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
Abstract—High performance computing has experienced 

tremendous gains in system performance over the past 20 years. 
Unfortunately other system capabilities, such as file I/O, have not 
grown commensurately.  In this activity, we present the results of 
our tests of two leading file systems (GPFS and Lustre) on the 
same physical hardware.  This hardware is the standard 
commodity storage solution in use at LLNL and, while much 
smaller in size, is intended to enable us to learn about differences 
between the two systems in terms of performance, ease of use and 
resilience.  This work represents the first hardware consistent 
study of the two leading file systems that the authors are aware 
of.

Index Terms—parallel file system, Lustre, GPFS, HPC I/O

I. INTRODUCTION

igh performance computing has enjoyed a long run of 
significant growth in high end systems capability. A 

decade ago we were celebrating the arrival of the first 
TeraFlop system (ASCI Red)[1].  Today we have PetaFlop/s 
systems in the Top500 and are busy debating the finer points 
of ExaFlop/s systems.  TeraFlop to PetaFlop represents three 
orders of magnitude improvement in these ten years.  In this 
time however, disk performance has experienced relatively 
li t t le increase in performance, perhaps one order of 
magnitude[2].  Not only has disk performance not kept pace 
but the increasing computational capability has dramatically 
increased the data requirements, exacerbating the issue.  The 
memory wall[3] that has bitten HPC so hard over the past 
decade and a half has gotten much of our attention while the 
I/O wall has been left with few resources.

It is also the case that it is no longer economically feasible to 
purchase sufficient I/O capability to be dedicated to each 
system obtained.  Thus we are in a position where the only 
viable solution is that of a NAS (Network Attached Storage) 
running a capable, globally accessible, highly parallel file 
system.  For our major systems at the Lawrence Livermore 
National Laboratory (LLNL), we have not fielded systems 
with dedicated storage since the installation of the ASC Purple 
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system in 2005.   The motive for this testing activity is to 
revisit the features and performance of the leading file system 
options we have as we look toward the next generation of 
large systems in the ASC Sequoia procurement. 

About the time the first TeraFlop system was fielded, several 
DOE sites recognized the I/O bottleneck looming on the 
horizon and started to take action.  One of the initiatives was 
that of providing funding for the Lustre Parallel File System 
via the ASCI Path Forward Program.  LLNL has a strong 
interest in open source solutions that enable us to hunt and fix 
bugs as well as push development down a path beneficial to 
the high-end community.  This has caused us to be a strong 
supporter of Lustre over the years and has resulted in our 
using Lustre as the current NAS solution. Lustre is our 
network-based file system that is shared among numerous 
large clusters including our big BlueGene/L and BlueGene/P 
(Dawn) systems.

During this same ten years, few other products have emerged 
in this space, Panasas’ PanFS being the most notable.  IBM’s 
GPFS (Global Parallel File System)[4] has been around for a 
long while and in use as directly attached storage (storage 
nodes on the internet network) on IBM systems at Livermore 
including ASCI White.    At the same time we have been 
encouraging and participating in the development of Lustre, 
we have been happily running a multi-PetaByte GPFS on 
Purple. In our environment, GPFS is an obvious candidate for 
a NAS.

We are currently planning the environment for Sequoia, a 20 
PetaFlop/s IBM system with an I/O target of 512 GB/s, and a 
stretch goal of 1TB/s.  In debating the file system options, we 
wanted to compare important aspects (ease of administration, 
performance, resilience, etc) of the two leading solutions with 
identical hardware.  The intention was to get an apples-to-
apples comparison between Lustre and GPFS.  However, as 
you will see in the results presented here, the systems behave 
differently under even slightly different workloads.  These 
differences translate in to widely varying levels  of  
performance, especially on the metadata tests.  As is always 
the case, your technical choice needs to be driven by your
applications.  This work shows this to be true in your choice of 
network attached parallel file systems as well.
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II. BACKGROUND

High Performance Computing applications today typically 
consist of hundreds or thousands (even hundreds of thousands) 
of communicating MPI tasks.  In the process of executing a 
scientific application it is reasonable that each task have the 
ability to efficiently create a file, open it, both write and read 
data, query the size of the file and finally close it.  In the case 
of checkpoint activity, each task may create and write a 
separate file.

In the scientific simulation environment promulgated by 
LLNL, there is a smooth workflow consisting of data 
preparation, staging, and running the application on the 
computing resource, followed by post-processing the data.  
Because in most cases, it is not efficient to tie up the 
computational resource with the data handle activities, we 
provide network file systems to our users.  The data 
preparation, staging and post-processing activities can all take 
place on smaller and cheaper equipment that frees up the big 
systems for the next simulation run.  If the file system to be 
used is only mounted on the computational resource, then the 
big expensive system must be used in all activities involving 
handling the data.  

A more cost effective approach is to utilize a Storage Area 
Network, or SAN.  This approach has the SAN mounted by all 
the systems involved in the workflow and the user is able to 
utilize the best system for the task at hand.  For example, we 
have dedicated visualization clusters that are outfitted with 
either GPUs, or large memory nodes.  In all cases, these 
systems use the client-side software to globally mount the 
SAN file system.  The workflow is for the setup to take place 
on a  utility system, the computation run on the high-end 
system, the post-processing/visualization to happen on the 
visualization resource, and data archiving to be performed via 
data  movement  servers .   Data need not  move or  be 
redundantly copied in this environment, easing the workflow 
significantly.

The cluster hardware used to drive the storage resource was 
Hyperion – an 1152 node X86_64 system with a full Fat Tree 
InfiniBand 4x DDR interconnect.  One half of the nodes on 
Hyperion use Intel Harpertown processors, the other half use 
Intel Nehalem.  All compute nodes are dual-socket, quad-core.  
As is the recipe for all our systems, I/O from Hyperion is 
routed via gateway (GW) nodes that take IB and produce 
10GbE to our SAN infrastructure.  The 10GigE network 
routes through a core router to 10 GigE storage edge switches 
to which we have connected four storage server nodes plus 
one metadata server node that front-end a Data Direct 
Networks DDN 9550 disk controller.  The network is capable 
of delivering five GB/s of bandwidth from the cluster to the 
DDN RAID system.  This is about 2X the throughput of the 
DDN system. This configuration matches the structure all of 
our systems use to communicate with the global shared file 

systems.

The LLNL SAN infrastructure is based on 10GbE with edge 
routers and a core switch.  In this way all of the file systems 
on a network are available to all of the systems on that 
network.  The path from a client to a storage server starts with 
the client calling the write or read command, which passes the 
request across the IB network to the GW node.  There the  
message is translated from IB to IP and enters the client edge 
router near Hyperion.  The edge router connects to the core 
router which forwards to the storage edge router and finally on 
to the storage server node (see Figure 1).  The storage server 
node writes or reads the data to/from the DDN 9550 storage 
system and the acknowledgement or data travels back across 
the network to the client node.

III. THE LUSTRE FILE SYSTEM

The Lustre File System is an open source project recently 
acquired by Oracle.  The Lustre architecture provides physical 
and logical separation of data and metadata.  The metadata is 
information about a file or directory (name, access time, etc)
and is stored in a single physical system called the Meta Data 
Server (MDS)1. The actual data portion of the file is split up 
and accessed in parallel across a (potentially large) group of 
storage units known as Object Storage Servers (OSS) with 
software servers called the Object Storage Targets (OST).  In 
practice at Livermore, our file systems consist of up to 256 
OSS nodes each with multiple OSTs (software) per single 
OSS (hardware) node.

As mentioned earlier, LLNL has long been a supporter of the 
Lustre open source project.   In fact,  we have several 
developers on staff that participate in development and are 
very familiar with the both codebase and operational aspects 
of the system.  We also have a close working relationship with 
the Lustre developers and the Hyperion cluster is the primary 
at-scale test resource for the Oracle Lustre development team.  
For this work, we were using Lustre version 1.6.6 with 
numerous patches from our local development team.

IV. THE GLOBAL PARALLEL FILE SYSTEM (GPFS)

GPFS is a mature product available from IBM.  GPFS is able 
to operate either in a direct-attached mode, where the disk 
nodes are directly attached to the same internal network as the 
compute nodes, or as NAS.  Livermore currently has a multi-
PetaByte direct-attached GPFS file system on our Power5+, 
100 TFlop system named Purple.

GPFS also separates metadata and file data, however it does 
not use a dedicated MDS node like Lustre.  With GPFS, each 

1 The clustered Metadata Server has been architected and implemented, but 
has yet to make it into the shipping product.
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client node takes the role of the MDS node, and handles 
metadata requests for anyone on the network interested in the 
file.  GPFS has an option to centralize the metadata itself, but 
it is architected to run the metadata service in parallel on the 
client nodes.

We are not as familiar with GPFS and have chosen not to gain
access to the proprietary source code.  Our experience with 
GPFS is in the directly attached mode – we have no 
experience with the system in a network setting as we are 
attempting to test here.  In our discussions and surveys, we 
find that we are testing a usage model of GPFS that is 
supported, but not widely used.  We used GPFS version3.2 for 
this work.

V. SETUP FOR TESTING

The hardware test environment is shown in Figure 1 and 
labeled for the Lustre configuration.  The physical storage is a 
single DDN9550 system capable of delivering 2.4 GB/s with 
4MB I/O requests or 2.0 GB/s with 1MB requests.  On top of 
the storage hardware there are four OSS nodes which are Dell 
R610 systems with dual socket, quad core Intel Nehalem 
E5530 processors at 2.4 GHz.  Each OSS node has a 10 Gb/s 
Ethernet interface to the storage network and an SDR 
InfiniBand (IB) connection to the DDN 9550.   There is a pair 
of MDS (failover) servers (Dell R610) attached to a 16 bay 
SAS/SATA JBOD enclosure with sixteen 15K RPM SAS 
drives.

The network is a three-stage 10Gb Ethernet network with a 
Cisco Nexus 7018 as the core, an Arista 7148S as the edge 
switch on the storage side and a Cisco Nexus 5020 next to the 
4 GW nodes.  This network should be capable of providing 5 
GB/s of bandwidth, or about 2X the capability of the 
DDN9550 RAID system.

The clients are the 1152 (8 core) nodes of Hyperion.  Half the 
clients are nodes identical to the R610 described above, the 
other half contain Intel Harpertown LS420 processors at 2.5 
GHz.  The clients send file system requests via the gateway 
nodes across the 10 Gb/s Ethernet to the OSTs.  Through the 
gateways, we expect to be able to provide an aggregate of 5 
GB/s, as mentioned previously.

We are confident in our Lustre configuration skills, so we 
chose to provision the hardware and automate the file system 
configurations for these tests ourselves.
  

Figure 1: Hardware test environment - Lustre

Due to our inexperience with GPFS in the test environment, 
we invited IBM to install, tune, test and review the results of 
our testing activities.  Over a period of about one month the 
system was tweaked, tested, and tweaked again.  In the 
process we learned quite a bit about GPFS’s architecture and 
the features of its administrative tools.  One of our findings is 
that the differences in the architecture of GPFS and Lustre are 
so significant so as to directly and substantially impact the 
performance results achieved.  

Overall, our experience in observing and assisting with the 
GPFS install and provisioning was strongly positive.  The 
tools provided by IBM to work with GPFS are very advanced 
and mature.  The file system itself was incredibly resilient.  In 
fact, part of our testing beyond the scope of this document was 
to manually fail portions of the system to gauge the response.  
GPFS passed these harsh tests with ease and we did not see 
any failures for the duration of our multi-week experience 
with the system.  At the same time and on production systems, 
we were gingerly attempting to use Lustre’s manual fail-over 
with mixed results.

In Figure 2 we have the GPFS configuration for the tests.  We 
have the same physical hardware as with Lustre.  The main 
difference is that the MDS server that was used for Lustre no 
longer has that role and becomes simply a GPFS file server 
alongside the other 4 nodes (which were OST’s in the Lustre 
configuration).

Figure 2 Hardware test environment - GPFS

The metadata server for GPFS consists of the client nodes 
themselves, operating in parallel with each responsible for the 
metadata it creates.  The metadata does make its way to the 
disk on the left hand side of figure 2 and is then available via 
the NSD0 file server node.  This architecture is flexible in that 
NSD0 can be either a set of systems, or run on the data server 
nodes alongside the data aspect.  This is quite different than 
Lustre’s single MDS and has a strong influence on metadata 
performance as described below.
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VI. BENCHMARKING STRATEGY

Testing was done in an automated fashion with each test 
repeated at least twice with the best-case result shown. Tests 
were run on both a clean (< 5% full) file system as well as an 
aged file system (>80% data blocks used) which was prepared 
by filling up the file system and randomly removing files to 
bring it back to ~80% of the data blocks used).   Between runs, 
the file system was completely removed and reinstalled to 
avoid any lingering issues caused by the last run. 

We used the Livermore developed test harness of IOR[5]
(http://sourceforge.net/projects/ior-sio) and mdtest[6]
(http://sourceforge.net/projects/mdtest/) which were fully 
automated via scripts. 

Testing took several weeks of time for each of the candidates 
as we discovered issues that caused us to want to invalidate 
and rerun the tests.  As mentioned above, we learned things 
about GPFS that necessitated some changes in the tests 
themselves.

VII. THROUGHPUT TESTING

Throughput or bandwidth testing is intended to provide insight 
into the ability of the file system to deliver a significant 
fraction of the peak bandwidth of the hardware.  As mentioned 
previously the peak for our setup was 2.4 GB/s.  The IOR test 
harness is an MPI-coordinated bandwidth test capable of 
testing single and multi-node performance for file-per-process 
and single-shared-file access and both contiguous and 
noncontiguous data patterns.  IOR is good at producing a high, 
sustained I/O load on a parallel file system.  The tests run with 
IOR included “transfer size scaling”, “block size Scaling”, 
“fi le per process scaling”,  “segmented,  shared file 
performance”, and “interleaved, shared file performance”.

In the first test, we focused on performance for a single client.  
This is the case where one MPI task handles all of the I/O for 
an application, or the case where we are streaming data to 
tertiary storage from a single client.  With a peak capability of 
2.4 GB/s, we see GPFS getting about 50% and Lustre about 
25% of that bandwidth.

We believe GPFS is better able to take advantage of multi-
threading and lays data for a single file onto all servers in a 
4MB round-robin fashion.  Lustre will stripe 2 way by default, 
but this does not turn out to be the performance limiting factor 
as further testing with larger stripes still did not achieve parity 
with GPFS as seen in the next graph.

We had previously discovered that Lustre’s single file 
performance is limited to the performance of a single core due 
to it’s design which does not take full advantage of the number 
of cores and threads in modern processors.

We intentionally ran the read tests in a “cache-busting” mode.  
That is, we arranged the tests such that the file is not read by 
the process that wrote it.  This will defeat the client caching 
mechanism and cause the data to be read from disk.  This 
approach does not work on a single node so the results for 
single node performance are not indicative of real 
performance and are not presented.

We next move onto testing parallel jobs I/O performance.  In 
the first test, all nodes (ranging from 1-128) write to the same 
shared file.  This is a common mode of application I/O where 
each task will do a seek-write to position its data at the proper 
off-set within a file.

Working with LLNL, IBM has made an effort to match 
GPFS’s file per process performance by tuning the shared file 
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throughput. As the above graph shows, GPFS quickly reaches 
peak at 4 nodes and remains consistently at peak up to the 128 
nodes used in the test.  GPFS also reaches the half-peak 
performance level with a single node.  Lustre performs less 
well, increasing performance on a more gradual basis and not 
hitting a plateau until 64 nodes.  Lustre doesn’t reach the half-
peak performance level until 4 nodes and has a dip in 
performance from 1 to 2 nodes.

Another common way for applications to do I/O is for each 
process to open a file to write its portion of the data.  This is 
a lso a  common checkpoint  mechanism used by our  
applications.  Here we again see GPFS peak at about 4 nodes, 
but Lustre does much better trailing GPFS by only about 10% 
and peaking at 16 nodes. This is as expected due to the fact 
that GPFS does better load balancing and Lustre has the 
additional overhead of calculating checksums.

For parallel read performance, in the next graph, we see that 
both file system are well-matched at the limits of the test 
hardware capabilities.

For reading a single shared file, GPFS outperforms Lustre by a 
slim margin at first, then the opposite is true as the test scales 
up.  They end up equal at the highest scale for this test.

In bandwidth testing, we had expected GPFS to have a wider 
margin of advantage due to its larger network blocksize (4 MB 
vs Lustre’s 1 MB blocksize).  The tests here do not appear to 
show this due to the DDN’s architecture which provides 
sufficient disk bandwidth behind the RAID controller to 
saturate the controller with only 1 MB blocks.  To explore this 
area, we disabled a portion of the RAID devices.  GPFS is 
able  to  sa tura te  the  cont ro l ler ’s  bandwidth  in  th is  
configuration with only 24 tiers of disk where Lustre required 
4 8 .   T h i s  i s  a  s u b tle but important result that could 
dramatically impact the cost of an installation by reducing disk 
requirements.

VIII. METADATA PERFORMANCE TESTING

The metadata test driver used was mdtest, developed at LLNL 
and available as described above. Logical separation of 
metadata and file system data is one of the key features of 
parallel file systems.  As we learned in this exercise, the 
performance of metadata is very dependent upon application 
behavior.  The tests we ran turn out to be worst case for GPFS 
(with its distributed MDS) while seemingly favoring Lustre 
(with it’s single MDS).

At a high level we tested two situations.  The first is the 
situation in which an application does its file system activity 
entirely within a single directory on the file system.   The 
other extreme is where the application creates a directory for 
each MPI tasks and the tasks subsequently performs all of its 
file system work in its own directory separate from the other 
tasks.  While there is plenty of middle ground, we find that 
testing these two modes is indicative of performance for our 
applications.  For these metadata tests files were zero length 
(contained no actual data).

In running the tests in this straightforward manner, we were 
surprised to see GPFS outperform Lustre by a wide margin. 
As we learned about the GPFS architecture, we understood the 
distributed metadata design and realized the speedup was a 
result of the client nodes acting as metadata servers and 
caching file operations locally.  We decided this mode was not 
reflective of our applications so changed the tests to cause the 
“stat” command to be issued from a neighbor node.
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This seemingly subtle change neutralized the advantage GPFS 
had and the tests were rerun.  The GPFS results changed to be 
a fraction of those from Lustre and several orders of 
magnitude less than they had been.  What we learned (and 
what follows in the results) is that in GPFS, a stat operation 
from a node other than the creator forces the creating node to 
flush to disk, which is a very expensive operation.  The result 
is that GPFS is penalized quite significantly.  The penalty of 
the flush is more than would occur in a situation where a file is 
not stated immediately but some time afterward when the file 
system flush has an opportunity to occur naturally. 

We decided to continue on this path because these are the test 
parameters dictated by our applications that have been 
developed and use  the  Lus t re  f i le  sys tem.   Had our  
applications been optimized to work with (in a NAS 
environment as opposed to directly attached), they would have 
to behave differently and the mdtest script would reflect this.  
It was communicated to us that simply having task zero (or 
any single task) do the metadata operations would reduce this 
problem and bring the performance up at least to the level of 
Lustre.  It is important to note that this is the main factor in the 
results.  The different architectures produce widely different 
performance profiles based on these seemingly simple 
changes.

Tests were run on multiples of 2 nodes up to 128 with 8 
processes per node.  In the test, each process creates, then stats 
a different node’s files and finally deletes the 100 files or 
directories it created.

For the first case of creating directories within a shared 
directory, Lustre was significantly faster than GPFS.  This is 
due to the fact that in creating a directory, GPFS must add the 
parent directory “..” pointer.  This requires exclusive lock the 
parent directory for each create effectively serializing the 
process and adding overhead.  Lustre, with it’s single MDS 
looks much better for this particular test, though it shows signs 
of tailing off past 16 nodes. 

Similarily for stats, the single MDS is a significant advantage 
for Lustre resulting in over 3X the performance of GPFS.  
GPFS does better in this test, but our conclustion is that 
distributed architecture of GPFS needs a heavier load to show 
its benefits over the single MDS for Lustre – for smaller 
systems and with this method of activity, Lustre appears to 
have an advantage. 

The file removals, much like creates, are in favor of Lustre 
with Lustre directory removal performance over 12X that of 
GPFS.  This is due to the synchronization overhead, again, in 
GPFS’ distributed algorithm.

In testing file creates, we find an interesting difference in 
GPFS’ performance.   Here ,  GPFS does  qui te  wel l ,  
outperforming Lustre by 30% in places.  The reason for this is 
that creating many files in a shared directory is common 
practice and the GPFS developers have provided a well-
performing solution.  This is because, after listening to 
feedback from users, the developers of GPFS have 
implemented shared directory file creates with a parallel 
algorithm enabled via a fine grained directory lock.
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The testing results for file stats and removals within a shared 
directory are substantially similar to that of the directory case.  
For that reason, we are not including them here. [but may 
update the graphs to overlay for the final submission]

Thus far, we have focused on metadata tests that create, stat, 
and delete files and directories within a single flat directory.  
The other main alternative is to have a directory per MPI 
process, partitioning the activities in a manner that should 
enable the file systems to proceed in parallel.

In our first test for the unique directory method, we see that 
Lustre’s performance scales nicely up until about 32 nodes 
where it starts to drop off.  The GPFS performance is not as 
good as Lustre, only catching up as Lustre declines at 64 
nodes and tailing off in a similar way past that point. 

File and directory stat operations within a unique directory are 
not significantly different from that of a shared directory.  For 
GPFS, both situations force a node to flush to disk to answer 
the stat operation since it is initiated from a different node.

Finally, and for completeness, removal of files and directories 
within a unique directory show poor performance for GPFS 
relative to Lustre.

IX. PER PROCESS METADATA SCALING STUDY

The above tests used a static number of operations (100) per 
node and varied the number of nodes used.  Lustre 
outperformed GPFS in these tests.  In order to understand 
scaling up, we chose to hold the number of processes static at 
128 and vary the number of file and directory operations for 
each process from 10 to 500.  Here we again used the mdtest 
benchmark in a shared directory.

The file stats per second in a unique directory gives hints that 
the GPFS architecture may have advantage if put under a 
heavier load.  It is not easy to imagine a situation where every 
process needs 500 files, but perhaps if the number of files 
itself is the key to performance, large systems with hundreds 
of thousands of processes may show GPFS to be better suited.  
Unfortunately we are not able to test at these levels and know 
of no site with a NAS-based GPFS installation and a hundred-
thousand plus node system.
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X. CONCLUSION

For the throughput performance tests, both file systems were 
able to drive the small backend hardware at high rates, with 
GPFS outperforming Lustre for the most part by 20% or more 
for writes and they were about equal on reads.  GPFS is also 
able to more quickly saturate the available storage hardware 
due to its larger network block size. The data here also 
indicate that GPFS is much better at making use of multiple 
cores in a system when compared to Lustre.

With respect to metadata performance, Lustre is faster in all 
but the case of creating a large number of files in a shared 
directory.  In most metadata test cases, the performance of 
Lustre is significantly faster than that of GPFS.  This is 
somewhat counter to expectations given GPFS’ distributed 
metadata architecture.  As noted, the tests were very harsh 
toward the way GPFS operates and very friendly toward 
Lustre’s method.  To thwart the caching behavior of GPFS, we 
perform stat operations from a different node than the one 
holding the metadata, which has the effect of forcing GPFS to 
sync to disk.  In the same tests, Lustre is permitted to cache 
the results and artificially appears to have a large advantage.  
The truth here lies somewhere between these extremes and the 
thing that matters most is what your application does or can be 
made to do in the way of being GPFS-friendly and/or Lustre-
friendly.

Metadata operations are logically associated with creating files 
and directories, querying them for information and deleting 
them.  For the most part, our expectation is that the majority of 
application activity involves reading and writing files vs. the 
management of metadata.  Unless the application is using the 
file system as a communication device (which is a bad idea 
these days), metadata operations are likely a tiny fraction of 
the file system activity.  Yet performance is critical as we have 
learned with BlueGene/L and BlueGene/P where applications 
running on ~132,000 MPI tasks can each create a file for 
results or checkpoint data.

As we had multiple weeks of testing with each system, we had 
the opportunity to perform many more tests than presented 
here.  We also studied the two systems with an eye toward 
administrative tools, resilience and total cost of ownership.

These non-performance metrics are important to the usability 
and reliability in the day-to-day use of the system.  
LLNL has many years of experience with Lustre and we found 
ourselves attracted to the administrative tools provided with 
GPFS.  It is no small effort to keep a production center 
running and GPFS administrative tools are mature and offer 
simple, intuitive interfaces designed to handle the day-to-day 
tasks that are necessary in a large production environment.  
These considerations are significant and should be taken into 
account when selecting a solution.  GPFS is much further 
ahead than Lustre in this area.

LLNL has a long history with both Lustre and GPFS.  We 
have pushed hard to separate the disk from the system and 
have shown that network based file systems are the right 
answer for large file systems in an environment with multiple 
supercomputers.  We have worked closely with the Lustre 
community to help make this solution viable for the 
community.  We are happy to see more sites using GPFS in 
this way and hope to participate in the growing community 
supporting these architectures. 
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