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Abstract 

 

This LDRD sought to develop technology that enhances scenario construction speed, entity 

behavior robustness, and scalability in Live-Virtual-Constructive (LVC) simulation.  We 

investigated issues in both simulation architecture and behavior modeling.  We developed path-

planning technology that improves the ability to express intent in the planning task while still 

permitting an efficient search algorithm.  An LVC simulation demonstrated how this enables 

“one-click” layout of squad tactical paths, as well as dynamic re-planning for simulated squads 

and for real and simulated mobile robots.  We identified human response latencies that can be 

exploited in parallel/distributed architectures.  We did an experimental study to determine where 

parallelization would be productive in Umbra-based FOF simulations.   We developed and 

implemented a data-driven simulation composition approach that solves entity class hierarchy 

issues and supports assurance of simulation fairness.  Finally, we proposed a flexible framework 

to enable integration of multiple behavior modeling components that model working memory 

phenomena with different degrees of sophistication. 



4 

ACKNOWLEDGMENTS 
 

The authors would like to thank the following individuals for their contributions to the project: 

 

Jon D. Bradley 

John “Blayde” Jungels 

Elaine Raybourn 

J. Brian Rigdon 

Michael J. Skroch 

Kenneth L. Summers 

Brian J. Titus 

Raymond Trechter 

Gregg D. Whitford 

 

 



5 

CONTENTS 
 

Acknowledgments........................................................................................................................... 4 

Contents .......................................................................................................................................... 5 

Figures............................................................................................................................................. 5 

1.  Introduction ................................................................................................................................ 7 
1.1 Project Overview ............................................................................................................ 7 
1.2 Previous Technology ...................................................................................................... 7 

1.2.1 Sandia Embodied Agent Simulation Technology ............................................. 7 
1.2.2 Third-party Technologies.................................................................................. 8 

1.3 Summary of Achievements ............................................................................................. 9 

2 Project Results ........................................................................................................................ 11 
2.1  Analysis and Scoping ....................................................................................................... 11 
2.2 Conceptual Architecture ................................................................................................... 11 
2.2  Extensible Path Planning ................................................................................................. 13 

2.3  Leveraging Tactical Path Planning Capability in Behavior Modeling ............................ 15 
2.4  Scalability ........................................................................................................................ 19 

2.5  An Entities and Capabilities Architecture Supporting Fairness ...................................... 21 
2.6  Enabling Flexible Modeling of Working Memory .......................................................... 23 

3. Future Work .............................................................................................................................. 25 

4. Conclusions ............................................................................................................................... 27 

5.  References ................................................................................................................................ 29 

Appendix A:  Project-related information .................................................................................... 31 

 

 

 

FIGURES 
 

Figure 1: Red Squad paths avoid region visible from watch post, then branch to role-specific 

tactical positions.   (Model based on Robot Vehicle Range.) ....................................................... 16 
Figure 2: Red squad alters paths in response to Blue guard. ........................................................ 17 
Figure 3: Blue Robot ..................................................................................................................... 17 
Figure 4: Blue robot plans to Red robot position communicated by Red UAV (not shown), then 

re-plans path from live position when its simulated sensor detects the Red robot. ...................... 18 

Figure 5:  Red robot jams Blue robot radio and plans evasive path to out-of-sight location; 

jamming ends when line-of-sight is lost. ...................................................................................... 18 
Figure 6: Blue robot plans to Red robot location communicated by Red UAV, then re-plans path 

to location updated by its own sensor.   When there is line-of-sight again, Red robot then jams 

Blue robot radio and plans evasive path to out-of-sight location. ................................................ 18 
Figure 7: Example MainGraph of Modules. ................................................................................. 19 
Figure 8: Job executed in a worker thread for a given Module. ................................................... 20 



6 

NOMENCLATURE 
 

 

3D three-dimensional 

AI artificial intelligence 

DHS Department of Homeland Security 

DoD Department of Defense 

DOE Department of Energy 

FOF force-on-force 

LDRD Lab-Directed Research and Development 

LOS line-of-sight 

LVC Live-Virtual-Constructive 

R&D research and development 

SNL Sandia National Laboratories 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 

1.  INTRODUCTION 
 

1.1 Project Overview 
 

Exploiting its three-dimensional (3D) embodied agent simulation technologies, Sandia has 

delivered force-on-force (FOF) simulation-based tools, such as Dante, to the Department of 

Defense (DoD), Department of Energy (DOE), and other customers.  Using these tools for 

precision decisions, systems engineering analysis, and other uses is critical.   For its main goals, 

the Hybrid AI/Cognitive Tactical Behavior Framework for LVC project sought to address 

several limitations of these tools, especially within tactically-intensive 3D scenarios.   

 

 When simulated human entities lack understanding of tactics, complex scenarios required 

long setup and debugging times.   This could be prohibitive for some applications. 

 Sandia’s Live-Virtual-Constructive (LVC) simulation technology can also be applied to 

FOF challenges.  However, a sufficiently competent automated behavior capability 

needed to be integrated to apply it to training, analysis, etc., while reducing the number of 

people required 

 Lack of scalability in the LVC framework with respect to constructive entities impeded 

potential synergy between behavior modeling and LVC systems, such as to address 

validation and automated model construction. 

An important benefit of considering tactical behavior for LVC simulation is the crossover of 

behavior capabilities and technology among the constructive entities, physical systems in the 

LVC simulation, and physical systems outside of simulation.    For example, in previous work, 

Sandia has used the same extended state machines framework for agent behavior in a serious 

game and for autonomous control of a mobile robot. 

We sought to develop, implement, and demonstrate advances in a behavior modeling framework 

that would build upon artificial intelligence (AI) and 3D algorithmic approaches, enable a path 

forward to including appropriate cognitive modeling, be integrated with a physics-based 

simulation architecture, and support transfer to physical systems.   Our project leveraged the 

Umbra framework and components from various projects built on it.   An Umbra-based approach 

has previously enabled offline analysis, interactive analysis, and LVC-based studies to use the 

same models and simulation system. 
 

 

1.2 Previous Technology 
 

1.2.1 Sandia Embodied Agent Simulation Technology 
 

This project built on and extended prior Sandia expertise in both simulation infrastructure and 

embodied-agent behavior.  

 

The Umbra framework, now well into its fourth generation, was originally developed over a 

decade ago to enable embodied-agent simulation for systems engineering analysis.   Umbra-

based applications typically feature a combination of data-flow-like networks of component 
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modules that simulate or implement system components and multiple world modules that, 

together with child modules, simulate interaction phenomena or implement interactions among 

entities [Gottlieb, et al, 2002].  Initially, Sandia used Umbra for constructing simulations of 

robotic manipulators (e.g., arms) and mobile robots.  Related work at Sandia for DoD, DOE, and 

LDRD projects has included distributed behavior algorithms as well as low-level planning and 

control within individual behaviors for both real and simulated mobile robot and mobile robot 

swarms.  Expanding the Umbra technology family, Sandia has developed training systems with 

simulated adversaries and the Dante FOF simulator.  Another direction of R&D developed path-

planning and sensor modeling capabilities for use in precision decisions and systems engineering 

analysis.   Leveraging the simulation framework, Sandia developed additional capabilities for 

Live-Virtual-Constructive (LVC) simulation.
1
  A major accomplishment was the development of 

a testbed for unmanned autonomous system communications in an LVC environment.  [Parker, 

et al, 2009]    This technology enables constructive assets to affect and be affected by live and 

virtual assets via high-fidelity communications models and system-in-the-loop technologies.  

Demonstrations with a live human, live and constructive unmanned systems, in an LVC 

environment augmented with constructive obstacles built on this work.  Using related 

technologies, augmented-reality capabilities have been developed and used in fielded human-in-

the-loop training systems. 

 

Another family of work grew out of Sandia efforts focused on modeling the human.  The 2004-

2006 LDRD, “Simulating Human Interactions for National Security Interactions”, demonstrated 

an Umbra-based integration of a partial cognitive framework, SCREAM + SHERCA, with 3D 

simulated entities [Bernard, et al, 2007].  The 2006-2008 LDRD, “Enabling Immersive 

Simulation”, produced several integrations, including: Trainable Automated Forces and 

Cognitive Foundry cognitive models with Umbra; and NPS’s Delta3D with ABL [Abbott, et al, 

2009].   Another LDRD project integrated SCREAM+SHERCA-based cognitive modeling 

elements into the behaviors of non-player-characters (NPCs) in a serious game for training first 

response commanders [Djordjevich, et al, 2008].   Results of these projects supported the 

observation that while it may be scientifically important to expand the domains and levels of 

abstraction that a cognitive framework can cover, it would be also important to pursue behavior 

modeling that applies the most capable techniques for different aspects of the problem and 

enables their integration.    

 

1.2.2 Third-party Technologies 
 

There exists much external technology related to this project.  Military FOF simulation systems 

with entity-level behavior capability include JSAF, OneSAF, VR-Forces, and Stage.  The best-

in-class systems have as feature high realism (visual, sound, etc.), good simulation engines, solid 

sets of pre-packaged tactical behaviors that can be composed, and model libraries.  However, 

they all failed to meet our needs in at least one of several crucial ways: 

 

 They are not intended for as fine-grain or high-fidelity simulations as can be built on 

Umbra. 

                                                 
1
 LVC simulation integrates Live aspects (e.g., real people using real equipment in real locations), Virtual aspects 

(e.g., real people using simulated equipment in a simulated environment, and Constructive aspects (e.g., simulated 

people using simulated equipment in a simulated environment) . 
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 Behavior modeling when powerful is quite rigid due to need to support behavior 

composition by non-programmers.   

 Their intended use model is for programmers only to write primitive behaviors and for 

SMEs to do the rest. 

 Behavior software and capabilities composed on them are not readily portable to outside 

the simulation system.  At the same time, agile extension of capabilities at a source-code 

level and distribution of the enhanced result is not realistic because of market and 

organizational factors. 

 Their modularity and flexibility seem mainly intended to support construction of 

exercises and major simulations for analysis, not single agile analysis to cope with or try 

out something that is new at a component level. 

[Abdellaoui, et al, 2009] found that FOF simulation based on serious gaming technology and AI 

middleware for game development generally suffered from less capability and had similar 

extensibility problems.  

 

Modeling of cognitive phenomena, such as attention and working memory, are desired in the 

long run.  Soar [Laird, et al, 1987] and ACT-R [Anderson & Lebiere, 1998] are the available 

cognitive architectures with the most productive research communities.  [Best & Lebiere, 2003] 

and [Wray, et al, 2005] have, respectively, integrated ACT-R and Soar with Unreal Tournament.  

Silverman [Silverman & Johns, et al, 2006, and Silverman & Bharathy, et al, 2006] models 

human behavior more broadly, rather than focusing on cognition, and integrates performance 

moderator functions into a behavior architecture, PMFserv.  Multiple behavior architectures for 

simulated humans interacting within a single virtual training environment was demonstrated 

separately by [vanLent, et al, 2004] and [McDonald, et al, 2006].  The latter included a 

framework for a richer set of interactions among human behavior models. 

 

1.3 Summary of Achievements 
 

We began the project by analyzing behavior and Live-Virtual-Constructive (LVC) simulation 

component technologies and their interdependencies.   This engineering analysis included 

development of a conceptual architecture.  The architecture captures relationships and allowable 

update latencies among behavior modeling and more general LVC simulation elements.  We 

used this engineering analysis to help re-scope
2
 the project by priority of unmet technical needs.    

 

Our analysis indicated that we could improve tactical competence and raise the level of 

abstraction in behavior specification by taking an unconventionally general view of path 

planning.  This enables much tactical knowledge to be expressed in a planning problem.  As an 

example, we addressed the problem of user-specification of team-behavior—which stakeholders 

had identified as critical—in a demonstration of “one-click” breach team planning.  This built on 

a modular, extensible planner that we had originally developed to support mission planning and 

analysis.  We modified this planner to make it suitable for LVC simulation by encapsulating 

planning into task objects that are asynchronously served by threads.  We then exercised this 

                                                 
2
 This scoping was necessary because our project is the result of first merging two three-year projects post-proposal 

and subsequently truncating it to two years without any per-year funding increase. 
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capability in a demonstration where the team members re-plan paths in a tactically coordinated 

way in response to updated perceptions.  We integrated these improved tactical behavior 

capabilities into an LVC demonstration that includes a constructive breach squad, a live human, 

a physical unmanned ground vehicle robot (UGV), and constructive UGV and LVC 

communications.  A new planner addresses limitations of the previous planner and introduces 

new capabilities to better support tactical behaviors, including bounding overwatch. 

 

Practical behavior simulation depends on the simulation infrastructure.   Towards this end, we 

experimentally studied multi-threading the module update loop of the underlying Umbra 

simulation framework.  The results showed the significance of multi-threading Umbra worlds, 

which model entity interactions, and provide us directions for continued progress.  At a higher 

software level, addressing simulation software modularity, we developed a solution for 

supporting an ever-growing set of entity types without growing the entity class hierarchy.  

 

Memory and attention are important to behavior modeling both from practical and research 

standpoints.   While simple techniques from game AI can be integrated into simple, low-level, 

behavior components, they are only sufficient in constrained or idealized situations.   However, 

the science of memory and attentional phenomena is still emerging, particularly with respect to 

3D embodied agents.  We have proposed an extensible memory framework to enable integration 

of models of different levels of sophistication and abstraction.  We have implemented a 

preliminary version of its core. 
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2 PROJECT RESULTS 
 

2.1  Analysis and Scoping 
 

This project was originally the product of merging two 3-year proposals after full-proposal 

development and submission.  One project sought to build on AI and cognitive techniques to 

improve model fidelity, tactical behavioral competence, and overall robustness of simulated 

people and other entities in Sandia’s FOF simulation systems.  The other was broadly directed at 

creating a secure multiscale LVC framework for adaptive testing, training, and evaluation.  

Subsequent to the merger but prior to DOE approval, the combined project was truncated to two 

years without any increase in per-year funding.   Needing to share a reduced level of resources, 

we realized that grand new frameworks for either behavior or LVC were out of the question.    

 

We began by combining the engineering analysis phases from the originally proposed projects.  

Scaling back from plans for a workshop on Behavior Modeling in LVC, we interviewed eight 

SNL stakeholders to determine the priority of issues that needed to be addressed for future 

impact.  The top three future needs expressed were to  

 raise the level of abstraction needed to specify behavior,  

 improve simulation scalability with latency and smoothness sufficient for LVC, and  

 improve the modeling of team behaviors. 

 

Another aspect of the analysis considered where LVC needed behavior modeling advances for a 

team with live, virtual, and constructive human members to function.  Two challenges stood out 

immediately.  First, communication between virtual-constructive and live team members needs 

to be sufficiently natural to the real humans.   Second, the constructive team members need the 

ability to ascertain the state of live members and how they are progressing in their parts of a team 

plan.   While these problems are very interesting, we concluded that they required too much 

investment in hardware, software, and overall integration before we could make progress.   

Rather than construct a full experimental LVC environment, we focused project R&D efforts on 

behavior, with the hope of leveraging opportunities to insert those results into LVC 

demonstrations. 

 

2.2 Conceptual Architecture 
 

We developed a conceptual behavior simulation architecture with the following main goals: 

 capture relationships from both the theoretical behavior-modeling and practical multi-

entity 3D simulator system viewpoints; 

 illuminate opportunities for R&D advances that would both be ripe for transition and 

provide long-term technology foundations;  

 allow progress to full implementation in flexible phases compatible with plausible project 

opportunities, 

 enable existing technologies to be leveraged, and 
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 provide opportunities for integrating technologies and future research results from the 

wider modeling and simulation community. 

 

To allow demonstration of our work in context, we also desired the ability to leverage behavior 

modeling components existing or already in development in Umbra-based projects.    

 

Viewed at the highest level, the architecture features simulated entities whose action effects and 

interactions are simulated by world modules that are responsible for different interaction 

phenomena.  It thus builds upon our general approach for simulating embodied agents [WSC 

2002 paper] in Umbra.   For example, simulated visual perception would be mediated by a visual 

world module that takes into account line-of-sight, and another world module would simulate 

weapons effects.  A new focus of the architecture is a multiple-level, conceptual human behavior 

model that features a high-level behavior model, a tactical behavior level, and a tactical actions 

level.   At the high-level and tactical behavior levels, the model is agnostic with respect to 

whether an AI-based, cognitive, or hybrid approach is taken.   

 

 

 
 

 

We believe this is practical in terms of computational load because the computational 

architecture of a simulator has particular opportunities to exploit human response latency at the 

tactical behavior level and above.  Choice reaction time alone offers roughly a half second of 

latency to absorb parallel/distributed computing and network overhead and latency.   When 

behavior involves an interim action concurrent with more involved decision-making, the latter 

offers even more time for its simulation.  In contrast, with the need to keep up with a 30-100Hz 
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frame rate, tactical action simulation needs to be more tightly coupled or integrated with the 

physics-based level of simulation.    

 

Previous research at Sandia has included work on integrating cognitive models with AI-based 

modeling at lower levels in embodied agent simulation and serious game architectures.  These 

efforts and our previous FOF simulation work either did not address attention, working memory, 

and episodic/declarative memory or addressed them in very limited, ad hoc ways.   Broadly 

speaking, the conceptual architecture includes memory components whose temporal 

characteristics correspond to the behavior modeling levels.  It is agnostic about the actual inner 

representations of memory and of working memory in particular.  Further description about the 

memory components is found in Section 2.6. 

 

 

2.2  Extensible Path Planning 
 

We identified path planning as critical to tactical behavior competence and overall system 

performance.   This is because achieving, maintaining, and avoiding various spatial relationships 

are often critical elements of tactical behavior, and because it is necessary for entities to move in 

a timely manner.  Our approach was to treat a computer-science-based optimizing path planner 

as a component that behavior model elements could apply by using a sufficiently rich interface 

for expressing optimization criteria.   In addition, we identified path planning as capability that 

could exploit asynchronous computation parallel to the main update loop in order to enhance 

simulation scalability.  We sought to develop a path planning framework  

 

 that is modular and expressive enough to greatly raise the level of planning abstraction 

within behaviors, and 

 that is suitable for use in user-driven analysis, offline and LVC simulation, and by 

autonomous physical systems. 

 

One basic idea is that a tactical behavior can express tactical intent during planned movement as 

a cost function.  For example, a cost function component might return high values at locations 

where there is line-of-sight to an adversary or on steep path segments.  This idea has been 

explored by both the computer games community and the simulation community, e.g., [Reece, 

2003].  A second basic idea is that path planning can be generalized from finding a path to a goal 

position to finding a path to a position where a goal predicate is true.  At Sandia, our department 

first expressed the path cost as a weighted sum cost functions and used a goal function in 

implementation at least over a decade ago. 

 

Shortly before the beginning of this project, we began implementing an extensible path planning 

library that built upon these ideas.  This implementation extended our previous work by 

generalizing from cost functions and goal functions to extensible class hierarchies of “coster” 

objects and goal predicate objects.  Another improvement enabled directing costers to compute 

their results offline ahead of planning; this data can be accessed in constant time during 

subsequent path planning.  

 

Our path planning work in year 1 of this LDRD project added several new capabilities: 
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 expressed planning tasks as objects,  

 enabled separate planning tasks to be performed asynchronously in separate threads, and 

 integrated movement-related action-planning into path planning.    

 

The resulting planner has been packaged in the Sandia Tactical Path Planning System, Version 

1.0, which has been processed for Government Use. 

 

Work in this LDRD project identified limitations in the design of this planner, and in year 2 we 

developed a new planner that addresses these limitations through new design and new features.   

This new planner provides a path forward for future development and application.   One high-

level advance is that the new planner enables multiple planning graphs of different resolutions 

and connection-generation patterns to be integrated.   Because of this feature and extensibility far 

beyond the previous planner, we call the new planner the “Atlas-Based, Largely Extensible Path 

Planner”, or “ABLE Path Planner”.    We now describe its key advances. 

 

 A single planning graph is the main part of a chart.  A planner’s atlas contains a 

collection of charts and integrates them.  For example, this can enable planning across 

different mapped areas or planning that combines different mapped information.   We 

have defined a base class for charts that declares an interface (as pure virtual 

functions).   If the interface is implemented by a subclass (making it concrete), then a 

planner can integrate a chart from that subclass into its atlas.   The design enables 

easy extension to include chart classes that use their own methods for constructing 

their own graphs.   Because the design does not require charts to follow a particular 

meshing or gridding pattern, charts that use geometry dependent, variable-resolution 

meshing can be integrated, for example.  Furthermore, it will enable special-purpose 

maps to be integrated.  For example, the atlas could integrate in a chart of roads, or 

trails, or tactical positions. 

 

 The new planning software enables integration of problem-dependent topology by 

allowing problem-dependent edges that reference nodes in the underlying graph. 

 

 The new planning software enables the use of non-binary goal predicates.   An 

ordinary goal predicate has a Boolean-valued function that expresses whether or not 

its argument is a goal position.   A non-binary goal predicate includes an evaluation 

function that takes a state (position, for this planning package) and computes a cost 

that is associated with a path ending there.   This cost can be weighted when 

combined with the cost of the rest of the path.  A motivating example is the problem 

of planning a path in order to observe something.  There will be some distance at 

which you can see it sufficiently well, but you can see better the closer you get until 

you get to an optimum distance.  Thus, the cost should be a function that grows as the 

distance from the observation target increases beyond the optimum.  The new 

planning software can distinguish between when a position is being considered as the 

end of a path and when it is not, so that it returns the optimal path including this 

endpoint cost correctly.   The algorithmic search variant is embedded into the special 

search space on which we apply our generic A* implementation. 
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 A new Property class hierarchy generalizes the previous concept of Costers.  While a 

Coster object computes a real-valued cost (represented by a double in C++) 

associated with a given position or a path segment, the Property base classes have a 

DataType template parameter and compute a value of that type that is associated with 

a given position or path segment argument.  Costers are special cases of Properties in 

the new planning software.  The concept of an offline Coster that computes and stores 

costs associated with nodes and edges in the underlying planning graph and looks up 

the stored values when called during a path search has been generalized to offline 

Property classes.  The OfflinableProperty base classes have a second template 

parameter, CachedDataType, to enable more efficient storage.   (We refer to the 

stored property data as “cached”.)   Read and write access to the cached values is 

constant-time with respect to each node or edge in the underlying planning graph.  

The default implementations of Offlinable Properties use templated and base-class 

code to do their own caching. 

 

 Properties, and in particular offline Properties, can be used to make a planner more 

efficient in terms of space, software organization, and computational cost.   

GoalPredicates and Properties (including Costers) can reference other Properties and 

use them in their computations.  For example, the SafetyDistanceCoster from the our 

older planner estimates whether a position is at least a parameterized distance from 

obstacles based on 8 line-segment intersection tests (probes).  It returns 0 cost for the 

safe case and infinity for the unsafe case.   Because costs are doubles, when the 

previous planner makes the coster offline, it uses 8 bytes to store a single bit of 

information.  Furthermore, each instance of SafetyDistanceCoster with a different 

safety-distance parameter requires its own cached data space.  By defining an 

Offlinable Property with a DataType of bitset<8>, we can cache the data from the 

probes in a single 8-byte word.   Other Properties and GoalPredicates can use the 

property, for example, to estimate how (un)stealthy a position is.   Furthermore, we 

can define an Offlinable Property that uses a length-to-intersection version of line-

segment testing and stores the result of each test with respect to the probe length as a 

single byte.   The 8 bytes of data for each position can then be used by multiple 

(approximate) SafetyDistanceCosters with different safety distances, by other 

Properties, and by goal predicates for which the relative precision is sufficient. 

 

 

2.3  Leveraging Tactical Path Planning Capability in Behavior 
Modeling 
 

In project scoping, stakeholders identified team behavior as an area of current and anticipated 

difficulty.   We hypothesized that game-AI-like hierarchical team behavior methods could be 

combined with the higher level of tactical abstraction afforded by our planning technology to 

greatly reduce software and use complexity.  In year 1, we demonstrated “one-click” planning of 

a team behavior based on an explosive breach.  This showed how our approach accelerates how 

quickly users can specify team behaviors in a scenario.  In a simulation demonstration, the team 



16 

changes its plan and members re-plan paths in a tactically coordinated way in response to 

updated perceptions. 

 

The basic idea behind using path planning in squad behavior is for squad and team member 

behavior models to take a minimal description of a specific task and elaborate on it to obtain path 

planning tasks.  For example, in the explosive breach example task the minimal description 

consists of the breach location and the hazard radius of the explosive charge.   The behavior 

model for the task type is responsible for other task parameters that are used in fleshing out 

costers and goal predicates.   In the example, the task goal predicate is a conjunction that 

includes predicates that account for the maximum permissible distance from the breach location 

and minimum permissible distance between teammates.   Costers penalize locations in the terrain 

where there is line-of-sight to known adversaries.   To avoid the curse of dimensionality, squads 

take a greedy approach to coordinated path planning.   Squad members plan one at a time and 

pass the set of planned destinations to each successive member so that (s)he can account for them 

in goal predicates and costers.  In the demonstration code, the squad members’ AI share access to 

a data structure with that information, but simulated communication could be used instead in a 

real application.   During a simulation run, the characters’ sensing/perception models update the 

set of known adversary locations.   When new threats are observed, the characters can take 

interim actions while taking turns revising path plans using asynchronous calls to the planning 

engine.  In the simple demonstration for LVC feasibility, each character proceeds on his revised 

path once planned.  Using advances in the ABLE Path Planner in year 2, we built upon this 

approach to demonstrate an approach for autonomous, extensible bounding overwatch behavior.  

In particular, we have seen that non-binary goal predicates are valuable for this problem.  

 

 

Figure 1: Red Squad paths avoid region visible from watch post, then branch to role-
specific tactical positions.   (Model based on Robot Vehicle Range.) 



17 

 

Early in year 2, we leveraged Sandia’s previous work in LVC with physical robots and applied 

the year 1 path planner to the real and the constructive robots in a demonstration of our LVC 

technology.  In the scenario, a Red Team robot uses notional tactical path planning to flee, avoid, 

and hide from a Blue Team robot.  A line-of-sight based goal predicate models hiding, while a 

coster that penalizes approaching or getting to close to the adversary is critical for shaping the 

evasion path.  The full demonstration integrates live and constructive assets that include a 

constructive breach squad, a live human, a physical unmanned ground vehicle robot (UGV), a 

constructive UGV, and LVC communications.  In addition to demonstrating the tactical 

behaviors integrated into our full LVC technology, this was our first demonstration of our path 

planning technology for a physical robot. 

 

  

Figure 2: Red squad alters paths in response to Blue guard. 

 

 

Figure 3: Blue Robot 
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Figure 4: Blue robot plans to Red robot position sent by Blue UAV (not shown), then re-
plans path from live position when its simulated sensor detects the Red robot. 

 

  

Figure 5:  Red robot jams Blue robot radio and plans evasive path to out-of-sight 
location; jamming ends when line-of-sight is lost. 

 

  

Figure 6: Blue robot plans to Red robot location communicated by Red UAV, then re-
plans path to location updated by its own sensor.   When there is line-of-sight again, Red 

robot then jams Blue robot radio and plans evasive path to out-of-sight location. 
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2.4  Scalability 
 

Off-loading path-planning to separate threads enabled our emerging behavior framework to be 

applied in a small LVC demonstration.  Scalability requires a more general approach to 

parallelization of the overall simulation.  Because our LVC simulation technology and so much 

of our FOF work has leveraged the Umbra framework, the natural question is how generally to 

parallelize Umbra-based simulation.  Previous distributed Umbra-based simulation includes 

HLA federation of instances of Umbra runtimes that individually had no explicit parallelization.  

An end-of-year funding in FY2010 enabled us to conduct preliminary, experimental research on 

automatic extraction of parallelism in Umbra and on where parallelism should be applied in 

Umbra-based simulations. 

 

 
 

Figure 7: Example MainGraph of Modules.  

 

First, we investigated the feasibility of having the Umbra core automatically extract parallelism. 

In a simplified view, the main components of an Umbra simulation form an acylic directed graph 

whose nodes are Umbra Modules and whose edges are non-feedback data connectors.  Within an 

iteration of the update loop (i.e., a simulation step), the update()function of each Module is 

executed in an order consistent with the graph.  In FOF simulation, most Modules in the top-

level Graph, the MainGraph, are actually Systems, which themselves encapsulate a Graph of 

lower-level Modules.   

 

Our approach applied multi-threading a step through the simulation loop at the MainGraph level.  

The basic idea is to use a pool of worker threads to execute the Module::update() in a way that 

obeys the partial ordering implied by the graph structure.  In a legal simulation configuration, the 

MainGraph will be acyclic.  Therefore, it will have at least one Module that has no predecessors. 

With some simplifying assumptions (e.g., no Callbacks), it is clear that the Module updates can 

be performed asynchronously while preserving correctness as long as each Module’s update 

begins after the update’s of all its predecessor completes.  In the implementation, we construct a 

job for each module: 
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Figure 8: Job executed in a worker thread for a given Module. 

 

When a Module signals its successors, it tells them that one of their predecessors has completed 

execution.  Each Module has a counter that is initialized to the number of predecessors it has.  As 

each predecessor finishes and signals its successors, the count gets decremented.  When the 

predecessor counter reaches 0, then that Module’s update job gets added to the thread pool job 

queue. 

 

To understand where parallelism could generally benefit performance, we experimented with 

generated a simulation with a number of Dante::Characters.  The Dante::Character class is a 

heavyweight Umbra system that models a human being including features such as visual 

perception, auditory perception, and mobility.   We instrumented the Umbra core to provide 

some timing data such as time per module update and overall update time.   

 

In initial testing running the threaded update loop on eight threads provided roughly a 50% 

improvement in speed over single-threaded execution of the update loop.  Going from one to 

eight threads and only getting a 50% speed improvement is poor scaling.  Upon further 

investigation it turned out that over half of the processing time for this test was being done in a 

single module, the VisualWorld, which computes what each character “sees”.  When we 

activated an existing threaded computation capability in VisualWorld, the overall processing 

time dropped to about 25% of the original processing time (4x speed-up).  Another World 

module, the AcousticWorld, accounted for a substantial portion of the update loop time and 

would be a candidate for threading. 

 

It is still unclear how much real benefit the threaded update loop could bring to a simulation.  

Likely, it is highly dependent on the type of simulation being executed.  A simulation with little 

use of Worlds might find improved performance by using the threaded update loop.  However, 

one still has to weigh that improvement against the more restrictive requirements of writing 

modules to work in a threaded update loop (careful use of callbacks and shared resources such as 

static member variables).  The larger opportunity for threaded optimization could be within the 

Worlds themselves.  Typically, Worlds model interactions of different entities within a 

simulation.  By their nature, these interactions often scale as the square of the number of modules 

involved, thus consuming a lot of processing time.   Each type of interaction also tends to be 

simulated in a single source code file.   This makes Worlds easier to thread without unwanted 

consequences.  Therefore, it seems that threading Worlds would be the most successful approach 

to gaining performance via threading in the Umbra update loop. 

 

Execute Module Update 

For Each Successor { 

 Signal Successor 

} 

Done 

Job 
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2.5  An Entities and Capabilities Architecture Supporting Fairness 
 

Initial domains for Umbra-based simulations typically consisted of sensors, radio 

communications and the interaction of mobile robotic vehicle platforms with terrain.  However, 

the set of desired simulated entity types is ever-growing.   Interaction phenomena of interest now 

include weapons use and effects.  Entities include human characters with different combinations 

of roles, force-on-force alignments, skills, capabilities, etc, as well as many combinations of 

behaviors, mobility, participation in interaction phenomena, and other characteristics.  Because 

of the number of combinations and overlaps, applying classic object-oriented software 

approaches to define and construct types of entities while avoiding code duplication tends to 

result in unmanageable class hierarchies or bloat of the base entity class. 

 

We have developed an approach to solve these problems in Umbra-based simulation.  The 

underlying idea is that one basic entity class would be sufficient if capabilities can be added to 

instances of that class without it knowing about the types of capabilities beforehand.  

Constructing entities this way from data files rather than procedural scripts is a form of data-

driven, component-based simulation composition.  Recent game object systems (e.g., [Passos, et 

al, 2009]) that apply data-driven composition of characters and entities are similar at a high level.  

Our approach exploits and builds on Umbra’s initial world-module and child-module extensions 

of data-flow-based simulation and also its more recent hierarchical modeling structures.   Not 

only does our approach enable us to solve the problems that confound classical object-oriented 

methodology, but it enables the data-driven composition of simulations that are fair. 

 

At the heart of our approach are the ComposableBase and CapabilityBase base classes.    The 

main idea is that there will be relatively few, broad subclasses of ComposableBase, such as 

Character and Vehicle, but many specific types of entities.  An entity (instance) of a specific type 

is created by creating an instance of one of these classes and adding instances of the capability 

classes that characterize that entity type.  Capabilities are aspects of a model and can include 

sensing/perception subsystems, mobility, participation in various interaction phenomena (e.g., 

seeable, hearable), and various action (e.g., weapons user) and behavior components.  For 

example, the first step to adding the capability for an entity to participate in an interaction 

phenomenon entails having the world for that interaction phenomenon create the children needed 

to model that aspect of the entity. 

 

Our progress builds on two building blocks that have been added to the Umbra core in the past 

few years.  The first is support hierarchical modeling via systems and components.   In our C++ 

implementation, the System base class is a subclass of the Module class.   The System interface 

enables other modules to be made components of a system module (instance).  Component 

modules belonging to a system module are updated (i.e., have their update() functions called) 

within the scope of that system module’s update in the simulation loop.   Connectors belonging 

to component modules cannot be connected to modules outside their owner system module; 

however, the connectors of that system module can transfer data to/from them via ports.  The 

second building block is basic support for data-driven simulation composition, which Umbra’s 

uxml library provides.  The uxml library supports XML templates; many instances of an entity 

type can be created by using the corresponding template rather than using many copies of the 
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XML code.  The ShapeSystem is a particularly useful base System class that is XML-creatable.   

It includes a frame component module for position and orientation relative to the world frame, 

and it provides an interface for adding geometry.   ComposableBase is a subclass of 

ShapeSystem. 

 

In the current implementation, we use XML for describing what capabilities to add to an entity.  

Additional XML data within a Capability XML element is passed to that capability (instance) to 

customize parameters and construction.  The implementation of a capability typically involves 

several modules, some of which might be systems, in addition to the entity and capability 

module itself.   When a specific capability (instance) is added to an entity, a function is called 

that is responsible for making sure that the necessary modules are instantiated and for 

appropriately manipulating connections, ports, system/component memberships, and explicit 

update-order constraints.   The last of these is very important because adding a capability 

sometimes also involves providing modules pointers to each other.  Umbra’s scheduling 

algorithm considers all connections, ports, system/component memberships, and explicit update-

order constraints to do the actual scheduling of module updates within the simulation loop.  

Adding a capability effectively only provides input to the scheduler relevant to the capability 

implementation but does not do the scheduling. 

 

Simulation applications require that simulation be fair to the extent possible.  For example, it is 

unacceptable for simulation results to be skewed by software object creation order when not 

differentiated by simulated time.  Underlying fairness issues in game implementation can 

sometimes be hidden from the player by the small timestep in a game combined with the limits 

of human reaction time.  In contrast, simulation applications often seek to run with as large a 

timestep as possible while still getting valid results.    

 

By connecting chains of modules to the frame component of an entity, capabilities can use that 

component as an anchor point in the entity’s internal constraint graph for component module 

updates.  For example, when a MovementSystem capability is added to an entity, the output of 

its final output module is connected to the frame module of the entity, and when a VisualSensing 

capability is added, the module that receives the sensor position and orientation is downstream 

from the frame module.  Other component modules are similarly used to serve the combined role 

of holding state data and constraining read-write order.   Explicit update-order constraints are 

used when there is a data read-write order that is not expressed through connections, ports, and 

system/component relationships. 

 

The above methods enable capability class hierarchies (such as a class hierarchy of movement 

systems) to be written such that when capabilities are used to compose simulated entities, the 

module update orders are fair and consistent internally across those entities.  To avoid conditions 

that can result in simulation unfairness due to the order of reads and writes of phenomenon-

coupled data, we adopt the following constraints.  First, writes to the phenomenon-coupled 

variables of a child module are only done under the control of the update() of the world 

module that produced the child.  Second, we avoid interleaving execution of a world module’s 

update()with module updates that can entail a read of a phenomenon-coupled variable in any 

of that world’s children.   Capabilities are written so that all within an update cycle 
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 all reads of phenomenon-coupled variables will occur within the scope of an entity’s 

update(); 

 all entity update() scopes will precede world update() scopes. 

When a world module creates a child module, a constraint is added to force Umbra to call the 

child’s update()before the world module’s update() in the simulation loop body.   In our 

new scheme, only a capability type can enable an entity to participate in a simulated interaction 

phenomenon.  A capability that adds an interaction phenomenon to an entity makes such child 

modules components of the entity system.   In Umbra, when a module becomes a component 

module of a system, the update-order constraints that applied to the module are transferred to 

apply to the system. 

 

Required world modules can be found by type and/or name via Umbra’s instance management 

system and created if needed.   Simulation elements that a capability must attach to or 

manipulate that are internal to an entity are either part of a specific capability type added to the 

entity or provided by the broad ComposableBase entity subclass.   When a capability is being 

added, the ComposableBase interface enables it to access prerequisite capabilities or to add 

them.   Thus, our scheme provides Dependency Injection.   

 

2.6  Enabling Flexible Modeling of Working Memory 
 

Modeling working memory and attention are important both from practical and research 

standpoints.   While simple techniques from game AI can be integrated into simple, low-level, 

behavior components, they are only sufficient constrained or idealized situations.   However, the 

science of memory and attentional phenomena is still emerging, particularly with respect to 3D 

embodied agents.   Although the R&D communities around cognitive modeling frameworks such 

as SOAR and ACT-R have been developing useful approaches, we desire a behavior framework 

that enables exploiting straightforward computer science for simulation where it is sufficient.    

We have proposed an extensible working memory framework to enable integration of models of 

different levels of sophistication and abstraction.  We have implemented a preliminary version of 

its core.  The focus of this software module is flexibility rather than promoting cognitive 

modeling fidelity; however, flexibility includes use with cognitive modeling components.   

There are several basic ideas behind the design, including: 

 Input content can come from perception, communication, and both spontaneous and 

behavior-requested recall; however, perception is distinguished.    

 Memory elements can have different data types. 

 Memory elements each have a non-negative activation level that is used to determine 

availability.   

 An overall behavior model will have multiple components that include internal models of 

how various memory elements should be updated.   

The basic question the last of these addresses is how to update activation in the absence of 

perception.  A minimal model for this updating, sometimes previously folded into sensing and 
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perception or reactive behaviors, would de-activate a memory element when the duration since 

its most recent perception reaches a threshold.  Behavior elements associated with specific 

contexts might include models that should overrule this default.  Even stronger models could 

include estimation of data and uncertainty from the most recent perception and additional 

knowledge. 

The Flexibly Updatable Memory module provides an interface for inserting memory elements, 

registering memory element updaters, retrieving active memory elements.  Memory elements are 

identified by a combination of an attribute identifier and a vector of entity identifiers.   These 

identifiers can be generated with or without associating them with a string (name).  The basic 

retrieval function gets all elements with a given attribute identifier and activation over a given 

threshold.  Each memory element has up to three versions of content: what was perceived, what 

is proposed, and what is the current value that can be retrieved.   The general part of content 

includes activation, the time the content was updated, and the strength of the model that updated 

the content.   The Flexibly Updatable Memory’s update function applies the registered updaters 

to memory elements as appropriate.   It applies a default decay model to memory elements that 

the updaters miss.  A memory element updater will not override proposed content set by a 

stronger model at the current update time.  The data part of memory element content is a 

templated data structure, enabling different attributes to have different types.  To enable further 

generality, there is a simple value template parameter and an estimated value template parameter.  

The latter, for example, could include statistical data.  We assume that the behavior model 

components that interface with the flexible working memory component will consistently 

associate attribute identifiers with data types.  
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3. FUTURE WORK 
 

Because this project produced results at several levels of concreteness and technical readiness, it 

provides a broad range of starting points for future work.   We describe a few directions here. 

 

Although ABLEPathPlanner is already suitable for use in applications, there is much that can be 

done to extend it.  The simplest form of extension is to develop new Costers, Properties, and 

GoalPredicates.  This does not require modifying the library itself.  For example, a Coster with 

knowledge of the locations of non-static obstacles could prevent paths from intersecting them.  

Behavior modeling research could leverage this simple extensibility by exploring how Costers 

and Properties could be used to model imperfect and/or limited knowledge of the environment.   

The ABLEPathPlanner architecture is also designed for additional capabilities to be added to its 

source code.   For example, chart classes that use feature-dependent variable-resolution mesh 

generation and that integrate road data would be desirable.  Planning tasks could include 

specification of specific charts to include, and hierarchical planning techniques could be built on 

this capability.   Support for charts with local coordinate systems would enable a further 

extension to make non-static objects traversable.   Finally, optimizations should be considered in 

addition to these and other extensions. 

 

Our work on a flexible working memory simulation framework is ripe for integration into an 

embodied agent behavior model.   As part of an upgrade path for behavior modeling in Dante, 

perception modules could be adapted to use the Flexibly Updatable Memory and memory 

element classes instead of having separate representations of memory.  We would also develop a 

knowledge-level communication model that integrates with the new memory model.   Behavior 

triggers, whose activations drive the selection of behaviors within a task context, would also be 

adapted to use the flexible memory system.   Thus, behavior triggers would only have to 

interface with the memory system instead of each perception modality and communications 

separately.  The same would hold for other behavior modeling elements responsible for context 

recognition.  Finally, work on integrating cognitive modeling aspects, stronger and more general 

behavior AI, and long-term memory can build on the working memory framework. 

 

Results from this project’s limited investigation of scalability using multi-threading include a 

clear next step.  Worlds that simulate entity-entity interactions generally need to be threaded.  

Also within the multi-threading paradigm, we would investigate patterns and structures that 

make writing modules to work in a threaded loop less burdensome.   Beyond the multi-threading 

approach, message-passing parallel and distributed architectures for Umbra simulations should 

be investigated.  Latencies between processing nodes within world module and the locations of 

child modules are obvious issues.  However, in an LVC setting, human response latency 

provides a finitely small threshold to meet. 

 

Additional directions for future work include applying the behavior modeling technology more 

generally to robotics and addressing low-level aspects of behavior, such as path-smoothing and 

reactive collision avoidance. 
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4. CONCLUSIONS 
 

The basic purpose of this project was to advance Sandia’s force-on-force (FoF) simulation 

technologies to better support Precision Decisions and Live-Virtual-Constructive (LVC) 

simulation.   We obtained results in several areas that serve this purpose.  The 

conceptual architecture we develop enabled us to prioritize what components to improve and to 

identify where latencies in human behavior might be exploitable in a simulation architecture. 

We extended the capabilities of our previous extensible path planner and demonstrated that it 

will enable raising the abstraction level at which behaviors can be specified.   We applied it to 

the tactical behaviors of a simulated human squad and live and constructive robots in an LVC 

demonstration.   We developed a new path planner that has greater extensibility in both structure 

and planning task expressiveness and better space efficiency.   We did preliminary experimental 

work with multi-threading Umbra-based simulation to help define future directions for 

improving scalability.   We developed and implemented a data-driven simulation composition 

approach based on adding capabilities to a simple entity at construction time that also simplifies 

assurance of simulation fairness.   Finally, we developed the core of a flexible, modular 

framework for simulating working memory in character behavior.  

 

The results of this project provides foundations for more advanced practical applications 

development, provides structure into which we can integrate research results, and provides ideas 

that we can build on in future research. 
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APPENDIX A:  PROJECT-RELATED INFORMATION 
 

 

Awards:  None. 

 

Publications and Presentations:  None. 

 

Patents:  None. 

 

Disclosures of Technical Advance: 

  

 (In preparation.)  A Flexible Path Planning System 

 An Entities and Capabilities Architecture Supporting Simulation Fairness, SD 12203. 

 (In preparation.) Path Planning Architecture for Expressiveness, Extensibility and 

Efficiency. 

These titles are tentative. 

 

Copyrights: 

 

 Contributed to development of Sandia Tactical Path Planning System v. 1.0 beta. SCR 

1427.0, Government Use. 

 Contributed to development of State Machines.  SCR 1348.0. 

 A copyright assertion will be filed for the path planning framework described in Section 

2.2, “Extensible Path Planning”.   It is also believed that the library will be included in 

copyrighted distributions of applications such as Dante 2.x, Umbra Terrain Utility and 

OpShed.  

 The Capabilities/Entities implementation (Section 2.5) is being copyrighted.  It will also 

be included within higher-level (e.g., application) distributions. 

 SquadCoordinator is being copyrighted.  It will also be included within higher-level (e.g., 

application) distributions. 

 

Follow-on Work: 

 

 Path planner being incorporated into several projects: 

o  Dante 2.0 and later 

o  Umbra Terrain Utility, next version 

o  OpShed, next version 

 “One-click squad planning” 

o  Dante 2.0 and later 
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o  Close Quarters Battle simulation and training projects 

 Entities and Capabilities:  now one of the three major modularity patterns used in writing 

Umbra-based libraries and applications. 

 Flexible Working Memory framework expected to be starting point for new memory 

model in Dante 2.x. 
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1 MS 1004 Brian E. Hart, 06134 (electronic copy) 

1 MS 1004 Derek H. Hart, 06134 (electronic copy) 

1 MS 1004 Charles Q. Little, 06134 (electronic copy) 

1 MS 1004 Fred J. Oppel, III, 06134 (electronic copy) 

1 MS 1004 Michael J. Skroch, 06134 (electronic copy) 

1 MS 1004 Patrick G. Xavier, 06134 (electronic copy) 

1 MS 1138 Raymond Trechter, 06130 (electronic copy) 

1 MS 1161 K. Terry Stalker, 05447 (electronic copy) 

1 MS 1188 Eric P. Parker, 06114 (electronic copy) 

1 MS 1188 Richart O. Griffith, 06130 (electronic copy) 

1 MS 9406 Donna D. Djordjevich, 08116 (electronic copy) 

 

1 MS 0899 RIM-Reports Management, 9532 (electronic copy) 

1 MS 0161 Legal Technology Transfer Center, 11500 (electronic copy) 

1 MS 0359 D. Chavez, LDRD Office, 1911 (electronic copy) 
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