
LLNL-TR-461793

Comparison of leading parallel
NAS file systems on commodity
hardware

R. Hedges, K. Fitzgerald, M. Gary, D. M.
Stearman

November 8, 2010

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

1


Abstract—High performance computing has experienced

tremendous gains in system performance over the past 20 years.
Unfortunately other system capabilities, such as file I/O, have not
grown commensurately. In this activity, we present the results of
our tests of two leading file systems (GPFS and Lustre) on the
same physical hardware. This hardware is the standard
commodity storage solution in use at LLNL and, while much
smaller in size, is intended to enable us to learn about differences
between the two systems in terms of performance, ease of use and
resilience. This work represents the first hardware consistent
study of the two leading file systems that the authors are aware
of.

Index Terms—parallel file system, Lustre, GPFS, HPC I/O

I. INTRODUCTION

igh performance computing has enjoyed a long run of
significant growth in high end systems capability. A

decade ago we were celebrating the arrival of the first
TeraFlop system (ASCI Red)[1]. Today we have PetaFlop/s
systems in the Top500 and are busy debating the finer points
of ExaFlop/s systems. TeraFlop to PetaFlop represents three
orders of magnitude improvement in these ten years. In this
time however, disk performance has experienced relatively
li t t le increase in performance, perhaps one order of
magnitude[2]. Not only has disk performance not kept pace
but the increasing computational capability has dramatically
increased the data requirements, exacerbating the issue. The
memory wall[3] that has bitten HPC so hard over the past
decade and a half has gotten much of our attention while the
I/O wall has been left with few resources.

It is also the case that it is no longer economically feasible to
purchase sufficient I/O capability to be dedicated to each
system obtained. Thus we are in a position where the only
viable solution is that of a NAS (Network Attached Storage)
running a capable, globally accessible, highly parallel file
system. For our major systems at the Lawrence Livermore
National Laboratory (LLNL), we have not fielded systems
with dedicated storage since the installation of the ASC Purple

This work was supported by the U.S. Department of Energy under
Contract #NA27344

system in 2005. The motive for this testing activity is to
revisit the features and performance of the leading file system
options we have as we look toward the next generation of
large systems in the ASC Sequoia procurement.

About the time the first TeraFlop system was fielded, several
DOE sites recognized the I/O bottleneck looming on the
horizon and started to take action. One of the initiatives was
that of providing funding for the Lustre Parallel File System
via the ASCI Path Forward Program. LLNL has a strong
interest in open source solutions that enable us to hunt and fix
bugs as well as push development down a path beneficial to
the high-end community. This has caused us to be a strong
supporter of Lustre over the years and has resulted in our
using Lustre as the current NAS solution. Lustre is our
network-based file system that is shared among numerous
large clusters including our big BlueGene/L and BlueGene/P
(Dawn) systems.

During this same ten years, few other products have emerged
in this space, Panasas’ PanFS being the most notable. IBM’s
GPFS (Global Parallel File System)[4] has been around for a
long while and in use as directly attached storage (storage
nodes on the internet network) on IBM systems at Livermore
including ASCI White. At the same time we have been
encouraging and participating in the development of Lustre,
we have been happily running a multi-PetaByte GPFS on
Purple. In our environment, GPFS is an obvious candidate for
a NAS.

We are currently planning the environment for Sequoia, a 20
PetaFlop/s IBM system with an I/O target of 512 GB/s, and a
stretch goal of 1TB/s. In debating the file system options, we
wanted to compare important aspects (ease of administration,
performance, resilience, etc) of the two leading solutions with
identical hardware. The intention was to get an apples-to-
apples comparison between Lustre and GPFS. However, as
you will see in the results presented here, the systems behave
differently under even slightly different workloads. These
differences translate in to widely varying levels of
performance, especially on the metadata tests. As is always
the case, your technical choice needs to be driven by your
applications. This work shows this to be true in your choice of
network attached parallel file systems as well.

Comparison of Leading Parallel NAS File
Systems on Commodity Hardware

Richard Hedges, Keith Fitzgerald, Mark Gary, D. Marc Stearman

Lawrence Livermore National Laboratory

H

2

II. BACKGROUND

High Performance Computing applications today typically
consist of hundreds or thousands (even hundreds of thousands)
of communicating MPI tasks. In the process of executing a
scientific application it is reasonable that each task have the
ability to efficiently create a file, open it, both write and read
data, query the size of the file and finally close it. In the case
of checkpoint activity, each task may create and write a
separate file.

In the scientific simulation environment promulgated by
LLNL, there is a smooth workflow consisting of data
preparation, staging, and running the application on the
computing resource, followed by post-processing the data.
Because in most cases, it is not efficient to tie up the
computational resource with the data handle activities, we
provide network file systems to our users. The data
preparation, staging and post-processing activities can all take
place on smaller and cheaper equipment that frees up the big
systems for the next simulation run. If the file system to be
used is only mounted on the computational resource, then the
big expensive system must be used in all activities involving
handling the data.

A more cost effective approach is to utilize a Storage Area
Network, or SAN. This approach has the SAN mounted by all
the systems involved in the workflow and the user is able to
utilize the best system for the task at hand. For example, we
have dedicated visualization clusters that are outfitted with
either GPUs, or large memory nodes. In all cases, these
systems use the client-side software to globally mount the
SAN file system. The workflow is for the setup to take place
on a utility system, the computation run on the high-end
system, the post-processing/visualization to happen on the
visualization resource, and data archiving to be performed via
data movement servers . Data need not move or be
redundantly copied in this environment, easing the workflow
significantly.

The cluster hardware used to drive the storage resource was
Hyperion – an 1152 node X86_64 system with a full Fat Tree
InfiniBand 4x DDR interconnect. One half of the nodes on
Hyperion use Intel Harpertown processors, the other half use
Intel Nehalem. All compute nodes are dual-socket, quad-core.
As is the recipe for all our systems, I/O from Hyperion is
routed via gateway (GW) nodes that take IB and produce
10GbE to our SAN infrastructure. The 10GigE network
routes through a core router to 10 GigE storage edge switches
to which we have connected four storage server nodes plus
one metadata server node that front-end a Data Direct
Networks DDN 9550 disk controller. The network is capable
of delivering five GB/s of bandwidth from the cluster to the
DDN RAID system. This is about 2X the throughput of the
DDN system. This configuration matches the structure all of
our systems use to communicate with the global shared file

systems.

The LLNL SAN infrastructure is based on 10GbE with edge
routers and a core switch. In this way all of the file systems
on a network are available to all of the systems on that
network. The path from a client to a storage server starts with
the client calling the write or read command, which passes the
request across the IB network to the GW node. There the
message is translated from IB to IP and enters the client edge
router near Hyperion. The edge router connects to the core
router which forwards to the storage edge router and finally on
to the storage server node (see Figure 1). The storage server
node writes or reads the data to/from the DDN 9550 storage
system and the acknowledgement or data travels back across
the network to the client node.

III. THE LUSTRE FILE SYSTEM

The Lustre File System is an open source project recently
acquired by Oracle. The Lustre architecture provides physical
and logical separation of data and metadata. The metadata is
information about a file or directory (name, access time, etc)
and is stored in a single physical system called the Meta Data
Server (MDS)1. The actual data portion of the file is split up
and accessed in parallel across a (potentially large) group of
storage units known as Object Storage Servers (OSS) with
software servers called the Object Storage Targets (OST). In
practice at Livermore, our file systems consist of up to 256
OSS nodes each with multiple OSTs (software) per single
OSS (hardware) node.

As mentioned earlier, LLNL has long been a supporter of the
Lustre open source project. In fact, we have several
developers on staff that participate in development and are
very familiar with the both codebase and operational aspects
of the system. We also have a close working relationship with
the Lustre developers and the Hyperion cluster is the primary
at-scale test resource for the Oracle Lustre development team.
For this work, we were using Lustre version 1.6.6 with
numerous patches from our local development team.

IV. THE GLOBAL PARALLEL FILE SYSTEM (GPFS)

GPFS is a mature product available from IBM. GPFS is able
to operate either in a direct-attached mode, where the disk
nodes are directly attached to the same internal network as the
compute nodes, or as NAS. Livermore currently has a multi-
PetaByte direct-attached GPFS file system on our Power5+,
100 TFlop system named Purple.

GPFS also separates metadata and file data, however it does
not use a dedicated MDS node like Lustre. With GPFS, each

1 The clustered Metadata Server has been architected and implemented, but
has yet to make it into the shipping product.

3

client node takes the role of the MDS node, and handles
metadata requests for anyone on the network interested in the
file. GPFS has an option to centralize the metadata itself, but
it is architected to run the metadata service in parallel on the
client nodes.

We are not as familiar with GPFS and have chosen not to gain
access to the proprietary source code. Our experience with
GPFS is in the directly attached mode – we have no
experience with the system in a network setting as we are
attempting to test here. In our discussions and surveys, we
find that we are testing a usage model of GPFS that is
supported, but not widely used. We used GPFS version3.2 for
this work.

V. SETUP FOR TESTING

The hardware test environment is shown in Figure 1 and
labeled for the Lustre configuration. The physical storage is a
single DDN9550 system capable of delivering 2.4 GB/s with
4MB I/O requests or 2.0 GB/s with 1MB requests. On top of
the storage hardware there are four OSS nodes which are Dell
R610 systems with dual socket, quad core Intel Nehalem
E5530 processors at 2.4 GHz. Each OSS node has a 10 Gb/s
Ethernet interface to the storage network and an SDR
InfiniBand (IB) connection to the DDN 9550. There is a pair
of MDS (failover) servers (Dell R610) attached to a 16 bay
SAS/SATA JBOD enclosure with sixteen 15K RPM SAS
drives.

The network is a three-stage 10Gb Ethernet network with a
Cisco Nexus 7018 as the core, an Arista 7148S as the edge
switch on the storage side and a Cisco Nexus 5020 next to the
4 GW nodes. This network should be capable of providing 5
GB/s of bandwidth, or about 2X the capability of the
DDN9550 RAID system.

The clients are the 1152 (8 core) nodes of Hyperion. Half the
clients are nodes identical to the R610 described above, the
other half contain Intel Harpertown LS420 processors at 2.5
GHz. The clients send file system requests via the gateway
nodes across the 10 Gb/s Ethernet to the OSTs. Through the
gateways, we expect to be able to provide an aggregate of 5
GB/s, as mentioned previously.

We are confident in our Lustre configuration skills, so we
chose to provision the hardware and automate the file system
configurations for these tests ourselves.

Figure 1: Hardware test environment - Lustre

Due to our inexperience with GPFS in the test environment,
we invited IBM to install, tune, test and review the results of
our testing activities. Over a period of about one month the
system was tweaked, tested, and tweaked again. In the
process we learned quite a bit about GPFS’s architecture and
the features of its administrative tools. One of our findings is
that the differences in the architecture of GPFS and Lustre are
so significant so as to directly and substantially impact the
performance results achieved.

Overall, our experience in observing and assisting with the
GPFS install and provisioning was strongly positive. The
tools provided by IBM to work with GPFS are very advanced
and mature. The file system itself was incredibly resilient. In
fact, part of our testing beyond the scope of this document was
to manually fail portions of the system to gauge the response.
GPFS passed these harsh tests with ease and we did not see
any failures for the duration of our multi-week experience
with the system. At the same time and on production systems,
we were gingerly attempting to use Lustre’s manual fail-over
with mixed results.

In Figure 2 we have the GPFS configuration for the tests. We
have the same physical hardware as with Lustre. The main
difference is that the MDS server that was used for Lustre no
longer has that role and becomes simply a GPFS file server
alongside the other 4 nodes (which were OST’s in the Lustre
configuration).

Figure 2 Hardware test environment - GPFS

The metadata server for GPFS consists of the client nodes
themselves, operating in parallel with each responsible for the
metadata it creates. The metadata does make its way to the
disk on the left hand side of figure 2 and is then available via
the NSD0 file server node. This architecture is flexible in that
NSD0 can be either a set of systems, or run on the data server
nodes alongside the data aspect. This is quite different than
Lustre’s single MDS and has a strong influence on metadata
performance as described below.

4

VI. BENCHMARKING STRATEGY

Testing was done in an automated fashion with each test
repeated at least twice with the best-case result shown. Tests
were run on both a clean (< 5% full) file system as well as an
aged file system (>80% data blocks used) which was prepared
by filling up the file system and randomly removing files to
bring it back to ~80% of the data blocks used). Between runs,
the file system was completely removed and reinstalled to
avoid any lingering issues caused by the last run.

We used the Livermore developed test harness of IOR[5]
(http://sourceforge.net/projects/ior-sio) and mdtest[6]
(http://sourceforge.net/projects/mdtest/) which were fully
automated via scripts.

Testing took several weeks of time for each of the candidates
as we discovered issues that caused us to want to invalidate
and rerun the tests. As mentioned above, we learned things
about GPFS that necessitated some changes in the tests
themselves.

VII. THROUGHPUT TESTING

Throughput or bandwidth testing is intended to provide insight
into the ability of the file system to deliver a significant
fraction of the peak bandwidth of the hardware. As mentioned
previously the peak for our setup was 2.4 GB/s. The IOR test
harness is an MPI-coordinated bandwidth test capable of
testing single and multi-node performance for file-per-process
and single-shared-file access and both contiguous and
noncontiguous data patterns. IOR is good at producing a high,
sustained I/O load on a parallel file system. The tests run with
IOR included “transfer size scaling”, “block size Scaling”,
“fi le per process scaling”, “segmented, shared file
performance”, and “interleaved, shared file performance”.

In the first test, we focused on performance for a single client.
This is the case where one MPI task handles all of the I/O for
an application, or the case where we are streaming data to
tertiary storage from a single client. With a peak capability of
2.4 GB/s, we see GPFS getting about 50% and Lustre about
25% of that bandwidth.

We believe GPFS is better able to take advantage of multi-
threading and lays data for a single file onto all servers in a
4MB round-robin fashion. Lustre will stripe 2 way by default,
but this does not turn out to be the performance limiting factor
as further testing with larger stripes still did not achieve parity
with GPFS as seen in the next graph.

We had previously discovered that Lustre’s single file
performance is limited to the performance of a single core due
to it’s design which does not take full advantage of the number
of cores and threads in modern processors.

We intentionally ran the read tests in a “cache-busting” mode.
That is, we arranged the tests such that the file is not read by
the process that wrote it. This will defeat the client caching
mechanism and cause the data to be read from disk. This
approach does not work on a single node so the results for
single node performance are not indicative of real
performance and are not presented.

We next move onto testing parallel jobs I/O performance. In
the first test, all nodes (ranging from 1-128) write to the same
shared file. This is a common mode of application I/O where
each task will do a seek-write to position its data at the proper
off-set within a file.

Working with LLNL, IBM has made an effort to match
GPFS’s file per process performance by tuning the shared file

5

throughput. As the above graph shows, GPFS quickly reaches
peak at 4 nodes and remains consistently at peak up to the 128
nodes used in the test. GPFS also reaches the half-peak
performance level with a single node. Lustre performs less
well, increasing performance on a more gradual basis and not
hitting a plateau until 64 nodes. Lustre doesn’t reach the half-
peak performance level until 4 nodes and has a dip in
performance from 1 to 2 nodes.

Another common way for applications to do I/O is for each
process to open a file to write its portion of the data. This is
a lso a common checkpoint mechanism used by our
applications. Here we again see GPFS peak at about 4 nodes,
but Lustre does much better trailing GPFS by only about 10%
and peaking at 16 nodes. This is as expected due to the fact
that GPFS does better load balancing and Lustre has the
additional overhead of calculating checksums.

For parallel read performance, in the next graph, we see that
both file system are well-matched at the limits of the test
hardware capabilities.

For reading a single shared file, GPFS outperforms Lustre by a
slim margin at first, then the opposite is true as the test scales
up. They end up equal at the highest scale for this test.

In bandwidth testing, we had expected GPFS to have a wider
margin of advantage due to its larger network blocksize (4 MB
vs Lustre’s 1 MB blocksize). The tests here do not appear to
show this due to the DDN’s architecture which provides
sufficient disk bandwidth behind the RAID controller to
saturate the controller with only 1 MB blocks. To explore this
area, we disabled a portion of the RAID devices. GPFS is
able to sa tura te the cont ro l ler ’s bandwidth in th is
configuration with only 24 tiers of disk where Lustre required
4 8 . T h i s i s a s u b tle but important result that could
dramatically impact the cost of an installation by reducing disk
requirements.

VIII. METADATA PERFORMANCE TESTING

The metadata test driver used was mdtest, developed at LLNL
and available as described above. Logical separation of
metadata and file system data is one of the key features of
parallel file systems. As we learned in this exercise, the
performance of metadata is very dependent upon application
behavior. The tests we ran turn out to be worst case for GPFS
(with its distributed MDS) while seemingly favoring Lustre
(with it’s single MDS).

At a high level we tested two situations. The first is the
situation in which an application does its file system activity
entirely within a single directory on the file system. The
other extreme is where the application creates a directory for
each MPI tasks and the tasks subsequently performs all of its
file system work in its own directory separate from the other
tasks. While there is plenty of middle ground, we find that
testing these two modes is indicative of performance for our
applications. For these metadata tests files were zero length
(contained no actual data).

In running the tests in this straightforward manner, we were
surprised to see GPFS outperform Lustre by a wide margin.
As we learned about the GPFS architecture, we understood the
distributed metadata design and realized the speedup was a
result of the client nodes acting as metadata servers and
caching file operations locally. We decided this mode was not
reflective of our applications so changed the tests to cause the
“stat” command to be issued from a neighbor node.

6

This seemingly subtle change neutralized the advantage GPFS
had and the tests were rerun. The GPFS results changed to be
a fraction of those from Lustre and several orders of
magnitude less than they had been. What we learned (and
what follows in the results) is that in GPFS, a stat operation
from a node other than the creator forces the creating node to
flush to disk, which is a very expensive operation. The result
is that GPFS is penalized quite significantly. The penalty of
the flush is more than would occur in a situation where a file is
not stated immediately but some time afterward when the file
system flush has an opportunity to occur naturally.

We decided to continue on this path because these are the test
parameters dictated by our applications that have been
developed and use the Lus t re f i le sys tem. Had our
applications been optimized to work with (in a NAS
environment as opposed to directly attached), they would have
to behave differently and the mdtest script would reflect this.
It was communicated to us that simply having task zero (or
any single task) do the metadata operations would reduce this
problem and bring the performance up at least to the level of
Lustre. It is important to note that this is the main factor in the
results. The different architectures produce widely different
performance profiles based on these seemingly simple
changes.

Tests were run on multiples of 2 nodes up to 128 with 8
processes per node. In the test, each process creates, then stats
a different node’s files and finally deletes the 100 files or
directories it created.

For the first case of creating directories within a shared
directory, Lustre was significantly faster than GPFS. This is
due to the fact that in creating a directory, GPFS must add the
parent directory “..” pointer. This requires exclusive lock the
parent directory for each create effectively serializing the
process and adding overhead. Lustre, with it’s single MDS
looks much better for this particular test, though it shows signs
of tailing off past 16 nodes.

Similarily for stats, the single MDS is a significant advantage
for Lustre resulting in over 3X the performance of GPFS.
GPFS does better in this test, but our conclustion is that
distributed architecture of GPFS needs a heavier load to show
its benefits over the single MDS for Lustre – for smaller
systems and with this method of activity, Lustre appears to
have an advantage.

The file removals, much like creates, are in favor of Lustre
with Lustre directory removal performance over 12X that of
GPFS. This is due to the synchronization overhead, again, in
GPFS’ distributed algorithm.

In testing file creates, we find an interesting difference in
GPFS’ performance. Here , GPFS does qui te wel l ,
outperforming Lustre by 30% in places. The reason for this is
that creating many files in a shared directory is common
practice and the GPFS developers have provided a well-
performing solution. This is because, after listening to
feedback from users, the developers of GPFS have
implemented shared directory file creates with a parallel
algorithm enabled via a fine grained directory lock.

7

The testing results for file stats and removals within a shared
directory are substantially similar to that of the directory case.
For that reason, we are not including them here. [but may
update the graphs to overlay for the final submission]

Thus far, we have focused on metadata tests that create, stat,
and delete files and directories within a single flat directory.
The other main alternative is to have a directory per MPI
process, partitioning the activities in a manner that should
enable the file systems to proceed in parallel.

In our first test for the unique directory method, we see that
Lustre’s performance scales nicely up until about 32 nodes
where it starts to drop off. The GPFS performance is not as
good as Lustre, only catching up as Lustre declines at 64
nodes and tailing off in a similar way past that point.

File and directory stat operations within a unique directory are
not significantly different from that of a shared directory. For
GPFS, both situations force a node to flush to disk to answer
the stat operation since it is initiated from a different node.

Finally, and for completeness, removal of files and directories
within a unique directory show poor performance for GPFS
relative to Lustre.

IX. PER PROCESS METADATA SCALING STUDY

The above tests used a static number of operations (100) per
node and varied the number of nodes used. Lustre
outperformed GPFS in these tests. In order to understand
scaling up, we chose to hold the number of processes static at
128 and vary the number of file and directory operations for
each process from 10 to 500. Here we again used the mdtest
benchmark in a shared directory.

The file stats per second in a unique directory gives hints that
the GPFS architecture may have advantage if put under a
heavier load. It is not easy to imagine a situation where every
process needs 500 files, but perhaps if the number of files
itself is the key to performance, large systems with hundreds
of thousands of processes may show GPFS to be better suited.
Unfortunately we are not able to test at these levels and know
of no site with a NAS-based GPFS installation and a hundred-
thousand plus node system.

8

X. CONCLUSION

For the throughput performance tests, both file systems were
able to drive the small backend hardware at high rates, with
GPFS outperforming Lustre for the most part by 20% or more
for writes and they were about equal on reads. GPFS is also
able to more quickly saturate the available storage hardware
due to its larger network block size. The data here also
indicate that GPFS is much better at making use of multiple
cores in a system when compared to Lustre.

With respect to metadata performance, Lustre is faster in all
but the case of creating a large number of files in a shared
directory. In most metadata test cases, the performance of
Lustre is significantly faster than that of GPFS. This is
somewhat counter to expectations given GPFS’ distributed
metadata architecture. As noted, the tests were very harsh
toward the way GPFS operates and very friendly toward
Lustre’s method. To thwart the caching behavior of GPFS, we
perform stat operations from a different node than the one
holding the metadata, which has the effect of forcing GPFS to
sync to disk. In the same tests, Lustre is permitted to cache
the results and artificially appears to have a large advantage.
The truth here lies somewhere between these extremes and the
thing that matters most is what your application does or can be
made to do in the way of being GPFS-friendly and/or Lustre-
friendly.

Metadata operations are logically associated with creating files
and directories, querying them for information and deleting
them. For the most part, our expectation is that the majority of
application activity involves reading and writing files vs. the
management of metadata. Unless the application is using the
file system as a communication device (which is a bad idea
these days), metadata operations are likely a tiny fraction of
the file system activity. Yet performance is critical as we have
learned with BlueGene/L and BlueGene/P where applications
running on ~132,000 MPI tasks can each create a file for
results or checkpoint data.

As we had multiple weeks of testing with each system, we had
the opportunity to perform many more tests than presented
here. We also studied the two systems with an eye toward
administrative tools, resilience and total cost of ownership.

These non-performance metrics are important to the usability
and reliability in the day-to-day use of the system.
LLNL has many years of experience with Lustre and we found
ourselves attracted to the administrative tools provided with
GPFS. It is no small effort to keep a production center
running and GPFS administrative tools are mature and offer
simple, intuitive interfaces designed to handle the day-to-day
tasks that are necessary in a large production environment.
These considerations are significant and should be taken into
account when selecting a solution. GPFS is much further
ahead than Lustre in this area.

LLNL has a long history with both Lustre and GPFS. We
have pushed hard to separate the disk from the system and
have shown that network based file systems are the right
answer for large file systems in an environment with multiple
supercomputers. We have worked closely with the Lustre
community to help make this solution viable for the
community. We are happy to see more sites using GPFS in
this way and hope to participate in the growing community
supporting these architectures.

REFERENCES

[1] http://www.sandia.gov/ASCI/Red/RedFacts.htm
[2] John May, “Parallel I/O for High Performance computing”, Morgan

Kaufmann 2001, p 22.
[3] Hitting the Memory Wall: Implications of the Obvious, Wm. A. Wulf,

Sally A. McKee, Computer Architecture News, 1995
[4] GPFS: A Shared-Disk File System for Large Computing Clusters: Frank

Schmuck and Roger Haskin, IBM Almaden Research Center.
http://www.usenix.org/publications/library/proceedings/fast02/full_pape
rs/schmuck/schmuck_html/index.html

[5] Richard Hedges, Bill Loewe, Tyce McLarty and Chris Morrone,
“Parallel File System Testing for the Lunatic Fringe: The Care and
Feeding of Restless I/O Power Users,” Mass Storage Systems and
Technologies – MSST 2005.

[6] Ibid

