
LLNL-TR-501662

ParaDiS-FEM dislocation
dynamics simulation code primer

M. Tang, G. Hommes, S. Aubry , A. Arsenlis

September 28, 2011

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

ParaDiS-FEM dislocation dynamics simulation code primer

Meijie Tang*, Gregg Hommes, Sylvie Aubry, Tom Arsenlis
Lawrence Livermore National Laboratory, Livermore, CA 94551

The ParaDiS code is developed to study bulk systems with periodic boundary conditions.
When we try to perform discrete dislocation dynamics simulations for finite systems such
as thin films or cylinders, the ParaDiS code must be extended. First, dislocations need to
be contained inside the finite simulation box; Second, dislocations inside the finite box
experience image stresses due to the free surfaces. We have developed in-house FEM
subroutines to couple with the ParaDiS code to deal with free surface related issues in the
dislocation dynamics simulations. This primer explains how the coupled code was
developed, the main changes from the ParaDiS code, and the functions of the new FEM
subroutines.

1. General setup and data structures

The general setup for the ParaDiS-FEM coupled simulation is that the ParaDiS cubic box
always contains the FEM simulation box. The later describes the actual simulation
geometry with dislocations inside. In order to have a kinematically viable dislocation
ensemble, dislocation segments intersecting the FEM free surfaces are extended to
infinity. These semi-infinite segments are termed ‘virtual segments’. They contribute to
the dislocation-dislocation elastic interactions only. They do not participate to plastic
flow. Fig. 1 is a schematic diagram of a ParaDiS-FEM system.

In the coupled ParaDiS-FEM code, there are two general sets of data structures: the data
structures associated with ParaDiS code and the data structures associated with the FEM
mesh. The FEM data structures include the FEM element nodal positions, FEM surface
connectivity, element surface normal vectors, and information needed to solve the
boundary value elasticity problem in the FEM. The ParaDiS data structure essentially is
the same as a regular uncoupled ParaDiS code. However, it is necessary for ParaDiS to
identify special dislocation nodes that reside at the FEM surfaces. To conveniently handle
this, two additional arrays are added to each dislocation node property in the ParaDiS
node data structure. These are node->fem_Surface[2] and node->fem_Surface_Norm[3].
The former is an array of 2 integers. fem_Surface[0] labels whether the node is on the
surface (>0) or not (=0). If it’s on the surface, fem_Surface[0] tells which FEM element
the dislocation node resides, and fem_Surface[1] tells which surface of the FEM element
the dislocation node resides. The other array node->fem_Surface_Norm[3] tells the
surface normal vector.

In order to allow the FEM free surfaces to setup in any arbitrary orientation, the FEM
coordinate system can be different from the ParaDiS one. Two vectors fem_ageom_x and
fem_ageom_z are used to specify the coordinate systems of the FEM frame. All the
coordinates in the FEM data structure are defined in the FEM frame and all the
coordinates in the ParaDiS data structure are defined in the ParaDiS frame. The rotation
matrixes between the two frames are built in FEM_Init to translate coordinates between
them. For example, when the subroutine node_on_surface is called from ParaDiS to find
out if a dislocation node is on a FEM surface, the dislocation node coordinates are first
translated to the FEM coordinate system using the rotation matrix fem_ageom.

2. Initialization

Besides the initialization for ParaDiS, a FEM initialization subroutine FEM_Init is called
to set up the FEM geometry, mesh structure, and boundary conditions. Proper inputs are
required to specify the FEM simulation geometry, its mesh resolution, and boundary
condition. If these inputs are taken from the ParaDiS side, they need to be passed to the
FEM data structure. Currently, we provide all the input parameters using the control file
for regular ParaDiS. An example of the added inputs for ParaDiS-FEM is shown in the
appendix with detailed descriptions in FEM_Init. In addition to the geometry related
parameters, inputs such as shear modulus, Poisson ratio, and applied stresses need to be
passed to FEM side of subroutines too.

A second important step of initialization is to fit the initial dislocation configuration
properly into the FEM simulation box. In general, the ParaDiS code first generates the
appropriate initial dislocation configurations in a large cubic box (see Fig. 1). And FEM
simulation box is typically contained inside the cubic box. Therefore, the dislocation
configuration needs to be cut to fit the FEM box. Dislocation segments out of the FEM
simulation box are thrown away. Dislocation segments that cross the FEM box surfaces
are cut, and the part of each segment outside the FEM box is thrown away. After cutting,
the segments intersect with the FEM free surface are extended to infinity to create the

virtual segments (these only exist for elastic interactions, not for actual plastic
deformation). This refitting and cutting of dislocation configuration is done through an
added ParaDiS function AdjustNodePosition. Inside this function, it calls two FEM
subroutines node_on_surface.f90 and fem_segment_surface_intersection.f90. The first
FEM subroutine takes the input of a dislocation node coordinate (x, y, z) and outputs the
values for node->fem_Surface and node->fem_Surface_Norm. Also, it outputs a number
num_surfs , which indicates how many surfaces the node intersects. When a surface node
is at a corner, multiple surfaces are involved. A decision needs to be made to decide
which element and surface to use for the nodal property. This decision can be made
within the FEM subroutine. The second FEM subroutine takes the input of the
coordinates (x1, y1, z1; x2, y2, z2) of the two ends of a dislocation segment and outputs
the intersection point coordinates (xint1, yint1, zint1) and the intersection node’s
properties fem_Surface and fem_Surface_Norm.

After this step is done, the initialization is done and the simulation will then proceed with
a dislocation configuration that contain both dislocation nodes inside of the box and
nodes on the free surfaces. The following paragraphs describe the important steps during
each deformation cycle.

3. Dislocation nodal force calculation

Force calculation is the first important step in each cycle. Due to free surfaces in finite
box, additional forces due to the image stressed from the free surfaces need to be
superimposed to the nodal force in ParaDiS. The force due to surface image stresses is
calculated at the beginning of each force calculation. First, FEM constructs its traction
free boundary condition. The traction forces on the FEM surfaces are from the stress
fields of all dislocation segments in the simulation box as well as the virtual segments. A
FEM subroutine stress_on_boundary.f90 calculates the stress tensors from all dislocation
segments at each FEM element node. This routine contains a call to a function in the
ParaDiS code named AllSegmentStress, which in turn calculates the superimposed stress
tensor from all dislocation segments at the given position. Then, the nodal forces and
stiffness matrix are calculated in FEM, and FEM solver will solve the boundary value
problem to obtain the image stress tensors at the Gaussian points.

After the FEM solution is obtained, the force calculation routine in ParaDiS will add the
force contribution from the FEM image stress field to the segments. Currently, the FEM
image stress is added at the middle point of each dislocation segment, thus superimposed
to the term node->sigbRem. The FEM image stress at the middle point is obtained by a
subroutine fem_point_stress.f90, which essentially finds the FEM element where the
input position resides and interpret the image stress according to the Gaussian points’
stress tensors and the given shape functions in the FEM element. By doing it this way, the
FEM image stress field is treated as uniform along the dislocation segment. More
accurate algorithms can be developed by providing the segment end positions to the FEM
and numerical integrating the image stresses along the segment and to obtain the nodal
force at each end of the segment. Yoffe image stresses are treated similarly as FEM
image stresses. A function AllYoffeStress is called to obtain the Yoffe image stress due to

all segments intersecting with the free surfaces. In order to find the intersecting segments
efficiently for large number of segments calculations, a list of the intersecting segment is
built and updated during each simulation cycle. This is done by the function
BuildSurfaceSeg and it’s called whenever AdjustNodePosition is called.

The superimposition of FEM image stress and Yoffe image stress to the nodal forces is
done inside the added function ComputeFEMSegSigbRem and
ComputeFEM1SegSigbRem. Both are called from NodeForce.c. Then in
LocalSegForces, the force due to node->sigbRem is calculated and accumulated into each
node. In addition, the direct segment-segment interaction forces should include the
interaction of segments with the virtual segments. This is done in LocalSegForces and
using the same surface segment list by BuildSurfaceSeg for the interaction of a segment
in the box with the virtual segments. The far field segment-segment interaction is treated
exactly the same way as that in the regular ParaDiS code. In other words, FMM cells are
used to calculate the forces on local segments due to remote cells. However, because no
PBC in the ParaDiS-FEM, no FMM correction is needed for PBC image segments and
one does not need provide any valid fmCorrectionTbl in the input (see the Appendix for
input example).

4. Nodal velocity calculation

The velocity of dislocation nodes on the surfaces is constrained so that they only move on
the surface, not out of the surface plane. To do this, a function called
AdjustSurfaceNodeVel is called in every mobility function to adjust the velocity so that
the component along either the dislocation line direction or the surface normal direction
vanishes.

5. Time integrator

Both explicit and implicit time integrators are allowed for the coupled ParaDiS-FEM
code. However, complications exist for the implicit time integrator. Within each iteration
of the implicit time integrator, the dislocation nodes move by a trial distance, then forces
and velocities are re-evaluated, the iterations are repeated until the final positions are
found. During the trial movement, the dislocation nodes have moved. Strictly speaking,
we need to re-calculate the FEM traction boundary condition and re-solve for the image
stresses. This will be quite computationally demanding since the number of iterations can
be quite big. What can be done is to find a way to approximate the image stress fields
even with the trial movements of dislocation nodes. For example, we can keep the forces
due to the FEM image stresses unchanged when re-evaluate the forces. Better off, we
should probably update the image stress on the segments that intersecting the free
surfaces using their updated positions. The image stresses on the intersecting segments
can be large and likely to require higher accuracy. Currently, we simply keep the image
stresses unchanged from the beginning of the cycle for the purpose of re-evaluating the
forces.

After the nodal movements at the end of the cycle, a final step is added to finish the time
integrator. The function AdjustNodePosition is called to update the dislocation node
properties fem_Surface and fem_Surface_Norm because new surface nodes can be created
and previous surface nodes may have moved to another FEM element or surface.

6. Topology handling

There is a number of places in the code dealing with surface related topology. The most
important topology handling for the ParaDiS-FEM code is to identify and label
dislocation nodes on the free surfaces, and cut segments that cross the FEM surface. This
is done using the function AdjustNodePosition described earlier. Essentially, anytime
when there will be a change in dislocation nodal positions either in time integrator,
collision handling, multi-node splitting, or remesh, the function needs to be called to
update the dislocation nodal properties.

In addition, a very specific topology handling function SplitSurfaceNodes is added in
ParaDiS. It performs the same function as SplitMultiNodes in bulk ParaDiS code, but
used to split multi-nodes on the free surfaces. It enlists the possible ways a surface multi-
node can be splitted by taking into consideration of the fact that the surface node can
have different ways of splitting.

7. Outstanding issues

The current ParaDiS-FEM coupled code lays down a blueprint for code development to
study finite systems with free surfaces. Improvements can be made in several ways. Most
of the improvements should be done in the FEM side. Here are some suggestions for
further development:

n an efficient algorithm to calculate the traction free boundary condition from all
dislocation segments in the simulation box at all FEM nodes in parallel and use
the FMM table for far away segments

n an efficient algorithm to search for the FEM element # and surface # for any
given point in space

n an accurate algorithm to interpret stress fields at any given point in space from the
Gaussian point stress values using proper shape functions. And to perform
numerical integrations along given segment to obtain nodal forces

n an efficient and accurate algorithm to re-evaluate or estimate the new forces when
dislocation nodes have moved in trial distances inside the implicit time integrator

8. Summary of added subroutines/functions for the coupled ParaDiS-FEM code

In this section, a summary is given to list the main added functions/subroutines in the
coupled ParaDiS/FEM code, which are not part of the original ParaDiS code. Of course
all FEM related subroutines are added. Also, inputs to the subroutines/functions are
pointed to indicate what data is passed between the two parts of the coupled code.

The added functions in ParaDiS code and their main functions are below.

- AdjustNodePosition: This function calls two FEM subroutines to find out if a
dislocation node is inside/outside of the simulation box, or on the box surface. It
also cuts segments that cross the simulation box surfaces, and assign values for
added nodal properties node->fem_Surface and fem->Surface_Norm. It also
updates the connectivity between dislocation nodes after segment cutting.

- ComputeFEMSegSigbRem & ComputeFEM1SegSigbRem: These two functions
together calculate the stress tensor at a given position (currently the middle point
of a segment) and superimpose them in the force contribution for each node
through node->sigbRem.

- AllYoffeStress: This function calculates the Yoffe image stresses due to all

segments intersecting with the free surfaces at a given point in space.

- AllSegmentStress: This function calculates the stresses due to all dislocation
segments at a given FEM node. This function is somewhat special because it’s
called back from a FEM subroutine and it requires a FEM element node as input.

- AllImageStress: This function calculates the stresses due to the Yoffe stress fields

at non-intersecting surfaces due to a segment that intersects with a FEM surface.
The code structure is the same as in AllSegmentStress.

- BuildSurfaceSeg: This function checks and finds all segments that intersect with

the free surfaces. Build a list of them with appropriate properties. It is updated at
the end of AdjustNodePosition. It is used for calculating segment-virutual
segment interaction forces and AllYoffeStress.

The new subroutines in FEM side of the code and their main functions are below.

- FEM_Init: This subroutine builds up the FEM mesh and its data structure. The
inputs should specify the FEM simulation box shape and size, the mesh
resolution, the boundary condition as well as the elastic properties such as the
shear modulus and the Poisson ratio. The inputs are usually provided through the
ParaDiS input control file. But it does not need to be this way.

- node_on_surface: This subroutine takes the input of a dislocation node
coordinates and finds out if the node is outside, inside, or on the FEM box
surface. The outputs contain two arrays, i.e., node->fem_Surface, and node-
>fem_Surface_Norm. See text for description.

- fem_segment_surface_intersection: This subroutine is called when a dislocation

segment crosses the surface. It takes the dislocation segment end points
coordinates as inputs and find out the coordinate of the intersection point, and its
nodal properties including fem_Surface and fem_Surface_Norm.

- stress_on_boundary: This subroutines calculate the stress tensor at each FEM
element node due to all dislocation segments including the virtual segments.

- fem_boundary_node_force_term: This subroutine calculates node force at each

FEM surface node due to the segment stresses, and assign the boundary condition
as specified.

- fem_analysis: This subroutine calculates the stiffness matrix, and solve the

boundary value problem to obtain the image stress fields at the Gaussian points of
each element.

- fem_point_stress: This subroutine takes the input of the coordinates of a given

point (currently the middle point of a segment) and find out the FEM image stress
value at the given point.

9. Appendix: Input example (partial list to show new parameters required to run
ParaDiS/FEM code) with detailed description of parameters in FEM_Init.

!!"#$"%&'"()%)*+,-./01"23/')4567"+8"%69&+%67"#$"46"86#"#$":;""
23/')4567"<":"
230(=%76%"<">"
23?)@5$%=%76%"<"A"
23B$%%6CD$'?45"<"E-F-F>G-3#)'F-H=IJ-K'L-23MC#)4;3>;#A;7)#E"
"
!N$&'7)%@"C$'7+D$'8"
ON$&'7?@L6"<":"
@N$&'7?@L6"<":"
PN$&'7?@L6"<":"
"
!,+3&5)D$'"4$O"8+P6"
ON$&'70+'"<"MAQR"
ON$&'70)O"<"AQR"
@N$&'70+'"<"MAQR"
@N$&'70)O"<"AQR"
PN$&'70+'"<"M::S"
PN$&'70)O"<"::S"
"
!!!"L)%)36#6%8"768C%+4+'F"./0"F6$36#%@-368T-4$&'7)%@"C$'7+D$'"
!!"*6#)+567"768C%+LD$'"2$%"6)CT"L)%)36#6%"C)'"46"2$&'7"+'"./0UK'+#;""
!!"NBU#@L6"768C%+468"#T6"4$&'7)%@"C$'7+D$'"
NBU#@L6"<"V"
!!"368TU#@L6"768C%+468"#T6"./0"F6$36#%@"8T)L6"
368TU#@L6"<":"
!!"3)O+3&3"'&346%"$2"65636'#8")4$W6"XT+CT")'"+#6%)DW6"8$5W6%"+8"
&867"2$%"./0"
7+%3)O"<">GGG"
!!"768C%+46"#T6"'&346%"$2"./0"'$768")5$'F"6)CT"7+%6CD$';"Y368T"
%68$5&D$'Z"
263U'O"<"["
263U'@"<"["
263U'P"<"["
!!"768C%+46"#T6"./0"8+3&5)D$'"4$O"%$#)D$'"X+#T"%68L6C#"#$"#T6"**"
2%)36;""
263U)F6$3UO"<"\"
"":;GGGGGG6]GG"
""G;GGGGGG6]GG"
""G;GGGGGG6]GG"
""^"
263U)F6$3UP"<"\"
""G;GGGGGG6]GG"
""G;GGGGGG6]GG"
"":;GGGGGG6]GG"
""^"

