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Subspace Detectors

Subspace detectors implement a correlation-type calculation on a continuous (network or
array) data stream [Harris, 2006]. The difference between subspace detectors and correlators
is that the former projects the data in a sliding observation window onto a basis of template
waveforms that may have a dimension (d) greater than one, and the latter projects the data
onto a single waveform template. A standard correlation detector can be considered to be a
degenerate (d=1) form of a subspace detector. Figure 1 below shows a block diagram for the
standard formulation of a subspace detector. The detector consists of multiple multichannel
correlators operating on a continuous data stream. The correlation operations are performed
with FFTs in an overlap-add approach that allows the stream to be processed in uniform,
consecutive, contiguous blocks.
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Figure 1 Subspace Detector Schematic

Figure 1 is slightly misleading for a calculation of computational complexity, as it is possible,
when treating all channels with the same weighting (as shown in the figure), to perform the indicated
summations in the multichannel correlators before the inverse FFTs and to get by with a single inverse
FFT and overlap add calculation per multichannel correlator. In what follows, we make this

simplification.

Note that decimation may be performed to reduce the number of calculations if the data are

substantially oversampled.



Subspace detectors calculate the running detection statistic c[n]:

(Zl 1 k T,u [k]xl n-— k])
(Z [n — k])

(1)

c[n] =

with N, - N, convolutions of single-channel data streams with length N correlation templates,
normalized by an STA-like calculation of running energy in a window also implemented with a
convolution operation (denominator above). The entities and parameters of the calculation are
defined in Table I.

Table I: Nomenclature for Subspace Detector complexity calculation

Entity Definition

x;[n] Data stream from single channel of observing network or array

N, Number of observing channels
ul[n] Subspace template basis function, channel i, dimension d

N4 Number of subspace dimensions

N, Duration of the templates in samples

R Decimation rate
w(n] Window of length N /R consisting of all ones — used to sum energy

P Number of poles in anti-alias/bandpass filter

The convolutions are implemented with an overlap-add algorithm, using DFT calculations. For
this purpose, the data streams are broken into consecutive, contiguous blocks of length Ny
samples. The data streams may be filtered by a bandpass or lowpass filter intended to select
the processing frequency band, then decimated by a factor of R, which reduces the block

length to NB/R (for no decimation, R = 1), and, correspondingly, the waveform template

length from N, samples to N;/R samples. In each block, each convolution is implemented
with length-N DFTs, where N is the least power of two greater than or equal to Nz/R +
N;/R — 1. The number of computation components per block is summarized in Table II.



Table Il: Number of computation components per data block.

Computation Component

Number per Block

Anti-alias/bandpass IIR filtering operations N,
Forward DFTs N.+ 1
Block-Template DFT products N. - Ny
Stack of DFT products N,
Block Power Calculations (squaring signals) N.+ Ny
Block Power Stack over dimensions 1
Block Power Stack over channels 1
Inverse DFTs Ny +1
Overlap-Add block sums 2
Block Ratio 1

This count of computation components assumes that the DFTs of the subspace templates
u?[n] and the running-energy calculation kernel w[n] are pre-computed and stored.

The numbers of multiplications and additions per block required for each computation
component are listed in Table lll. A P-pole bandpass pre-processing filter has been assumed.

Table Ill: Number of operations per block for each computation component

Computation Component

Real Multiplications

Real Additions

Anti-alias/bandpass IIR filter (2P + 1)Ng 2PNg
1 3 5
DFT - -= = —-=
leogzN 2N+2 2NlogzN 2N+4
Block-Template DFT product 3N 1 3 (ﬂ 3 1)
2 2
Stack of DFT products 0 (N, —1)N
Block Power Calculation Np 0
(squaring signals) R
Block Power Stack over Ng
dimensions 0 T(Nd -1
Block Power Stack over channels N
0 ?B (N, — 1)
Inverse DFT 1 3 5
=N N—-—=N+2 = —=
> log, > + 2NlogZN 2N+4
Overlap-Add block sum 0 N
Block Ratio Ng 0
R




Here we have assumed that real split-radix FFTs are used to implement the DFTs [Sorensen et
al., 1987]. We caution that FFT execution times may not be dominated by multiplications and
additions, but are substantially affected by indexing calculations and data moves. The ultimate
performance of FFT algorithms is highly dependent upon implementation. Here we have also
assumed that sine and cosine tables for the FFT algorithms have been pre-computed and stored
(a standard practice). In addition, we have assumed that complex multiplications are
implemented with 3 real multiplications and three real additions (alternatively they may be
implemented with 4 real multiplications and two real additions). We also are assuming that
subtractions can be counted as additions and divisions as multiplications.

The total number of operations required per block of data is obtained by combining the
elements of tables Il and lll. The total number of multiplications per block is:

1 3
(4P + DNgN, + (N, + Ny +2) <§Nlog2N —IN+ 2) + (N, + DN

3N N (2a)
+ NN, (7—1> + (N, + Nd+1)?
and the total number of additions per block is:
3 5 Ng
APNGN, + (N, + N+ 2) (—NlogzN 2N+ 4) + BN, 4N, —2)
2 2 R (2b)

5
+ NC.Nd(EN_3> - (Nd—Z)'N

For a representative example, we use values for a 9-channel network or array, sampled at 100
samples per second, with a template 10 seconds (1000 samples) long and a processing block
size of 150 seconds (15000 samples). We assume that the processing band is 5-20 Hz, which
permits a decimation rate of 2.




Table IV: Operation count for an example problem

Quantity Value

N, 9

Ny 3

N, 1,000

Ng 15,000

R 2

N 8,192

P 10

Total # multiplies 3,870,485
Total # adds 5,269,439
#multiples/sample 258 (rounded)
#adds/sample 351 (rounded)

Matched Field Processing

Matched Field Processing has been developed for seismic verification problems as a
classification technique, but also may be adapted as a calibrated beamforming technique for
use in a detector [Harris and Kvaerna, 2010]. The application considered here is event
classification for which the technique is well developed. An estimate of operation counts for a
detector would be premature, since the form of a detector is still a subject of research. The
wideband form of the classification algorithm operates on a collection of spectral covariance
matrices estimated from a data window in a manner directly comparable to FK methods. The
basic calculation consists of a ratio of sums of quadratic forms:

kmax H
_ k=Kmin €x Ckek (3)

kmax tT{Rk}

k=kmin

The vectors ey, called steering vectors, have N, elements and are obtained as the principal
eigenvectors of sample covariance matrices averaged over a number of data windows recording
calibration events. There are Ny collections of steering vectors, corresponding to the number
of classification hypotheses. The covariance matrices Cj, are N, X N_ matrices formed from
waveforms in the data window filtered into extremely narrow frequency bands. Each quadratic
form el C, e, represents an estimate of the power in an observed array or network waveform




in a particular frequency band k delivered by a signal originating at a particular target location.

The total number of bands is Ny = kjax — Kmin + 1.

If we treat the collection of waveforms recorded by a network or an array as a vector x[n], then

the signal filtered into narrow frequency band k is

xlnl = ) xlr] hyln =]

T

(4)

A particularly efficient means (called a phase vocoder, see [Portnoff, 1980]) of calculating

signals filtered into many regular, narrow frequency bands is available if the filters are related

systematically to a prototype baseband filter:

hiln] = ho[n]etren/

(5)

where M is a number of frequency bands. The N;, < M bands used to calculate the matched

field statistic in equation (3), are a subset of the bands constructed in equations (4) and (5).

The covariance matrices of equation (3) are calculated not from the x; [n] directly, but from

closely related quantities known as complex envelopes. The complex envelopes are obtained

by substituting (5) into (4):

xk[n] — pi2mkn/M Z(x[r] ho[n —7]) e ~i2mkr /M

(6)

The complex envelope functions X [n] are defined as:

Zilnl = ) @lr]holn —r1) emi2rkr/™

(7)




we see that x,[n] = e®?™/M %, [n].

The complex envelope functions can be evaluated efficiently with a length-M FFT. Evaluation
consists of a windowing operation x[r] hy[n — 7], followed by an aliasing operation [Portnoff,
1980] to reduce the length of this product to M samples. Itis common to design the baseband
filter impulse response h,[n] to be symmetric and of length 2Mf + 1, where f is an integer
design factor typically 2 or 3. The length of the product is reduced to M samples via a 2f-fold
aliasing operation.

The covariance matrices of equation (3) are calculated from samples of the complex envelopes
as follows:

1

Co = 3 ) Bl ©)

where N, is the number of time samples used to form the estimate. The time samples need not
be consecutive. In fact, because the complex envelope functions are so narrowband, it is
possible to decimate them heavily in forming the covariance matrix estimate.

The relevant parameters controlling the computational complexity of the matched field
calculation are summarized in Table V:

Table V: Parameters controlling Matched Field computation complexity

Parameter Definition

P Number of poles in preprocessing (highpass) filter
2L Data window size
N, Number of observing channels
N, Number of frequency bands for MF statistic evaluation
M FFT size
f Baseband filter design factor
Ny Number of complex envelope samples for covariance matrix
R Decimation rate
Ny Number of hypotheses to test

A certain data window size is required for the calculation of complex envelope samples. The
minimum sizeis: L = (Ny— 1) - R + 2Mf + 1, but a longer window is desirable to eliminate
edge effects in prefiltering operations. In the operation counts to follow, we will assume that



twice this amount of data is used. The mean of these data will be removed and the data will be
filtered with a 4-pole IR highpass filter.

The number of computation components in the Matched Field calculation is summarized in
Table VI.

Table VI: Number of computation components in Matched Field calculation.

Computation Component Number
Preprocessing mean removal and IIR filtering N
operations ¢
Window/Alias operations N - N,
Real DFTs Ng - N,
Covariance matrix calculations N,
Trace calculations N,
Quadratic form evaluations N, - Ny

The number of operations required for each component of computation is summarized in Table
VII.

Table VII: Number of operations for each computation component

P'reprocessmg c'lemean & IIR 2L2P+1) +1 2LP+1)—1
filtering operation
Window/Alias operation 2Mf +1 2Mf

1 3 3 5
Real DFT > Mlog,M — > M +2 > Mlog,M — > M + 4
Covariance matrix calculation N2(3Ng + 1) NZ(5Ng — 1)
Trace calculation 0 N,
Quadratic form evaluation 3N.(N. + 1) 5NZ+ N, — 2

Combining (multiplying) the counts of tables VI and VII, the total number of multiplications is:

1 3
QLQ2P + 1)+ DN, + (2Mf + DN,N, + (E Mlog,M — M + z) NN,

+ N2(3Ng+ 1)N, + 3N.(N.+ 1)N,-Ny; + Ny

(9a)




and the total number of additions is:

3 5
(2L(P +1) —1)N. + 2MfN.N, + (EMlogzM — EM + 4) NN, (9b)
+ N2(5N,—1)N, + N.N, + (5N2+ N,)N,N; — 2Ny

Recallthat L = (Ng —1)-R+2Mf + 1.

Table VIIl summarizes the number of calculations for an example problem similar in size to that
described in [Harris and Kvaerna, 2010].

Table VIII: Operation count for an example problem

Quantity Value

p 4
L 913
N, 17
N, 33
M 128
f 3
N 10
R 16
Ny 10
Total # multiplies 1,052,582
Total # adds 1,410,827
#multiples/sample(2L) 576 (rounded)
#adds/sample(2L) 773 (rounded)
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