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Abstract 
An equivalent parallel resistor-inductor-capacitor 

(RLC) circuit with beam loading for a polarized TM110 
dipole-mode cavity is developed and minimum radio-
frequency (rf) generator requirements are calculated for 
the Advanced Photon Source (APS) short-pulse x-ray 
(SPX) superconducting rf (SRF) crab cavities. 

INTRODUCTION 
The polarized TM110 dipole-mode loss parameter is 
defined as [1]: 
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where )()1( yR  is the shunt resistance of the dipole-mode 

transverse wake impedance, Uloss is the energy lost to the 
dipole-mode by charge q with vertical offset y, Q is the 
loaded quality factor of the cavity, and 

r  is the cavity 

resonant frequency.  VZ is the longitudinal voltage across 
the cavity gap with cavity stored energy, U.  VZ is 
dependent upon vertical offset, y, according to 
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where Vm is in general a complex constant that allows the 
use of phasor notation in which the time varying 
longitudinal voltage can be written as  tj

m eyV Re .  

The orientation of the fields and coordinate system are as 
shown in Fig. 1. 
 

 

Fig. 1. Polarized TM110 mode fields [magnetic (blue), 
electric (black)] for an electron traversing the cavity gap 
in the +z direction receiving a kick in the +y direction. 

 
The transverse voltage vector is related to the transverse 
gradient of the longitudinal voltage [1] by 
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Thus, the polarized mode transverse voltage vector is 
found to be independent of the vertical offset with a pure 
vertical component given by 
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where 1j , 
c

r
o

   is the wavenumber, and 

omt VV / .  The vertical kick imparted to a charge 

crossing the gap at time t is given as 
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where q is the charge with energy E and the use of the 
negative sign in the definition of 

tV  is for convenience in 

working with e- charge, as will be appreciated later.  Note 
that V


 is of the opposite sign of Ref. [1] because here we 

are assuming a harmonic oscillation of the form tje  , 
whereas Ref. [1] assumes an oscillation of the form tje  .  
In both cases Eq. 4 means that the magnetic field as 
shown in Fig. 1 leads the electric field as shown by 90deg. 
 
As in [1], an R/Q, which is useful for an equivalent circuit 
model for the dipole-mode, can be defined as: 
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which is independent of the radius and is a circuit 
definition that includes the factor of 2 in the denominator.  
The prime is used to be consistent with the notation of [2].  
The cavity unloaded quality factor, Qo, is defined as: 
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where the power dissipated in the cavity walls is given as 
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EQUIVALENT CIRCUIT MODEL 
Using the relationship 

omt VV / , the loss parameter of 

Eq. 1 can be written in terms of the transverse voltage as 
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If an equivalent RLC circuit [3-4] is used to model the 
dipole-mode, then the energy U can be expressed in terms 
of the equivalent circuit parameters as: 
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represents the capacitance of the equivalent circuit.  Thus, 
the loss parameter can be rewritten as 
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Point Charge Beam Loading  
From the fundamental theorem of beam loading [5, Sect. 
6.1], as a charge q crosses the cavity gap of Fig. 1 from 
left to right with vertical offset y , it will deposit energy 

equal to: 
)(2 ykqUloss     (12) 

 
The longitudinal beam-induced voltage is given as 
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From Eq. 2 and Eq. 4  yVV obZbt /00  , giving a 

corresponding beam-induced transverse voltage of 
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The constant Vm associated with the beam-induced voltage 
is 
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The beam-induced longitudinal voltage has a direction 
that maximally opposes the motion of the inducing 
charge.  Thus, it has the same direction whether it is 
above or below the cavity center, as depicted in Fig. 2 for 
an electron beam.  However, the corresponding beam-
induced TM110 mode fields, given by Vm and Vt, change 
sign depending upon whether the inducing charge travels 
above, 0y , or below, 0y , the cavity center.  The 

negative sign used in Eq. 13 and 15 has assumed that the 
charge crosses the gap at time t=0. 
 

 

Figure 2: Depiction of an electron beam-induced electric 
field (red) in relation to the TM110 fields of Fig. 1. 

Single-Bunch Beam Loading 
Equation 13 gives the transverse voltage induced by a 
point charge.  In general a bunch passing the cavity gap 
has a charge distribution.  As in Ref. [5, Sect. 2.3], 
differential superposition can be used to determine the 
voltage induced by a bunch.  Due to the offset dependent 
beam-loading, it is necessary to consider bunch tilt in the 
charge distribution.  Ref. [6] uses a simple 2-macro 
particle model for bunch tilt while Ref. [7] employs a 
tilted Gaussian line distribution.  The model of Ref. [7] 
results in a bunch-induced transverse voltage given by 
(see Appendix A) 
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where 
o is the operating rf radian frequency, 

t is the 

rms bunch length in sec, y is the centroid vertical offset in 
meters, 

yz  is the bunch tilt in the y-z plane in radians, c is 

the speed of light in m/sec, and 
ot is the time at which the 

centroid crosses the cavity gap.  From Eq. 16 it is seen 
that bunch tilt adds a beam-loading component that is in 
quadrature with the centroid offset.  The term oo tje   
represents the phase shift that accounts for the bunch 
arrival time 

ot . 

 
Multi-Bunch Beam Loading 
The methods of Ref. [5 Sect. 6.4] and Ref. [8] can now be 
invoked to determine the induced voltage from an infinite 
bunch train, 

BtV , which can be expressed as 
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where  

0BtV  is the single bunch induced voltage given by 

Eq. 16, 
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with QL the loaded quality factor, then   01 o
 and 

only the first term of Eq. 17 is significant.  
BtV  can then 

be approximated as: 
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Substituting Eq. 16 for 
0BtV  in Eq. 18 gives: 
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where 
b

DC T
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unloaded cavity.   The term  
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the impedance of an equivalent circuit representation of 
the cavity with an input coupler (see Appendix B).  The 
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representing the bunch form factor Ref. [5, Sect. 3.3]. 
 
Equation 19 shows that for   01 o

 the beam-cavity 

interaction of the polarized TM110 dipole-mode can be 
modeled by the equivalent circuit shown in Fig. 3, where 
the equivalent beam loading current phasor is equal to 
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where the negative sign of Eq. 19 was replaced by 

je and 
oos t   is defined as the “synchronous” phase 

angle of the beam.   
 

 
Fig. 3.  Equivalent circuit model for the dipole-mode with 
multi-bunch passage beam loading. 
 
The APS storage ring (SR) harmonic number is h=1296 
with a main rf accelerating frequency of 352MHz.  The 
SPX crab cavities will operate at 2815MHz (the 8th 
harmonic of the main rf) and are expected to be operated 
with a loaded Q value of 6102 LQ corresponding to 

226LT usec.  For the equally spaced 24-bunch fill 

pattern envisioned for SPX, 15.0BT usec giving 

  00007.01 o
. 

 
The beam current can be written with the following 
parameterization to aid with calculations 
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represents the additional phase angle term introduced by 
bunch tilt in combination with beam offset. 
 
The magnitude and phase of the equivalent beam loading 
current as a function of beam offset and tilt is shown in 
Figs. 4 and 5 for MHzo 28152   , 

t =40psec, 

and mAI DC 200 .  With these parameters, from Eq. 26, a 

pure beam tilt of ~0.117rad (6.76 deg) has the same 
magnitude as a pure beam offset of 1mm. 

 

Fig. 4. Equivalent beam-loading current magnitude vs. 
beam tilt for various beam offsets. 

 

Fig. 5. Equivalent beam-loading current phase   vs. 

beam tilt for various beam offsets. 

The expected beam tilt in the last cavity of the first group 
and the first cavity of the second group for 0.5MV 
transverse voltage per SPX cavity is 0.004rad (0.23deg) in 
a 4-cavity-per-sector case and 0.017rad (0.97deg) in a 8-
cavity-per-sector case for SPX [9] assuming a cavity-to-
cavity spacing of 0.15m. 



Phasor Diagram 
Assuming that electrons at the head of the bunch (arriving 
early) are kicked up and those at the tail of the bunch 
(arriving late) are kicked down in the first group of crab 
cavities of the short-pulse x-ray scheme [10], the electron 
beam crosses the first cavity group at the negative-sloped 
zero-crossing of a positive vertical kick, ).(ty  For 

electrons, this implies a positive real Vt and negative real 
Vm according to the convention of Eqs. 2 to 5.  In the 
second group of crab cavities, which is intended to cancel 
the kick imparted by the first cavity group, the electron 
beam nominally crosses the cavity gap at the positive-
sloped zero-crossing.  This implies a negative real Vt and 
a positive real Vm. 
 
For the first group of cavities, the time domain transverse 
kick is equal to a negative sinusoid according to 
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Fig. 6.  Depiction of the nominal and beam-induced 
voltages for the first group of crab cavities with a +y 
beam offset and no tilt. 
 
The synchronous phase angle, 

s , is defined as the phase 

of the beam arrival relative to the negative-sloped zero-
crossing of )(ty .  If the beam arrives late, 0s .  If the 

beam crosses with a positive vertical offset and no tilt, 
then the beam loading current 

BÎ  will have a phase angle 

of  s  .  For a nominal 0s , this implies that the 

beam-loading voltage for a beam with a pure 0y  offset 

is 180deg out of phase with the desired operating voltage 
of the first group of cavities and hence receives energy 
from the generator through the cavity longitudinal electric 
fields.  If the beam has a pure 0y  offset, the beam 

loading is in-phase with the operating voltage of the first 
group of cavities and is helping to drive the cavity to the 
intended operating voltage.  The converse is true for the 
second group of cavities.  Thus, the beam loading from 
pure offset is nominally either in-phase (0deg) or out-of-
phase (180deg) depending upon beam offset polarity and 
operating voltage polarity.  For practical purposes the four 
possibilities from the combination of two polarities can be 

collapsed to two cases for a beam with pure offset: (a) 
0 yVt

 and (b) 0 yVt
 as depicted in Fig. 7.  Note that 

this beam loading for crabbing cavities is in contrast to 
deflecting cavities for which the beam loading for pure 
offset is nominally in quadrature to the intended operating 
voltage. 

 
 

 

Fig. 7.  Electron beam-loading cases for pure offset (a) 
0 yVt

 [top] and (b) 0 yVt
 [bottom]. 

The phasor diagram that can be used to describe the 
beam-loaded equivalent circuit for crab cavities is shown 
in Fig. 8. 
 

 

Fig. 8. Cavity phasor diagram for 0 yVt
. 

The steady-state phasors are defined in accordance with 
the following relationships: 
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combination of the cavity RLC circuit with input loading, 

TÎ  is the total current (generator + beam-loading) driving 

the circuit, Lj
GG eII ˆˆ   is the generator current phasor 

with load angle 
L , and 

BÎ  is the beam-loading current 

phasor given by Eq. 20. 



MINIMUM REQUIRED RF POWER 
The steady-state required forward power, 

gP ,  from an rf 

generator needed to produce a desired transverse voltage 
magnitude, Vt , in the presence of beam loading and cavity 
detuning is given as (see Appendix B) 
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represents the ratio of the power delivered to the beam, 
PB, to the power dissipated in the cavity walls, Pcav, where 
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and Pcav is given by Eq. 7.  

 
The loaded cavity impedance/(detuning) angle, 

Z , can be 

approximated by 
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where 

or    is defined as the nominal cavity 

detuning with 
r  the nominal cavity resonant frequency 

and 
o  the rf drive frequency.  Random or uncontrollable 

fluctuations of the cavity resonant frequency (i.e., from 
microphonics) are represented by 

m .  For a given 

cavity design, operating gradient, beam current, and 
nominal synchronous phase angle the free design 
parameters are the input coupling coefficient,  , and the 

cavity detuning,  .  Thus the right-most term of Eq. 29 
can be written as: 
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Assuming that only a slow cavity tuner is available, such 
that   cannot compensate for the fast uncontrollable 
fluctuations 

m , then Eq. 32 can only be minimized to 
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for an optimum nominal cavity detuning given by 
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Thus, at optimal detuning, 

opt  , 
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Minimizing with respect to   results in an optimal 

coupling coefficient of 
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The minimum steady-state required rf generator power for 
a single SPX cavity as a function of Qext for various beam 
offsets assuming no beam tilt and no microphonic 
detuning is shown in Figs. 9 and 10 for 9101 oQ  and 

(R/Q)=17.8 [11], 0s , Vt=0.5MV per cavity, and 

pst 40  corresponding to an rf component of beam 

current of 
DCo Ii  56.1  with mAI DC 200 . 

 

Fig. 9.  
gP  vs. Qext for 0 yVt

 , 0yz , 0s , 

0mf  , and 0 opt . 

 

Fig. 10.  
gP  vs. Qext for 0 yVt

 , 0yz , 0s , 

0mf  , and 0 opt . 



Until the microphonic detuning levels can be measured in 
the final installation environment, an expected value of 
microphonics may be assumed to be ~17Hz rms [11].  
This corresponds to a 6-sigma peak level of microphonics 
of ~100Hz.  The required power for twice this level has 
been calculated for the same conditions as Figs. 9 and 10 
and is shown in Figs. 11 and 12. 

 

Fig. 11.  
gP  vs. Qext for 0 yVt

 , 0yz , 0s , 

Hzfm 200  , and 0 opt . 

 

Fig. 12. 
gP  vs. Qext for 0 yVt

 , 0yz , 0s , 

Hzfm 200  , and 0 opt . 

 

To account for beam tilt, the required power was 
calculated for unfavorable conditions of a 2deg beam tilt 
with no static detuning ( 0 ) and assuming that the 
peak microphonic detuning is in a direction that increases 
the term represented by Eq. 32.  The results are shown in 
Figs. 13 and 14. 
 

 

Fig. 13.  
gP  vs. Qext for 0 yVt

 , deg2yz , 0s , 

Hzfm 200  , and 0 . 

 

Fig. 14.  
gP  vs. Qext for 0 yVt

 , deg2yz , 0s , 

Hzfm 200  , and 0 . 



REFLECTED POWER 
The power reflected back to the source/circulator for a 
single cavity can be determined from (see Appendix B) 
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where 
GV̂  represents the reflected voltage at the input 

coupler referenced to the cavity gap and is given in terms 
of the required generator current and cavity voltage as 
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The steady-state reflected power was determined for the 
scenarios used in the previous section to calculate the 
forward power.  The results are shown in Figs. 15-18. 

 

Fig. 15.  
gP  vs. Qext for 0 yVt

 , 0yz , 0s , 

0mf  , and 0 opt . 

 

Fig. 16. 
gP  vs. Qext for 0 yVt

 , 0yz , 0s , 

0mf  , and 0 opt . 

 

 
In the cases of a negative beam offset the reflected power 
at optimal coupling for zero detuning is due to the beam 
driving the cavity and delivering power to the 
source/circulator.  Furthermore, since the cavity wall 
losses are only ~7W, the reflected power for 0 yVt

 is 

nearly identical to the forward power for 0 yVt
 and 

vice versa. 
 
It is important to remember that the reflected power 
calculations are for steady-state conditions.  During 
transients the peak powers can be higher.  In the highly 
over-coupled superconducting case, at RF turn-off with 
no beam-loading the peak reflected power can approach 4 
times the forward power (see [12] although it was written 
for the pulsed normal conducting SPX approach). 
 

 

Fig. 17. 
gP  vs. Qext for 0 yVt

 , 0yz , 0s , 

Hzfm 200  , and 0 opt . 

 

Fig. 18. 
gP  vs. Qext for 0 yVt

 , 0yz , 0s , 

Hzfm 200  , and 0 opt . 

 



MACHINE PROTECTION 
CONSIDERATIONS 

For machine protection considerations, the beam- 
generated cavity voltage was calculated for pure beam 
offsets with zero cavity detuning as a function of Qext  as 
shown in Fig. 19.  The beam-induced reflected power 
with no rf drive is shown in Fig. 20.  Finally, the 
achievable cavity voltage as a function of Qext with zero 
cavity detuning for various drive power levels is shown in 
Fig. 21. 
 

 

Fig. 19.  Beam generated voltage for pure beam offsets 
vs. Qext with 0m   and 0 . 

 

 

Fig. 20.  Beam induced reflected power (no RF drive) for 
pure beam offsets vs. Qext with 0m   and 0 . 

 

 

Fig. 21.  Achievable cavity voltage vs Qext with zero 
cavity detuning for various drive power levels. 

CONCLUSION 
A beam-loaded circuit model for polarized TM110 mode 
crab cavities was derived.  The single-cavity minimum 
steady-state required generator power has been 
determined for the APS SPX crab cavities for a storage 
ring current of 200mA DC current as a function of 
external Q for various vertical offsets including beam tilt 
and uncontrollable detuning.  Calculations to aid machine 
protection considerations were given. 
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APPENDIX A 
As in Ref. [7], a differential charge element for a vertically tilted bunch can be written as: 

 

   dtdyyttcye
q

tydq ooyz

tt

t

t

o







 2

2

2

2
),(    (A1) 

where   ooyz yttcy   is the Dirac delta function, q is the total charge of the bunch, 
t  is the rms bunch length, 

yz is the bunch tilt in the y-z plane, to is the time at which the bunch centroid crosses the cavity gap, yo is the vertical 

offset of the centroid, and c is the speed of light. 
 
Invoking differential superposition and integrating over the charge distribution as in Ref. [5, Sect. 2.3] gives the 
following integral for the voltage induced by the entire bunch: 
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 is the point charge induced transverse voltage as derived in the main text. 

The first integral of Eq. A2 can be recognized to have the form of a Fourier transform integral of a time delayed 
Gaussian.  Using the Fourier transform, F, of a Gaussian 
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the first integral is found to be 
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The second integral of Eq. A2 can be recognized as the Fourier transform integral of a Gaussian multiplied by t.  To 
account for the multiplication by t, the frequency differentiation property of the Fourier transform can be invoked which 
is given as: 

Frequency Differentiation Property of the Fourier Transform:         tfF
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Thus, the Fourier transform integral of a Gaussian multiplied by t is given as: 
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By additionally using the time delay property of the Fourier transform, the second integral of Eq. A2 becomes: 
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Combining A2 through A4, the transverse voltage induced by a tilted bunch is given as: 
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APPENDIX B 
A cavity driven by a klystron with a circulator can be 
represented by the circuit of Fig. B1, where the cavity is 
modeled as a lumped RLC circuit and the input coupler is 
modeled as a transformer [3-4] with turns ratio N. 
 

 

Fig. B1. Circuit model of a cavity driven by a klystron 
with a circulator. 

The klystron source, 
gI , with a circulator can be shown to 

be equivalent to a current source of magnitude 
gI2  with 

source impedance Zo.  Both models result in the same 
forward voltage to the cavity 

ogg ZIV  .  Thus, the circuit 

of Fig. 19 can be replaced with the circuit of Fig. B2. 

 
Fig. B2. Equivalent circuit with klystron and circulator 
replaced by a current source with source impedance Zo. 

 
The cavity impedance can be expressed as 
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, with Qo the cavity 

unloaded quality factor, 
r  the cavity resonant frequency, 

o  the rf drive frequency, and 
or   .  The input 

coupling coefficient is defined as the ratio of the external 
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Transforming the generator onto the cavity gap and 
adding a current source to represent beam loading results 
in the circuit of Fig. B3. 
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Fig. B3.  Equivalent circuit with generator transformed 
onto the cavity gap and including a beam loading source. 

Using the phasor diagram shown in Fig. 8 of the main 
text, the steady-state equations are 
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 where   Lo QQ 1   

with QL the loaded Q.  For a given deflecting voltage 
0ˆ j

tt eVV   Eq. B1 is used to solve for the required 

generator current 
GÎ  which results in: 
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From circuit theory, the forward power from the generator 
is given as 2ˆ

8 Gg I
R

P


  which, using Eq. B3 can be 

written as 
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where the cavity parameters (R/Q) and Qo have been used 

in place of R according to 
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The power reflected back to the source/circulator can be 
determined as follows: 

tGG VVV ˆˆˆ      (B5) 

where 
GV̂  represents the forward voltage from the source 

on the cavity side of the transformer and 
GV̂  the reflected 

voltage.  From transmission line circuit theory, the 
forward voltage can be expressed in terms of the required 
generator current as: 
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Thus, 
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and the reflected power is given as: 
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