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Abstract

A fully variational, unstructured, electromagnetic particle-in-cell integrator is developed for integration

of the Vlasov-Maxwell equations. Using the formalism of Discrete Exterior Calculus [1], the field solver,

interpolation scheme and particle advance algorithm are derived through minimization of a single discrete

field theory action. As a consequence of ensuring that the action is invariant under discrete electromagnetic

gauge transformations, the integrator exactly conserves Gauss’s law.

PACS numbers: 52.65.Rr, 52.65.Ff, 52.25.Dg
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Particle in cell (PIC) codes have been a crucial tool in understanding complex plasma dynamics

through solution of the Vlasov-Maxwell equations. The underlying idea of PIC is to advance elec-

tromagnetic fields on a fixed grid, while individual quasiparticles are tracked in continuous space.

This is realized by interpolating fields to particle positions, advancing positions and velocities in

time, then interpolating charge densities and currents from new particle positions back to the fixed

grid. As modern supercomputers move into the exaflop (1018 floating point operations per sec-

ond) regime and beyond, PIC codes are increasingly being used for simulations of larger and more

complex systems [2]. To be able to rely upon the fidelity of simulation results and thus fully utilize

computational resources, it is critical that algorithms have good long time conservation properties.

This is the underlying idea behind geometric integrators: integrators designed to respect geometric

principles of the underlying physical system being studied, thereby reducing spurious numerical

effects damaging to the fidelity of simulations. In the past decade there has been rapid develop-

ment of these techniques, both for time discretization, with variational integrators [3–5], and for

spatial discretization, with Discrete Exterior Calculus (DEC) and mimetic finite elements [1, 6, 7].

In this letter we use the ideas of discrete exterior calculus (DEC) and variational integrators

to formulate a geometric PIC scheme that conserves a space-time multi-symplectic structure [4].

While symplectic particle pushing algorithms and multi-symplectic electromagnetic field solvers

exist, coupling two such schemes does not guarantee multi-symplecticity of the PIC algorithm as

a whole. Our method is to devise a single space-time discrete Lagrangian, then use the principle

of least action to derive the entire PIC scheme. This approach is motivated by the success of

numerous integrators of this type for other field theories. These include integrators for continuum

mechanics [8], electromagnetism [9], incompressible fluids [10], and more complex fluids, such

as ideal magnetohydrodynamics [11]. In all cases, the algorithms have very good long time energy

conservation as well as other desirable properties.

In addition to multi-symplecticity, discrete current conservation ∂tρ + ∇ · J = 0, is a natu-

ral property of the variational formulation: it is a direct consequence of discrete electromagnetic

gauge invariance of the discrete action. Current conservation ensures Gauss’s law, ∇ · E = ρ/ε0,

remains satisfied at all times. This is important both from a physics and computational stand-

point, since Gauss’s law is non-local and can be difficult to solve efficiently on modern, massively

parallel computing systems. Understanding current conservation in terms of discrete gauge invari-

ance could be crucial in the future design of geometrical PIC schemes for more complicated field

theories, for instance gyrokinetics [12].
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The classical action for a collection of particles interacting with a self-generated electromag-

netic field is,

S = −
1
2

ˆ
x

dA ∧ ?dA +

ˆ ∑
p

(
qpA + p

)
|xp(t) . (1)

Here A and p are 1-forms on 4-D space-time, respectively the 4-vector potential of the field and the

particle momentum 1-form, and qp is the particle charge.
´

x denotes integration over space-time

and
∑

p denotes the sum over all particles with A and p evaluated at particle positions, xp (t) . The

exterior derivative, hodge star and wedge product are all operating in 4-D space-time. In terms of

fields −1
2dA ∧ ?dA is simply E2 − B2, where we have chosen the geometric notation for the sake

of clarity in the discretization of the action principle. Throughout this letter natural units are used

with c = ε0 = 1.

In the non-relativistic limit,

(A + p) |xp(t)= qp A
(
xp

)
· dx − qpφ

(
xp

)
dt + mpvp · dx −

1
2

mpv2
pdt, (2)

with A and φ the usual electromagnetic potentials and mp particle mass. In this limit, the action,

Eq. (1), is simply the mixed Eulerian-Lagrangian action principle of Low expressed in geometric

notation [12, 13], with the distribution function
∑

p δ
(
x − xp

)
δ
(
v − vp

)
. The equations of motion

for the system are

v̇p =
qp

mp

[(
−∇φ −

∂A
∂t

)
|xp +vp × (∇ × A) |xp

]
ẋp = vp

d ? dA = J . (3)

Here, J = ? (J · dx − ρ dt), with J the current density
∑

p qpvpδ
(
x − xp

)
and ρ the charge density∑

p qpδ
(
x − xp

)
.

Eqs. (3) are gauge invariant, meaning an exact 1-form, d f , can be added to A without changing

the dynamics. This follows directly from symmetry of the action, Eq. (1), under the transformation

A→ A + d f . The symmetry leads to the conserved quantity dsD− ρ, (dsD is the divergence of the

electric displacement), which is simply Gauss’s law [9]. This principle, that gauge invariance of

the action will lead to equations that conserve Gauss’s law, is critical for our discretization of the

problem. Note that this is equivalent to current conservation, dJ = 0 (∂t ρ + ∇ · J = 0 in standard

notation).
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FIG. 1. Structure of DEC and operators for a single 2-D simplex.

The formalism used to develop our discrete variational principle is that of discrete exterior

calculus (DEC). A brief overview of the basic elements is given here, with details found in [1,

7, 14, 15]. The starting point for DEC is a discrete manifold. In the simplest case, this is a

simplicial complex, essentially a collection of simplices (lines, triangles, tetrahedra in 1-D, 2-D

and 3-D respectively) embedded in n-dimensional space. For example, a region in 3-D space

discretized using a tetrahedral mesh. The structure of differential forms in DEC is illustrated in

Figure 1, with k-forms located on k-simplices (0-forms on vertices, 1-forms on edges etc.). The

exterior derivative operator, d, that takes a k-form to a (k+1)-form, is defined so as to exactly

satisfy Stoke’s theorem
´
χ

dα =
´
∂χ
α. Importantly, with this definition, d is purely topological

and d (dα) = 0.

For operations involving the metric, it is necessary to define a dual mesh, formed in this work

by connecting the circumcenters of each n-simplex (circumcentric dual). The discrete Hodge-star

operator takes a k-form on the primal mesh to an (n-k)-form on the dual mesh, see Figure 1. The

Hodge-star we use is simply a diagonal matrix, more complex operators can give higher order

accurate theories. DEC is very well suited to the analysis of electromagnetism, in that replacing

continuous operators and forms with their discrete counterparts gives a variational integrator with

very nice properties. In fact, the very popular Yee staggered mesh [16] is simply an application of

DEC on a cubic mesh [9].

The interpolation of fields to continuous space is achieved with Whitney forms [7, 14, 17],

which associate an interpolation k-form to each discrete k-simplex. Using a first order scheme,

Whitney 0-forms are simply familiar “hat-functions,” defined as ϕi (x) = 1 at vertex i, ϕi (x) = 0 at
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FIG. 2. Prismal primal and dual cells, shown in two spatial dimensions for clarity. A is a primal 1-form, B
and E are primal 2-forms, D and H are dual 2-forms, and ?J (J and ρ) is a dual 2-form. Structure of these
forms in 3 spatial dimensions is outlined in the text. Also shown is a sample particle track.

all other vertices, with linear dependence in the neighborhood of vertex i. Higher degree Whitney

forms are a generalization of this. For instance, the Whitney 1-form for the edge between node i

and node j is simply ϕi j = ϕidϕ j − ϕ jdϕi, which is equal to ϕi∇ϕ j − ϕ j∇ϕi if working in Euclidian

space.

The discrete manifold we use in our discretization is simplex prismal in 3+1 or 2+1 dimensions;

that is, tetrahedrons or triangles projected through time as illustrated in Figure 2. The simpler case

of an integrator on a structured cubic mesh could also easily be derived (not done here). Since the

manifold is a direct product of a time discretization with a spatial mesh, we can split operators into

time and space components. This allows for a simpler implementation of Maxwells equations in

terms of familiar E, B, D and H forms rather than the full Maxwell field tensor, F = dA. It is also

convenient to split A into a purely spatial 1-form (analogous to vector potential, A) and a space-

time component that can be thought of as a spatial 0-form (analogous to the scalar potential, φ).

These we denote by Ai j
n and Ai

n+1/2 respectively, due to their location on the space-time manifold.

Additionally, we split the current dual 3-form into a space-time component J (spatial primal 1-

form or dual 2-form) and a purely spatial component ρ (spatial primal 0-form or dual 3-form), see

Figure 2. Field equations of motion as derived from the action principle are given below.

In analogy with the continuous case, symmetry of a discrete action under the transformation

A → A + d f (where A and f are discrete forms) will guarantee exact preservation of the discrete

Gauss’s law for all time. The method for achieving this gauge symmetry was motivated by East-

wood’s current conserving scheme [18] and its recent generalization to an unstructured mesh [19].
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This relies on integration of the particle trajectories through time in the calculation of the dis-

crete current. With this idea, our discrete space-time Vlasov-Maxwell action, which is a discrete

approximation of Eq. (1), is

Sd =

N∑
n=0

∑εs

−
1
2

dA ∧ ?dA + h
∑

p

1
2

mp

∣∣∣∣∣∣∣ x
p
n+1/2 − xp

n−1/2

h

∣∣∣∣∣∣∣
2

+ qp

 xp
n+1/2 − xp

n−1/2

h

 · ˆ tn+1/2

tn−1/2

dt
h

 ∑
i j ε σ1

Ai j
n ϕσi j (xp (t))


−

qp

h

∑
i ε σ0

Ai
n−1/2 ϕi

(
xp

n−1/2

)
 . (4)

Here, h is the time-step, n is the time index and p the particle index.
∑
εs

denotes the spatial sum

of the volume form −1
2dA ∧ ?dA, and

∑
i j ε σ1

and
∑

i ε σ0
denote the sum over edges and vertices

respectively. ϕσi j is the Whitney 1-form associated to edge i j. The particle path xp (t) is taken to be

linear with constant velocity between xp
n−1/2 and xp

n+1/2. As is standard in variational integrators, the

particle Lagrangian is designed to approximate
´ tn+1/2

tn−1/2
dt Lp

c where Lp
c is the continuous Lagrangian.

The present case is that of a single particle in the discrete electromagnetic field.

The field part of Eq. (4) is obviously gauge invariant since d2 = 0. Since the particle part is

linear in A, gauge invariance can be seen by substituting A = d f and showing that this only gives

contributions from the endpoints. This is straightforward using dc

(
(α)interp

)
= (ddα)interp for a

0-form α, where dc and dd are the continuous and discrete exterior derivatives and ()interp signifies

Whitney interpolation of the form.

Field equations arise from variation of the discrete action with respect to the potential, A,

yielding (see [9])

d ? dA = J . (5)

Due to the tensor product nature of the discrete manifold this is equivalent to

dsEn+1/2 +
Bn+1 − Bn

h
= 0 (6)

dsHn −
Dn+1/2 − Dn−1/2

h
= qpvn ·

ˆ tn+1/2

tn−1/2

dt
h

∑
i j ε σ1

ϕσi j |xp(t), (7)
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and

dsDn+1/2 = qp

∑
i ε σ0

ϕi

(
xp

n−1/2

)
(8)

dsB = 0. (9)

Here En+1/2 = −1
h (An+1 − An) − dsAn+1/2 is a spatial primal 1-form, Bn = dsAn is a spatial primal

2-form, D = ?sE and H = ?sB, with the subscript s indicating the spatial part of a DEC operator.

Note that Eqns. (8) and (9) are constraints and need only be applied as initial conditions. The

particle equations of motion are derived from variations of Eq. (4) with respect to xp
n−1/2. This

leads to the particle equations of motion,

1
h2

(
xp

n+1/2 − 2xp
n−1/2 + xp

n−3/2

)
=

qp

mp

(
Ẽp

n−1/2 +
1
2

vp
n × B̃p

n +
1
2

vp
n−1 × B̃p

n−1

)
, (10)

where

Ẽp
n−1/2 =

(
En−1/2

)
interp |xp

n−1/2
(11)

B̃p
n =

ˆ tn+1/2

tn−1/2

dt
h

( tn+1/2 − t
h

) (
Bp

n
)

interp |xp(t) (12)

B̃p
n−1 =

ˆ tn−1/2

tn−3/2

dt
h

( t − tn−3/2

h

) (
Bp

n−1

)
interp

|xp(t) (13)

vp
n =

1
h

(
xp

n+1/2 − xp
n−1/2

)
. (14)

Since particle trajectories are linear and fields,
(
En−1/2

)
interp and

(
Bp

n
)

interp, are piecewise polyno-

mial, time integrals can be performed exactly using Gaussian quadrature (see [19]). Because of

the B̃p
n term, the algorithm is implicit. However, if a quasi-particle stays in the same cell, as is the

case for the majority of time-steps, Eq. (10) can be easily solved without resorting to an iterative

scheme.

While variational formulations have been used for PIC methods in the past (see [20]), this is,

to our knowledge, the first PIC scheme to use a full space-time variational principle. As a con-

sequence, the algorithm as a whole is multi-symplectic (see [9, 21]), an important geometrical

property proven to have profound consequences for the integration of systems of ordinary differ-
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ential equations [4, 22]. Though presented from a somewhat different standpoint, the algorithm

is similar to those in [19]. The crucial difference is that our particle mover is constrained to a

particular form by the discrete action, which is necessary for a fully multi-symplectic method.

Using the ideas in [15], the unstructured Maxwell solver is very simple to implement. Field

advancement is governed by Eqs. (6) and (7), and simply involves sparse matrix multiplication.

As a test case, we have implemented a 2-D version of variational PIC in Matlab, with a magnetic

field directed out of the plane. In this case, the equations of motion and definitions of E, B, D, and

H are exactly the same as the 3-D case. Particle advancement is implemented by first assuming the

particles stay in the same cell. In the case where this is not true and an implicit solver is needed,

the current contribution to the grid is calculated at the same time as particle advancement. As a

consequence, the extra computational expense over an explicit particle pusher scheme is minimal.

Investigations are ongoing into the numerical properties of variational PIC, with special focus

on the importance of the multi-symplectic nature of the algorithm. Here we give a brief numerical

example, motivated by Refs. [19, 23], to illustrate the importance of numerical current conserva-

tion. On a triangular mesh, a beam of electrons is accelerated by an external voltage (from left to

right) calculated to satisfy the Child-Langmuir law. Figure 3(a) shows the particle distribution at

t = 40 using symplectic PIC, while Figure 3(b) illustrates the distribution for the same initial con-

ditions, advanced using an integrator that does not conserve current. Local violations in Gauss’s

law caused by lack of current conservation are manifested through unphysical bunching of the

charge into lines of higher density, as evident in Figure 3(b). The beam also widens more than

in the current conserving case, showing that there is an overestimation of the average self electric

field.

Our discretization of the variational principle [Eq. (4)] is relatively arbitrary. As an avenue

for future work it could be interesting to explore different discretizations of the same system (for

instance, different particle pushers, particle shape factors or field Hodge-star operators) to better

understand some advantages of a fully multi-symplectic scheme. Another approach would be to

design a fully implicit variational PIC integrator. At the cost of complexity, implicit PIC schemes

circumvent many of the numerical instabilities inherent in explicit PIC [20, 24] and allow larger

time-steps.

The methods presented above will allow relatively simple generalizations to more complex

mesh schemes. One such idea would be an Asynchronous Variational Integrator, in which each

grid cell and particle could be advanced with a different time-step set by its own Courant condition
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FIG. 3. Electron beam particle distribution accelerated by external potential. Evolved in time using: (a)
symplectic PIC (current conserving) (b) non current conserving algorithm producing spurious bunching of
the charge into lines due to violations of Gauss’s law.

[8, 9]. Time savings can be substantial on highly irregular meshes. As a further generalization

of this type of idea, a 4-D simplicial complex could be used in a completely covariant general

relativistic PIC code, which would have many astrophysical applications. The DEC and variational

formalisms could be very important in formulating methods for field advancement and current

conservation in these complex systems.

Perhaps one of the most exciting areas of future research is in the design of geometric PIC

algorithms for more complex field theories, in particular gyrokinetics [12]. Being non-local, gy-

rokinetics presents a great challenge in algorithm design if one is to respect important geometrical

properties of the system. The question of how to ensure current conservation is answered very

cleanly by the realization that it is simply the requirement that a discrete variational principle be

electromagnetically gauge invariant.

This research was supported by the U.S. Department of Energy under Contract No. AC02-

09CH11466.
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