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Abstract

We have studied the use of a metallic pipe with small corrugations for the purpose

of passively dechirping, through its wakefield, a short, intense electron bunch. The

corrugated pipe is attractive for this purpose because its wake: (i) has near maximal

possible amplitude for a given aperture and (ii) has a relatively large oscillation wave

length, even when the aperture is small. We showed how the corrugated structure

can satisfy dechirping requirements encountered in the NGLS project at LBNL [1].

We found that a linear chirp of−40 MeV/mm can be induced by an NGLS-like beam,

by having it pass through a corrugated, metallic pipe of radius 3 mm, length 8.2 m,

and corrugation parameters full depth 450 µm and period 1000 µm. This structure is

about 15 times as effective in the role of dechirper as an S-band accelerator structure

used passively.

a Work supported by Department of Energy contract DE–AC02–76SF00515.
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INTRODUCTION

In a linac-based X-ray FEL, the beam, after leaving the gun, is accelerated

in RF cavities and compressed in chicanes two or three times, and then accel-

erated once more, before finally entering the undulator for lasing. Typically

the beam is not fully compressed in the final chicane, leaving it with an energy

chirp that needs to be removed by the time it arrives at the undulator. In the

Linac Coherent Light Source (LCLS) there are 550 m of S-band linac after

the final chicane, and the wakefields of the cavities are used to passively can-

cel the chirp—to “dechirp” the beam. Some linac-based FEL’s, however, use

lower-frequency, superconducting L-band technology (e.g. TESLA XFEL in

Hamburg [2] and the Next Generation Light Source (NGLS) in Berkeley [1]),

where the wakefield is too weak to cancel the chirp. Others have soft X-ray op-

tions that need no acceleration beyond the final chicane (e.g. the PAL XFEL

in Pohang [3]). In either case, the residual chirp can always be canceled ac-

tively by running the beam off-crest in a linac; however, this is an inefficient

and costly option. There is interest, therefore, in developing an inexpensive,

passive device that can be used as a dechirper.

A metallic beam pipe with small, periodic corrugations has been used as

a model for roughness impedance and recently as a source of beam-driven

terahertz radiation [4]. What makes it attractive as a dechirper (and what

made it attractive as a THz radiator) is that one can choose parameters that

yield a large wake amplitude—by taking a small pipe aperture—and at the

same time have a wake that oscillates with a relatively long wavelength. Note

that an object that behaves similarly—a beam pipe with a thin dielectric

layer—was proposed in 1990 by Rosing and Simpson to be used as a “wakefield

silencer” (a dechirper) [5].

In this report we begin by reviewing basic analytic properties of a metallic
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pipe with small corrugations. We then apply the results to designing an ex-

ample device to satisfy dechirper requirements for the NGLS beam. We also

include a numerical simulation, where we use I. Zagorodnov’s time-domain,

finite difference wakefield solver, ECHO [6]. We compare analytical and nu-

merical results. We provide a discussion section, and finally a conclusion.

THEORY

Consider a short, ultra-relativistic bunch of electrons passing on-axis

through a periodic (cylindrically-symmetric) metallic structure with small

corrugations. Let the pipe radius be a and the corrugation properties be:

depth δ, period p, and gap g, with δ, p � a (see Fig. 1). We further require

δ & p, in which case we designate the structure a “steeply corrugated” struc-

ture. Then the beam excites one strong fundamental mode with a frequency

that is far above the beam pipe cut-off. For this mode the wave number, k, is

well approximated by [7, 8]

k =

√
2p

aδg
(1)

and the mode loss factor by

κ =
Z0c

2πa2
, (2)

where Z0 = 377 Ω and c is the speed of light. The point charge wake is simply

given by

W (s) = 2κH(s) cos ks , (3)

with the unit step function H(s) = 1 (0) for s > (<) 0, and the distance

between driving and test particles given by s (with s > 0 indicating a point

behind the driving particle).

The wake at the origin for any round, periodic structure of minimum aper-
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FIG. 1. A sketch of the corrugated structure.

ture a is

W (0+) = 2
∑
n

κn =
Z0c

πa2
, (4)

where κn is the loss factor of mode n. This is true for a smooth resistive

pipe [9], for a metallic pipe with a thin dielectric layer [10], for a disk-loaded

accelerator structure [11], and for the corrugated pipe. It is believed to be a

general property of wakefields in structures with cylindrical symmetry. What

makes the corrugated pipe unique and attractive as a dechirper is: (i) it has

only one significant mode, with the near maximal κ for a given aperture (see

Eq. 2), and (ii) one can have a small, for a strong interaction, and still choose

corrugation parameters to give a relatively low k.

For a bunch with longitudinal distribution λ(s), the bunch wake is given by

the convolution

Wλ(s) = −
∫ ∞
0

W (s′)λ(s− s′) ds′ ; (5)

here a negative value of s is at the front of the bunch, and a negative value

of Wλ(s) means energy loss. The average of the bunch wake is the bunch loss

factor

κλ = −〈Wλ〉 ≡ −
∫ ∞
−∞

Wλ(s)λ(s) ds . (6)
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In the case of a Gaussian bunch of length σz

κλ =
Z0c

2πa2
e−k

2σ2
z ; (7)

for a very short bunch (kσz � 1), κλ ≈ Z0c/2πa
2. For a pipe of length L,

the wake induced energy change is given by Uλ(s) = e2NWλ(s)L, with eN the

bunch charge, and the average energy loss in the bunch is Uloss = e2NκλL.

Note that our analytical results are valid under the conditions: δ/a, p/a� 1

and δ & p (a steeply corrugated structure). If we e.g. somewhat violate the

last condition, the mode frequency will be higher and the excitation (mode

loss factor) lower than the analytical values [7]. In the regime of a “shallowly

corrugated” structure (δ � p) the dominant mode is gone, and the structure

wake is completely different [12].

Note also that the results given here are steady-state results, assuming the

beam travels through a truly periodic structure. With a finite-length pipe

there is also a transient response, induced when the beam enters the pipe.

After the beam has traveled a distance on the order of the catch-up distance,

zcu =
a2

2σz
, (8)

with σz the rms bunch length, the steady-state behavior dominates and this

component can be ignored. We will find that for reasonable parameters for

a dechirper this will indeed be the case. The second effect of a finite-length

pipe—that due to the high group velocity in the radiation pulse—is discussed

in the following section, and will also be shown to be unimportant for the

dechirper.

Finally, note that if the beam traverses the corrugated pipe off-axis, a strong

dipole mode of almost the same frequency as the fundamental mode will be

excited [8], which can generate an unwanted transverse kick to the beam and

lead to instability. We can estimate the strength of the effect. Assuming a
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uniform bunch distribution of length `, the instability strength at the tail of

the bunch can be characterized by the dimensionless parameter [13]

Υ =
e2NW ′

x(0)`βxL

2E
, (9)

with W ′
x the slope of the dipole wakefield, βx the average of the optical

beta function, and E the beam energy. For the corrugated pipe W ′
x(0) =

2Z0c/(πa
4) [8]. For stability Υ should be small compared to 1.

Radiation Pulse

The beam, in its passage through the corrugated pipe, generates a radiation

pulse [4]. When the bunch leaves the structure, it will directly be followed by

a relatively long, multi-cycle pulse. The radiation pulse properties, though

maybe having no direct bearing on the dechirping, may nevertheless be used

as a diagnostic for such a device in a real machine, and may affect its imple-

mentation. For example, in the NGLS the pulse repetition rate is very high

and one needs to make sure that resistive wall heating, caused by the pulse,

does not become a problem. We therefore present here a few of the pulse

properties. For more details, the reader is referred to Ref. [4].

As it traverses the corrugated pipe the beam generates a radiation pulse

with group velocity vg given by(
1− vg

c

)
=

4δg

ap
; (10)

at the end of a structure of length L the pulse will have length

lp =
4δgL

ap
. (11)

Note that Eq. 11 implies that the simple equation for the wake, Eq. 3, cannot

be correct for a finite-length structure; a test particle at s/c > lp/vg does not
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encounter the pulse before it has left the structure, and thus sees no wake.

However, for dechirper-type of parameters, we shall see that s of interest is

small compared to lp, and this effect can be ignored.

The pulse will be hollow, with the fields varying linearly with r: they can

be written as, Er(r) = Hφ(r) = H0r/a, with Er the radial electric field, Hφ the

azimuthal magnetic field, and H0 a constant. Taking the pulse energy equal

to the wake energy, we can estimate the maximum Er(a) for the pulse:

Êr(a) =
2eN

a

√
Z0cκL
πlp

. (12)

With resistive walls, the wake energy lost by the bunch equals the energy in

the pulse plus the energy deposited in the walls. The dissipation length—the

distance along the pipe over which the fields drop by 1/e—is

LD =
a

4ζ ′(1 + 2δ/p)
, (13)

with ζ ′ = (kc/8πσ)1/2, and σ the conductivity of the metal walls. The fraction

of wake energy that is deposited in the walls is (1− η), with

η =
LD
L

(
1− e−L/LD

)
; (14)

the power lost in the walls, Prw = frep(1 − η)NUloss, with frep the beam

repetition rate.

DECHIRPER

After the final bunch compression in a linac-based FEL the tail of the beam

is typically at higher energy than the head. In this case we want a dechirper

that is capacitive—i.e. one in which the bunch tail loses more energy than the

head—which implies we need a bunch that is short compared to the wavelength
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of the mode of the structure, i.e. we need kσz � 1. If this condition is satisfied,

then Eq. 5 can be approximated

Wλ(s) ≈ −2κ
∫ s

−∞
λ(x) dx . (15)

For a Gaussian bunch with kσz � 1, Wλ(s) = −κ[1 + erf(s/
√

2σz)], and

the chirp introduced by the wake is monotonic but not linear. In the case of

a uniform distribution of length l (with kl/3.5 ∼ kσz � 1), Eq. 15 becomes

Wλ(s) ≈ −2κs/l, and the chirp is linear. For a uniform bunch distribution

the chirp at end of a pipe of length L is given by

h = −2κeNL
l

. (16)

For linear dechirping we need a uniform bunch distribution. In real situations,

even if the bunch is uniform over the core of the distribution, it will have horns

or smooth transitions to zero at the head and tail. In such a case the dechirping

will still be linear over the uniform core; however, only the charge within the

uniform region will contribute to the linear chirp. In this case Eq. 16 should

be replaced by

h = −2
καeNL

l
, (17)

with α the fraction of charge in the uniform part of the bunch distribution.

Finally, note that if we needed to induce a chirp of the opposite sign (if

e.g. we changed from under- to over-compression in the final chicane of the

LCLS), our structure would be of questionable utility. In this case we would

need to choose pipe parameters giving kσz � 1, resulting in an inductive wake.

Then, in the case of a Gaussian bunch distribution, Wλ(s) ∼ se−s
2/2σ2

z , which

is linear over the core of the bunch, but non-linear with slopes of the wrong

sign at bunch head and tail. In the case of a uniform bunch distribution, the

wake would be Wλ(s) ∼ [δ(s− `/2)− δ(s+ `/2)] (assuming the head and tail

are at ∓`/2), and the wake is zero over the bunch core.
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EXAMPLE CALCULATION

For an example calculation we consider dechirping requirements for the

NGLS project at LBNL. In a typical mode of operation the beam is operated

at currents of 500–600 A, where the bunch charge is eN = 300 pC [14]. Just

past the second bunch compressor the pulse shape is nearly uniform (∼ 75%

of the beam is within the uniform core), with length ` = 150 µm; the energy

E = 350 MeV, and there is a rather linear chirp (over the beam core) of

+40 MeV/mm (the beam tail is at higher energy than the head). After the

compressor the beam is accelerated to 1.8 GeV in a superconducting linac. To

cancel the chirp with RF alone, the beam would need to run at 25◦ behind

crest, resulting in 10% loss in efficiency of acceleration.

The dechirping can be done passively in a corrugated pipe. The required

chirp is h = −40 MeV/mm. We assume a uniform charge distribution (with

fraction of charge α = 0.75 in the uniform core), with bunch length and charge

given above. How do we choose the structure parameters? Let us say we want

to limit the relative size of the 3rd order term in the chirp at the end of the

uniform bunch of length ` to the value ε; i.e. we want (k`)2/2 = ε. Using

Eq. 1, this implies that we choose a to be

a =
`√

(g/p)(δ/a)ε
. (18)

The ratio (δ/a) needs to be small, for the analytical formulas to be valid,

but not too small, in order to keep k relatively small; we take (δ/a) = 0.15. For

low k, we would also want (g/p) ≈ 1 (see Eq. 1). However, this would result

in very thin irises, which is not desirable. So we choose (g/p) = 0.75. We

want the 3rd order term in the chirp to be small and take ε = 0.02. Then the

proper choice of a = 3 mm and δ = 450 µm. The period p should not be large

compared to δ and should be small compared to a; we take p = 1000 µm; then
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g = 750 µm. With these parameters the chirp can be achieved (see Eq. 17) with

a pipe of length L = 6.65 m. These parameters yield (Eq. 1) k = 1.4 mm−1;

k` = 0.21, and average energy loss in the bunch Uloss ≈ eNκL = 4.0 MeV or,

equivalently, the total energy lost is 1.2 mJ.

The catch-up distance zcu = 10 cm (taking σz = 150 µm/3.5), which is small

compared to the structure length; thus one can ignore the transient response

of the structure. For the radiation pulse, (1 − vg/c) = 0.45, and the pulse

length lp = 3.0 m. Since s/lp for s of interest is very small, the modification

of the wake due to the finite pulse length, discussed earlier, is small and can

also be ignored. The maximum of Er near the boundary, Êr(a) = 2.5 MV/m.

For the radiation pulse [assuming σ = 5.4 × 1017/s (Cu)], the dissipation

length for wall losses LD = 2.2 m, and the fraction of energy deposited in the

walls (1− η) = 0.68. The power dissipated in the walls, assuming a repetition

rate frep = 1 MHz is 122 W/m, which should not be difficult to manage.

To estimate the strength of the dipole mode we use Eq. 9, taking βx = 10 m.

We obtain as strength parameter at the tail of the bunch, Υ = 3.8. For

stability, this parameter should be small compared to 1. The fact that it is

not small and also not large implies that the transverse instability will be an

important issue for such a dechirper if used in the NGLS, but one that is

manageable. The parameters and selected properties of the model dechirper,

meant for the NGLS example problem, is given in Table I.

NUMERICAL SIMULATION

So far all the results have been analytical, using formulas meant to be valid

for small parameters. To obtain accurate results for our specific structure, we

have also performed numerical simulations using I. Zagorodnov’s time domain,

finite difference computer program ECHO, a code for finding wakefields in 2D
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TABLE I. Example NGLS dechirper parameters. Also given are the analytical values

of wavenumber k, mode loss factor κ, fraction of wake energy that ends up in the

walls, (1− η), and resistive wall heating per unit length, Prw/L. We have assumed

the pipe is Cu; that eN = 300 pC and frep = 1 MHz.

a [µm] δ [µm] p [µm] g [µm] L [m] k [mm−1] κ [MV/nC·m] (1− η) Prw/L [W/m]

3000 450 1000 750 6.65 1.4 2.0 0.68 122.

(cylindrically symmetric) structures [6]. Specifically, our goal here is to verify

that—for an NGLS-type bunch—a linear energy chirp is induced, and to find

the length of pipe needed to obtain the correct chirp amplitude.

The program ECHO is meant to be run using Gaussian driving bunches.

Thus the wake for the flat-top bunch needs to be calculated in two steps. In

the first step, ECHO is run for the structure of Table I using a short Gaussian

driving bunch (σz0 = 10 µm), calculated out to s = 250 µm behind bunch

center, in order to generate a “Green function” wake. In the second step the

Green function is convolved with the desired flat-top bunch distribution.

The mesh size for the ECHO run was 2 µm in both radial and longitudinal

directions. The run took several hours on a Windows desktop computer. The

results are shown in Fig. 2 (the blue curve). The red dashes give the analytical

approximation, Wλ0L = −κL(1 + erf(s/
√

2σz0)), with κ, L, given in Table I.

The agreement between the two results is very good until ∼ 10 µm behind

bunch center. Note also that the numerically obtained wake loss of the bunch

agrees with the expected result, Uloss = W (0+)/2 = Z0c/(2πa
2) (Eq. 4), to

4%; this is an accuracy check on the numerical results.

Behind s = 10 µm, however, the numerical result begins to deviate and

become less (in amplitude) than the analytical one. This deviation is not due

to the curvature in the wake, which we ignored in the analytical calculation,
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FIG. 2. Dechirper for NGLS, Green function: wake of σz0 = 10 µm bunch

(blue). The dashed, red curve gives the analytical approximation Wλ0L =

−κL[1 + erf(s/
√

2σz0)], with L, κ, given in Table I. The driving bunch shape

λ0, with the head to the left, is given in black.

since this component contributes only a few percent at s ∼ 100 µm. We believe

this discrepancy is due to the effect of higher order modes in the structure.

Repeating the ECHO run, but this time finding the wake to 6 mm behind

the bunch, we obtained a wake with frequency and amplitude respectively 8%

higher and 27% lower than our analytical expectations. To verify these results

we also ran KN7C, a program that uses field matching to find the longitudinal

modes in a periodic, disk-loaded structure [15]. For KN7C the fundamental

mode frequency and loss factor are respectively 9% higher and 32% lower than

the analytical expectations, in good agreement with the time-domain, ECHO

results. These result is not surprising: the analytical formulas were meant for

small corrugations, and our corrugations are apparently not sufficiently small.
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For the second step of obtaining the wake for the NGLS bunch, the Green

function wake was convolved with a model of the NGLS bunch shape. The

actual NGLS bunch shape consists of 100 µm of a (relatively) flat-top core, a

horn in front, and a Gaussian decay (with σ ∼ 20 µm) in back; about 75% of

the beam charge is in the core. We take as model of the NGLS bunch shape

the following:

λ(s) =
1

`+
√

2πσb

 1 : |s| < `/2

e−s
2/2σ2

b : |s| > `/2
(19)

where ` = 150 µm and σb = 20 µm. For convolution we perform the integral

Wλ(s) = −
∫ ∞
−∞

Wλ0(s
′)λ(s− s′) ds′ . (20)

The resulting bunch wake is shown in Fig. 3 (the blue curve). We see a nearly

perfectly linear chirp over the uniform bunch core of the distribution. The

chirp, however, is h = −32.5 MeV/mm, 19% below our requirement, due to

the deviation between numerical and analytical results in the Green function

noted above. Thus, to obtain a chirp of h = −40 MeV/mm with this structure,

the dechirper needs to be lengthened to L = 8.2 m.

DISCUSSION

A smooth, resistive pipe can also serve as a dechirper. To compare its

effectiveness with that of the corrugated pipe note that, in both cases, the

point charge wake at the origin W (0+) = Z0c/(πa
2), where a is the radius

of the pipe. The first zero-crossing of the wake for the corrugated pipe is at

s = π/(2k) = 900 µm. However, for the resistive pipe the first zero-crossing

occurs at s ∼ s0 = (ca2/2πσ)1/3, with σ the resistivity of the metal [9]. For

a = 3 mm (the same aperture as the corrugated pipe), s0 = 9 µm (Cu),
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FIG. 3. Dechirper for NGLS: wake of model of NGLS bunch distribution (blue).

The dashed, red curve represents a chirp h = −32.5 MeV/mm. The bunch shape,

with the head to the left, is given in black.

32 µm (stainless steel). Thus, because of the very short distance to the first

zero-crossing in the wake, the smooth resistive pipe is much inferior to the

corrugated pipe in the role of a dechirper.

For an S-band accelerator structure, like that of the SLAC linac, the short-

range wake can be approximated by [11]

W (s) =
Z0c

πa2
H(s)e−

√
s/s1 , (21)

with s1 = 0.41a1.8g1.6/L2.4. To first order, the relative dechirping effectiveness

(dechirping per unit length) compared to the corrugated pipe is given by the

ratio of a−2 for the two structures. For the SLAC structure a ∼ 1.2 cm, which

implies it is about a factor 15 less effective than the corrugated dechirper.

But it is not just the aperture; the shape of the S-band structure is also

not optimal for the role of dechirper. If in a Gedanken-experiment the S-
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band structure were scaled in dimensions by a factor 0.26 to give the same

aperture [and same W (0+)], the resulting W (s) would have a relatively rapid

droop, by 55% at s = 150 µm. When convolved with the model NGLS charge

distribution, the result is a linear energy chirp only 2/3 that of the corrugated

pipe (per unit length of structure), and includes also a significant non-linear

chirp component. The corrugated pipe clearly makes a better dechirper.

For an adjustable dechirper one can consider using parallel metallic plates

with corrugations, and have the distance between the plates adjustable, where

the strength of interaction changes as a−2, with a the the half-distance between

the two plates. Earlier studies have found that a mode similar to that in the

round pipe is generated by this configuration, though for a given aperture the

excitation is a factor π2/16 weaker and the mode wave number a factor 1/
√

2

lower (see e.g. [16]). Because of the added flexibility in chirp control, the flat

geometry may be a better option than the round geometry considered in this

report.

For this report we have used corrugations with sharp edges, mainly for

illustrative purposes. To avoid high electric fields on the surface it is normally

desirable to have smoothed corners instead. With the right choice of smooth

contour the dechirping properties of the pipe will not change (we’ve done tests

with ECHO). Specifically, if we consider the original, rectangular corrugation

to vary between y = ±δ/2, then the smoothed version needs to keep the

oscillation period and the area under the positive and negative lobes of the

oscillation unchanged.

Finally, it should be noted that one can dechirp as effectively by using a

metallic pipe with a thin dielectric liner (with no corrugations) instead of the

corrugated metallic pipe described here—the wake effect is equivalent [10].

With δ the thickness of dielectric layer, the same formula holds for the loss

factor κ, and the wave number k =
√

2ε/(ε− 1)aδ, with ε the dielectric con-
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stant. There may be advantages in using a dielectric, such as a dielectric may

be more robust to damage by surface electric fields. It will be such practical

considerations that will decide which of these two options is better.

CONCLUSIONS

We have studied the use of a metallic pipe with small corrugations for

the purpose of passively dechirping, through its wakefield, a short, intense

electron bunch. For linear dechirping the bunch needs to have a uniform

charge distribution, or at least a uniform core. What makes the corrugated

pipe unique and attractive as a dechirper is that it has only one significant

mode, with near maximal possible interaction strength (mode loss factor κ)

for given aperture a; and that one can have both large κ, by choosing small

a, and a relatively low mode wave number k, by adjusting the corrugation

parameters.

Another attractive feature of the corrugated pipe is that its wake proper-

ties can be well approximated by simple analytical formulas. We presented

formulas for designing a dechirper using the corrugated pipe and, as practical

example, applied them to parameters for the NGLS project. We then per-

formed numerical simulations, using the computer program ECHO. We found

that, indeed, a linear chirp was induced by a uniform bunch distribution; the

size of the numerical chirp, however, was 20% lower than the analytical ap-

proximations.

A specific result of this report is that a linear chirp of −40 MeV/mm can

be induced by an NGLS-like beam, by having it pass through a corrugated,

metallic pipe of radius 3 mm, length 8.2 m, and corrugation parameters full

depth 450 µm and period 1000 µm. This structure is about 15 times as effective

in the role of dechirper as an S-band accelerator structure used passively.
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