ∑∫ ∫ ∫  (12) 

where repeated indices indicate implicit sums and 1 . Equation ≤ a,b,c ≤ nen

bT
(12) is the finite 

element matrix formulation to solve for the nodal temperature . The integral on the left hand 
side is often called the Dirichlet matrix. It is symmetric and positive-definite. 
  

7 
 



Calabazas Creek Research, Inc.      Integration of Heat Transfer, Stress and Particle Trajectory Simulation

Shape functions must be selected in such a way that, as the finite element mesh is refined, the 
approximate variational solution converges to the exact solution. Sufficient conditions on the 
shape functions for convergence are that they be (1) smooth on each element interior, (2) 
continuous across each element boundary, and (3) complete. These convergence conditions 
guarantee that first derivatives of the shape functions have, at worst, finite jumps across the 
element interfaces. This ensures that all integrals necessary for the computation of element arrays 
in Eq. (12) are well defined, since, at most, first derivatives appear in the integrals. They also 
require a shape function capable of exactly representing an arbitrary linear polynomial when 
nodal degrees of freedom are assigned to the element nodes. This will ensure that the constant 
values over each element domain are representable as the exact solution and its first derivatives 
are recalculated as the finite element mesh is further and further refined. Lagrange polynomials 
are used for the shape functions in both electrostatics and heat transfer solvers. They could be of 
any order, but due to time constraints, only linear tetrahedral elements were implemented for the 
heat transfer solver in the Phase I program.  Quadratic tetrahedral elements will be implemented 
in the Phase II program to improve the field fidelity for a given mesh. 
 
Isoparametric elements were implemented in the heat transfer solver. With isoparametric 
elements, both spatial and field element interpolations are the same, and the three above basic 
convergence conditions are virtually automatic. In addition, the standard finite element 
formulation intrinsically ensures continuity, although this is weakly (by integration instead of 
pointwise) ensured for normal components of the heat flux vector across the element interfaces.  
For the piecewise linear finite element space, the discrete temperature is linear, and the discrete 
temperature gradient is uniform on the element interior.  
 
A procedure was also implemented to smooth out the computed gradient to produce a C0-
continuity finite element space. This important procedure provides the accuracy and smoothness 
of temperature gradients when calculating error estimates required for adaptive meshing. The 
finite element method produces the optimal approximation from the finite element spaces.  
However, it is frequently the case that one is more interested in the gradient of the finite element 
approximation than in the approximation itself.  As mentioned above, the discrete temperature 
gradient vector is discontinuous across the element boundaries, meaning that the approximation 
of the main quantity of interest is discontinuous.  For this reason, the heat transfer solver 
implemented a post-processing procedure, whereby the discontinuous approximation to the 
gradient of the temperature was smoothed.  It is important to note that even though the 
temperature gradient is discontinuous across the element interfaces in the finite element 
formulation, the normal component of heat flux is weakly, in the integral sense, continuous.  The 
reasons to perform such post-processing to smooth out the gradient field are not purely cosmetic.  
The main reason for post-processing of the gradient field is to estimate a posteriori the error for 
mesh adaptivity. A rather natural approach to the error estimation is based on measuring the 
difference between the direct and post-processed (recovered) approximation to the gradient. The 
approach uses the procedure developed by Zienkiewicz and Zhu [14, 15, 16, 17]. Their so-called 
superconvergent patch recovery (SPR) procedure post-processes the finite element 
approximation to obtain values of the gradient field at the nodes.  These are the recovered, 
averaged, and smoothed gradients sampled from the centroids of all elements sharing a common 
node. These values are then used to obtain the globally reconstructed gradient field, producing a 
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C0-continuous gradient field. The recovered gradient is then compared with the unprocessed field 
gradient to obtain the posteriori error estimate.  
 
In more detail, the SPR procedure creates at each vertex of the mesh a patch consisting of the 
elements having the same vertex.  The values of the gradients of the approximation sampled at 
the centroids (for linear tetrahedral elements) in the patch produce a recovered value at the 
central node by a discrete least squares fit of the values at the sampling points.  The reason for 
sampling the gradient at the centroids of linear tetrahedral elements is because of the well known 
fact that the gradient at a centroid is superconvergent [18].  Superconvergence means that the 
gradient evaluated at a centroid is as good as the true value in terms of a seminorm.  Thus, the 
SPR method creates a local patch field  at each mesh vertex to form a globally smoother field. 
  
Beam optics analysis of the electron gun model of Figure 1, with the mesh of Figure 2a, 
produces a beam that generates a power density field on the anode cap, shown in Figure 4. The 
surface power density field with its mesh is shown in Figure 4b, as a close-up. This beam optics 
analysis required 354.5s of CPU time in an 8-core PC. 
 

 
Figure 4 (a) Electron beam and its generated power density (b) A close-up of the power density field with its mesh 
 
To use this power density field in a heat transfer analysis, the user invokes the GUI to change the 
analysis type. The analysis uses the power density field as the heat flux on the anode cap and   
applies boundary conditions, such as prescribed temperatures or convection cooling. For this 
example, convection cooling is specified on the anode outer diameter and cap. In addition, the 
power density field is scaled for 5% duty, to avoid temperatures above the copper melting point. 
This ability to scale the power density field is included in the heat transfer GUI. The temperature 
profile generated from this power density without adaptivity is displayed in Figure 5. The left 
side shows the temperature contour on the anode cap, and the right side shows the temperature 
profile in color gradient fill with the initial mesh. 
 
Invoking adaptive meshing provides more accurate results and a smoother temperature profile, as 
shown in Figure 6. Without adaptive meshing, the analysis underestimates the temperature more 
than 100oC. The extra computational cost of adaptivity for heat transfer analysis is minimal and 
requires no extra effort from the user. The CPU time required without adaptivity was 2.38s, 
while the time required with adaptivity was 7.92s in an 8-core PC. The adaptive mesh solution 
required 12,706 tetrahedra and 2,705 vertices.  
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Figure 5 Temperature (a) as contour on the anode cap (b) as color gradient fill with the initial, non-adaptive mesh 
 

 
Figure 6 Temperature (a) as contour on anode cap (b) as color gradient fill with adaptive mesh 
 
The next example demonstrates use of BOA to design a collector for a multiple beam klystron, 
as shown in Figure 7. Fifteen spent beams are injected into a collector, which is cooled by 
convection. These fifteen spent beams generated a power density field on the collector inner 
surface. The beam optics analysis required an hour of CPU time to complete, and the results are 
shown in Figure 8. This power density field is used as a heat flux boundary condition in the heat 
transfer analysis. Figure 9 compares the initial mesh with the adapted mesh, which comprised 
865,231 tetrahedra and 172,393 vertices. Figure 10 shows the temperature profile using the 
adaptive mesh. The heat transfer analysis with adaptivity requires 308s. 
 
This task demonstrated a fully functional heat transfer solver integrated with beam optics 
analysis. It uses a single CAD model for all analysis types. It is easy to use, simple to mesh, and 
accurate when using adaptivity. 
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Figure 7 A collector for 15 electron beam. Also shown are the initial surface meshes on the collector ID. 
 

 
Figure 8 A collector for 15 electron beam (a) Particle trajectories (b) Beam generated power density 
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Figure 9 (a) Initial meshes (b) Adaptive meshes on the collector ID 
  

 
Figure 10 Adaptivity temperature as contour on the collector OD 
 
Task 2. Examine and validate the new heat transfer solver accuracy and performance by 
comparison with known solutions and convergence  
Validations used two test problems involving a cube with a uniform heat source. In one case, 
both end faces were prescribed temperatures (Dirichlet). In the other case, one end was assigned 
a heat flux (Neumann) and the other with a temperature. There are analytical solutions to such 
problems. 
 
A unit cube with a uniform heat source and each end, in the x direction, prescribed with the 
temperature To and T1 respectively has the analytical solution 

q&
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 ( ) ( )0 11
2 i
qT x x T T x
k

= − − + − +
&

T  (13) 

 where k is the material thermal conductivity. Substituting 3
6 W

m1 10q = ×& and with 0 1 0T T= =
W

m393.5 oCk ⋅= into Eq. (13) yields 

 ( )1270.7 1T x x= −  (14) 

This exact solution is plotted against the finite element (FE) solution in Figure 11, showing they 
are very well matched even though the mesh for this FE solution used only 4,029 tetrahedra and 
982 vertices. The raw and smoothed finite element temperature gradients versus the exact 
solution are plotted in Figure 12. The raw finite element temperature gradient solution in a linear 
element is, as expected, uniform and pointwise discontinuous across their interfaces. However, 
the heat flux intrinsically included in the finite element method is weakly continuous across the 
element interfaces in the integral sense. The smoothed temperature gradient produced by the SPR 
scheme precisely matches the exact solution, except at the boundaries. Better match at the 
boundaries is expected when the mesh is refined. 
 

 
Figure 11 FE versus exact temperature in a unit cube having a uniform heat source and homogeneous BC 
 
The unit cube with a uniform heat source and one end prescribed with a heat flux and the 
other end zero temperature has the exact solution 

q& 0q′′

 

 ( ) (2 01 1
2

qqT x
k k

)x
′′

= − + −
&

 (15) 
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Substituting again 3 2
6 4W W

0m m1 10 , 393.5  and 1 10oCq k q⋅
′′= × = = ×& W

m  into Eq. (15) yields 
 
 ( ) ( )1 1270.7 1 25.414T x x= − + +⎡ ⎤⎣ ⎦  (16) 

This exact solution is compared with the finite element solution in Figure 13, showing excellent 
agreement. The raw and smoothed temperature gradients are compared with the exact gradient in 
Figure 14. The raw FE gradient is, as expected, uniform in each element and discontinuous 
pointwise across the element interfaces. The smoothed FE field is in excellent agreement with 
the exact solution, except at the boundaries. Better match is also expected as the mesh is refined. 

 
Figure 12 FE raw and smoothed temperature gradient versus exact solution in a unit cube with a uniform heat 
source and homogeneous boundary condition at both ends 
 
This task next compared the numerical rate of convergence with the theoretical rate. Szabo and 
Babuska [13] provide an error estimate as a function of the number of degrees of freedom when 
the exact solution is smooth, i.e., no singular points inside the solution domain or on its 
boundary, as follows 

 
1 k

ce
N

≤  (17) 

where c is a positive constant, k the polynomial degree of elements, N the number of degrees of 
freedom, Th the finite element solution, T the exact solution and 
 

 ( )
1

22
1

 he T T d
Ω

⎡ ⎤= ∇ − Ω⎣ ⎦∫  (18) 
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Figure 13 Finite element temperature versus exact solution in a unit cube with a uniform heat source, heat flux at 
the left end and zero temperature at the right end 
 

 
Figure 14 FE raw and smoothed temperature gradient versus exact solution in a unit cube with a uniform heat 
source, heat flux at the left end and zero temperature at the right end 

15 
 



Calabazas Creek Research, Inc.      Integration of Heat Transfer, Stress and Particle Trajectory Simulation

 
Equation (18) can also be simplified to [10] 
 

 
1

2

1
 h he T T d T T d

Ω Ω
= ∇ ⋅∇ Ω− ∇ ⋅∇ Ω∫ ∫  (19) 

Substituting Eq. (19) into Eq. (17) yields the error energy norm estimate 

 
1

2

1
 h h

k

ce T T d T T d
NΩ Ω

= ∇ ⋅∇ Ω− ∇ ⋅∇ Ω ≤∫ ∫  (20) 

 
Figure 15 Convergence rates for nonuniform mesh refinement, interpolation order is k = 1 
 
The first integral is the energy norm of the exact solution, and the second integral is the finite 
element energy norm. The first integral can be derived exactly from Eq. (14), and the second 
integral is produced by the finite element solver. Plotting the error energy norm given by Eq.(19) 
versus the number of degrees of freedom or mesh vertices indicates the accuracy of the solver. 
The results are shown in Figure 15. The asymptotic convergence rates approach the linear rate as 
predicted by Eq. (20). It is expected the results will approach the quadratic rate when quadratic 
finite element analysis is implemented in the Phase II program. 
 
This task demonstrated that the solver accuracy and convergence rate match the theoretical 
solution and rate, respectively. 
 
Task 3.Improve the accuracy and smoothness of the power density fields at the terminal 
surfaces  
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BOA generates the power density fields, interpolating the particle energies to the mesh vertices 
on the terminal surface, as follows, 
 
 ( ) ( )n nE N E= x x  (21) 

where En is the particle energy interpolated to the vertex n, x the particle position, E particle 
energy at x, and Nn the interpolation, shape function.  After all particle energies are accumulated 
to the vertex n, its power density can be calculated by the following formula 

 

1
m

n
n M

n
m

EW
N d

= Ω

=
Ω∑ ∫

 (22) 

where M is the number of finite elements adjacent to the same vertex n, and Ωm is the volume of 
the mth element sharing this same vertex.  Power density fields displayed in Figure 4 and Figure 
8b are first generated by linear Lagrange shape functions then smoothed by the L2 projection to 
the quadratic Lagrange space. The heat transfer solver in BOA then uses this quadratic power 
density field as the heat flux boundary condition. It will use the quadratic Lagrange shape 
function to interpolate the power density field when computing the element integrals in the 
matrix assembly phase. The SPR scheme described earlier to smooth the gradient field is only 
applicable to linear space. It cannot be used to smooth the power density field by increasing the 
field interpolation order from linear to quadratic. The L2 projection, which is the 
multidimensional version of the 1D least squares curve fit, is needed for higher order spaces. 
There are two ways to implement the L2 projection, locally or globally. In the local scheme, the 
field in each element is projected from linear to quadratic integrally. For each mesh vertex, a 
patch of elements adjacent to it (the same as the SPR scheme) is then formed. The element 
projected fields in the patch are now averaged using another L2 projection, but from quadratic to 
quadratic space to obtain the global field at each vertex. In the global scheme, the whole linear 
field is simply projected to the quadratic space. Due to the limited scope of the Phase I program, 
only the global L2 projection of the power density field was implemented. 
 
To investigate the effectiveness of the global L2 projection of the power density field on 
improving the temperature fidelity, let us revisit the electron gun in Figure 1. The linear power 
density on the anode cap is shown in Figure 16a and the quadratically projected power density 
field in Figure 16b. The quadratic field shows a higher resolution of a narrower concentration of 
field at the center. 
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Figure 16 Power density field on the anode cap (a) linear field (b) quadratically projected field 
 
Figure 17a  shows the temperature on the anode cap generated by the linear power density field, 
and Figure 17b  shows the quadratic power density field. There are few noticeable differences 
between the two profiles. The line plot of the temperature on the anode cap along the y axis 
confirms this observation, as shown in Figure 18. 
 

 
Figure 17 Temperature profile on anode cap (a) from linear (b) quadratic power density field 
 
Due to the ballistic nature of electrons and the linear interpolation from the particle positions and 
energies to the mesh, the power density field is neither smooth nor uniform.  Prior to the Phase I 
program, it was anticipated that improving the field fidelity by increasing the order of 
interpolation for the power density field would improve the temperature resolution. However, the 
above results appear to indicate that a higher order power density field does not translate to 
major differences in the heat transfer solution. It is conceivable that the global L2 projection 
generates excessive damping and overlooks the local variations of the field. In the Phase II 
program, the local L2 projection will be implemented to revisit using higher order power density 
for heat transfer analysis. Although implementation of the global L2 projection does not improve 
the heat transfer solution, the quadratic shape function to interpolate the higher order power 
density field is complete and ready for the higher order solver in the Phase II. 
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Figure 18 Temperature on the anode cap along the y axis. Practically identical using either linear or quadratic  
power density field. 
 
Task 4. Design GUI windows for heat transfer problems 
The heat transfer in BOA is fully functional in terms of solution accuracy, stability and 
robustness. The Phase I program also integrated a GUI for entering geometry (see Figure 1), 
selecting analysis type, slicing and viewing the model in different ways, and displaying different 
axes, particle colors, etc. The GUI also allows selection of materials from a built-in database that 
includes the appropriate material properties for the analysis selected. Figure 19 displays the 
electrostatics and heat transfer screens showing the same part names and materials, but with 
different boundary conditions appropriate to the analysis type. In the heat transfer screen, the 
user specifies the heat source or temperature in a solid part. He can also prescribe the 
temperature or heat flux or convection cooling on a surface. 
 
The Phase I program extended the fine grain meshing control in BOA to create the mesh for heat 
transfer analysis. Particular model entities, parts, or surfaces can be selected to specify their 
mesh sizes as shown in Figure 20. Free mesh regions or surface constrained regions can be 
specified either cylindrical or rectangular prism as shown in Figure 21. Since each analysis type 
maintains its own mesh, it also maintains its own meshing parameters, allowing very flexible 
control to invoke finer meshes in particular entities in one analysis type but coarser meshes in 
another type. These local refinement meshes can be refined but not coarsened during the 
adaptivity process. 
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Figure 19. BOA Attribute Assignment Windows for Electrostatics and Heat Transfer. Materials can be selected 
from a list of built-in or user's defined materials. 
 

 
Figure 20 GUI screen for heat transfer to specify local meshing on model entities including free mesh regions 
 
Although CCR originally planned only to design GUI panels to control the field processing of 
heat transfer solutions in Phase I, we found that to be able to diagnose and verify the code, it was 
much more efficient to have a complete post-processor. We decided to complete the GUI driven 
post-processor for processing the heat transfer solution fields in Phase I. As displayed in Figure 
5, Figure 6, Figure 8, Figure 12, Figure 16, Figure 17 and Figure 22, the heat transfer fields can 
be displayed along a line, on a surface, or in a region. The post-processor window is shown in 
Figure 22. 
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This task completed the heat transfer post-processor to display fields at a point, along a line, on a 
surface and in a part. Meshes producing the solution fields, either initial or adapted, can also be 
displayed. 
 

 
Figure 21 (a) Free cylinder mesh, both end face centers must be specified (b) Surface constrained cylinder mesh, 
length is required 
 

 
Figure 22 Heat transfer post-processor panel to display fields on a point, line, surface and part  

Summary 
The Phase I program originally only planned to demonstrate the stability, accuracy, and 
convergence of the heat transfer solver, examine the integration issues with sharing models and 
meshes, and design the post-processor panel to display solution fields. The Phase I program not 
only accomplished these tasks but also completed the heat transfer integration with beam optics 
analysis in BOA. Beam Optics Analyzer is now fully capable of performing thermal analysis 
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using the beam generated power density with convection cooling. Using the same CAD model, 
BOA can seamlessly maintain different meshes, material properties and boundary conditions for 
each analysis type.  
 
There are still a number of tasks remaining to complete the development. The heat transfer solver 
currently assumes isotropic and linear materials. Anisotropic materials such, as pyrolytic 
graphite, cannot be modeled correctly. Devices operated at high temperature causing thermal 
conductivity variations require a nonlinear solver. High temperature devices also require 
radiation heat transfer between surfaces, which is a very highly nonlinear process. The heat 
transfer coefficients, which are functions of flow rate, temperature, coolant properties and 
geometry, can often be empirically calculated. Users must currently provide their own calculated 
values. It would be much more convenient to provide a heat transfer coefficient calculator. One 
would only need to select a cross section from standard shapes to specify its dimension, flow 
rate, coolant temperature and type.  The calculator would determine the heat transfer coefficient 
and automatically update the database if convection cooling was prescribed to a model face.  
This approach could also be extended the current collector optimization by including not only the 
beam optics performance, but also the cooling requirements. 
 
Since BOA includes time dependent PIC capability and can use time-dependent, spent beam data 
from a large signal code, the beam generated power density field could also be time-dependent. 
A transient heat transfer solver would then be required to accurately obtain the device thermal 
characteristics. More accuracy and higher field fidelity are highly desirable, and currently the 
Phase I solver includes only linear elements. Quadratic finite elements would improve the 
solution accuracy. Quadratic interpolation, including adaptivity, would not only improve solution 
fidelity but also maintain a coarser mesh than the linear version. 
 
Once temperature profiles for a device are determined, designers are often concerned with 
thermally induced stresses. In addition, particle beam vacuum devices under thermal stresses are 
subjected to induced and ambient pressures. It would be highly desirable to have a single design 
tool integrating beam optics, heat transfer, and stress analysis. 
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