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Abstract

In this report we describe how we create a model for influenza epidemics from histori-
cal data collected from both civilian and military societies. We derive the model when
the population of the society is unknown but the size of the epidemic is known. Our
interest lies in estimating a time-dependent infection rate to within a multiplicative
constant. The model form fitted is chosen for its similarity to published models for
HIV and plague, enabling application of Bayesian techniques to discriminate among
infectious agents during an emerging epidemic.
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1 Influenza Model

We assume that the probability of being infected (per unit time) changes in time, starting
from a small value at the beginning of the epidemic and peaking when the medical counter-
measures are put in place. We model the unknown infection rate (defined as the probability
of being infected over a 24 hour period) as ¢(s;k,r), where s is the time since the start of
the epidemic (first infection) and (k, r) are parameters of the infection rate model

. _ rk k—1 —rs
q(s’k7r> - F(k)s e (1)

where I'(k) is a Gamma function. As can be seen, the expression ¢(s;k,r) in Eq. 1 resem-
bles a Gamma distribution. It is described only over the duration of the epidemic.

The infection rate, convolved with the cumulative distribution function of the incubation
period of influenza provides us with a model for the evolution of the epidemic (see deriva-
tion in [3]):
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where:

n(T) is the number of people who have exhibited symptoms by time 7
T is the time when the epidemic is believed to have started, and

N;or 1s the total number of victims of the epidemic over its entire course.

For F; we use the following form:

—lerc _In() —p
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which denotes a log-normal distribution for the incubation period Y. Here u and ¢ are
derived from the mean and standard deviation of the influenza incubation period, taken to
be 2 and 1 day respectively (as in Bombardt and Brown [1]).

Data from an epidemic is available as the number of sick people observed over a set ob-
servation period (sometimes a 24-hour period, but generally weekly) and the time-series is
available over the entire duration of the epidemic, which is generally more than a month.

1.1 Fitting the Model to Data

We collected data from [1], [2] and [4]. They represent the number of sick people
observed on a daily basis in [1] and on a weekly basis in [2] and [4]. For each of the
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datasets in these papers, we extract a time-series of people reporting sick or exhibiting
symptoms during the outbreak. The data is usually collected on a daily or weekly basis.
In terms of Eq. 2, the time-series corresponds to (n(7;) —n(7; — 8)), where T; are the end-
points of each interval in the time-series and 0 is the width of the interval over which the
data is collated (usually a day or a week). The model is fitted to data by changing k, r and
T, inside a gradient-based optimization loop that minimizes the mean-square difference
between the model and (daily/weekly-recorded) observation time-series. The code was
written in MATLAB and fminsearch was the optimization function used. The code for
fitting a model to data collected from military populations can be found in Appendix A.

1.2 Influenza Results

In Fig. 1 we illustrate our parameter model fitting results for military data obtained from
the 1918 flu epidemic at Camp Custer [1]. The circles represent the data, i.e. daily arrival
of sick individuals, the solid line represents our influenza model fitted to the data (Eq. 2)
and the dashed line (axis on the right) our infection rate model (Eq. 1).

In Fig. 2 we illustrate our parameter model fitting results for civilian weekly data obtained
from CDC for 2004 — 05 [2]. Here the circles represent the data, i.e. weekly sick arrivals,
the solid line represents our flu model fitted to the data (Eq. 2) and the dashed line (axis on
the right) our infection rate model (Eq. 1).

In Table 1 we present a summary of our results for parameters k, r, and 7 fitted for each of
the considered historic data sets. We also report the data type (military or civilian) and the
daily or weekly time rate for sick arrivals.

Table 1: Model fitted parameters k, r, and T for each historic data set.

TYPE | SOURCE ) k r T
Military | Camp Custer, 1918 [1] Daily 24.69 | 1.11 | —0.19
Military | 3rd Regiment,1918 [1] Daily 17.33 | 1.39 | 0.03
Military | 78th Regiment, 1918 [1] Daily 22.60 | 1.54 | —0.27
Military | 6th Brigade, 1918 [1] Daily | 30.32 | 1.14 | —6.87

Civilian | 2001-02 US Influenza season, [2] | Weekly | 25.37 | 0.18 | O
Civilian | 2002-03 US Influenza season, [2] | Weekly | 22.13 | 0.16 | O
Civilian | 2004-05 US Influenza season, [2] | Weekly | 23.03 | 0.17 | O
Civilian | 2006-07 US Influenza season, [2] | Weekly | 22.14 | 0.15 | —1.63
Civilian | 2007-08 US Influenza season, [2] | Weekly | 39.67 | 0.27 | —4.00
Civilian | Catalunya, 2008 [4] Weekly | 40.49 | 0.35 | 0
Civilian | Catalunya, 2009 [4] Weekly | 22.25 | 0.17 | O

Fig. 3 is a scatter plot of our results for k,r. Each symbol is a (k, r) pair obtained by fitting
our model to a specific historic data set. The squares correspond to military data fits and the



diamonds correspond to civilian data fits. In our infection rate model (see Eq. 1) parameter
k essentially describes how quickly the infection rate varies in the beginning of the epidemic
(i.e. when it is increasing); our results do not show a clear differentiation between military
and civilian societies in their response. Parameter r determines how quickly the infection
rate decays as the epidemic is brought under control. We can see that the military data
clusters around larger values of r with (1.1 < r < 1.6) while the civilian data results in a
clustering at the lower end (0.1 < r < 0.5). Based on this clear clustering in , it seems that
military societies bring flu under control quicker.

In Fig. 4 we present the histograms for parameters k and r respectively, as listed in Table 1.
We see no clear trend in k (Fig. 4 on the left), but the bulk of the values lie between 22
and 26 (mean y; = 26.4, standard deviation 6; = 7.4, median = 23); on the other hand r
shows a clear multimodal distribution (Fig. 4 on the right), reflecting the difference in the
response of civilian and military societies that was seen in Fig. 3.

In Table 2 we tabulate consensus values, appropriate for modeling influenza in Bayesian
inference problems. These may serve as prior beliefs. Note that k£ has some outliers (k ~
40) and consequently, the median provides a better representation. Note, too, that the
coefficient of variation (6y /) for k is around 0.3. Methods for discriminating causes of
emerging epidemics, based on these parameters are presented in [5].

Table 2: Summary of the influenza model. N(u, G) refers to a normal distribution.

Epidemic model Eq.2

Incubation period Log-normal; u = 2 days, 6 = 1 day; Eq. 3
Infection rate model | Eq. 1

k 23

r N(1.3,0.2) [military]; N(0.21,0.07) [civilian]
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2 Conclusions

We have developed models for the progression of influenza in human populations. The
model is framed as a integral, and predicts the number of people who exhibit symptoms
and seek care over a given time-period. The start and end of the time period form the limits
of integration. The disease progression model, in turn, contains parameterized models for
the incubation period and a time-dependent infection rate. The incubation period model is
obtained from literature, and the parameters of the infection rate are fitted from historical
data including both military and civilian populations.

The calibrated infection rate models display a marked difference in which the 1918 Spanish
Influenza pandemic differed from the influenza seasons in the US between 2001-2008 and
the progression of HIN1 in Catalunya, Spain. The data for the 1918 pandemic was obtained
from military populations, while the rest are country-wide or province-wide data from the
twenty-first century. We see that the initial growth of infection in all cases were about the
same; however, military populations were able to control the epidemic much faster i.e., the
decay of the infection-rate curve is much higher. It is not clear whether this was because of
the much higher level of organization present in a military society or the seriousness with
which the 1918 pandemic was addressed. Each outbreak to which the influenza model was
fitted yields a separate set of parameter values.

We suggest “consensus” parameter values for military and civilian populations in the form
of normal distributions so that they may be further used in other applications. Representing
the parameter values as distributions, instead of point values, allows us to capture the un-
certainty and scatter in the parameters. Quantifying the uncertainty allows us to use these
models further in inverse problems, predictions under uncertainty and various other studies
involving risk.
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A Matlab code for fitting an Influenza model to data col-
lected from military populations

A.1 flu driver.m

flu_driver.m
A script to test the epidemic subroutine
Sophia Lefantzi, Sandia National Laboratories, 01/18/2011

o\ o o

clear ; % Forget all variables
close all ; % Close all plot windows

% ——-—-— User input

meanIncub = 2.0 ;

stdIncub = 1.0 ;

% The input data file is a two column file. The fisrst column has the

% day number and the second column has the number of symptomatic/diagnosed
% people over that 24 hour period.

filename = ’CampCusterl918.dat’ ;

plotIt = false ;

% Initial values for the parameters to be fitted to data

k=5,

r = 1.0e-01 ;

tau = -1 ;

% ———-—- End user-inputs

% get the flu params
varIncub = stdIncub”2 ;
[mu, sigma] = fluParams (meanIncub, varIncub) ;

% ——- Read in data and find particulars about this dataset
D = load (filename) ;

ndays = size(D,1) ;

observations = D(:,2);

Ninf = sum(observations) ;

[

% —-——- Run the model and see what the error wrt obs is
% Struct to contain all user parameters
UserData.mu = mu ;

UserData.sigma = sigma ;
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UserData.Ndays = ndays ;
UserData.Ninf = Ninf ;
UserData.observations = observations;
UserData.PlotIt = plotlt ;

PO = [k, r, tau] ;
% ——- Do an optimization on PO to get good values of P

options = optimset (' TolX’, 1.0e-1, ’MaxIter’, 1000) ;
Pfinal = fminsearch(@(P) EpidemicError (P, UserData), PO, options) ;

% ———— Compute infection rate

s = l:ndays ;

k = Pfinal(1l) ;

r = Pfinal(2) ;

g= (s.”(k-1) .* exp(-r.*s) * r"k ) / gamma (k);

tau = Pfinal (3) ;

% —— compute the model predictions

evolution=epidemic(k, r, mu, sigma, ndays, Ninf, tau) ;
evolution(2:ndays) = evolution(2:ndays) - evolution(l:ndays-1) ;
temp = [observations, evolution] ;

A.2 EpidemicError.m

function [ErrSqrt] = EpidemicError (P, UserData)

%EpidemicError Function to calculate the discrepancy between observations
%$and results from model with guessed parameters

This function accepts some guessed values for the epidemic parameters
in P, namely (k, r, tau), runs the epidemic model and calculates the
sum-of-discrepancy-squared for P.

o o\ o\° o\

o\°

o\°

Sophia Lefantzi, Sandia National Laboratories, 01/18/2011

o\

-———Extract parameters from P.
k =P(l) ; r =P(2) ; tau = P(3) ;

% —-——- Extract user’s dataset-specific info
mu = UserData.mu ;

sigma = UserData.sigma ;

ndays = UserData.Ndays ;

Ninf = UserData.Ninf ;
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% Run the model. Results are in evolution.
$fprintf (‘P = [%f, %f, %$f]\n’, k, r, tau) ;
evolution = epidemic(k, r, mu, sigma, ndays, Ninf, tau);
temp = evolution ;
for iday = 1 : (ndays-1)
temp (iday+l) = evolution(iday+l) - evolution(iday) ;
end
evolution = temp ;

% ——-—-— Compute the Squared Error
EPS = 1.0e-6 ;
Err = UserData.observations - evolution ;

ErrNorm = norm(Err, 2) ;

ErrSqrt = ErrNorm;

fprintf (‘P = [%f, %f, %f], E = %f\n’, k, r, tau, ErrSqgrt) ;
return;
end

A.3 epidemic.m

function [evolution] = epidemic(k, r, mu, sigma, ndays, Ninf, tau)
epidemic (k, r,mu, sigma, ndays, Ninf) provides the evolution of the flu
epidemic given k,r,mu and sigma.
This file returns an evolution of a flu epidemic, given (k, r) and (mu,
sigma) .
Output:
evolution, a vector ndays long, with the epidemic evolution

Input
- ndays is the number of days the epidemic evolves, - Ninf, total
size of the epidemic i.e., number of people who did turn sick over
the whole epidemic. - tau, number of days before first data, when the
epidemic started (first infection). tau < 0.

N o o N O O N N o o o o° o

o\

o\°

Sophia Lefantzi, Sandia National Laboratories, 01/18/2011
---- Allocate the array where we will store the evolution
evolution = zeros(ndays, 1) ;

o\

[

% ——--— Ensure that the parameters are inside desired bounds
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parametersAreGood = true ;

if ( (tau>0) || (k<0) || (r<0) )
parametersAreGood = false ;

end

if (parametersAreGood == false)
return;

end

% —-——- Loop over all days and fill in evolution

for iday = 1 : ndays
flulnt = quad(@(s)flulIntegral (s,k,r,mu,sigma,tau,iday),0,iday-tau) ;

evolution(iday) = Ninf * flulnt ;
end
return ;
end
function [result] = flulntegral(s,k,r,mu,sigma,tau,iday)
incubation = iday-s-tau ; % Quad sends in a vector of s

0

% a vector as long as incubation
cdfOfIncub = zeros(size(incubation)) ;

% —-——- make sure incubations are > 0

goodIndices = find( incubation > 0) ;

tmp = ( log(incubation(goodIndices))-mu ) / ( sigma*sqgrt(2) ) ;
cdfOfIncub (goodIndices) = 0.5*erfc( - tmp ) ;

g= (s.”(k-1) .* exp(-r.*s) * r"k ) / gamma (k);

result = cdfOflIncub .* q ;

return;
end

A.4 fluParams.m

function [mu,sigma] = fluParams (mean_flu, variance_flu)
fluParams Flu parameters given the mean and variance

of incubation period

Sophia Lefantzi, Sandia National Laboratories, 01/18/2011

o\ o o

o\

20



sigma = sqrt ( log(l+variance_flu/mean_flu”~2) );

mu = log(mean_flu) - (sigma”2)/2 ;
return;
end
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