
Linac alignment algorithm: analysis on 1-to-1 steering

Yipeng Sun∗ and Chris Adolphsen
SLAC, Stanford, CA 94025, USA

In a linear accelerator, it is important to achieve a good alignment between all of its components (such as quadrupoles,

RF cavities, beam position monitors et al.), in order to better preserve the beam quality during acceleration. After

the survey of the main linac components, there are several beam-based alignment (BBA) techniques to be applied,

to further optimize the beam trajectory and calculate the corresponding steering magnets strength. Among these

techniques the most simple and straightforward one is the one-to-one (1-to-1) steering technique, which steers the

beam from quad center to center, and removes the betatron oscillation from quad focusing. For a future linear collider

such as the International Linear Collider (ILC), the initial beam emittance is very small in the vertical plane (flat beam

with γǫy = 20− 40nm), which means the alignment requirement is very tight. In this note, we evaluate the emittance

growth with one-to-one correction algorithm employed, both analytically and numerically. Then the ILC main linac

accelerator is taken as an example to compare the vertical emittance growth after 1-to-1 steering, both from analytical

formulae and multi-particle tracking simulation. It is demonstrated that the estimated emittance growth from the

derived formulae agrees well with the results from numerical simulation, with and without acceleration, respectively.

1. Linac alignment problem

The basic problem of linac misalignment can be sketched in Figure 1. The most ideal case is that all the elements

of a linac are aligned on a straight line. In that case, there is no dispersive or wake-field-related emittance growth,

if the beam is also injected on the axis. In practice, however, the linac components are scattered randomly with

respect to the survey axis (treated as a straight line here) as shown in Figure 1. The beam will get a dipole kick

when it pass by a quadrupole off center. If the offset is ∆y, the kick is

∆y′ =
K1∆y

1 + δp
(1)

where K1 denotes the normalized quadrupole strength, K1 =
dBy/dy

Bρ , Bρ the beam rigidity which is proportional to

beam energy, δp the energy offset of the particle.

In formula (1) it is shown that particle with different energy offset δp (and same initial coordinates) will

get different dipole kick from the same quadrupole misalignment, and then perform different motion and have

different trajectory. That will introduce dispersion and the dispersive emittance growth which is δp-correlated. In

comparison, without the quadrupole misalignments (dipole kicks), the chromatic difference only from the quadrupole

kick is relatively small, and all the particles will have “same” betatron linear oscillation under the quadrupole focusing.

On the other hand, the beam centroid will follow the straight line without misalignment. With misalignment, it is

also kicked and will perform “betatron” oscillation along the linac. Such an off-center distribution of the charges will

generate wake field when it couples with the linac component impedance. The wake field has a longitudinal position

correlation in the bunch, and will also introduce emittance growth. In this paper we will focus on the dispersive and
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Figure 1: Sketch of linac misalignment problem.

Figure 2: Different error sources for the linac beam-based alignment.

chromatic emittance growth studies.

Except the quadrupole misalignment, there are other error sources to be corrected in the beam-based alignment. In

the linac, usually there is a Beam Position Monitor (BPM) and a pair of orbit corrector attached to each quadrupole

magnet. The electrical BPM center may also have an offset with respect to the magnetic quadrupole center. BPM

is used to measure the beam positions at the quadrupole locations, and it will also have a measurement error (BPM

precision). In Figure 2, the quadrupole offset xq, the BPM offset xb and the BPM measurement error xm are sketched

together. The BPM reading is written as [1]

Xread = X − Xq + Xb + Xm (2)
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Figure 3: One to one correction, top: BPM readings; bottom: vertical quadrupole offsets and beam orbits.

2. One to one correction scheme

There are “global” and “local” emittance correction techniques. “Global” technique adds additional emittance

dilution sources upstream of the measurement point, and let these effects cancel each other. The most straightforward

one is to use emittance-bumps. “Local” correction technique measures and corrects the emittance dilution source

locally.

There are several “local” linac misalignment measurement and correction algorithms. For example, Dispersion Free

Steering (DFS) or Wake Field Free Steering (WFS) [2] measure the difference of two beam trajectories by varying

some parameters (beam energy, quadrupole power supply et al.), and minimize this difference by using the combina-

tion of the orbit corrector family. Ballistic method [3] divides the linac into short bins, then align the BPM first and

quadrupole afterwards, by using a ballistic beam. One to one correction is also used in the second step of this method.

In this paper we will focus on one to one correction. This technique uses the corrector pair to zero the next BPM

readings downstream. If the BPM-to-quad offsets and BPM measurement error are not taken into account, the beam

centroid will be kicked from one quadrupole center to another quadrupole center. The “betatron” oscillation of the

beam centroid is effectively removed. In Figure 3, the application of one to one correction is shown for the vertical

plane, where the BPM readings are almost zero, and the beam orbits equal the quadrupole offsets at the quadrupole

center.

3. Simulation

3.1. Code

A new code is written in Fortran90. The basic function of this code is to define a lattice (or read in a lattice

definition, from MADX), generate a bunch of (or many bunches of) macro-particles, and perform the tracking

simulations. It can be used for either linear accelerator or storage rings. It can perform single-bunch or multi-bunch

tracking, calculate the RMS emittance and other beam parameters at specified locations. The misalignment of the

accelerator structures can be read in, or randomly generated with the RMS value defined.
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Up to now there are two BBA algorithms written in this code. One is so-called “global” correction algorithm

which measures only one beam trajectory (in comparison, DFS uses two), and uses the modified transport matrix R

to establish a correlation between the quadrupoles and remove the emittance dilution. This algorithm is still being

developed. Another one is the basic one to one correction algorithm.

Other correction algorithms, such as Dispersion Free Steering, Kick Minimization and Ballistic method will be

added in the future.

The benchmark of the code is presented in Appendix B.

3.2. Definition of dispersion and emittance

The dispersion, projected emittance and linear dispersion corrected emittance can be calculated from the statistical

property of the bunch, by using the macro-particle’s 6-D coordinates, as shown in Appendix A [4].

3.3. Generation of the bunch

For single-bunch mode, a bunch of particles are generated randomly in six dimentional Gaussian distribution,

namely (x, x′, y, y′, ct, δp). The number of macro-particles in a bunch is tested from 1000 to 1 million, and it is found

that the simulation result has enough precision with 1000 particles per bunch. The transverse halos and longitudinal

tails of the generated bunch are cut at 4σ.

For multi-bunch mode, the random number generator will be updated bunch by bunch.

4. Analytical approach

4.1. Method One

We start from the definition of the projected emittance:

γǫy = γ

√

(< y2 > − < y >2) ·
(

< y′2 > − < y′ >2
)

− (< yy′ > − < y >< y′ >)
2

(3)

where γǫy denotes the normalized vertical emittance, γ the relativistic factor, y the vertical coordinate of one particle,

y′ the divergence (angle). The bracket means an average over all the macro-particles.

Let us consider the motion of the particles with respect to the centroid trajectory, we have

< y >= 0 (4)

< y′ >= 0 (5)

Further more, we choose two particles which have same transverse coordinates, but different energy offset. As the

longitudinal coordinate with respect to the bunch center is almost “frozen” in a linac, we do not need to take it into

account. The 6-D coordinates of the two particles are (x00, x
′

00
, y00, y

′

00
, ct, 0), and (x00, x

′

00
, y00, y

′

00
, ct, δp). Assume

after passing half cell (one quad) in the linac, the difference of the transverse coordinates between these two particles

are (∆x,∆x′,∆y,∆y′), and the coordinates of particle 1 are (x0, x
′

0
, y0, y

′

0
, ct, 0), the coordinates of particle 2 are

x = x0 + ∆x (6)

x′ = x′

0
+ ∆x′ (7)
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Figure 4: Model for the analytical treatment of one to one correction.

y = y0 + ∆y (8)

y′ = y′

0
+ ∆y′ (9)

Insert formulae (4)-(9) into formula (3), and by using σy
2 =< y2 >, σ′

y
2

=< y′2 >, σyy′ =< yy′ >, the normalized

emittance can be written as [5]

(γǫy)2 = γ2

[

(

σy
2+ < ∆y2 >

)

·
(

σ2

y′− < ∆y′2 >
)

−
(

σ2

yy′− < ∆y∆y′ >
)2
]

(10)

Expand the right side of formula (10) and by using

(γǫy)2 = γ2
(

σy
2 · σ2

y′ − σ2

yy′

)

(11)

σy
2 = ǫyβy (12)

σ′

y
2

=
ǫy

βy
(13)

σyy′ = −2ǫyαy (14)

the normalized emittance can be written as

γǫy = γǫy0

√

1 + 2∆γǫ/γǫy0 (15)

where

∆γǫ =
γ

2

(

1 + α2

β
∆y2 + 2α∆y∆y′ + β∆y′2

)

(16)

We use the model as shown in Figure 4, initial longitudinal starting point is the middle of the drift in a FODO

cell. The beam centroid is on the survey axis (treated as straight line here) at first. At the starting point, the beam
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gets a dipole kick which makes the beam center to travel through the next quadrupole center. The normalized dipole

corrector strength is

K0 = 2σquad/Ldrift (17)

where Ldrift denotes the length of the drift between two quads, σquad the RMS value of quadrupole offsets.

After passing by this dipole corrector, particle 1 has a change in the vertical divergence of ∆y′
0

= K0. For particle

2, the change is ∆y′

1
= K0/(1 + δp). The kick of the next dipole corrector is divided into two parts, with the

quadrupole being sandwiched between them. The first part cancels the kick from the previous dipole corrector K0,

and the second part will kick the beam to the next quadrupole center. Assuming thin lens approximation, at the

location of the first quadrupole, the difference of coordinate y between particle 1 and 2 can be expanded into Taylor

series

∆y =
k0L

1 + δp
− k0L = k0L(−δp + δ2

p − δ3

p + ...) (18)

We will observe the beam emittance at the exit of the first quadrupole, where the difference of coordinate y between

particle 1 and 2 is presented in formula (18), and the difference of divergence is

∆y′ = K1∆y (19)

Insert formulae (18) and (19) into formulae (15) and (16), we can get the new emittance after dispersive and

chromatic growth in this small unit. With one unit containing two parts of two dipole correctors and the next

quadrupole, we can repeat this process along the linac and calculate the emittance. One thing to note is that: at the

observatory point which is the exit of the quadrupole, αy always has opposite sign with the normalized quadrupole

strength K1. That means for vertical emittance, the cross term of ∆y and ∆y′ in formula (16) always cancels the

contribution of the other two terms.

With acceleration, the RMS energy spread will decrease as σpE0/E, and this parameter should be updated ac-

cordingly in calculating ∆y and ∆y′.

We can also observe the beam emittance at the center of each quadrupole. For this case, one unit is from the

center of one quadrupole to the center of next quadrupole. The difference of vertical coordinate ∆y between particle

1 and 2 will be the same.

∆y =
k0L

1 + δp
− k0L = k0L(−δp + δ2

p − δ3

p + ...) (20)

The difference of vertical divergence ∆y′ between particle 1 and 2 should be a half of the previous one.

∆y′ = K1∆y/2 (21)

At the center of the quadrupole, we can treat α = 0 and rewrite formula (16) as

∆γǫ =
γ

2

(

1

β
∆y2 + β∆y′2

)

=
γ

2

(

1

β
+

βK1
2

4

)

∆y2 (22)
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Figure 5: Sketch of the two-particle model.

4.2. Method Two

The square of the 2-D projected physical emittance can be calculated as the determinant of the following matrix

ǫ2 =

(

σ2

y0
+
∑

< ∆yi
2 > 0

0 σ2

y′

0

+
∑

< ∆y′

i
2

>

)

(23)

where < ∆yi
2 > denotes the average over all the particles at the ith error source,

∑

the sum over all the error

sources, ∆y the relative position change with respect to the bunch centroid, and ∆y′ the relative angle change with

respect to the bunch centroid.

In the case of one to one correction scheme, in principle only the dispersion generated by the dipole corrector

(dispersive effect) and the quadrupole kick at the dispersive region (chromatic effects) contribute to the change of

position and angle. So basically the dispersive effect from the dipole corrector introduces a wider spread in ∆y at

the quadrupole locations, and the chromatic effects of the quadrupole introduces a wider spread in ∆y′ afterwards.

These two effects happen at different locations and can be treated separately, as shown in Figure 5, which is a similar

two-particle model as used in menthod one.

As illustrated in Figure 6, the dispersive emittance growth is a local effect, which is also the reason that why it

can be corrected “locally”. Four vertical dipole correctors are used to make one closed bump, at the location of

either focusing or defocusing quadrupole. The emittance growth generated in this bump stays the same as the bunch

travels through the following cells which has no dispersion. The effect that there is a larger vertical emittance growth

at the defocusing quadrupole with the same bump amplitude, will be explained later in this section.

The “local” contribution to emittance growth from either position change or angle change can be propagated to

the cells downstream, by using the transport matrix listed below.

The 2-D transport matrix between location 1 and 2 is

M1,2 =

(

R11 R12

R21 R22

)

(24)

where
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Figure 6: Demonstration of the “local” property of the dispersive emittance growth, by making a closed vertical bump and

observe the vertical emittance by simulation. Top: relative vertical emittance; bottom: beam orbit and quadrupole location.

R11 =

√

β2

β1

(cos ∆φ + α1 sin∆φ) (25)

R12 =
√

β2β1 sin ∆φ (26)

R21 = −
1 + α1α2√

β2β1

sin ∆φ +
α1 − α2√

β2β1

cos ∆φ (27)

R22 =

√

β1

β2

(cos ∆φ − α2 sin∆φ) (28)

Before we start the analytical derivation, let us look at the example with two FODO cells, as shown in Figure 7.

There are eight vertical dipole correctors, which build up two closed vertical bumps for cell 1 and cell 2. The height

of the bump equals the RMS quadrupole offset σquad = 300µm. As shown in Figure 7 (bottom), the first dipole

corrector is next to the first quadrupole, which dipole kick is totally cancelled by the second dipole corrector. The

third dipole corrector is right after the second quadrupole and it kicks the beam back to the alignment axis. The

fourth dipole corrector cancels the kick from the third one. If the strength of the second and fourth quadrupole is

set to zero, it is obvious to see that the change of all the particles’ position and angle is zero at the exit of the bump.

That means there is no emittance growth, as shown by the blue dotted curve in Figure 7 (top). On the other hand,

one can also conclude that over a long linac, the main contribution on the dispersive emittance growth is from the

quadrupole kick only at the dispersion region, as shown by the red and magenta curves in Figure 7 (top).

Note that for this method, we will use a model such that the focusing (or defocusing) quadrupole is perfectly

aligned, and only the defocusing (or focusing) quadrupole has an offset which RMS value is σquad. For a linac with

n FODO cells, equivalently there will be 2n FODO cells in the model being used as only every other quadrupole has

offset.
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Figure 7: Optics model being used for method two. Top: relative vertical emittance for three different cases; bottom: beam

orbit and quadrupole (dipole corrector) location.

4.2.1. No acceleration

For the case without acceleration, one can use the physical coordinates (y, y′), and treat the terms ∆y and ∆y′

separately in formula (23). As the bunch travels through the linac, the change in angle spread ∆y′ will propagate,

and at the center of any quadrupole downstream we have

< ∆yi
2 >=

i−1
∑

j=1

R12j,i
< ∆y′

j
2

> (29)

< ∆y′

i
2

>=

i−1
∑

j=1

R22j,i
< ∆y′

j
2

> (30)

Insert R12 and R22 into the above equations, and applying

β1,j = β2,j = β (31)

α1,j = α2,j = 0 (32)

i−1
∑

j=1

cos2 ∆φ =

i−1
∑

j=1

(
1

2
+

1

2
cos 2∆φ) (33)

i−1
∑

j=1

sin2 ∆φ =

i−1
∑

j=1

(
1

2
+

1

2
sin 2∆φ) (34)

i−1
∑

j=1

(
1

2
cos 2∆φ) = 0 (35)
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i−1
∑

j=1

(
1

2
sin 2∆φ) = 0 (36)

We have

< ∆yi
2 >=

i−1
∑

j=1

(
1

2
)β2 < ∆y′

j
2

> (37)

< ∆y′

i
2

>=

i−1
∑

j=1

(
1

2
) < ∆y′

j
2

> (38)

At each quadrupole, we have

< ∆y′

j
2

>=< (K1 · σQ · δp)
2 >= (K1 · σQ)2 < (δp)

2 >= (K1 · σQ · σp0)
2 (39)

Insert formulae (37)-(39) into formula (23), the physical vertical emittance at the nth cell is

ǫn =
√

(σy0

2 + 0.5 · n · β2 · (K1 · σQ · σp0)2)
(

σy′

0

2 + 0.5 · n · (K1 · σQ · σp0)2
)

(40)

From formula (40), one can conclude that there is more vertical emittance growth from the defocusing quadrupole,

given the same dispersion. That explains the observation in Figure 6. To evaluate the emittance growth properly,

one can use the average beta function βy =
√

βy,QD · βy,QF instead.

4.2.2. With acceleration

For the case with acceleration, the beam energy is increased along the linac and the RMS energy offset is decreased

accordingly.

σp = σp0

E0

En
(41)

where E0 denotes the initial beam energy and En the energy at the nth cell.

At the same time, the transverse coordinates also shrink under adiabatic damping.

y = y0

√

E0

En
(42)

y′ = y′

0

√

E0

En
(43)

Formula (39) can be rewritten as

< ∆y′

j
2

>= (

√

En

E0

K1 · σQ · σp0

E0

En
)2 = (K1 · σQ · σp0)

2 ·
E0

En
(44)

Insert formulae (37), (38) and (44) into formula (23), the normalized emittance at the nth cell can be calculated

by integration over cell numbers, assuming that the energy gain is the same in each cell.

γǫn = γ0

√

σx0

2 + A · loge

(

En

E0

)

· β2 · (K1 · σQ · σp0)2

·

√

σx′

0

2 + A · loge

(

En

E0

)

· (K1 · σQ · σp0)2 (45)

where A denotes a contant which is dependent on the initial energy and energy gain per cell.
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4.3. Comparison and discussion

We apply method one (and two) to ILC main linac which has 300 quadrupoles in all (distributed in 150 FODO

cells). The parameters being used are listed in Table 1. For method two, formula (45) is rewritten and the normalized

emittance at the nth cell is

γǫn = γ0

√

σx0

2 + 0.5

∫ n

0

15

15 + 0.8n
dn · β2 · (K1 · σQ · σp0)2

·

√

σx′

0

2 + 0.5

∫ n

0

15

15 + 0.8n
dn · (K1 · σQ · σp0)2

= γ0

√

σx0

2 + 0.5 · 18.75 · (loge(15 + 0.8n) − loge(15)) · β2 · (K1 · σQ · σp0)2

·
√

σx′

0

2 + 0.5 · 18.75 · (loge(15 + 0.8n) − loge(15)) · (K1 · σQ · σp0)2 (46)

Without and with acceleration, the comparison between analytical results of method one (and two) and the

simulation is shown in Figure 8 and Figure 9 respectively. For the case without acceleration, the agreement between

simulation and method two is very well, where the average beta function βy =
√

βy,QD · βy,QF = 62.5m is used. For

method one there is a small difference if compared with the simulation result.

TABLE 1 Relevant parameters

parameter value

# of quad 300

Drift length [m] 39

Quad offset σquad [µm] 300

Norm. quad strength [m−1] ±0.03

αy at exit of quad 1.9 (-0.6)

βy at quad [m] 30 (130)

Average βy at quad [m] 62.5

Energy gain in each cell [GeV ] 1.6

Initial energy spread σp 0.015

Initial bunch length σz [µm] 300

Initial emittance γǫy0 [nm] 40

RF frequency [GHz] 1.3

RF phase [degree] -4.6

With acceleration, there is a big difference between the simulation and analytical results. In the analytical treat-

ment, the RMS energy spread decreases as σpE0/E, which means there is a smaller dispersive emittance growth as

the energy increases. In the simulation, however, we observe a large emittance growth, even near the end of the

linac. It is the finite bunch length σz = 300µm which causes this effect. The bunch length associated with the proper

beam-RF phase can provide BNS damping to mitigate the wake field effects.

As discussed before, in a linear accelerator there is almost no longitudinal oscillation in a bunch, which means

particle’s longitudinal position with respect to the bunch center is effectively “frozen”. When a bunch pass by a RF

cavity, the contribution to the RMS energy spread is

∆σp =
Vrf · (cos(φ0 + ωrf · σz) − cos(φ0))

E
(47)

where Vrf denotes the RF accelerating voltage in GeV , φ0 the beam-RF phase, ωrf the RF angular frequency, E the

beam energy at this RF cavity location.
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δp = 0.001; Right: δp = 0.002.
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δp = 0.005; Right: δp = 0.01.

At the end of the linac, the increasement of the RMS energy spread is the sum over all the RF acceleration

locations.

∆endσp =
∑ Vrf · (cos(φ0 + ωrf · σz) − cos(φ0))

E
(48)

An example of this effect is shown in Figure 10, where the evolvement of RMS energy spread is plotted along the

linac. The blue curve represents the contribution from formula (48). In the zoom-in figure, it is clearly shown that

at the second part of the linac, the contribution from formula (48) is so large that it will increase the RMS energy

spread by almost a half. For the case with zero bunch length, the RMS energy spread gotten from simulation is

plotted with magenta dots, while the results from formula σp = σp0E0/E is plotted with magenta curve.

As there is no finite bunch length effect in the model of both method one and two, we set the bunch length to be

zero and redo the simulation. The new comparison is shown in Figure 11 (left), where the shape of the simulated

emittance growth is similar to the analytical result now, although there is still differences in the amplitude. We can

fit formula (45) to the simulation results, by varying the parameters in formula (45), as shown in Figure 11 (right).

Using another two initial RMS energy offset (δp = 0.0075 and δp = 0.01), the simulated emittance growth is again

compared with the analytical estimations from formula (45), by applying the same fitting parameter from last case

of δp = 0.005. A pretty good agreement is observed, as shown in Figure (12).
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Figure 10: Evolvement of RMS energy spread along the linac. The red curve represents the energy spread from initial energy

spread plus contribution of finite bunch length.
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Figure 11: Comparison of relative normalized emittance, between analytical results and simulation, with acceleration. Left:

δp = 0.005; Right: δp = 0.005, fit parameters in formula (45) (method two).
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Figure 12: Comparison of relative normalized emittance, between analytical results and simulation, with acceleration. Left:

δp = 0.0075; Right: δp = 0.01. Use the same fitting parameters calculated in the case of δp = 0.005.
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: Appendix ADefinition of dispersion and emittance

From the statistical point of view, the 2-D projected emittance can be defined as

ǫ =

√

(< x2 > − < x >2)
(

< x′2 > − < x′ >2
)

− (< xx′ > − < x >< x′ >)
2

(A1)

where the bracket means an average over all the macro-particles.

At the same time, the linear dispersion corrected emittance can be defined as

ǫ =
[

(< (x − Dxδ)2 > − < x − Dxδ >2)(< (x′ − D′

xδ)2 > − < x′ − D′

xδ >2)

−(< (x − Dxδ)(x′ − D′

xδ) > − < x − Dxδ >< x′ − D′

xδ >)2
]0.5

(A2)

The “dispersion” ( and the derivative of the “dispersion” ) of the beam can be calculated by

Dx = (< xδ > − < x >< δ >) /
(

< δ2 > − < δ >2
)

(A3)

D′

x = (< x′δ > − < x′ >< δ >) /
(

< δ2 > − < δ >2
)

(A4)

: Appendix BBenchmark of the code

1. Optics

The parameters of one FODO cell and the beam used in the simulation is listed in Table 1. The beta function

which is calculated statistically from the simulation agrees well with the MADX TWISS calculation.
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Figure 13: Benchmark of the beta function in one FODO cell, between MADX TWISS output and the simulation results of

this code.

TABLE 1 Relevant parameters.

parameter value

# of quad 2

Drift length [m] 39

Cell length [m] 78

Norm. quad strength [m−1] ±0.03

βy at exit of quad 30 (130)

Initial energy spread σp 0.015

Initial emittance γǫy0 [nm] 40

Initial emittance γǫx0 [µm] 10

2. Orbit

The orbit of the bunch centroid (represented by a single particle with initial coordinates (0, 0, 0, 0, 0, 0) is compared

with the orbit of the bunch (10,000 macro-particles) along the ILC main linac which is roughly 11 km long. The

quadrupole has an offset of σquad = 300µm in both horizontal and vertical plane. Good agreement is found in the

comparison.

3. Filamentation (chromatic and dispersive)
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Figure 14: Comparison between the single particle orbit (initial coordinates (0, 0, 0, 0, 0, 0)) and the orbit of a bunch (initial

bunch centroid at (0, 0, 0, 0, 0, 0)) along ILC main linac, with quadrupole random offset σquad = 300µm. Left: without

acceleration, with a RMS energy spread of δp = 0.002; Right: with acceleration, with a RMS energy spread of δp = 0.015.
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Figure 15: Benchmark of chromatic filamentation between the results of this code and ref [6], initial beta mismatch is

β∗/β0 = 0.5. Top: T. Raubenheimer’s result, δp = 0.01; Bottom: result of this code, δp = 0.015.
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Figure 17: Benchmark of dispersive filamentation between the results of this code and ref [6], initial beam offset is ∆y = 1σy.

Top: T. Raubenheimer’s result, δp = 0.01; Bottom: result of this code, δp = 0.015.
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