
 

 

The INL is a U.S. Department of Energy National Laboratory 
operated by Battelle Energy Alliance 

INL/EXT-09-17010

Systems Analysis 
Programs for Hands-On 
Integrated Reliability 
Evaluations (SAPHIRE) 
Version 8  
 
Volume 2 Technical 
Reference  
 

C. L. Smith 
S. T. Wood 
W. J. Galyean 
J. A. Schroeder 
M. B. Sattison 

March 2011 
 



 

 

INL/EXT-09-17010
NUREG/CR-7039

Systems Analysis Programs for Hands-On Integrated 
Reliability Evaluations (SAPHIRE) Version 8  

 
Volume 2 Technical Reference  

C. L. Smith 
S. T. Wood 

W. J. Galyean 
J. A. Schroeder 
M. B. Sattison 

March 2011 

 

Idaho National Laboratory 
Idaho Falls, Idaho 83415 

 
http://www.inl.gov 

 

Prepared for the 
Division of Risk Analysis 

Office of Nuclear Regulatory Research 
U.S. Nuclear Regulatory Commission 

Washington, D.C.  20555 
Job Code N6423 



 

 

AVAILABILITY NOTICE 

Availability of Reference Materials Cited in NRC Publications 

Most documents cited in NRC publications will be available from one of the following sources: 

1.  The NRC Public Document Room, Rockville Pike, Rockville, MD  20852  (pdr@nrc.gov) 

2.  The Superintendent of Documents, U. S. Government Printing Office (GPO), Mail Stop 
SSOP, Washington, DC  20402-9328 

3.  The National Technical Information Service, Springfield, VA  22161 

Although the listing that follows represents the majority of documents cited in NRC publications, 
it is not intended to be exhaustive. 

Referenced documents available for inspection and copying for a fee from the NRC Public 
Document Room include NRC correspondence and internal NRC memoranda; NRC bulletins, 
circulars, information notices, inspection and investigative notices; licensee event reports; 
vendor reports and correspondence; Commission papers; and applicant and licensee 
documents and correspondence. 

The following documents in the NUREG series are available for purchase from the GPO Sales 
Program: formal NRC staff and contractor reports, NRC-sponsored conference proceedings, 
international agreement reports, grant publications, and NRC booklets and brochures. Also 
available are regulatory guides, NRC regulations in the Code of Federal Regulations, and 
Nuclear Regulatory Commission Issuances. 

Documents available from the National Technical Information Service include NUREG-series 
reports and technical reports prepared by other Federal agencies and reports prepared by the 
Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission. 

Documents available from public and special technical libraries include all open literature items, 
such as books, journal articles, and transactions. Federal Register notices, Federal and State 
legislation, and congressional reports can usually be obtained from these libraries. 

Documents such as theses, dissertations, foreign reports and translations, and non-NRC 
conference proceedings are available for purchase from the organization sponsoring the 
publication cited. 

Single copies of NRC draft reports are available free, to the extent of supply, upon written 
request to the Office of Administration, Distribution and Mail Services Section U. S. Nuclear 
Regulatory Commission, Washington, DC  20555-0001. 

The public maintains copies of industry codes and standards used in a substantive manner in 
the NRC regulatory process at the NRC Library, Two White Flint North, 11545 Rockville Pike, 
Rockville, MD, 20852, for use. Codes and standards are usually copyrighted and may be 
purchased from the originating organization or, if they are American National Standards, from 
the American National Standards Institute, 1430 Broadway, New York, NY  10018. 

 



 

 

 

 

 

 

 

 

 

 

DISCLAIMER NOTICE 

This report was prepared as an account of work sponsored by an agency of the 
United States Government. Neither the United States Government nor any 
agency thereof, or any of their employees, makes any warranty, expressed or 
implied, or assumes any legal liability of responsibility for any third party’s use, or 
the results of such use, or any information, apparatus, product or process 
disclosed in this report, or represents that its use by such third party would not 
infringe privately owned rights. 





 

ii 

PREVIOUS REPORTS 

S. T. Wood, C. L. Smith, K. J. Kvarfordt, S. T. Beck, Systems Analysis Programs for Hands-on 
Integrated Reliability Evaluations (SAPHIRE) Vol. 1 Summary Manual, NUREG/CR-6952, 
August 2008. 

C. L. Smith, S. T. Wood, W. J. Galyean, J. A. Schroeder, S. T. Beck, M. B. Sattison, Systems 
Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) Vol. 2 Technical 
Reference, NUREG/CR-6952, August 2008. 

K. J. Kvarfordt, S. T. Wood, C. L. Smith, Systems Analysis Programs for Hands-on Integrated 
Reliability Evaluations (SAPHIRE) Vol. 3 Code Reference Manual, NUREG/CR-6952, August 
2008. 

S. T. Beck, S. T. Wood, C. L. Smith, Systems Analysis Programs for Hands-on Integrated 
Reliability Evaluations (SAPHIRE) Vol. 4 Tutorial, NUREG/CR-6952, August 2008. 

C. L. Smith, J. Schroeder, S. T. Beck, Systems Analysis Programs for Hands-on Integrated 
Reliability Evaluations (SAPHIRE) Vol. 5 GEM Manual, NUREG/CR-6952, August 2008. 

C. L. Smith, R. Nims, K. J. Kvarfordt, C. Wharton, Systems Analysis Programs for Hands-on 
Integrated Reliability Evaluations (SAPHIRE) Vol. 6 Quality Assurance Manual, NUREG/CR-
6952, August 2008. 

K. J. Kvarfordt, S. T. Wood, C. L. Smith, Systems Analysis Programs for Hands-on Integrated 
Reliability Evaluations (SAPHIRE) Vol. 7 Data Loading Manual, NUREG/CR-6952, August 
2008. 

Smith, C. L., et al., Testing, Verifying, and Validating SAPHIRE Versions 6.0 and 7.0, 
NUREG/CR-6688, October 2000. 

K. D. Russell, et al. Systems Analysis Programs for Hands-on Reliability Evaluations 
(SAPHIRE) Version 6.0 - System Overview Manual, NUREG/CR-6532, May 1999. 

K. D. Russell et al., Integrated Reliability and Risk Analysis System (IRRAS) Version 5.0, 
Volume 2 - Reference Manual, NUREG/CR-6116, EGG-2716, July 1994. 

K. D. Russell et al., Verification and Validation (V&V), Volume 9 – Reference Manual, 
NUREG/CR-6116, EGG-2716, July 1994. 

K. D. Russell et al., Integrated Reliability and Risk Analysis System (IRRAS) Version 4.0, 
Volume 1 - Reference Manual, NUREG/CR-5813, EGG-2664, January 1992. 

K. D. Russell et al., Integrated Reliability and Risk Analysis System (IRRAS) Version 2.5 
Reference Manual, NUREG/CR-5300, EGG-2613, March 1991. 

K. D. Russell, M. B. Sattison, D. M. Rasmuson, Integrated Reliability and Risk Analysis 
System (IRRAS) - Version 2.0 User's Guide, NUREG/CR-5111, EGG-2535, manuscript 
completed March 1989, published June 1990. 

K. D. Russell, D. M. Snider, M. B. Sattison, H. D. Stewart, S.D. Matthews, K. L. Wagner, 
Integrated Reliability and Risk Analysis System (IRRAS) User's Guide - Version 1.0 (DRAFT), 
NUREG/CR-4844, EGG-2495, June 1987.  



 

iii 

ABSTRACT 

 
The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations 
(SAPHIRE) refers to a set of computer programs that were developed to create 
and analyze probabilistic risk assessment (PRAs).  Herein information is 
provided on the principles used in the construction and operation of Version 8.0 
of the SAPHIRE system.  This report summarizes the fundamental mathematical 
concepts of sets and logic, fault trees, and probability.  This volume then 
describes the algorithms used to construct a fault tree and to obtain the minimal 
cut sets.  It gives the formulas used to obtain the probability of the top event from 
the minimal cut sets, and the formulas for probabilities that apply for various 
assumptions concerning reparability and mission time.  It defines the measures 
of basic event importance that SAPHIRE can calculate.  This volume gives an 
overview of uncertainty analysis using simple Monte Carlo sampling or Latin 
Hypercube sampling, and states the algorithms used by this program to generate 
random basic event probabilities from various distributions.  Also covered are 
enhance capabilities such as seismic analysis, Workspace algorithms, cut set 
"recovery," end state manipulation, and use of "compound events." 
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FOREWORD 

The U.S. Nuclear Regulatory Commission (NRC) has developed the Systems Analysis 
Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) software that is used to 
perform probabilistic risk assessments (PRAs) on a personal computer.  SAPHIRE enables 
users to supply basic event data, create and solve fault and event trees, perform uncertainty 
analyses, and generate reports.  In that way, analysts can perform PRAs for any complex 
system, facility, or process. 

For nuclear power plant PRAs, SAPHIRE can be used to model a plant's response to initiating 
events, quantify core damage frequencies, and identify important contributors to core damage 
(Level 1 PRA).  The program also can be used to evaluate containment failure and release 
models for severe accident conditions given that core damage has occurred (Level 2 PRA).  In 
so doing, the analyst could build the PRA model assuming that the reactor is initially at full 
power, low power, or shutdown.  In addition, SAPHIRE can be used to analyze both internal and 
external events and, in a limited manner, to quantify the frequency of release consequences 
(Level 3 PRA).  Because this software is a very detailed technical tool, users should be familiar 
with PRA concepts and methods used to perform such analyses. 

SAPHIRE has evolved with advances in computer technology and users’ needs.  Starting with 
Version 5, SAPHIRE operated in the Microsoft Windows™ environment.  Versions 6 and 7 
included features and capabilities for developing and using larger, more complex models.  
SAPHIRE Version 8 includes significant new features and capabilities to meet user needs for 
NRC risk-informed programs.  In general, these include:  

Improved user interfaces supporting NRC’s Significance Determination Process, event and 
condition assessments, and more detailed types of PRA analyses. 

Development and use of NRC’s Standardized Plant Analysis Risk models. 

New and improved solving algorithms. 

Support features for user-friendliness. 

This NUREG-series report comprises seven volumes as outlined below and incorporates new 
features and capabilities of Version 8. 

Volume 1, “Overview and Summary” 

Volume 1 provides an overview of the functions and features available in SAPHIRE Version 8 
and presents general instructions for using the software. 

Volume 2, “Technical Reference” 

Volume 2 summarizes the fundamental mathematical concepts of sets and logic, fault trees, and 
probability.  It then describes the algorithms used to construct a fault tree and to obtain the 
minimal cut sets.  This report presents the formulas used to obtain the probability of the top 
event from the minimal cut sets and the formulas for probabilities that apply for various 
assumptions concerning reparability and mission time.  In addition, it defines the measures of 
basic event importance that SAPHIRE can calculate.  This volume also gives an overview of 
uncertainty analysis using simple Monte Carlo sampling or Latin Hypercube sampling and states 
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the algorithms used by this program to generate random basic event probabilities from various 
distributions.  Finally, this report discusses enhanced and new capabilities such as post-
processing rules, integrated model solving using model types, and workspace analysis routines. 

Volume 3, “Users’ Guide” 

Volume 3 provides a brief discussion of the purpose and history of the software as well as 
general information such as installation instructions, starting and stopping the program, and 
some pointers on how to get around inside the program.  Next, it discusses database concepts 
and structure.  The following nine sections (one for each of the menu options on the SAPHIRE 
main menu) furnish the purpose and general capabilities for each option.  Finally, Volume 3 
provides the capabilities and limitations of the software. 

Volume 4, “Tutorial” 

Volume 4 provides a series of lessons that guide the user through basic steps common to most 
analyses performed with SAPHIRE. 

Volume 5, “Workspaces” 

Volume 5 describes the functionality and process behind SAPHIRE Version 8 workspaces.  
Workspaces provide an area in which a PRA model can be analyzed to obtain risk insights for a 
given initiating event or condition.  Workspaces replace the “Graphical Evaluation Module” in 
earlier SAPHIRE versions. 

Volume 6, “Quality Assurance” 

Volume 6 is designed to describe how the SAPHIRE software quality assurance (QA) is 
performed for Version 8, what constitutes its parts, and the limitations of those processes.  In 
addition, this report describes the Independent Verification and Validation that was conducted 
for Version 8 as part of an overall QA process. 

Volume 7, “Data Loading” 

Volume 7 is designed to guide the user through the basic procedures necessary to enter PRA 
data into the SAPHIRE program using SAPHIRE’s MAR-D ASCII-text (or “flat file”) data formats.  
In addition, this manual covers loading data through the new Accident Sequence Matrix and 
discusses the Project Integrate interfaces with SAPHIRE. 

 

       
 ________________________________ 

Christiana H. Lui, Director 

Division of Risk Analysis 

Office of Nuclear Regulatory Research 

U.S. Nuclear Regulatory Commission 
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EXECUTIVE SUMMARY 

The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) 
refers to a set of microcomputer programs that were developed to create and analyze 
probabilistic risk assessments (PRAs).  Within this report, information is provided on the 
principles used in the construction and operation of Version 8.0 of the SAPHIRE system.  Set 
theoretic operations and relations, their relation to Boolean logic, and the rules of probability are 
explained.  Fault trees are reviewed, including all of the gate types allowed by SAPHIRE. 

The procedure by which SAPHIRE builds a fault tree from the user inputs, simplifies and 
truncates it according to the user's specifications, and determines the minimal cut sets is 
outlined.  Once cut sets are generated, "recovery" rules may be used to manipulate these cut 
sets.  SAPHIRE 8 is written in a recursive language, and performs many operations by recursive 
procedures.  To perform operations on logic models, SAPHIRE takes the user's input (a logic 
expression either by fault or event trees) and builds a simplified internal representation of the 
tree.  This involves several steps: 

• Linking portions that were connected by transfer gates, 
• Expanding N/M gates as combinations of OR and AND gates, 
• Determining the unique TOP gate, 
• Checking for logical loops,  
• Pruning portions of the tree having house events, and 
• Coalescing like gates. 
 
To obtain the minimal cut sets in an efficient way, SAPHIRE searches for special parts of the 
tree known as independent subtrees and modules, both of which are treated as single tokens 
until very late in the process.  It then determines the optimal order for processing the tree, based 
on the levels of the gates, and begins making a list of cut sets.  Based on the basic event 
probabilities or sizes (and the user's truncation specifications), SAPHIRE is able to eliminate 
some cut sets early in the process.  It also eliminates non-minimal cut sets, those that can be 
absorbed by other simpler cut sets, and finally obtains a list of minimal cut sets that the user has 
specified should not be truncated.  The last step is to combine the fault trees for failures of 
different systems, to obtain the fault tree for an accident sequence involving the failure of certain 
systems and the success of others, and then quantify the resulting cut sets. 

Within the minimal cut sets are basic events – these events provide SAPHIRE with the 
probabilistic information needed to quantify the cut sets.  Discussions related to the basic events 
includes the probability models provided by the SAPHIRE calculation types, how recovery 
events are applied, and how complex models may be used to determine event probabilities via 
the "compound" approach. 

After cut sets are generated, uncertainty analyses may be performed by Monte Carlo sampling, 
with the basic event probabilities drawn from user-specified distributions.  Two types of 
sampling are possible in SAPHIRE, simple Monte Carlo sampling and Latin Hypercube 
sampling.  The distributions that are supported by SAPHIRE are presented, and the algorithms 
used for generating random numbers from these distributions are documented.  Correlation 
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classes, allowing the user to state that certain basic event probabilities are equal, although both 
basic events are uncertain, are also explained.  A simple example illustrates the two types of 
sampling. 

Also included is an example showing the process SAPHIRE uses to find the minimal cut sets of 
a fairly simple fault tree, and how SAPHIRE finds the probability of the TOP event and the 
importance of the individual basic events.  Specific calculation routines for Workspace analysis 
are also provided. 

This report provides the SAPHIRE user with a basic understanding of the mathematical and 
probabilistic concepts needed to understand the basic principles used in the software.  In 
addition, it gives an overview of the algorithms used in the program.  This report is not intended 
to provide all of the details some readers may desire.  Therefore, references are provided that 
contain more detail for the interested reader.   However, information is provided on special 
analysis topics such as seismic and end state evaluations. 
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Systems Analysis Programs for Hands-on Integrated 
Reliability Evaluations (SAPHIRE) Version 8 

Volume 2 Technical Reference 
1. INTRODUCTION 

1.1 Background 

The U.S. Nuclear Regulatory Commission (NRC) has developed a powerful personal computer 
(PC) software application for performing probabilistic risk assessments (PRAs), called Systems 
Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) Version 8. 

Using SAPHIRE 8 on a PC, an analyst can perform a PRA for any complex system, facility, or 
process. Regarding nuclear power plants, SAPHIRE can be used to model a plant’s response to 
initiating events, quantify associated core damage frequencies, and identify important 
contributors to core damage (Level 1 PRA).  It can also be used to evaluate containment failure 
and release models for severe accident conditions, given that core damage has occurred (Level 
2 PRA). It can be used for a PRA assuming that the reactor is at full power, at low power, or at 
shutdown conditions. Furthermore, it can be used to analyze both internal and external initiating 
events, and it has special features for transforming models built for internal event analysis to 
models for external event analysis. It can also be used in a limited manner to quantify risk for 
release consequences to both the public and the environment (Level 3 PRA). For all of these 
models, SAPHIRE can evaluate the uncertainty inherent in the probabilistic models. 

SAPHIRE development and maintenance has been undertaken by the Idaho National 
Laboratory (INL). The INL began development of a PRA software application on a PC in the mid 
1980s when the enormous potential of PC applications started being recognized. The initial 
version, Integrated Risk and Reliability Analysis System (IRRAS), was released by the Idaho 
National Engineering Laboratory (now Idaho National Laboratory) in February 1987. IRRAS was 
an immediate success, because it clearly demonstrated the feasibility of performing reliability 
and risk assessments on a PC and because of its tremendous need (Russell 1987). 
Development of IRRAS continued over the following years. However, limitations to the state of 
the-art during those initial stages led to the development of several independent modules to 
complement IRRAS capabilities (Russell 1990; 1991; 1992; 1994). These modules were known 
as Models and Results Database (MAR-D), System Analysis and Risk Assessment (SARA), 
and Fault Tree, Event Tree, and Piping and Instrumentation Diagram (FEP).  

IRRAS was developed primarily for performing a Level 1 PRA. It contained functions for creating 
event trees and fault trees, defining accident sequences and basic event failure data, solving 
system fault trees and accident sequence event trees, quantifying cut sets, performing 
sensitivity and uncertainty analyses, documenting the results, and generating reports. 

MAR-D provided the means for loading and unloading PRA data from the IRRAS relational 
database. MAR-D used a simple ASCII data format. This format allowed interchange of data 



 

2 

between PRAs performed with different types of software; data of PRAs performed by different 
codes could be converted into the data format appropriate for IRRAS, and vice-versa. 

SARA provided the capability to access PRA data and results (descriptive facility information, 
failure data, event trees, fault trees, plant system model diagrams, and dominant accident 
sequences) stored in MAR-D. With SARA, a user could review and compare results of existing 
PRAs. It also provided the capability for performing limited sensitivity analyses. SARA was 
intended to provide easier access to PRA results to users that did not have the level of 
sophistication required to use IRRAS. 

FEP provided common access to the suite of graphical editors. The fault tree and event tree 
editors were accessible through FEP as well as through IRRAS, whereas the piping and 
instrumentation diagram (P&ID) editor was only accessible through FEP. With these editors an 
analyst could construct from scratch as well as modify fault tree, event tree, and plant drawing 
graphical figures needed in a PRA. 

Previous versions of SAPHIRE consisted of the suite of these modules. Taking advantage of the 
Windows 95 (or Windows NT) environment, all of these modules were integrated into SAPHIRE 
Version 6; more features were added; and the user interface was simplified. 

Work began on a new version of SAPHIRE, Version 8, in 2004. Version 8 was designed to 
meet current NRC program needs such as those related to SPAR model development, the 
Significance Determination Process (SDP) program, the Risk Assessment Standardization 
Project (RASP), as well as the Accident Sequence Precursor (ASP) Program.  The 
development of the SAPHIRE 8 version includes new features and capabilities.  These 
features and capabilities are related to working with larger, more complex models and 
improving the user-friendliness of SAPHIRE’s interfaces while retaining key functionality of 
Version 7. 

Version 8 is being developed to support the SPAR models and to run them as an integrated 
model (e.g., Level 1 with external events).  The graphical user interface has also improved 
from SAPHIRE 7.  A tailored interface for the SDP and the ASP programs has been 
developed.  The interfaces for the SDP, ASP, and general analysis introduce the concept of a 
“workspace” in which the analyst may run and save different analyses. The use of workspaces 
enables the user to separate the model construction from the model analysis. 

The report contains the following topics: 

• An introduction to sets and set operations and to the corresponding logical operations 

• A review of fault tree construction principles and the philosophy used in SAPHIRE 

• An overview of probability theory 

• An overview of cut set algorithms in SAPHIRE, including post-processing via recovery rules 

• A review the quantification techniques used in SAPHIRE 
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• A summary of the calculation types used for the basic events 

• An overview of importance measures, including uncertainty importance 

• A discussion of the uncertainty analysis and an introduction to Monte Carlo sampling and 
Latin Hypercube sampling 

• An overview of seismic events and general external events applications 

• An overview of phased-mission types of evaluations 

• An review of the use of compound events, including the common-cause module in 
SAPHIRE 

• A discussion of the methods used to treat analysis on event tree end-states. 

• A list of applicable references 

• An example of the details of an SAPHIRE analysis to a simple fault tree 
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2. SET THEORETIC AND LOGICAL CONCEPTS 

This section presents basic definitions of sets and a summary of useful identities.  The reader 
can obtain more information from Hahn and Shapiro (1967), Mood et al. (1974), Henley and 
Kumamoto (1985), or Andrews and Moss (2002).  Within this section, we present several 
topics, including: set theory and set operation concepts; listing of useful Boolean identities; 
concepts of statement logic; and the relations between set theory and statement logic. 

  

2.1 Set Theoretic Concepts 

A useful tool to illustrate set relations pictorially is the Venn diagram.  Figure 1 shows the Venn 
diagram (Venn, 1880) for two sets, A and B, where B is a proper subset of A. 

 

 
 

Figure 1.  Generalized Venn diagram representing two sets, A and B 
 
For SAPHIRE, we are interested in what could occur at a facility such as a nuclear power 
plant, chemical processing facility, or transportation system.  Therefore, when set theory is 
used for SAPHIRE applications, we usually let the population � consist of all possible 
conditions of the plant or system.  Any one element of this set consists of a detailed 
specification of the condition of every part of the plant or system.  Consequently, � has a huge 
number of elements. 

Events are subsets of this population.  For example, an event such as "AFW pump B fails to 
start" is a subset, consisting of all conditions of the pump and its supporting equipment that 
result in failure to start, together with all possible conditions of the rest of the plant.  The event 
"core melt" is also a subset of the population, containing all the detailed plant conditions that 
result in core melt. 
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In this document, we will note definitions by enclosing the terms and associated definition in a 
box, such as those below: 

 
Set:  A set is a user-defined collection of objects. 
 
Elements: Objects belonging to a set.  
 
Population: A set of all possible elements. 
 
Null Set: A set that has no elements.  It is also called the empty set and is denoted by �.  
 
Subset: A set A is called a subset of set B if all the elements of A are also elements of 

B.  If set B contains addition elements, then set A is called a proper subset. 
 
Set Equality: A set A is equal to set B if they contain the same elements. 
 
 

2.2 Operations on Sets 

Three basic operations exist for sets.  They are: 
 
• Union  
• Intersection  
• Complementation 
 
A fourth operation, called set difference, is sometimes considered; it is expressed as a 
combination of the other set operations.  See Smith, Knudsen, and Calley (1999) for additional 
information on set differences. 

The union of two sets is a set consisting of all the distinct elements in A or all of the elements 
in B or both.  The union operation is also called an OR operation, and is sometimes denoted 
by C=A+B. 

 
The union is denoted by C = A U B 
 
Inexperienced analysts are wise always to use the symbol U to combine sets and the symbol + 
to combine numbers, but adept symbol jugglers learn to use + safely in both contexts.  
Computer programs that use only the 128 ASCII characters or the characters on a line printer 
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are forced to use + instead of U.  The reader of this document should realize that when dealing 
with sets, use of the + symbol for sets implies the logical union of the sets. 

The union of two sets is shown in Figure 2. 
 

 
 

Figure 2.  The union of two sets illustrated via a Venn diagram 
 
The union of any number of sets A1, A2, ... is the set of all elements that are in any of the Ai's.  
It can be written with notation analogous to summation notation: 

 n 
�Ai for n sets and 
i=1 
 
 � 

�Ai for infinitely many sets. 
i=1 

 
The intersection of two sets is the set consisting of all the elements common to both A and B.  
That is, the elements belong to A and to B.  It is also called the AND operation.  

 
The intersection is denoted by C = A ��B  
or sometimes C = A * B  
or simply, C = AB. 
 
The intersection of two sets is shown as the AB region in Figure 3. 
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Figure 3.  The intersection of two sets illustrated via a Venn diagram 
 

The intersection of A1, A2, ... is the set of all elements that are in all the Ai's.  The intersection 
of n sets can be written as: 
 

n 
�Ai 
i=1 

 
or, using product notation, as A1A2...An. 
 
The complement of a set A is the set consisting of all elements in the population that are not 
contained in A.  It is sometimes called the NOT operation.  It is denoted by a bar over A,  A’, or 
Ac .  The complement of a set is shown in Figure 4. 
 

 
 

Figure 4.  The complement of a set illustrated via a Venn diagram 
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The set of all elements in A and not in the set B is called the set difference.  
 
The set difference is denoted by A ��B’ 
 
It can also be written as A-B.  The lighter portion of set A (shown in Figure 3) represents the 
set difference A-B. 
 
Two sets are said to be mutually exclusive or disjoint if and only if they contain no elements in 
common.  
 
The intersection of mutually exclusive sets is the null set, A � B = �. 
 
Mutually exclusive sets are shown in Figure 5. 
 

 
 

Figure 5.  Mutually exclusive sets illustrated via a Venn diagram 
 
The sets A1, A2, ... are mutually exclusive if each pair is mutually exclusive, that is, no element 
of W is in more than one Ai.  The term "mutually exclusive" can therefore refer even to an 
infinite collection of sets. 

A collection of sets A1, A2, ... is exhaustive if the union of the sets is the population �, that is, 
every element of � is in at least one Ai.  In most applications, exhaustive sets are also chosen 
to be mutually exclusive.  When the sets A1, A2, ... are both mutually exclusive and 
exhaustive, they form a partition of �: every element of � is in one and only one of the Ai's. 

 



 

10 

2.3 Summary of Useful Identities 

The following are useful identities in working with sets: 
 
Commutative Laws 

A ��B = B ��A    A ��B = B ��A 
 
Associative Laws 

A ��(B ��C) = (A ��B) ��C  A ��(B ��C) = (A ��B) ��C 
 
Distributive Laws  

A ��(B ��C) = (A ��B) ��(A ��C) A ��(B ��C) = (A ��B)���(A�� C) 
 
Idempotent Laws 

A ��A = A    A ��A = A 
 
Laws of Absorption 

A ��(A ��B) = A   A ��(A ��B) = A 
 
Complementation 

A ��A’ = A ��Ac = A ����= � 
A ��A’ = A ��Ac = A ����= ��
(A’)’ = (Ac) c = A 

 
Operations Involving Null Set and Population 

���� A = �� � �����A = ��

�����A = A  �����A = ��
�’ = � c = �� � �’ = � c = � 

 
DeMorgan's Laws 

(A ��B)’ = A’�� B’   (A ��B)’ = A’���B’ 
 
Other Identities 

A ��(A’ ��B) = A�� B   A’���(A ��B’) = A’ ��B’ = (A ��B)’ 
 

2.4 Concepts of Statement Logic 

A statement is defined here as a sentence that can be declared either true or false.  Examples 
are "generator DG1 fails to start" and "rocket nozzle structural integrity is maintained."  English 
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statements that are not clearly true or false, such as "This is a nice looking control panel," are 
not considered.  Mathematically, a statement is an object that can take one of two values, 
either TRUE or FALSE.  In this discussion, we will use the letters p, q, r, etc. to denote 
statements.  New, more complex statements can be built by combining simpler statements 
using AND, OR, and NOT, defined as follows: 

 
(p AND q) is TRUE if 
both p and q are TRUE. 
 
It is FALSE if 
p is FALSE, q is FALSE, or both are FALSE. 

 
(p OR q) is TRUE if 
p is TRUE, q is TRUE, or both are TRUE. 
 
It is FALSE if 
both p and q are FALSE. 

 
(NOT p) is TRUE 
if p is FALSE. 
 
It is FALSE if 
p is TRUE. 
 

For ease of input from a computer, SAPHIRE uses the notation “/” for NOT.  That is /X is the 
notation for NOT X in SAPHIRE input. 

Working from the previous basic definitions, one can prove many simple facts about 
statements, similar to those listed for sets.  For example, one distributive law says 

p AND (q OR r) = (p AND q) OR (p AND r) 
 
and one of DeMorgan's laws says 
 

NOT (p AND q) = (NOT p) OR (NOT q). 
 
These equations mean that the statement on the left-hand side is TRUE if and only if the 
statement on the right-hand side is TRUE.  Mathematics that uses the formal manipulation of 
these logical relations is sometimes called Boolean, after the mathematician George Boole. 
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2.5 Set Theory and Statement Logic 

Parallel structures for sets and for statements exist:  the terms AND, OR, and NOT were used 
for both, and similar rules such as the distributive laws and DeMorgan's laws applied to both.  
The relation is made explicit here. 

Let � be the population, and consider statements about the elements of �.  Any statement has 
a corresponding truth set, defined as the set of all elements for which the statement is true.  An 
element is in the truth set if and only if the statement is true for that element.  For example, the 
statement "core melt occurs" corresponds to the set of all possible plant conditions that result 
in core melt.  Suppose that 

A is the set of elements for which p is TRUE 
B is the set of elements for which q is TRUE. 

 
Then the rules for combining sets and for combining statements are related as follows: 
 

A ��B is the set of elements for which (p OR q) is TRUE 
A ���B is the set of elements for which (p AND q) is TRUE 
A’ is the set of elements for which (NOT p) is TRUE. 

 
Because the correspondence between set and statement definitions is so direct, we 
sometimes interchange the languages:  A OR B instead of A ��B.  

For SAPHIRE applications, the statements of interest describe events.  For example, the event 
"AFW pump B fails to start" may be thought of as a statement p that can be combined with 
other statements as described in the Concepts of Statement Logic section.  The event occurs 
if the statement defining the event is TRUE.  This defines an event as a statement. 

Alternatively, the event can be thought of as naming the set A of all plant conditions that result 
in failure of the pump to start.  Similarly, the statement "MOV134 fails to open" can be thought 
of as corresponding to a set B of plant conditions.  

The statement that both these events occur, MOV134 fails to open AND AFW pump B fails to 
start, corresponds to the intersection B � A. 

The relation between statements and sets is so direct that most people switch back and forth 
between the two without even realizing it.  This is why the terms AND, OR, and NOT were 
introduced in Operations on Sets as alternative terms for intersection, union, and 
complementation.  The terminology in this document allows for this back-and-forth thinking, not 
carefully distinguishing between statement logic and set theory. 

One reason we did not list all the facts about statements is that they are simply re-expressions 
of the facts in the Summary of Useful Identities section.  Any fact about sets in the Summary of 
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Useful Identities section can be translated to a fact about statement logic by replacing set 
symbols with statements: 

Set Symbols Statement Logic 
A, B, and C p, q, and r 
�, �, and � OR, AND, and NOT 
The population � always true 
The null set � always false 
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3. FAULT TREE CONCEPTS 

This section provides the reader with an overview of the concepts used by SAPHIRE in the 
creation of fault tree models.  More information can be found in Vesely et al. (1981).  In this 
section, we will address two topics; first a general overview of the SAPHIRE fault tree 
approach is described followed by the symbols used in the graphical editor. 

 

3.1 SAPHIRE Fault Tree Approach 

SAPHIRE allows the user to input fault tree models in either of two ways:  graphically (as 
shown in Figure 6) or alphanumerically (shown below) via a file import option. 

 
TOPGATE OR EVENT-A GATE-2 GATE-1 
GATE-1 OR GATE-3 EVENT-B  
GATE-2 AND EVENT-D EVENT-C  
GATE-3 AND EVENT-E EVENT-G EVENT-F 

  
Both methods produce equivalent results and use the same basic approach to modeling. 

 

 
 

Figure 6.   Example of fault tree graphic (without descriptions) from the SAPHIRE editor 

 
A fault tree model consists of a top event (usually defined by a heading in an event tree) and a 
connecting logic structure that models the combinations of events that must take place to 
result in the undesired top event.  In SAPHIRE, a fault tree generally represents a failure 
model.   Thus, all the elements in the fault tree represent failures, whether they are equipment 
failures, human errors, or adverse conditions that can contribute to failure of the modeled 
event.  Successful events (those things that should happen) that can contribute to failure of the 

TOPGATE

TOPGATE0

TOPGATE00

1.00E+00TOPGATE000 1.00E+00TOPGATE001 1.00E+00TOPGATE002

1.00E+00TOPGATE01

TOPGATE1

1.00E+00TOPGATE10 1.00E+00TOPGATE11

1.00E+00TOPGATE2
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top event can be included in the fault tree also, but special care must be exercised.  
Specifically, success events should be names such that they begin with the "/" character (e.g., 
success of EVENT-B would be entered as /EVENT-B). 

The logic structure must contain only one top event.  SAPHIRE will provide an error message 
if more than one top event is discovered.  A simple way to guarantee only one top event per 
fault tree is to develop the fault tree model from the top down and complete each level of the 
fault tree model before proceeding to the next level. 

The fault tree logic structure can consist of any combination of the logic symbols shown below 
that do not result in a logical loop.  All the symbols below are buttons and are located in the 
graphical tool bar of the Fault Tree graphical editor. 

  This symbol represents a basic event such as a hardware failure, human error or 
an adverse condition. 

 

  Represents an AND gate.  The logic operation for this gate requires all inputs into 
the AND gate must occur for failure to occur. 

 

  Represents an OR gate.  The logic operation for this gate requires only one of the 
total number of inputs into the OR gate to occur for failure to occur. 

 

  Represents an “N-OUT-OF-M” gate (or N/M gate).  The logic operation for this 
gate requires that N of the M inputs into the gate must occur for failure to occur.  For 
example, for a 2/4 gate, any combination of 2 of the 4 input events must occur for a 
failure to occur. 

  

 This symbol represents a TRANSFER gate.  The transfer gate indicates that logic 
is continued from some other location.  The location could be a new separate fault tree 
(top event) or a gate from some other location in the same fault tree. 

 

A logical loop is a chain of events that comes back on itself.  For example, a service water 
system can fail due to a loss of electrical power.  Part of the electric power model contains 
failure of the emergency diesel generators.  The emergency diesel generators can fail due to a 
loss of cooling water supplied by the service water system.  The combination of events 
resulting in the loss of service water due to a loss of electrical power caused by failure of the 
diesel generators that was due to the loss of service water is a logical loop (see Figure 7).   
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Figure 7.  Example of a fault tree logic loop 

 

This type of circular logic is ambiguous and is not allowed by SAPHIRE.  If such a logic pattern 
is detected, SAPHIRE will provide an error message and will display the sequence of logic 
gates that are in the loop. 

 

3.2 SAPHIRE Fault Tree Symbols 

The fault tree model consists of simple faults called basic events and logical operators that 
dictate how the basic events must combine to result in failure of the fault tree top event.  Basic 
events are the building blocks of the fault tree model.  When the model is processed, the 
results will be all the minimal combinations of basic events sufficient to cause failure of the top 
event.  These combinations are called minimal cut sets.  Minimal cut sets contain only basic 
events. 
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3.2.1 Basic Event 

A basic event represents a simple failure or fault.  It may be a hardware failure, a human error, 
or an adverse condition.  Hardware failures are usually expressed in terms of a specific 
component and a failure mode, such as "Service Water Pump 1A fails to start on demand."  
Human errors can be failure to carry out a desired task (failure to open a valve), failure to 
perform a specific recovery action (failure to start a backup system), or execution of a wrong 
action that has adverse effects on the fault tree top event (isolated the source of water for a 
cooling system).  An adverse condition is not necessarily a failure but in combination with other 
events can lead to failure.  For example, the temperature being below 32°F is an adverse 
condition necessary for the failure of flow reduction due to a frozen pipe.  
 
Even though a basic event does not necessarily describe a failure, the vast majority of basic 
events are failures.  This leads to lax but understandable language such as "the event is in the 
failed state" instead of the more correct "the event occurs." 

Basic events are always assumed to be independent of each other, in the statistical sense 
defined in the section on Independent Events.  This means that the occurrence of one basic 
event does not influence the probability of occurrence of any other basic event.  For example, 
suppose that there are two diesel generators, and the failure of either to start on demand is a 
basic event.  Independence of the basic events says that if one diesel generator fails to start 
on demand, this does not alter the probability that the second diesel generator will fail to start.   

A common cause event, such as "two diesel generators fail to start because of unusually cold 
weather," must be modeled as its own basic event, and be assigned its own failure probability 
or failure rate.  This event is then regarded as statistically independent of all other basic 
events. 

3.2.2 Logic Gates 

Logic gates are used to indicate how the basic events must combine to result in failure of the 
top event.  Every logic gate has one or more inputs at the bottom and an output at the top.  
Inputs may be basic events or other logic gates.  The output must serve as the input to another 
logic gate or result in the top event.  Each logic gate derives its name from the manner in 
which the inputs must combine to pass through it to the next level.  The input to a logic gate is 
a set of events.  The output is a single event, formed by using the set operations AND and OR 
on the input events.  The logic gates (and the icon and mouse cursor symbol) in SAPHIRE 8 
are: 

AND Gate 

 

OR Gate 

 

N/M Gate 

 

Transfer Gate 
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In addition to the regular gates, the AND and OR gates may be complemented, resulting in a 
NOT AND (NAND) and a NOT OR (NOR) gate, respectively. 
  
3.2.2.1 AND Gate 

This gate states that the output event is the simultaneous 
occurrence of all the input events.  In set language, the 
output set is the intersection of the input sets.  In terms of 
statement logic, the output is a compound statement (X 
AND Y AND Z). 

 

3.2.2.2 OR Gate 

This gate combines the inputs by the OR operation.  The 
output set is the union of the three input sets.  
Alternatively, the output statement is X OR Y OR Z. 

 
 
 

3.2.2.3 N/M Gate 

This gate states that N of the M input events occur.  It is 
sometimes called an N-out-of-M gate or a combination 
gate.  For a 2/3 gate, illustrated here, 2 of the 3 input 
events must occur.  The output statement is (X AND Y) 
OR (X AND Z) OR (Y AND Z). 

 
3.2.2.4 Transfer Gate 

This gate does not require any special logic to result in an output, rather it is used to link logic 
structures together without introducing any new logic of its own.  This is used primarily as a 
convenience for the modeler.  All but the simplest of fault trees take up more than one page.  
The TRANSFER GATE indicates where the logic on a given page is continued on another page.  
A TRANSFER GATE may also be used to indicate where the logic is continued on the same 
page.  The symbol for the transfer gate is shown in Figure 8. 

Figure 8.  Example use of a transfer gate 
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• The TRANSFER GATE name must be the same as the name of the gate where the logic 
continues. 

• When transferring on the same page, the gate being transferred to can be anywhere on the 
page, except where it would create a logic loop. 

• When transferring to another page, the gate being transferred to must be the top gate on the 
page. 

• When transferring to another page, the transfer gate name, the file name for the page being 
transferred to and the name of the gate being transferred to must all be the same.  For 
example, if the TRANSFER GATE is called TRANS1, then the page being transferred to 
must be called TRANS1 and the top gate on that page must be called TRANS1. 

 
3.2.2.5 NOT AND Gate 

This gate is also called a NAND GATE.  It can be thought of as the negation of an AND GATE.  
The output occurs if any one of the inputs does not occur.  This is best explained through an 
example.   

 

 

Figure 9.  Equivalence for the NAND gate 

 
The left side of Figure 9 shows a NOT AND GATE with inputs X, Y, and Z.  If any one of the 
inputs does not occur, then an output occurs.  Any of three possibilities satisfy this condition:  
1) X does not occur, 2) Y does not occur, or 3) Z does not occur.  Since any event (X) and its 
complement (/X) are mutually exclusive, we can say that 

X does not occur = /X occurs. 

Therefore, the output of the NOT AND GATE in Figure 10 is /X (read not X), or /Y, or /Z. 

Another way of looking at the problem is the way SAPHIRE actually processes a NOT AND 
GATE.  The gate is transformed into an OR GATE with all of the inputs transformed into their 
complements.  Any single complement event occurring results in an output. 
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3.2.2.6 NOT OR Gate 

This gate is also called a NOR GATE.  It is the negation of an OR GATE.  The output occurs if 
none of the inputs occur.  This is shown in Figure 10.  There is only one combination of events 
where none of the inputs occur; X does not occur and Y does not occur and Z does not occur.  
In terms of complemented events this is /X and /Y and /Z. 

 

 

Figure 10.  Equivalence for the NOR gate 

 
SAPHIRE processes a NOT OR GATE by transforming it into an AND GATE with all of the 
inputs transformed into their complements.  All of the not events must occur for the output 
event to occur.  This is the same as none of the original events occurring.  The other symbols 
in a fault tree are used to add clarity to the diagram and to connect the various gates and 
events together properly. 
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4. PROBABILITY CONCEPTS 

This section provides the reader with an overview of the concepts of probability associated 
with the uncertainty analysis used in PRA.  This discussion will not be inclusive, but it will 
present the basic concepts and principles.  For a more detailed discussion of these topics, the 
reader can obtain more information from Press (1989), Lindley (1985), Singpurwalla (1988), 
Jaynes (2003), USNRC (2003), and NASA (2009). 

 

4.1 Definition and Rules of Probability 

Probability is the only satisfactory way to quantify our uncertainty about an uncertain event E.  
Probability is always conditional; it is conditioned on all of the background information we have 
at the time we are quantifying our uncertainty.  This background information is denoted by H 
and the probability of E conditional on H is denoted by P(E|H).  To make the notation less 
cumbersome, we write this simply as P(E); nevertheless, the conditioning H should be 
understood. 

The range of a probability is between 0 and 1.  P(E) = 0 means E will never occur, and P(E) = 
1 means E will always occur.  From now on, assume that a probability is defined for all events 
in the population (where � consist of all possible conditions). 

The rules of probability tell us how to relate our uncertainty about events.  Specifically, they tell 
us how various probabilities combine or cohere.  These rules are motivated by preferences 
between events and a scoring rule argument.  The scoring rule approach can be used to show 
that the following three rules of probability hold for discrete cases. 

For any event, 
 
0  	  P(E)  	  1, and P(�) = 1 (4-1) 
 
For any mutually exclusive events E1, E2, ... 
 

 (4-2) 
 
The conditional probability of an event F given an event E is 
 

P(F|E) = P(F�E) / P(E) (4-3) 
 
which is equivalent to the multiplication rule 
 

P(F�E) = P(F|E) P(E) 
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These are the basic rules of probability, from which all others can be derived.  One logical 
development of probability, due to Kolmogorov (Press 1989), takes Equations (4-1) and (4-2) 
as axioms, and Equation (4-3) as a definition.  A more recent approach by Renyi (Press 1989) 
uses conditional probability as the fundamental concept, rewrites every unconditional 
probability above as a conditional one, and uses the rewritten Equations (4-1), (4-2) and (4-3) 
as axioms.  These mathematical fine points are not important to this report.  It is enough to 
note that every treatment of probability uses the rules given above, and the rules that follow as 
consequences in the sections below. 

Equation (4-2) says that the probability of the union of disjoint events is the sum of the 
probabilities.  This fact motivated the use of + as an alternate notation for U in Section 2.2. 

 

Law of Total Probability 

For any events E and F,   
 

P(E) = P(E�F) + P(E�F’) = P(E|F) P(F) + P(E|F’) P(F’) 
 
This law can be extended to a set of n mutually exclusive and exhaustive events F1, F2, . . . , 
Fn as follows: 
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Basic Probability Relations 

   
 

   
 

 
 
 
If E and F are two events and E is a subset of F, then P(E) < P(F). 
 

Bayes' Theorem 

Consider any two events E and F.  By the multiplication law 
 

P(E�F) = P(E|F) P(F) = P(F|E) P(E). 



 

25 
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We use Equation (4-5) to change our uncertainty about E given background information H to 
our uncertainty about E given F and H.  We can think of F as new data.   

For example, suppose that turbine-driven pumps fail to start with some frequency p.  We 
quantify our background knowledge about turbine-driven pumps through a probability 
distribution on p.  (For ease of explanation, suppose that this distribution is discrete, a list of 
possible values pi, each with a probability reflecting our degree of belief.) 

To continue this example, let E be the event "p = 0.01".  Let F be the event "3 failures in 100 
attempts to start."  We know P(E) from the probability distribution that quantifies our 
background knowledge.  How should this probability be changed to account for the new 
information?  That is, what is P(E|F)? 

This question is answered using Bayes' Theorem.  The theory of binomial random variables 
shows that 
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is the probability of the event F given some value of p.  Therefore P(F|E) is P(F|p) with the 
value 0.01 substituted for p.  The value of P(F) is obtained from the law of total probability, 
Equation (4-4): 


 �� )()|()( ii ppPPFPFP  

summed over all the possible values pi.  Then finally, P(E|F) is obtained by substituting the 
values for  

P(E), P(F|E), and P(F) into Equation (4-5). 

In summary, we used Equation (4-5) to change a belief about E given the background 
information to a belief about E given both the background information and F.  The belief was 
updated based on new data. Additional information on Bayesian methods may be found in 
Jaynes (2003), USNRC (2003), and NASA (2009). 

 

Independent Events 

We say an event E is independent of another event F if the probability of E, P(E), is unaltered 
by any information concerning event F.  We write 
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P(E|F) = P(E|F’) = P(E) . 
 
This is also called statistical independence.  From this definition we obtain the following 
relationship for independent events 

P(E�F) = P(E|F)P(F) = P(E)P(F) . 
 
Beginners often confuse mutually exclusive events with independent events.  The two 
concepts are different:  Mutually exclusive events satisfy 

P(A�B) = P(�) = 0 
 
whereas independent events satisfy 
 
P(A�B) = P(A) P(B) . 
 
Therefore, if P(A) > 0 and P(B) > 0, A and B cannot be both mutually exclusive and 
independent.  The mutual exclusiveness introduces a dependence, if A occurs, B cannot 
occur. 

Additional Probability Relations 

The probability of the union of n events is 
 

 (4-6) 
The probability of the intersection of n events is 
 

 (4-7) 
The probability of the intersection of n events when the events are statistically independent is 
 

 (4-8) 
  
For any n events (dependent or independent), we have 
 

 (4-9) 
 
For independent events, the probability of the intersection equals the product of the 
probabilities.  This fact motivated the product notation that was introduced as an alternate to 
the intersection in the discussion on the intersection of sets.  Because of its compactness, the 
product notation has been used for intersections in Equations (4-6) through (4-9). 
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5. DETERMINATION OF MINIMAL CUT SETS 

When considering the development of a fault tree minimal cut set algorithm, it is good to 
review the general processes involved.  First, we have the definition of the fault tree logic.  
Typically, the logic is defined using an alphanumeric file containing names of gates and basic 
events.  Along with the logic file is another alphanumeric file containing basic event names and 
a failure probability associated with each event.  These failure probabilities are used during the 
fault tree solution process to simplify the tree by truncation.  Additional processing information 
may be used, but this is typically the minimum information required. 

The above information is loaded into the computer's memory and converted into a format that 
is easier to process.  For example, basic event names are converted to 4-byte long numbers 
for smaller size and ease of manipulation.  Certain optimization functions are also performed 
on the logic before it is processed.  Next, the logic for each gate starting with the TOP is 
recursively replaced with its inputs until the resulting logic is in terms of basic events only.  
This results in a list of event intersections.  Each event intersection is a cut set of the fault tree 
and identifies a set of events that will cause the function modeled by the fault tree to occur.  
The list of cut sets identifies all the logical combinations of events that will cause the top event 
to occur.  

The cut sets described above may need further reduction due to rules defined for Boolean 
reduction.  These reductions are applied to obtain a simpler collection of cut sets.  For 
example, the cut sets generated should be minimal, that is, the list should not be simplifiable. 

For example, if A�B�C causes the top event to occur, then A�B�C is a cut set.  If A�B is 
also a cut set, then A�B�C is not minimal, and it is discarded from the list.  If neither A alone 
nor B alone causes the top event to occur, A�B is a minimal cut set, and it is retained in the 
list.  This is an application of the absorption identity: 

 
(A�B) ��(A�B�C) = A�B. 
 
The event probabilities are then used to calculate a probability for each cut set using Equation 
(4-7).  This value is the probability that the given set of events will occur.  Any cut set whose 
probability falls below a user-defined (truncation) value is then eliminated.  The remaining cut 
sets are the minimal cut sets for the fault tree and are the desired end product of the fault tree 
solution.  In SAPHIRE, the minimal cut sets are always in terms of basic events unless the 
analyst specifically indicates that certain gates are to be treated as basic events. 

Once the minimal cut sets have been determined, the quantification routines must be 
employed to determine a point estimate for the probabilities of the cut sets.  The routines that 
find importance measures would then be used to calculate the importance of each basic event 
in the cut sets, and the uncertainty routines would be used to perform uncertainty analysis on 
the cut sets. 
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The steps described above need not be applied in the order indicated, but each step is usually 
present in any fault tree software.  We will now present a more detailed overview of each of 
these steps as they relate to SAPHIRE. 

In order to solve a fault tree, there are a number of operations that must be performed on the 
tree before it can be solved.  Some of these operations relate to converting the tree into a 
format that is ready to solve, while others involve optimizing the tree to make the processing of 
the tree more efficient. 

 

5.1 Recursive Algorithms 

Many of the processes associated with fault tree reduction and quantification can be 
implemented easily using recursive procedures.  A simple definition of a recursive procedure is 
"a procedure that calls itself."   

An example of where a recursive procedure might be used is in checking a gate for "valid" 
inputs.  A recursive implementation of this procedure has as an argument, the gate to be 
checked.  This procedure checks each input to the gate passed as an argument.  If an input is 
a basic event, then it checks to see if it is valid.  If the input is a gate, however, it calls itself to 
see if the inputs to this gate are valid.  When all the inputs to a gate have been processed, the 
procedure exits and continues processing the gate it was checking before the recursive call.  
The algorithm stops when all inputs to all gates have been checked.   

Many computer languages do not support recursive procedures, but in those languages 
recursion can be simulated by using arrays to keep track of the arguments passed to the 
procedure.  SAPHIRE takes advantage of recursive procedures in many areas due to its 
reliance on the Modula-2 and Delphi programming languages. 

 

5.2 Loading and Restructuring 

SAPHIRE was designed to allow the user to structure very large fault trees into smaller pieces 
or pages.  The concept of pages comes from the graphical fault tree editor.  One page 
represented the portion of a fault tree that could be easily displayed on a graphical screen or 
printed on a standard sheet of paper.  This idea expanded to allow the pages of the fault tree 
to be connected together with transfer gates.  SAPHIRE stores fault trees by pages, in a 
relational database.  The name of each system is the key to locate the system (fault tree) in 
the database.  Transfer gates are stored as subsystems.  Again, the name of the transfer gate 
is the name of the subsystem.  During the load process, these names are used to connect the 
fault tree logic. 

 
Fault Tree Page: A portion of a fault tree designed to fit on one printed page. 
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Because SAPHIRE stores the logic of these fault trees as physically separate pages, 
connected by transfer gates, the first task is to load these pages into memory and combine 
them into one connected fault tree.  This is done by reading in the logic for the first page of the 
tree, then recursively scanning the loaded logic for a transfer gate that has not been 
processed.  SAPHIRE allows the user to specify whether a transfer gate is to be expanded or 
not.  The gates that are flagged (identified as not to be expanded) are converted to basic 
events at this time. 

During the load process, SAPHIRE connects gates to the tree by name.  The gates are 
maintained in a sorted list that is searched using a binary search, when required.  When a new 
gate is encountered, it is inserted into the gate list in sorted order.  As the tree is loaded, 
transfer gates are replaced by gates with developed logic beneath them.  During this process, 
if SAPHIRE encounters a gate that is not a transfer and has the same name as another gate, it 
checks to see if it is an identical gate (i.e., it is the same type and has the same inputs).  If the 
gates are not identical, SAPHIRE displays an error message and terminates the process after 
the tree is loaded. 

When all transfer gates have been processed, any transfer gates remaining are considered to 
be unresolved transfer gates.  The user is notified of these and they are converted to basic 
events with the same name as the transfer gate.  This allows SAPHIRE to continue processing 
the fault tree.  These unresolved transfers will appear as basic events in the cut sets. 

If the tree is successfully loaded, SAPHIRE checks to see if the user has specified a gate 
name to be used as the top gate.  If so, then the tree is pruned to eliminate any logic that is not 
connected beneath this gate.  This process simplifies the tree and frees any memory used by 
the excess logic.  At this point, the tree is ready for further processing. 

 

5.3 N/M Gate Expansion 

The next step is to convert N/M gates to their representative logic in terms of AND and OR 
gates.  This type of gate is used in SAPHIRE to simplify the definition of the logic for situations 
where the user needs to define a structure representing the combination of M things taken N at 
a time.  The user may specify any combination where N and M range from 98 to 99 and N<M.  
SAPHIRE automatically converts these gate structures by first generating a number of 
intermediate AND gates containing as inputs the combinations of inputs represented, then 
these gates are input to the original N/M gate.  Once this is complete, the N/M gate type is 
changed to an OR gate.  The number of AND gates under the OR gates is determined by the 
total number of combinations of N failures out of a population of M events.  The equation for 
this number of combinations is 

 

 
 
An example of this process can be illustrated with the following "2/3" gate. 
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GATE1 2/3  INPUT1 INPUT2 INPUT3 

 
is converted to the following structure: 

 
GATE1 OR  N/M-1  N/M-2  N/M-3 
N/M-1   AND  INPUT1 INPUT2 
N/M-2   AND  INPUT1 INPUT3 
N/M-3   AND  INPUT2 INPUT3 

 
Thus, for 2 out of 3 gates, there are 3 unique combinations of 2 failures.  This generates 3 
AND gates under the OR gate.  If the number of inputs to the gate does not equal M, then an 
error message is generated.  In this case, SAPHIRE will not try to solve the fault tree due to 
the inconsistency.  Note that N/M gates may yield a large number of combinations – 
consequently, SAPHIRE attempts to solve this portion of the logic late in the analysis in order 
to minimize having to keep track of these combinations. 

 

5.4 TOP Gate Determination 

If the user has not specified the gate to be used as the top gate of the fault tree, the next step 
in solving the fault tree is to determine which gate is the "TOP" gate.  This process is carried 
out by counting the references to each gate.  A gate is referenced if it appears as input to any 
other gate.  The top gate is the only gate that will not be referenced by any other gate.  If 
SAPHIRE detects more than one gate that qualifies as the TOP gate, then the user is notified 
and given the opportunity to select the gate to be used as the TOP gate.  If no gate is selected, 
SAPHIRE will not try to solve the fault tree.  If, however, the user selects one of the gates, 
SAPHIRE will prune all other logic not connected to this gate and continue with the solution. 

 

5.5 Logic Loop Error Detection 

Now that the TOP gate of the fault tree has been determined, SAPHIRE can proceed to check 
for loops in the fault tree.  A loop is a situation where a gate either directly or indirectly 
references itself.  A simple example of a loop is represented by the following fault tree logic: 

 
TOP AND  GATE1  EVENT1 
GATE1 OR  GATE2  GATE3  EVENT2 
GATE2 OR  EVENT3  EVENT4 
GATE3 AND  GATE1  EVENT5 
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In this example, GATE1 indirectly references itself since GATE1 references GATE3, and 
GATE3 references GATE1, as indicated by the arrows. 

To determine if there is a loop in the fault tree logic, SAPHIRE defines a Boolean array 
containing one element for each gate in the fault tree.  This list is then initialized to FALSE.  
During processing of a gate, the Boolean variable for that gate is TRUE when processing that 
gate or any of its inputs, otherwise it is FALSE.  Starting with the TOP gate, SAPHIRE 
traverses the fault tree by following the gates defined in the inputs to each gate.  As a gate is 
encountered, its Boolean variable is tested.  If the value of this variable is TRUE, then a 
previous reference to this gate must have occurred indicating a loop exists in the fault tree at 
this point.  If Boolean variable is FALSE, then it is set to TRUE to indicate that this gate is 
currently being processed and the inputs for this gate are traversed.  When all the inputs to a 
gate have been checked, the Boolean variable for the gate is set to FALSE before exiting.  
Using the previous loop example, the processing proceeds as follows: 

 
(1) Initialize a Boolean array. 

 
TOP GATE1 GATE2 GATE3 
FALSE FALSE FALSE FALSE 

 
(2) Start processing the TOP gate. 

Set flag for TOP gate. 
 

TOP  GATE1 GATE2 GATE3 
TRUE FALSE FALSE FALSE 

 
(3) Process the first input to the TOP gate. 

First input is GATE1. 
Set flag for GATE1 and continue. 

 
TOP GATE1 GATE2 GATE3 
TRUE TRUE FALSE FALSE 

 
(4) Process the first input to GATE1. 

First input is GATE2. 
Set flag for GATE2 and continue. 

 
TOP GATE1 GATE2 GATE3 
TRUE TRUE TRUE FALSE 

 
(5) No gates input to GATE2. 
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Reset flag for GATE2 and exit. 
 

TOP GATE1 GATE2 GATE3 
TRUE TRUE FALSE FALSE 

 
(6) Continue processing inputs to GATE1. 

Next input is GATE3. 
Set flag for GATE3 and continue. 

 
TOP GATE1 GATE2 GATE3 
TRUE TRUE FALSE TRUE 

 
(7) Process inputs to GATE3. 

First input is GATE1. 
Set flag for GATE1. 
Flag is already set (TRUE) therefore a loop is detected! 

 
TOP GATE1 GATE2 GATE3 
TRUE TRUE FALSE TRUE 

 

Two points of optimization can be considered in this approach.  First, each gate only needs to 
be processed once.  If it is referenced several times in the fault tree, repeated processing can 
be time consuming.  SAPHIRE maintains a list of those gates that have been processed and 
only traverses those that have not been previously processed.  Second, this algorithm is quite 
repetitive and can be implemented quite nicely as a recursive procedure. 

If SAPHIRE detects a loop in the fault tree, a fatal error is generated along with a traceback.  
This traceback defines exactly the gate reference list that caused the loop.  Currently, 
SAPHIRE will not process a fault tree that has loops.  The user must modify the logic to 
remove the loop before SAPHIRE will solve the fault tree. 

 

5.6 Complemented Gate Conversion 

Once SAPHIRE has ensured that the fault tree logic does not contain any loops, the 
complemented gates in the fault tree are processed.  Two types of complemented gates are 
allowed in SAPHIRE.  The user may indicate a complemented gate by using either the NAND 
or the NOR gate or by putting a forward slash (/) in front of a gate name.  If the complemented 
gate types are used, then all references to the gate name will use the complemented logic.  If 
the user wants to complement only a specific reference to a gate, then the slash character 
may be used in front of the gate name where it is referenced. 
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SAPHIRE processes complemented gates by first complementing the gate type and then 
complementing the inputs to the gate.  The following example demonstrates this process: 

 
TOP  AND  GATE1    GATE2 
GATE1 AND  GATE3 EVENT1 
GATE2 AND  GATE3 EVENT2 
GATE3 OR  EVENT3 EVENT4 

 
becomes (internal to SAPHIRE) 

 
TOP  AND  GATE1 GATE2 
GATE1 OR  /GATE3 /EVENT1 
GATE2 AND  GATE3 EVENT2 
GATE3 AND  /EVENT4 /EVENT5 

 
where the "/" character represents the complement of the input. 
  

Notice that GATE3 is referenced as both a complemented gate and a noncomplemented gate.  
To handle this, SAPHIRE generates a new gate called NOT3 that contains the complemented 
version of GATE3.  Now, the new (internal) fault tree is as follows: 

 
TOP  AND  GATE1 GATE2 
GATE1 OR  NOT3  /EVENT1 
GATE2 AND  GATE3 EVENT2 
GATE3 AND  /EVENT4 /EVENT5 
NOT3  OR  EVENT4 EVENT5 

 
If every gate in the tree is referenced in the fault tree as both complemented and 
noncomplemented, then this approach to processing the complemented gates can result in a 
fault tree with twice the number of gates as in the original tree.  This, however, is not usually 
the case and the number of additional gates is substantially smaller.  When SAPHIRE first 
encounters a reference to a complemented gate in the fault tree, it assumes that this will be 
the only reference to the gate; therefore, it complements the original gate.  If later on it 
encounters a reference to the noncomplemented version of the gate, it then generates a new 
gate that is identical to the original uncomplemented gate. 
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5.7 House Event Pruning 

SAPHIRE allows the user to modify the logic structure of a fault tree by using "house" events.  
House events are events that can be set to logical TRUE (T) or FALSE (F).  This forces the 
event to occur with house event TRUE, or forces it not to occur with house event FALSE.  
SAPHIRE also allows the user to specify that an event is to be ignored with house event 
IGNORE (I) which says to remove the event from the fault tree logic.  An event set to house 
event IGNORE will be treated as if it did not exist in the fault tree. 

Normally, house events are treated as special events that must be designated as house 
events.  In SAPHIRE, however, the user may treat any event as a house event.  Since 
SAPHIRE creates an event for each transfer gate in the tree, house events may also be used 
to prune subsystems from a fault tree.  At various times, SAPHIRE will use house events to 
simplify or optimize the processing of the fault tree.  There are two of these situations.  First, if 
the user is truncating on probability and the probability of an event is below the truncation 
value, then we know that this event has negligible probability of occurring.  To prune the fault 
tree, we set these events to house event FALSE.  This same technique could be used for 
other truncation criteria that can be determined before the fault tree is solved to further simplify 
the tree.  A group of house event settings (for multiple basic events) may be defined via the 
"Flag Set" option where the flag set is then assigned to one (or more) fault trees. 

Second, SAPHIRE uses house events when solving sequence cut sets.  In SAPHIRE, 
accident sequences are defined using an event tree to indicate the failure or success of top 
events.  Each top event in the event tree is associated with a system fault tree.  To solve the 
accident sequence, SAPHIRE constructs a fault tree for those systems that are defined to be 
failed in the sequence logic by creating a dummy AND gate with these systems as inputs.  
SAPHIRE then solves this fault tree using the specified truncation values.  This process results 
in a list of cut sets for the failed systems in the accident sequence.  SAPHIRE then uses a 
"delete term" technique (as a default option, this option may be changed by the user) to further 
reduce this list of failed system cut sets.  This technique uses the cut sets determined from 
solving the successful system fault trees in the accident sequence logic to eliminate cut sets 
from the list of failed system cut sets.  To do this, SAPHIRE first scans the list of failed-system 
cut sets and assigns a value of FALSE to any event in SAPHIRE that does not appear in this 
list.  Once this is done, the fault tree representing the successful systems in the accident 
sequence logic is constructed, pruned by the house events, and solved.  The events that are 
set to FALSE in the previous step result in a significantly reduced success system fault tree.  
We can do this since we know that for any successful-system cut set to eliminate a failed-
system cut set, it must contain only events in the list of failed-system cut sets.  Setting these 
events to house event FALSE will ensure that the cut sets with these events in them will be 
eliminated at the fault tree restructuring step. This process greatly speeds up the solution of 
the successful system fault tree.  For example, let the following cut sets represent the failed 
systems cut sets for the accident sequence. 

E1 * E2 * E3 
E2 * E5 * E7 
E1 * E2 * E5 
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Let the following fault tree represent the successful-systems fault tree. 
 
TOP OR SYS1 SYS2 SYS3 
SYS1 AND E1 E6 
SYS2 AND E1 E5 
SYS3 AND E3  E4  

 
Since events E4 and E6 do not appear in the list of failed-systems cut sets, we can set them to 
house event FALSE and prune the fault tree, resulting in the following fault tree. 

 
TOP OR SYS1 SYS2 SYS3 
SYS1 AND E1 FALSE 
SYS2 AND E1 E5 
SYS3 AND E3 FALSE 

 
Pruning this tree gives the following reduced fault tree. 

 
TOP AND E1 E5 

 
Solving this fault tree results in the following single cut set 
 

E1 * E5 
 
This cut set is used to reduce the failed-systems cut sets as follows. 

 
E1 * E2 * E3 
E2 * E5 * E7 
E1 * E2 * E5 

 
Whether specified externally by the user or internally by SAPHIRE, before the fault tree is 
solved, it is pruned depending on the structure of the tree and the house event setting.  In 
order to do this, SAPHIRE again traverses the fault tree checking for house events.  At each 
gate the algorithm checks each of the inputs to the gate to see if it has been set to any one of 
the three house event settings, "T," "F," or "I."  If so then the logic for that gate is modified as 
follows.  If the gate is an AND gate, then an input set to T or I is removed from the gate input 
list, while an input set to F causes the gate to be set to F.  If the gate is an OR gate, then an 
input set to F or I is removed from the gate input list, while an input set to T causes the gate to 
be set to T.  For example, we show in Figure 11 that the LOP house event is turned on (TRUE) 
for sequences 3 and 4.  For Sequences 1 and 2 the LOP house event is left off (FALSE).  The 
setting of the house event is dependent upon the success or failure of recovering the offsite ac 
power. 
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Figure 11.  Event tree with fault tree linked to sequences where house events are used 

 

The routine to check for house events and prune the logic of the fault tree is a recursive 
routine.  Using the fault tree logic defined previously, along with the house event information 
and starting at the top gate in the fault tree, SAPHIRE checks each of the inputs to the current 
gate.  If the input is a gate and the gate has not been previously checked, then the recursive 
routine calls itself to check this gate.  The recursive routine returns a value of T, F, or I for each 
gate that is processed and it processes each gate only once.  If a house event value is 
returned for the top gate, then there is no need to solve the fault tree and a message is 
displayed.  If the value returned is T, the message "The TOP event has occurred (TRUE)!" will 
be displayed.  If the value is F, then the message "The TOP event cannot occur (FALSE)!" will 
be displayed.  If the value returned is I, then the message "No logic to solve!" will be displayed. 

 

5.8 Coalescing Like Gates 

The next step in the fault tree solution is to coalesce like gates.  This process combines those 
gates that are input to other gates of the same type.  Specifically, AND gates that are input to 
AND gates are combined and OR gates that are input to OR gates are combined.  The 
following fault tree is an example of the coalescing of both an AND gate and an OR gate. 

TOP  AND  GATE1 GATE2 
GATE1 OR  GATE3 EVENT1 
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GATE2 AND  EVENT2 EVENT3 
GATE3 OR  EVENT4 EVENT5 

 
After coalescing, GATE2 is consumed by the TOP gate and GATE3 is combined with GATE1.  
The following fault tree is the result of these modifications.   

 
TOP  AND  GATE1 EVENT2 EVENT3 
GATE1 OR  EVENT1 EVENT4 EVENT5 

 
In the above example, both gates that were coalesced were referenced only by gates of the 
same type.  This resulted in the removal of both of these gates from the logic.  The following 
example shows a case where the coalesced gate is not removed. 

 
TOP  AND  GATE1 GATE2 
GATE1 OR  GATE2 EVENT1 
GATE2 AND  EVENT2 EVENT3 

 
After coalescing, the following tree is generated: 
 

TOP  AND  GATE1 EVENT2 EVENT3 
GATE1 OR  GATE2 EVENT1 
GATE2 AND  EVENT2 EVENT3 
 

By coalescing the fault tree, the number of gates is reduced and the number of inputs to a gate 
is maximized.  This process can substantially reduce the processing time as well as provide for 
better optimization later in the fault tree restructuring process.  Note, however, that the total 
amount of space required to store the inputs to the fault tree can grow significantly as a result 
of coalescing the tree.  The amount of additional space required depends on the number of 
gates that can be coalesced, the number of times a coalesced gate is referenced in the tree, 
and the number of inputs to the coalesced gate.  This increased space requirement will usually 
be recovered during module and independent subtree processing later. 

To perform the coalescing step, SAPHIRE starts with the TOP gate of the fault tree and 
recursively checks the list of inputs to the current gate.  Any duplicate inputs in the list are 
removed.  If the input is a gate and it is the same type as the current gate, then the list of 
inputs to this gate is added to the current gate input list.  The gate reference is then removed 
from the list.  If the input is a gate with a single input then the gate reference is replaced by its 
input.  Once all inputs to all gates have been processed, then SAPHIRE makes a pass through 
the current gate list and eliminates any gates that are no longer needed due to any of the 
previous restructuring steps. 
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5.9 Modules versus Independent Subtrees 

SAPHIRE uses two methods of optimization that are similar and should be clarified.  These 
optimization methods are independent subtrees and modules.  Before solving a fault tree, 
SAPHIRE converts all the logic into a logically equivalent form in terms of AND gates, OR 
gates, and basic events. The following discussion assumes this form of fault tree logic.  In 
SAPHIRE, an independent event is defined as an event that is input to only one gate.  An 
independent gate is a gate that is input to only one other gate and contains as inputs only 
independent events. 

An independent subtree is a gate that has as inputs only independent events or independent 
gates.  The inputs to an independent subtree can occur only once in a fault tree, however, an 
independent subtree may be input to many other gates.  Note, the independence defined here 
is logical independence. 

In SAPHIRE a set of events M={E1,E2,...,En} is defined to be a module of a fault tree if the 
following two conditions are met: 

• For every occurrence of E as input to a gate, the other events in M also occur as input to the 
same gate. 

• Every occurrence of M is an input to the same gate type, either an AND or an OR gate. 

These events can be combined under a single gate called a module.  All references to these 
events are converted to reference the module.  Once a module is created, all of the events 
input to it occur only as inputs to a single gate.  Since a module may appear multiple times in a 
fault tree, it is usually not an independent gate, however, it is always an independent subtree.  
A gate that has a module as one of its inputs is only an independent subtree if the module is 
an independent gate. 

In the fault tree reduction process, independent subtrees need not be expanded until the very 
end of the process.  Once a fault tree is solved in terms of independent subtrees, it is a simple 
expansion process to convert the minimal cut sets to their basic event representation.  Since a 
reduced number of tokens needs to be analyzed in the fault tree solution process, independent 
subtrees save large amounts of processing time.   Figure 12 shows an example fault tree with 
a module and an independent subtree.  In the example, Gate-3 also happens to be an 
independent gate. 
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Figure 12  Examples of independent a subtree and module fault tree 

 

5.10 Module Determination and Creation 

The next step in the restructuring process is to find all modules in the fault tree.  To perform 
this step, SAPHIRE uses a temporary bit vector.  The bit vector contains one bit for each event 
in the fault tree.  The first of these bit vectors keeps track of the events that are used in the 
fault tree.  If complemented events are used, then a second bit vector is allocated for the 
complemented events.    

A vector is also created for each gate currently defined.  These vectors will contain, in bit 
format, the events used by each gate.  We also define two vectors, TMP1 and TMP2, which 
hold intermediate results.  Finally, we define an array containing one number for each event.  
This number is a count of the number of times each event is used in the fault tree. 

Once the data arrays are created, we initialize the TMP1 vector and the event count array by 
traversing the input list.  For each input, we check to see if it is an event, and if so, we set its 
bit in the TMP1 vector and increment the count for this event.  If the event is complemented, 
then its bit is set in the complemented vector.  When all inputs have been processed, we 
eliminate any event that occurs as both a complemented and a non-complemented event from 
the event vector list.  These events cannot be included in modules.  Next, we process each 
gate and set the appropriate bits in each gate's bit vector to reflect the events used by that 
gate.  When this process is complete, we are ready to find the modules in the fault tree.  Using 
the fault tree shown in Figure 12, the following initial data structures would be defined: 
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Event-1 

 
Event-2 

 
Event-3 

 
Event-4 
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Event-6 
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Event-8 

 
Used? 

 
1 

 
1 

 
1 

 
1 

 
1 

 
1 

 
1 

 
1 

 
 

5.11 Independent Gate, Subtree, and Event Determination 

The next step in the fault tree restructuring process is to determine which events are 
independent.  For this purpose SAPHIRE defines "independent" as only occurring once in the 
fault tree.  This step is performed by defining two bit vectors.  Each time an event is 
encountered, a bit is set in the first vector.  If the bit is already set, then the corresponding bit 
in the second vector is also set.  When complete, the second bit vector represents the list of 
basic events that occur more than once.  The events not in this list are independent. 

The next step in the restructuring of the fault tree is to determine the independent gates and 
subtrees in the fault tree.  Independent subtrees are much easier to solve since they generate 
only minimal cut sets.  SAPHIRE processes independent subtrees separately from the rest of 
the fault tree. 

To find the independent gates and subtrees, SAPHIRE again uses a recursive routine to 
traverse the fault tree.  SAPHIRE uses the data structures defined previously to check the 
inputs to each gate.  If all the inputs to the gate are independent events and the gate occurs 
only once, then it is marked as an independent gate.  If the input is a gate and has not been 
processed, then the routine calls itself to check this gate.  If all inputs to the gate are 
independent events or gates, then the gate is flagged as an independent subtree.  This results 
in a fault tree that has all independent subtrees identified. 

 

5.12 Determining Gate Levels 

The last step in the fault tree restructuring process is to determine the gate levels.  The TOP 
gate is defined to have level 0.  Its inputs have level 1, the inputs to those gates have level 2, 
and so forth.  The level of a gate is the number of gates one encounters after the TOP in going 
from the TOP to the gate of interest.  If a gate appears more than once in a tree, define the 
gate's level as the largest of the levels corresponding to the various places where the gate 
occurs.  To determine the level of each gate, a recursive routine is used.  This routine keeps 
track of the level for each gate.  Each time the gate is encountered in the traversal of the fault 
tree, its level is checked against the current level.  If the current level is greater than the gate's 
assigned level, then the gate's level is set to the current level.  The routine exits early if a 
gate's level is greater than or equal to the current level.  This process continues until the entire 
tree has been processed.   
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This information is used later in determining the expansion path for the fault tree.  The 
expansion path for a fault tree is the order in which the gates for a fault tree are solved.  This 
expansion path can significantly affect the time it takes to solve a fault tree.  SAPHIRE 
attempts to determine the optimal expansion path.   

 

5.13 Fault Tree Reduction and Truncation 

Once the fault tree is loaded and restructured, it is ready to be solved.  This process consists 
of a number of steps that convert the Boolean logic representing the fault tree to its expanded 
form representing the desired minimal cut sets for the tree.  In SAPHIRE, a fault tree may 
represent either a system equation or a sequence equation.  In either case, the same 
algorithm is used to solve the tree. 

The exact solution of many large fault trees using cut set-based methods can prove to be 
prohibitive; therefore, various methods have been developed to reduce the time required to 
solve a fault tree.  SAPHIRE allows the user to specify that a number of these methods be 
used in the fault tree solution.  The first and most common method is to eliminate any cut set 
whose probability falls below a specified truncation value.  The second method is to eliminate 
any cut set that has more than a specified number of unique events in it.  The third method is 
to eliminate any cut set that has more than a specified number of zone flagged events in it.  A 
zone flagged event is an event that has been marked as representing a zone (location or 
area).  In a facility, a fire zone may represent a room with fire barriers around it.  A security 
zone may represent an area with certain security characteristics. This method is used in 
location analysis to allow for the truncation on the number of zone events in a cut set.  The last 
method provided in SAPHIRE for cut set truncation is typically used in seismic analysis and 
allows the user to combine the first truncation method with another criterion that checks to see 
if any event in the cut set is below a specified probability before it is truncated. 

All of the above truncation methods are supported by SAPHIRE.  The user may also choose to 
solve the fault tree exactly.  No matter which methods are used, SAPHIRE attempts to take 
advantage of whatever it can to simplify and reduce the amount of work required to solve a 
tree.  The ways each of these truncation methods is implemented will be discussed in detail as 
the process for the fault tree solution is described. 

 

5.14 Intermediate Result Caching and Initialization 

Fault tree solutions can easily generate enough intermediate cut sets to fill up all available 
computer memory.  Therefore, a method is required to allow this data to be written out to a 
secondary data storage area.  SAPHIRE uses a disk caching technique to store the 
intermediate data.  This allows for the processing of large amounts of intermediate data.  The 
limit is the amount of available disk space on the computer being used.  SAPHIRE does, 
however, allow the user with a more powerful computer and additional extended memory to 
create a virtual disk and direct the intermediate information that would have resided on the 
hard disk to the virtual disk.   
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The first step in the fault tree reduction process is to take the fault tree logic that has been 
loaded and restructured and store this logic in a format for efficient use and retrieval by the 
fault tree reduction software.  This process includes the creation and initialization of certain 
data structures containing information that is used during the solution process to simplify and 
speed up the fault tree reduction process.  By including this data in a data structure and 
updating it as the fault tree is solved, SAPHIRE is able to avoid many additional calculations. 

Using the gate level information determined previously, SAPHIRE creates an ordered table 
such that all gates for a given level appear before any gates for the next larger level.  Any 
independent subtrees appear after all nonindependent gates for the fault tree.  This ordering 
defines the expansion path to be used for solving the fault tree.  As mentioned previously, the 
SAPHIRE algorithm is essentially a top-down approach, but strictly speaking, the algorithm 
processes the fault tree first from the bottom up, then from the top down.  The algorithm is 
bottom up because we treat each OR gate as a mini fault tree and solve them starting with the 
last gate or the bottom of the fault tree.  When all OR gates up to the TOP gate have been 
solved, SAPHIRE expands the TOP gate from the top down.  

As the fault tree logic table is being created, SAPHIRE generates information to be used 
during the expansion process to help in cut set truncation.  A bound can be calculated on the 
contribution of the independent subtrees to the cut set probabilities.  If the user has specified 
truncation on probability, this bound can be used to eliminate cut sets earlier than otherwise 
possible.  For now, let BPC denote this Bound on the Probability Contribution (BPC).  
Calculate the BPC for any gate as follows.  The BPC for a basic event is its probability.  The 
BPC for an AND gate is the product of the BPC's of the inputs.  The BPC for an OR gate is the 
largest BPC of the inputs.  Since the gate table is ordered by level, these calculations can be 
performed one gate at a time, starting with the last gate and proceeding to the top of each 
independent subtree.  

To see how this works, suppose first that S is an independent subtree with only two inputs, A 
and B, both basic events.  Because S is independent, each of its basic events appears only 
once, so A and B do not appear in any other part of the fault tree.  Because basic events are 
assumed to be independent in the statistical sense, A and B are statistically independent of 
each other and of the rest of the tree. 

Any cut set that S contributes to will have the form (S AND other terms).  If S is an AND gate, 
this form is (A AND B AND other terms), and the probability of the cut set is P(A)P(B)P(other 
terms), by independence.  This equals BPC(S)xP(other terms), by the definition of BPC for an 
AND gate.  If instead S is an OR gate, any cut set that S contributes to will have the form (A 
and other terms) or else (B and other terms).  The cut set probabilities are bounded by 

max[P(A), P(B)]xP(other terms) 
 
which equals BPC(S)xP(other terms), by the definition of BPC for an OR gate. 

In either case, any cut set that S contributes to have probability bounded by the value of BPC 
for S.  The same idea is true if S has more than two inputs, and if they are not necessarily 
basic events but may be independent gates instead.  Therefore, if BPC for S is less than the 
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truncation value, S can be eliminated from the tree.  In any case, the BPC is calculated and 
stored so that it can be used to eliminate cut sets earlier than otherwise possible. 

If the user has chosen to truncate on size or zones a similar calculation can be performed on 
independent subtrees to get a size contribution of the subtree to each cut set it appears in.  If 
size truncation is selected, then all basic events are counted.  If zone truncation is selected, 
then only events that are zone flagged are counted.  At each AND gate, the size contributions 
of the inputs are added together.  For a qualified basic event the size is one.  For a gate, 
however, the size may be larger than one.  At each OR gate, the size of the smallest input is 
used as the size contribution of the gate.  Once these values are calculated, they are stored in 
the gate table for future use.  The tree is now ready to be expanded. 

 

5.15 Fault Tree Gate Expansion 

The process of solving a fault tree involves three basic steps.  These steps are gate 
expansion, Boolean absorption, and cut set truncation.  In the first step, the gates of the tree 
are expanded by replacing them with their inputs.  In the second step, the first four of the 
following identities are applied to the cut sets: 

1. A * A = A  
2. A + A * B = A  
3. A * B * /A = � 
4. //A  = A  
5. A * B + A * /B = A   (not applied). 

 
The first identity (idempotent relationship) prevents two identical events from appearing in the 
same cut set.  The second one (absorption relationship) is the most computationally difficult to 
apply.  In terms of set theory it consists of eliminating subsets, because A*B is a subset of A.  
Computer programmers, on the other hand, tend to think of the identity as eliminating 
supersets; A*B is regarded as a larger entity than A because it has more tokens to manipulate.  
Both the subset and superset terminology can be found in the literature, but this document will 
use only the term "absorption."  The absorption identity is used to eliminate cut sets that are 
not minimal.  The basis for using the Law of Absorption is that the top gate has become a giant 
OR gate with the cut sets as inputs.  If A and A*B are cut sets, the top gate contains A + A*B, 
which can be simplified to A.  The third identity (exclusion relationship) implies that no cut set 
will contain both the failure and the success of an event.  The fourth identity (double negation 
relationship) states that the complement of a complemented event is the event itself.  Identity 
number five (exhaustion relationship) is not currently performed by SAPHIRE.  It is important 
to note that SAPHIRE does not calculate prime implicants (Quine 1959).  Complemented 
events appear in the cut sets with a "/" in front of the event name. 

The final step, cut set truncation, involves the elimination of cut sets that fall outside user 
specified truncation limits.  There have been many different methods applied to performing 
these three steps.  Some codes use a top-down approach, while others use a bottom-up 
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approach.  Both approaches have their strong points.  SAPHIRE uses some features from 
each approach to optimize the fault tree solution process.   

Using the fault tree logic definition generated previously, SAPHIRE begins expanding the tree.  
Since OR gates increase the number of cut sets, the algorithm treats all OR gates in the fault 
tree as mini fault trees.  These trees are solved first, starting with the last nonindependent OR 
gate and proceeding to the TOP gate of the fault tree.  All absorption and truncation 
techniques are applied on these small trees, eliminating cut sets as soon as possible.  When 
the TOP gate is encountered, it is solved using as input all the cut sets generated by solving 
the mini fault trees described above.  The result of this approach is to partition the large fault 
tree into many smaller subtrees that are easier to solve.  The fewer cut sets generated for the 
smaller trees will also tend to require less time to apply the absorption identities and to 
truncate. 

Note that the cut sets generated by the above process are in terms of independent subtrees.  
When the TOP gate has been solved and all absorption has been performed, the independent 
subtrees are expanded.  This step requires no absorption; independent subtrees can only 
generate cut sets that are minimal. 

 

5.16 Cut Set Absorption 

As the fault tree expansion occurs, cut sets are checked at each gate to see if they can be 
eliminated.  There are several ways a cut set may be eliminated during the expansion process.  
SAPHIRE maintains the current bound on the probability contribution (BPC defined in Section 
5.17) and size for each cut set throughout the fault tree expansion.  These contributions are 
updated depending on the type of expansion being performed.  By keeping current BPC 
values, SAPHIRE does not need to recalculate these values each time the cut set is modified 
or expanded, thus saving time. 

If the gate to be expanded is an OR gate, then SAPHIRE also compares the inputs to the OR 
gate against the inputs of the cut set containing the OR gate.  If there is a common event, then 
the reference to the OR gate can be removed and the cut set need not be expanded further.  
The reason for this is that any cut sets generated from an OR gate of this type will be 
absorbed later in the process anyway.  The following example demonstrates this process. 

The cut set  
 
GATE1 * EVENT1 * EVENT2 

 
and the following definition of GATE1 as an OR gate with three inputs 

 
GATE1 OR EVENT1 EVENT3 EVENT4 

 
will generate the following cut sets when expanded. 
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EVENT1 * EVENT2 
EVENT1 * EVENT2 * EVENT3 
EVENT1 * EVENT2 * EVENT4 

 
 
Notice that the second and third cut sets are absorbed by the first. 
 

5.17 Boolean Absorption 

The process of performing the Boolean absorption reduction can be a time-consuming 
operation.  The methods used in SAPHIRE are described in Corynen (1988).  This method 
uses a set of bit tables to determine those cut sets that can be absorbed by a given cut set.  
For a detailed description of the process, refer to the indicated document.  This method is very 
powerful and has good run-time characteristics.  In order to be most effective with this 
algorithm or any other one used for the Boolean absorption process, the number of cut sets 
compared must be minimized.  The expansion approach described previously tends to 
generate smaller numbers of intermediate cut sets, minimizing the amount of time spent on 
absorption. 

 

5.18 Data Storage Considerations 

Given the task to be performed in solving a fault tree, an optimal format for storage and 
retrieval of the intermediate cut set data must be determined.  Two obvious methods were 
considered in SAPHIRE.  First, since a large amount of time can be spent in the determination 
of sets to be absorbed, one option is to store the intermediate data in a format that can be 
directly used by the absorption routine.  This format would be an array of bit vectors with each 
row of the array representing an event and each column representing a cut set.  This format 
was used in the first version of SAPHIRE and worked well for small problems because the bit 
vector arrays could be easily contained in the computer's fast memory.  As problem size 
increased and it became necessary to shift these arrays to disk, this method of storage 
became difficult to manage efficiently.     

The second alternative is to store the cut sets as an array of numbers representing the events 
in each cut set.  The first number is a count representing the number of events in the cut set.  
This number would be followed by a probability value, a size value, and a list of numbers 
representing the gates or events contained in the cut set.  The list is terminated by a zero 
count number.  This format is the one used in the current version of SAPHIRE.  It is simple and 
easy to store and retrieve from intermediate storage.  The process of gate expansion is also 
easily handled with this format.  When absorption is performed, SAPHIRE creates the array of 
bit vectors.  As problem size increases, this format has proven to be much more flexible and 
easy to manage than the first.  Also, modifications in the storage routines have led to efficiently 
using the cut set lists, resulting in an improvement in analysis speed.   
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5.19 Sequence Cut Set Generation 

Another area that must be considered when developing a risk assessment code is the accident 
sequence analysis.  Accident sequences are defined in SAPHIRE by developing event trees.  
SAPHIRE provides a graphical editor to use in developing event trees.  Figure 13 shows an 
example of an event tree developed in SAPHIRE.  Once the user has developed the event 
tree, SAPHIRE generates the sequence logic from the graphical event tree (via the event tree 
"link" option).  The sequence logic is the list of systems that succeed or fail during this accident 
sequence.  These system failures and successes are top events of fault trees.  This logic is 
used by SAPHIRE to generate the cut sets for the sequence.  

There are two methods that can be used to generate sequence cut sets. First, the cut sets 
generated by solving the system fault trees can be used as input to the accident sequence 
algorithm.  This method simply combines the cut sets for each system as defined by the 
sequence logic and is largely deprecated within the risk analysis community.  The second 
method is to create a fault tree for a sequence by combining the fault trees corresponding to 
system failures and successes for the sequence.  The fault tree reduction algorithms can then 
be used to solve the accident sequence.  SAPHIRE allows the user to select either method, 
but only the latter method will be discussed here. 

 

 

Figure 13  Example SAPHIRE event tree 

 

In SAPHIRE, accident sequences are defined using an event tree to indicate the failure or 
success of top events.  Each top event in the event tree is associated with a system fault tree.  
To solve the accident sequence, SAPHIRE constructs a fault tree for those systems that are 
defined to be failed in the sequence logic by creating a dummy AND gate with these systems 
as inputs.  In Figure 13, the accident sequence logic for sequence 9 is 
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LOSP * /RPS * AFW * /SC * /CCW * HPI * PRV 
 
Therefore, SAPHIRE creates (internally) the following failed systems fault tree 
 

FAILED  AND AFW HPI PRV 
AFW  TRAN 
HPI  TRAN 
PRV  TRAN 

 
where AFW, HPI, and PRV represent the fault tree logic for Auxiliary Feedwater System, High 
Pressure Injection, and Pressure Relief Valves, respectively, and TRAN denotes a transfer to 
the system fault tree. 

SAPHIRE then solves this fault tree using the specified truncation values.  This process results 
in a list of cut sets for the failed systems in the accident sequence.  SAPHIRE then uses the 
"delete term" technique to further reduce this list of failed-system cut sets.  This technique 
uses the cut sets determined from solving the successful-system fault trees in the accident 
sequence logic to eliminate cut sets from the list of failed-system cut sets.  To do this, 
SAPHIRE first scans the list of failed-system cut sets and assigns a value of FALSE to any 
basic event that does not appear in this list.  Once this is done, the fault tree representing the 
successful systems in the accident sequence logic is constructed, pruned by the house events, 
and solved.  The successful systems fault tree for accident sequence 9 is   

 
SUCCESS OR RPS SC CCW 
RPS  TRAN 
SC  TRAN 
CCW  TRAN 

 
where RPS, SC, and CCW represent the fault tree logic for the Reactor Protection System, 
Seal Cooling, and Component Cooling Water, respectively.  This fault tree models failure of 
the RPS system, the SC system, or the CCW system.  The top event of the tree does not 
occur as part of accident sequence 9.  That is, none of the cut sets in the tree occur. 

The minimal cut sets for the sequence remain after the successful-system cut sets terms are 
deleted.  There are a couple of points to note in this process. 

First, each sequence has an initiating event frequency associated with it.  If the user specifies 
a probability truncation value, SAPHIRE divides this value by the initiating event frequency.  
This eliminates the need to handle the initiating event during the fault tree reduction phase. 

Second, during the processing of an accident sequence, certain pieces of equipment or trains 
of a system may need to be either failed or ignored.  SAPHIRE allows the user to specify a set 
of house event flags to be associated with a particular sequence.  These flags, assigned by 
using flag sets, allow the user to automatically prune the fault tree logic before it is solved by 
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setting basic events to house events and reducing.  The result is a fault tree with the specified 
components in the specific state required by the sequence.  Note that while in theory each 
sequence may have unique flag sets, common elements are shared among typical sequences.  
Consequently, SAPHIRE sorts sequences (prior to solving) based upon flag sets in order to 
solve common-parts of the overall event tree as efficiently as possible. 

New in SAPHIRE 8 is the ability for sequence flag sets to automatically adjust common-cause 
failure (CCF) basic events.  This change was made to ensure that PRA models that use fault 
tree and sequence flag sets have the applicable adjustments made to any impacted CCF basic 
events.  In older versions of SAPHIRE, flag sets are processes after basic event data changes, 
which implies that CCF probability modifications may not be changed for a specific fault tree or 
sequence flag set.   

Additional details on the general solution methods used by SAPHIRE may be found in Russell 
and Rasmuson (1993). 

 

5.20 Parallel Processing During Cut Set Generation 

SAPHIRE 8 has been modified to use threaded calculations that will be pushed to the 
processors that are available within a single computer.  By using multiple threads, the 
calculation of cut sets is changed from serial processes to parallel processes.  During the cut 
set analysis, the user may select the number of threads to be used, up to a maximum of 32 
concurrent processes. 
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6. QUANTIFICATION TOOLS FOR PROBABILITIES AND 
FREQUENCIES 

This section provides an overview of fault tree and accident sequence quantification using 
minimal cut sets.  Vesely et al. (1981) and Fussell (1975) contain additional details and 
references for the interested reader.  The section is written in terms of failure probabilities, but is 
also correct if the term "probability" or "failure probability" is replaced everywhere by 
"unavailability." 

6.1 Quantifying Minimal Cut Sets 

The individual cut set probabilities are determined by multiplying the probabilities of the 
applicable basic events. 

ni qqqC ...21�            (6-1) 

where   
Ci = probability of cut set i, and 
qk = probability of the k-th basic event in the i-th cut set. 

 
This follows from Equation (4-8) and the assumed statistical independence of the basic events. 
 

6.2 Quantifying Fault Trees 

The fault tree quantification process is performed in two steps:  (1) calculation of individual cut 
set probabilities, which were described above in Section 6.1, and (2) combining the cut set 
probabilities.  The exact probability of the union of the cut sets can be found, in principle, by 
Equation (4-6), where each Ai is a cut set.  This is normally an intractable problem for large 
problems.  Therefore, two approximations are often used by PRA software, the rare event 
approximation and the minimal cut set upper bound.  Examples are calculated in Sections A-4 
and A-5 of Appendix A. 

Rare Event Approximation 

A common approach to calculate the probability for a top event is to add together the 
probabilities for the cut sets, where the cut set probability is given by Equation (6-1).  Thus, the 
rare event approximation is 



�
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           (6-2) 

where   
S = minimal cut set upper bound for the system unavailability, 
Ci  = probability of the ith cut set, and 
m  = number of minimal cut sets in the fault tree. 
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This approximation is a accurate when the cut set probabilities are small and the cut sets do 
not share many of the same basic events.  In screening analyses, when relatively large 
screening values are used to bound the component failure probabilities, the rare event 
approximation can exceed 1. 

Minimal Cut Set Upper Bound 

The minimal cut set upper bound calculation is an approximation to the probability of the union 
of the minimal cut sets for the fault tree.  The equation for the minimal cut set upper bound is 
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)1(1           (6-3) 

where   
S   = minimal cut set upper bound for the system unavailability, 
Ci  = probability of the i-th cut set, and 
m  = number of minimal cut sets in the fault tree. 

 
The minimal cut set upper bound is always less than or equal to 1.  The input values for the 
minimal cut set upper bound are probabilities.  Barlow and Proschan (1981) showed that 
Equation (6-3) gives an upper bound on the exact probability of the top event.  SAPHIRE uses 
the minimal cut set upper bound approximation by default for its quantification of fault tree, 
event tree cut sequence, and end state cut sets. 

The minimal cut set upper bound works well with fault trees containing only AND and OR 
gates without complemented events or NOT gates.  With noncoherent fault trees, that is, trees 
that contain NOT gates and/or complemented events, the minimal cut set upper bound can 
produce results that are conservative.  The magnitude of the overestimation will depend upon 
the structure of the tree and the values of the basic events in the tree.  In such cases, other 
calculation techniques should be used such as the SIGPI algorithm (Patenaude 1987) or 
binary decision diagrams (Bedford and Cooke, 2001).  In many cases, however, the minimal 
cut set upper bound will produce accurate results. 

Note that the default quantification method in SAPHIRE 8 is the minimal cut set upper bound. 

 
Warning:  When Ci is very small (on the order of 1E-15), 1 - Ci is rounded off to 1.0.  If this 
happens for most or all of the Ci's, the product in Equation (6-3) will be too large, and the 
bound S will be too small.  Although S is an upper bound in theory, in practice it is not 
computed to sufficient accuracy when the Ci's are extremely small.  In such a case the rare 
event approximation, given by Equation (6-2), is better. 
 

Min-Max 

In some cases, both the rare event and minimal cut set upper bound provide too conservative a 
result.  In these cases, it is desirable to have a more accurate quantification calculation.  In 
SAPHIRE, the inclusion-exclusion rule (i.e., the min-max option) is used to calculate the exact 
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solution when the number of cut sets is small (generally less than 50).  Basically, it is the sum of 
the probability of the individual sets, minus the sum of the probability of all possible pairs, plus 
the sum of the probabilities of all possible combinations of three, minus the probabilities of all 
possible combinations of four, plus the probability of intersection of all five minimal cut sets, etc. 
However, since all combinations of cut sets are evaluated, the min-max approach becomes 
intractable for calculations involving a many cut sets. 

 

Binary Decision Diagrams 

The default quantification method in SAPHIRE 8 is to use minimal cut sets with the minimal cut 
set upper bound to quantify an overall risk result.  Typically sized models can produce millions 
of minimal cut sets.  After determining these cut sets via Boolean algebra (with results typically 
truncated), the analyst may adjust the cut sets to enhance the realism and accuracy of the 
results (e.g., by appending recovery actions).  Following this “post-processing” step, the cut 
sets are used to quantify the overall risk measure – however this last step is usually performed 
via approximations (e.g., minimal cut set upper bound). 
  
Binary Decision Diagram (BDD)-based methods quantify the overall probability directly from 
the BDD and avoid truncation and the use of approximations seen in cut set-based methods.  
However, since these methods use the BDD model directly, there is no easy way to adjust 
failure scenarios by applying recovery, for example.  Further, since the model is evaluated via 
the BDD, it is possible to have complex models that cannot be solved using this technique.  
 
A BDD is a compact way of representing a Boolean logic equation.  BDDs were originally 
developed as a way of representing switching circuits, see (Lee, 1959).  Any logic function 
using AND, OR, NOT, etc., can be represented in a BDD using the “if-then-else” notation. In 
this notation, every basic event in the Boolean structure is represented as a node in the BDD.  
Each node in the BDD has two branches from it, one branch if the basic event node is set to a 
present and the other if the event is set to its complement. When a terminal node is reached, 
the ending point is either a zero or a one, indicating the presence of the path through the 
diagram (one) or not (zero).    
  
To demonstrate a BDD, 
assume we have a single cut 
set with two events (A, B) 
representing core damage:  
CD = A*B .  The BDD for this 
case is shown at right.  The left 
part of the figure shows the full 
BDD, while the right part is an 
equivalent simpler BDD 
obtained by applying reduction 
rules to the first. 
 

A

B

1 0

A

B

1 0

B

0 0
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In order to demonstrate the quantification using a BDD, let us assume the following 
probabilities: 
 
P(A) = 0.2 
P(B) = 0.5 
 
To quantify the BDD, one traces each path through the tree, multiplying the event probabilities 
as the path is followed to the terminal "1" nodes.  Each path probability is then added to obtain 
the overall probability.  In the first case, the only path is: 
 
A*B 
 
Therefore, the probability of this cut set is: 
 
P(CD)bdd = P(A)P(B) = 0.2 * 0.5 = 0.1 
 
assuming A and B are independent. 
 
The min-cut upper bound approximation in this case is: 
 
P(CD)mcub = 1 - [1 - P(A)P(B)] = 1 - [1 - 0.1] = 0.1 
  
For a second example, assume we have two cut sets:  CD = (A B C)1 U (A D)2  
 
Again, to demonstrate the quantification, assume: 
 
P(A) = 0.2 
P(B) = 0.5 
P(C) = 0.7 
P(D) = 0.2 
 
For the second case, the paths through the BDD are: 
 
A*B*C*D 
A*B*C*/D 
A*B*/C*D 
A*/B*C*D 
A*/B*/C*D 
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Therefore, the probability for CD is: 
 
P(CD)bdd =  P(A)P(B)P(C)P(D) + P(A)P(B)P(C)P(/D) + P(A)P(B)P(/C)P(D) + 
          P(A)P(/B)P(C)P(D) + P(A)P(/B)P(/C)P(D) 

=  0.2*0.5*0.7*0.2 + 0.2*0.5*0.7*0.8 + 0.2*0.5*0.3*0.2 + 
          0.2*0.5*0.7*0.2 + 0.2*0.5*0.3*0.2 

= 0.014 + 0.056 + 0.006 + 0.014 + 0.006 
= 0.096 

 
The min-cut upper bound in this case is: 
 
P(CD)mcub  = 1 - [1 - P(A)P(B)P(C)][1 - P(A)P(D)] 

= 1 - [1 - 0.07][1 - 0.04] 
= 1 - [0.93][0.96] 
= 0.107 

 
The probability using the SAPHIRE min-max approach is: 
 
P(CD)min-max  =  P(A)P(B)P(C) + P(A)P(D) - P(A)P(B)P(C)P(D) 
   =  0.2*0.5*0.7 + 0.2*0.2 - 0.2*0.5*0.7*0.2 
   = 0.07 + 0.04 - 0.014 
   = 0.096 
 
One problem that is apparent is that BDD size grows exponentially with the number of events 
in the model.  Note that there is not generally a unique BDD corresponding to a given Boolean 
function.  Rather, one must choose an ordering of the nodes in the BDD, and the size and 
complexity of the BDD can vary significantly with the chosen ordering.  To complicate the BDD 
analysis, it is not generally possible to choose the best ordering (i.e., that leading to the 
smallest BDD) for any given problem. 
 
In SAPHIRE 8, INL has included a BDD solver that currently operates only on fault tree logic.  
To use this option, the “BDD solve” method must be enabled in the user settings (Project � 
User Settings � General Analysis).  Once enabled, this analysis method appears as a new 
Project option. 
 
 

6.3 Quantifying Sequences 

An accident sequence begins with an initiating event, which traditionally has a frequency f.  
The units of the frequency are 1/time, and there is no theoretical upper bound on its possible 
value.  This distinguishes a frequency from a probability, which is unitless and bounded by 1.0.  
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The actual units of the initiator frequency are specified and stored in the SAPHIRE relational 
database. 

After the initiating event, various systems in the plant are required to function.  Depending on 
whether they function or not, the sequence can proceed to different possible plant states.  
Consider one of these systems.  Given the assumed initiating event and the success or failure 
of the systems that were invoked earlier in the sequence, the probability of the system's failure 
is quantified by a fault tree for the system.  For each such sequence of interest, SAPHIRE 
constructs and simplifies the fault tree for the entire sequence, by combining the fault trees for 
the failed systems and the negation of the fault trees for the successful systems, as described 
in Section 5.   

Let S be the probability of the sequence fault tree(s) (which are conditional upon the initiating 
event and specific sequence), evaluated using the minimal cut set upper bound or the rare 
event approximation.  It is a probability calculated assuming that the initiating event has 
occurred.  Then, the frequency of the sequence is the product f × S.  In this way, sequence 
frequencies are found.  SAPHIRE treats the initiating event as being separate from the cut sets 
generated from the associated accident sequence fault trees.
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7. EVENT PROBABILITY CALCULATION TYPES 

The calculation type specifies the method to be used to calculate the basic event probability.  
Thirteen types are available in SAPHIRE, and they are summarized in Table 1.  The resulting 
probability for Types 1 through 7 will be the mean used in the uncertainty analysis described in 
Section 9.   

Table 1. SAPHIRE Calculation Types. 

Type                                                    Calculation Method 
  1  Probability (bounded between 0 and 1)  
  3  Operating Component with no Repair:  1 -  Exp(- Lambda * Mission Time) 
  5  Operating Component with Repair 
  7  Standby Component: 1 + (Exp(- Lambda*Tau)- 1.0) / (Lambda * Tau) 
  T  Set to House Event (Failed, Probability = 1.0) 
  F  Set to House Event (Successful, Probability = 0.0) 
  I  Ignore this Event (Remove it from logic) 
  C Compound Event (see Section 11) 
  S  Set to System Min Cut Upper Bound 
  E  Set to End State Min Cut Upper Bound 
  G  Enter a Ground Acceleration for Screening 
  H  Use the maximum value on the Hazard Curve for a screening G-Level 
  V Value (any real number, positive or negative) 
  N Initiating event frequency (any positive real number)       
  X Human Factor Event (uses performance shaping factors to calculate a probability) 
  R RASP common cause failure 
  U Indicates a component is failed (unknown type), used with Calculation Type R 
  D Indicates a component is failed (dependent type), used with Calculation Type R 
  Y Indicates a component is failed (independently), used with Calculation Type R 
 
 

7.1 Calculation Type 1 

Probability 

Calculation Type 1 takes the number specified by the user in the Probability field as the basic 
event failure probability.  This is the type used for demand probabilities. 

SAPHIRE will accept numbers in scientific or decimal format.  For example, 1.E-4 and 0.0001 
are both valid inputs. 
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NOTE:  SAPHIRE will accept an uppercase E or a lowercase e.  Also, note that 1.0E- 020 is 
not the same as 1.0E- 02.   
 
 

7.2 Calculation Type 3 

1 -  Exp (- Lambda * Mission Time) 

Calculation Type 3 uses the equation for failure probability for an operating component without 
repair, 

 (7-1) 
 
where 
 

q = failure probability of the basic event, 
� = failure rate per hour, and 
t = mission time hours. 

 

7.3 Calculation Type 5 

Operating Component with Repair (Full Equation) 

Calculation Type 5 is the equation for the failure probability of an operating component with 
repair.  The equation is 

� �� �teq ��

��
�� /11

1
���

�
�  

where (7-2) 
 

q = failure probability of the basic event, 
� = failure rate per hour, 
t = mission time hours, and 
� = average time to repair hours. 

 

7.4 Calculation Type 7 

1 + (Exp(- Lambda*Tau)- 1.0) / (Lambda * Tau) 

Calculation Type 7 is the equation for the failure probability of a standby component with a 
surveillance test interval.  The equation is 
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 (7-3) 
 
where 
 

q = failure probability of the basic event, 
� = standby failure rate per hour, and 
T = surveillance test interval hours. 

 
 

7.5 Calculation Types T, F, and I 

Calculation Types T, F, and I are used to set basic events to house events.  

 Set to House Event TRUE (Failed, Prob=1.0) 

Calculation Type T turns the basic event into a house event that always occurs (probability 
1.0).  Note that a TRUE event will not appear in minimal cut sets unless it is the only event in a 
cut set (i.e., the entire cut set is TRUE).  

Set to House Event FALSE (Successful, Prob=0.0) 

Calculation Type F turns the basic event into a house event that never occurs (probability 0.0).  
If the event states that a component fails, T forces the component to fail while F forces it to 
succeed.  Note that if truncation is used, basic events set to FALSE will not appear in minimal 
cut sets.  

Ignore this Event (Remove it from logic) 

Calculation Type I indicates that the basic event is to be treated as if it did not exist in the logic 
for the fault tree.   

Setting an event to a house event actually changes the logic of the fault tree, pruning 
appropriate branches and events from the fault tree.  Therefore, the flags on the affected fault 
trees will indicate a need to generate new cut sets rather than just requantifying existing cut 
sets.   

 

7.6 Calculation Type C 

Use compound event 

Calculation Type C indicates that the event will use the SAPHIRE compound event feature.  
Compound events are basic events that utilize an external (to SAPHIRE) calculation to 
determine its probability.  These external calculations are contained within a Windows-
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compatible library, called a dynamic link library (DLL).  A basic event that has been set to “C” 
utilizes a DLL, where this DLL can be contained either in the project folder or the SAPHIRE 
tools folder.  Typically, the common DLLs are stored in the SAPHIRE tools folder and include 
calculations such as common cause failure probabilities and general calculations (via the 
“utility” library).  SAPHIRE will first check the project folder for the DLL and, if not found there, 
will search the SAPHIRE tools folder. 

The "utility" compound event library has procedures for general operations such as adding 
basic events together, multiplying events, dividing events, etc.  In other words, it enables a 
handful of general purpose mathematical calculations to be performed on any basic events.  
Included in this library is the “min-cut” calculation which will take the minimal cut set upper 
bound calculation on the specified basic events (up to 20 per compound event).  One could 
utilize this calculation to make a model via the “supercomponent” approach where a basic 
event is represented by other lower-level basic events.  The minimal cut sets would only 
contain the higher-level event (the supercomponent) but the event’s probability would 
automatically be determined by the compound DLL calculation. 

 

7.7 Calculation Type S 

Set to System Min Cut Upper Bound 

Calculation Type S indicates that the probability of the basic event is to be determined by 
finding a system (i.e., fault tree) with the same name as the basic event.  Then, use the 
minimal cut set upper bound (or default quantification method specified for the system) for this 
system as the failure probability for the basic event. 

 

7.8 Calculation Type E 

Set to End State Min Cut Upper Bound 

Calculation Type E indicates that the probability of the basic event is to be determined by 
finding an end state with the same name as the basic event.  Then, use the minimal cut set 
upper bound for this end state as the failure probability for the basic event. 

 

7.9 Calculation Type G 

Enter Ground Acceleration for Screening 

Calculation Type G indicates that the basic event is to be treated as a seismic event.  The 
Screening G-Value field will be the ground acceleration to be used to determine the probability 
of failure given that specified ground acceleration level and the applicable seismic hazard 
curve. 
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7.10 Calculation Type H 

Use Hazard Curve for screening G-Level 

Calculation Type H indicates that the probability for this event is to be determined from the 
hazard curve histogram by taking the highest ground acceleration level from the hazard curve. 

 

7.11 Calculation Type V 

Value 

Calculation Type V takes the real number specified by the user in the Probability field as the 
basic event numerical value.  This value could be a real number, either positive or negative.  
Use of this calculation type includes storing consequence-types estimates (e.g., person-rem) 
to be multiplied on accident sequences. 

 

7.12 Calculation Type N 

Initiating Event frequency 

Calculation Type N takes the real, positive number specified by the user in the Frequency field 
as the basic event numerical value.  In addition to the value, the units (e.g., per hour, per year) 
must be specified in the Frequency Units field. 

 

7.13 Calculation Type X 

Human Error Event 

Calculation Type X indicates that the event will use the human error probability (HEP) 
worksheets based on the Standardized Plant Analysis Risk (SPAR) Human Reliability Analysis 
(HRA) methodology (Gertman, et al, 2004).  Events with a Calculation Type X use a built-in 
“worksheet” to calculate the HEP.  The HEP is calculated based on whether the operator 
requires an action only, an action with diagnosis, and if there is dependence between other 
operator actions.  For each calculation, Performance Shaping Factors (PSFs) can be applied 
to adjust the HEP value.  PSFs include: available time, stress/stressors, complexity, 
experience/training, procedures, ergonomics, fitness for duty, and work processes.  

 

7.14 Calculation Types R, U, D, and Y 

In SAPHIRE 8, four new calculation types will be created for the CCF modifications: 
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• R to indicate a CCF object (this replaces the old CCF plug-in approach) 
• U to indicate component is failed (unknown type) 
• D to indicate a component is failed (dependent type)  
• Y component is failed (independently)  
 
When the CCF adjustments are being made via the Boolean reduction, SAPHIRE will key on 
any independent events that are set to a calculation type of U, Y, or D.  Details of the new CCF 
calculations are described in Appendix B. 
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8. IMPORTANCE MEASURES 

8.1 Types of Importance Measures 

Early work in the development of importance measures is best represented by the 
IMPORTANCE code developed by Lambert in the early 1970s. (Lambert, 1975)  This analysis 
tool built upon the theoretical development completed by early pioneers such as Barlow, 
Birnbaum, Fussell, Proschan, and Vesely.  The IMPORTANCE software calculated results for 
different types of importance measures, ranging from Fussell-Vesely to Birnbaum to Barlow-
Proschan metrics.  The SAPHIRE calculates seven different basic event importance 
measures.  These are: 

• Fussell-Vesely 
• Risk reduction ratio 
• Risk increase ratio 
• Birnbaum (the so-called first derivative importance) 
• Uncertainty Importance 
• Risk reduction difference 
• Risk increase difference 
  
These importance measures are calculated for each basic event for the respective fault tree, 
accident sequence, or end state. 
 
The ratio importance measures are dimensionless and consider only relative changes.  The 
difference definitions account for the actual risk levels that exist and are more appropriate 
when actual risk levels are of concern, such as comparisons or prioritizations across different 
plants.  For purely relative evaluations, such as prioritizations within a plant, the ratios 
sometime give more graphic results. 

The main importance measures are: 

• Fussell-Vesely importance, an indication of the percentage of the minimal cut set upper 
bound contributed by the cut sets containing the basic event 
 

• Risk reduction, an indication of how much the minimal cut set upper bound would decrease 
if the basic event never occurred (typically, if the corresponding component never failed) 
 

• Risk increase, an indication of how much the minimal cut set upper bound would go up if the 
basic event always occurred (typically, if the corresponding component always failed) 
 

Also available on each of the importance measure reports is an indication of another type of 
measure, the structural importance, which is the number of cut sets that contain the basic 
event.  For example, if a total of 1,000 cut sets exist for a fault tree and basic event XYZ is in 
300 cut sets, then SAPHIRE would indicate that that event appears 300 times. 
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In SAPHIRE, the Basic Event Importance display lists the basic event name, its failure 
probability, the number of cut sets in which the basic event occurs, and three of the six 
importance measures.  The user can choose to display either ratios or differences.  If the user 
selects ratios then the Fussell-Vesely importance, risk reduction ratio, and risk increase ratio 
are displayed together.  Otherwise, the Birnbaum importance, risk reduction difference, and 
risk increase difference are displayed together.  The list can be sorted on any column in the 
display. 

The exposition below is written in terms of fault trees and event probabilities.  However, 
SAPHIRE also can calculate importances for events in sequences or end states.  Recall that a 
sequence is simply a fault tree preceded by an initiating event with frequency f, where f usually 
has units of 1/time.  The frequency of any event in the fault tree is f times the probability of the 
event.  Therefore, the ratio importances are unchanged whether the event is part of a fault tree 
or a sequence.  A difference importance for an event in a sequence is f times the importance 
of the event in the fault tree.  The maximum possible value of a difference importance is 1.0 if 
the event is in a fault tree and f if the event is in a sequence.  This alternative formulation is 
indicated below by phrases in parentheses. 

  

8.2 Calculation Details 

This section contains the calculation definition of the importance measures.  Examples are 
given in Section A.6 of Appendix A.  Both the ratio and the difference are discussed in the 
appropriate sections.  For the basic event under consideration, several notations are used 
repeatedly. 

 
F(x) = minimal cut set upper bound (sequence frequency) evaluated with the basic event   
    probability at its mean value. 
 
F(i) = minimal cut set upper bound (sequence frequency) evaluated for all cut sets 

   containing the i’th basic event   
 

F(0) = minimal cut set upper bound (sequence frequency) evaluated with the basic event   
    probability set to zero. 

 
F(1) = minimal cut set upper bound (sequence frequency) evaluated with the basic event  
    failure probability set to 1.0. 
 

Fussell-Vesely Importance 

The Fussell-Vesely importance is an indication of the fraction of the minimal cut set upper 
bound (or sequence frequency) that involves the cut sets containing the basic event of 
concern.  Or, alternatively, the Fussell-Vesely is “the probability that event i is contributing to 
system failure, given that system failure occurred.” (Henley and Kumamoto, 1981).  It is 
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calculated by finding the minimal cut set upper bound of those cut sets containing the basic 
event of concern and dividing it by the minimal cut set upper bound of the top event (or of the 
sequence).  Prior to SAPHIRE version 7.27, this calculation was performed by determining the 
minimal cut set upper bound (sequence frequency) with the basic event failure probability at its 
mean value and again with the basic event failure probability set to zero.  The difference 
between these two results is divided by the base minimal cut set upper bound to obtain the 
Fussell-Vesely importance.  The Fussell-Vesely importance FV was approximated by the 
equation  

 
FV = F(i)/F(x) 
 

Prior to SAPHIRE version 7.27, the FV equation used the expression FV � 1 – F(0)/F(x). 

Risk Reduction 

The risk reduction importance measure is an indication of how much the results would be 
reduced if the specific event probability equaled zero, normally corresponding to a totally 
reliable piece of equipment.  The risk reduction ratio is determined by evaluating the fault tree 
minimal cut set upper bound (or the sequence frequency) with the basic event probability set 
to its true value and dividing it by the minimal cut set upper bound (sequence frequency) 
calculated with the basic event probability set to zero.  In equation form, the risk reduction ratio 
RRR is 

 
RRR = F(x)/F(0) 
 
The risk reduction difference indicates the same characteristic as the ratio, but it reflects the 
actual minimal cut set upper bound (sequence frequency) levels instead of a ratio.  This is the 
amount by which the failure probability or sequence frequency would be reduced if the basic 
event never failed. 

The risk reduction difference (RRD) is calculated by taking the difference between the mean 
value and the function evaluated at 0.  In equation form, the risk reduction difference RRD is 

 
RRD = F(x) - F(0) . 

 

Risk Increase 

The risk increase ratio is an indication of how much the top event probability (frequency) would 
go up if the specific event had probability equal to 1.0, normally corresponding to totally 
unreliable equipment.  The risk increase ratio is determined by evaluating the minimal cut set 
upper bound (sequence frequency) with the basic event probability set to 1.0 and dividing it by 
the minimal cut set upper bound evaluated with the basic event probability set to its true value.  
In equation form, the risk increase ratio RIR is 
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RIR = F(1)/F(x) 
 
The risk increase difference RID is calculated by taking the difference between the function 
evaluated at 1.0 and the nominal value.  In equation form, the risk increase difference RID is 

 
RID = F(1) - F(x) 
 

Birnbaum Importance 

The Birnbaum importance measure is calculated in place of the Fussell-Vesely importance 
measure when differences are selected instead of ratios.  The Birnbaum importance is an 
indication of the sensitivity of the minimal cut set upper bound (or sequence frequency) with 
respect to the basic event of concern.  It is calculated by determining the minimal cut set upper 
bound (or sequence frequency) with the basic event probability of concern set to 1.0 and again 
with the basic event probability set to 0.0.  The difference between these two values is the 
Birnbaum importance.  In equation form, the Birnbaum importance B is 

 
B = F(1) - F(0) 
 
The Birnbaum importance can be interpreted as follows as an approximation of a derivative.  If 
basic event i has probability pi, the rare-event approximation says that the top event 
probability, F, can be written approximately as a linear function of pi, and therefore, �F/�pi is 
approximately equal to [F(1)-F(0)]/(1-0) which equals the Birnbaum importance. 

 

Uncertainty Importance 

The uncertainty importance of basic event i is defined by Iman and Shortencarrier (1986) as 
�i��F/�pi, where pi is the probability of event i and �i is the standard deviation of pi, reflecting 
uncertainty in pi, and F is defined above.  SAPHIRE calculates the uncertainty importance as 
FiBi, where Bi is the Birnbaum importance of event i.  By the above discussion of the Birnbaum 
importance, the SAPHIRE calculation uses the rare-event approximation of the derivative. 

The uncertainty in each input parameter, as expressed through its probability distribution, 
contributes to the uncertainty in the output parameter of interest (e.g., core damage frequency, 
loss of mission).  The uncertainty importance measure in SAPHIRE quantifies the contribution of 
each individual basic event’s uncertainty to this total output uncertainty.  The measure used in 
SAPHIRE is based on a first-order Taylor series expansion of the variance of the output of 
interest.  The equation used by SAPHIRE is: 
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where R is the output of interest, ip is the probability of the thi basic event, and 2
i� is the 

variance of the uncertainty distribution for the thi  event, as listed in Table 2.  This 
approximation, which hinges upon the basic events being mutually statistically independent, 
says that the variance of the output is approximately the sum of n separate contributions, one 
from each basic event.  The magnitude of each contribution (each contribution is positive) 
measures how much of the output variance is contributed by each basic event.  Because it is 
more convenient, SAPHIRE uses the square root of each individual contribution as the 
uncertainty importance: 

i
i

unc p
RI �

�
�

�  

where i�  is the standard deviation of the uncertainty distribution of the thi  basic event.  Note 
that the partial derivative in the above equation for the uncertainty importance is, by definition, 
the Birnbaum importance of that event.  Therefore, no new calculations are needed; the 
uncertainty importance is the Birnbaum importance multiplied by the standard deviation of the 
input probability distribution.  The standard deviation, i� , for each basic event is calculated 
depending upon its defined uncertainty distribution.  Table 2 outlines the standard deviation 
calculations. 
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Table 2. Standard deviation calculations for the supported uncertainty distributions. 

Distribution 
Type 

Parameter 1 Parameter 2 Standard Deviation (dev) 

Normal Standard deviation None deviationstandard�dev  

Lognormal EF = Error factor None 

)(��*dev

).(EF/�

1exp

6451ln
2 ��

�
 

Beta B in Beta(a,b) None )B�)�/((�)*(dev ���� 11  

Chi-Squared D - Degrees of 
freedom 

None /D�*dev 2�  

Gamma r in )(r�  None r�/dev �  

Exponential None None �dev �

Uniform U = Upper end point None 3�)/(Udev ��  

Max Entropy L-Lower end point U- Upper 
end point 

variance�dev  

See note below for variance 
information  

Dirichlet B in Beta (a,b) None See, for example, 
www.wikipedia.com for information 
on the standard deviation. 

Triangular Mode Upper End � �bcacabcbadev ������ 222

18
1

Histogram Histogram identifier None Depends on the histogram 

Seismic 
Lognormal 

Beta r Beta u 00.dev �  

 

NOTE:  For the maximum entropy distribution, the variance is found from: 
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IF  (U < 1.5E+306) THEN 
  beta = BetaFromMaxEntMu(mean,L,U,error));  
               (* Interpolated from mean and U and L *) 
  g      = beta * (U-L); 

  IF ABS( 3g ) < (10.0*1.0e-13) THEN 

                (* use 2nd order Taylor expansion *) 

      � � )20/1(*12/var 22 gLUiance ���  

  ELSE 

      � � � �� �222 1)exp(/)1)exp(/41*4/var ������ gggLUiance  

  END; 
ELSE 
    variance := mean*mean; 
END; 

 
 

It should be pointed out that SAPHIRE 8 can also calculate the uncertainty on any of the 
importance measures, including the “uncertainty” importance measure.  The “uncertainty” 
importance measure indicates the contribution to the overall uncertainty from a single basic 
event.  The uncertainty on the importance measures (e.g., Fussell-Vesely, Birnbaum, RRR, 
RIR) indicates the uncertainty in the importance measure estimate.  For example, we may 
calculate a RIR for a basic event as 4.3.  However this value is a point estimate.  Performing 
the uncertainty analysis on the RIR calculation may indicate that the 5th percentile for the basic 
event is 2.5, the mean value is 5.1, and the 95th percentile is 6.8.  Further, the “uncertainty” 
importance measure for this same event may indicate that it has a low contribution to the 
overall fault tree, sequence, or end state uncertainty (depending on what is being analyzed).  A 
basic event may have a large uncertainty itself and its importance measures may be quite 
uncertain, but its contribution to the overall uncertainty can be negligible. 

In general, in SAPHIRE 8, the uncertainty may be estimated on any of the resultant risk 
measures, including: 

• Fault tree cut set 
• Fault tree importance measures 
• Sequence cut sets 
• Sequence importance measures 
• End state cut sets 
• End state importance measures 
• ECA Workspace results 
• General Analysis Workspace results 
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9. UNCERTAINTY AND MONTE CARLO 

9.1 Uncertainty and Monte Carlo 

The uncertainty analysis allows the user to calculate the uncertainty in the top event probability 
resulting from uncertainties in the basic event probabilities.  To use this option, the user must 
have previously loaded or generated the cut sets and loaded the component reliability 
information and distribution data.  Bohn et al. (1988) contains an excellent discussion of 
uncertainty analysis.  A very brief overview is given here, with elaborations in the subsequent 
sections. 

In an uncertainty analysis, SAPHIRE already has the top event expressed in terms of minimal 
cut sets, either generated earlier or loaded from some other source.  These cut sets depend 
on many basic events, each of which has a probability described in terms of some 
parameter(s).  For definiteness in this explanation, suppose that a basic event probability 
depends on the parameter �.  The value of ���for each basic event is not known exactly, but is 
estimated based on data or on expert opinion.  The uncertainty in ���is quantified by a 
probability distribution: the mean of the distribution is the best estimate of �, and the dispersion 
of the distribution measures the uncertainty in �, with a large or small dispersion reflecting 
large or small uncertainty, respectively, in the true value of �.  This distribution is the 
uncertainty distribution of �. 

SAPHIRE treats an initiating event of a sequence as a basic event.  It differs from the other 
basic events in only two ways: it can have a frequency instead of a probability, and every cut 
set contains exactly one initiating event. 

For all the basic events, SAPHIRE randomly samples the parameters from their uncertainty 
distributions, and uses these parameter values to calculate the probability of the top event.  
This sampling and calculation are repeated many times, and the uncertainty distribution for the 
probability of the top event is thus found empirically.  The mean of the distribution is the best 
estimate of the probability of the top event, and the dispersion quantifies the uncertainty in this 
probability.  For an accident sequence the process is the same, except the sequence fault tree 
is preceded by an initiating event, whose frequency is also quantified by an uncertainty 
distribution.  The term Monte Carlo is used to describe this analysis by repeated random 
sampling.  Two kinds of Monte Carlo sampling are simple Monte Carlo sampling and Latin 
Hypercube sampling; they are described and compared in Sections 9.6 through 9.8. 

 

9.2 Basic Uncertainty Output 

The Monte Carlo procedure computes the probability distribution of a fault tree top event or 
accident sequence using the assigned probability distributions for each basic event contained 
in the minimal cut sets.  By using the probability distributions for the basic events, the 
uncertainty in the system unavailability can be calculated. 
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The first step in the process of computing the uncertainty in the minimal cut set upper bound is 
to provide a measure of the uncertainty for each basic event contained in the minimal cut sets.  
SAPHIRE then computes the minimal cut set upper bound for a set of random samples from 
the uncertainty distributions of the basic events.  After calculating the minimal cut set upper 
bound, SAPHIRE computes the first four moments of the distribution and the 5th, 50th, mean, 
and 95th percentile values. 

The moments are calculated as a basis for comparison of the calculated distribution with other 
distributions (McGrath and Irving 1975).  From the first four moments, the sample mean, 
sample variance, coefficient of skewness, and coefficient of kurtosis can be calculated.  To 
establish some standard notation, the following symbols are used: 

 
n = the number of samples calculated. 
xi = ith data value for i = 1, 2, 3, ... n. 
 

The sample mean, given as , can be defined as 
 

 (9-1) 
 
and the sample variance, given as 
 

 (9-2) 
 
The k-th sample moment about the mean is next defined in general as 
 

 (9-3) 
 
Thus, from the third moment, the coefficient of skewness, ß1

1/2, is 
 

 (9-4) 
 
and from the fourth moment, the coefficient of kurtosis,  ß 2, is 
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 (9-5) 
where  

s = the square root of the variance. 
 
The coefficient of skewness and the coefficient of kurtosis are generally used as measures for 
comparison with the normal distribution.  If the skewness is close to zero while the kurtosis is 
approximately three, the normal distribution is a good approximation.  A zero skewness value 
indicates a symmetric distribution; a negative skewness indicates a long left tail, while a 
positive value indicates a long right tail.  If the kurtosis is greater than three, the distribution is 
more peaked than the normal distribution, and has more weight in the tails.  However, if the 
value is less than three, the distribution is flatter than the normal, and has less weight in the 
tails. 

 

9.3 Uncertainty Analysis Input Data 

The parameters for the probability of a basic event, discussed in Section 7, are input in the 
Failure Data area of the SAPHIRE input screen.  Now we move to the Uncertainty Data area 
using the arrow keys or the tab key.  The fields in this area that can be accessed from this 
menu are the current case distribution type, a distribution parameter value, and a correlation 
class. 

Currently, SAPHIRE supports 13 distributions 
 
• Beta 
• Chi-squared 
• Constrained Noninformative 
• Dirichlet 
• Exponential 
• Gamma 
• Histogram distributions 
• Lognormal 
• Maximum Entropy 
• Normal 
• Seismic Lognormal 
• Triangular 
• Uniform 
  

Most distributions can be defined with two statistical parameters, although some take more.  
The first parameter is the mean failure probability and the second parameter (and third if 
applicable) is specific to the particular uncertainty distribution.  The mean failure probability is 
calculated from the data input in the Failure Data area just discussed.  For more clarity, 
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m
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SAPHIRE allows the user to input the parameters of the distribution directly.  It will check them 
for consistency with the mean. 

Correlation classes, as explained in Section 9.6, are used to identify basic events whose 
failure data are derived from the same data source.  This information is used in the uncertainty 
analysis.  Correlation classes consist of up to a 24 character string.  A blank correlation class 
indicates that there are no data dependencies.  When running the uncertainty analyses, the 
same sample value will be used for all basic events with the same correlation class. 

NOTE:  The user must set up a correlation class labeling scheme for the basic events in the 
database.  For example, correlation class MDPFTS may be assigned to motor- driven pumps 
fail to start, correlation class MDPFTR to motor- driven pumps fail to continue to run, 
correlation class CKVFTC to check valves fail to close, and so on. 
 
SAPHIRE provides more sophisticated ways of entering failure and uncertainty data that 
reduce the amount of data input required and ensure consistency among like basic events.  
These techniques utilize the "template" feature in SAPHIRE.  A basic event can be identified 
as being a template, and then other events may "borrow" information from the template event. 
For example, if a database has 20 basic events for different valves, rather than entering the 
same failure data 20 times, the user can enter the data once and denote this basic event as a 
"template."  Then for the 20 basic events, the user would indicate that each valve event should 
use the template event containing the failure data of interest.  In total, the database would 
contain 21 basic events (20 valves and one valve template), but the amount of data entry is 
greatly reduced. 

  

9.4 Distributions 

At the present time, as mentioned above, SAPHIRE supports 13 uncertainty distributions.  
Within these distributions, only the histogram distribution requires detailed information to be 
fully specified.  Each of the other distributions is described by its mean and typically one (or at 
most two) additional parameter.  Table 3 summarizes this information for each of the 
supported distributions except for the histogram distribution, which is explained separately in 
Section 9.5.  These distributions in Table 3 are described in more detail in this section.  
Additional detail about these distributions can be found in Mood et al. (1974) and Hahn and 
Shapiro (1967). 
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Table 3.  Uncertainty distributions supported in SAPHIRE. 

Distribution Code Parameter 
beta  B b in beta(a, b) 
chi-squared C Degrees of freedom 
constrained noninformative  O None 
Dirichlet  D B 
Exponential E None 
gamma  G r in gamma(r) 
lognormal  L 95% error factor 
maximum entropy M a = lower end range 

b = upper end range 
normal  N Standard deviation 
Seismic lognormal S None 
Triangular   T Mode (highest point) 

Upper end point 
Uniform U Upper end point 

 
 

Beta Distribution 

The general parameters of the beta distribution are a and b.  The probability density function is 
given by 

  
 
for 0 � x � 1, where B(a,b) is the beta function.  In SAPHIRE, the parameter b is used in 
addition to the mean to define the distribution.  Then, the parameter a is calculated from the 
mean value by the formula 

 
a = μ * b / (1 - μ) 
 
where μ = a/(a+b) is the mean of the beta distribution.  Note that the mean of the beta 
distribution is between 0 and 1. 

SAPHIRE generates a beta random variable using the fact that if X is �
2
(2a) and Y is �

2
(2b) 

and X and Y are independent then X/(X + Y) has a beta(a, b) distribution.  See Section 24.2 of 
Johnson and Kotz (1970). 

For LHS sampling, the inverse cumulative distribution function (CDF) method is used, with the 
inverse of the CDF computed by numerical iteration (with the method of false position) on the 

f(x) =  
1

(a, b) x (1 - x )a-1 b-1

�
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#
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beta CDF.  The beta CDF is evaluated using the BETAI function of Press et al. (1986).  Note, 
this way of generating the LHS sample is not fast, and simple Monte Carlo sampling with a 
larger sample may be more efficient than LHS sampling when many beta distributions must be 
sampled. 

 

Chi-Squared Distribution 

The chi-squared distribution is directly related to the gamma distribution, as follows.  Let X 
have a gamma(�, r) distribution.  Then 2 � X has a chi-squared distribution with 2r degrees of 

freedom, denoted �
2
(2r).  For this reason, the chi-squared distribution is an option in SAPHIRE 

only as a convenience to the user.  Anything that requires a chi-squared distribution can be 
accomplished using a gamma distribution. 

 The mean of a �
2
(k) distribution equals k and the variance equals 2k, for degrees of freedom 

k > 0.  Note that the mean of a chi-squared distribution determines the variance.  This is not 
flexible enough for most uncertainty analyses.  Therefore, when SAPHIRE is asked for a chi-
squared random variable with k degrees of freedom, it generates a multiple of a chi-squared 

random variable, Y = aX, where X is �
2
(k) and a = 	/k.  This results in a random variable with 

mean 	 and variance 2	2/k.  Exactly the same distribution would be obtained by specifying a 
gamma distribution with mean 	 and r = k/2. 

For simple Monte Carlo sampling, SAPHIRE generates a multiple of a chi-squared random 
variable with mean 	 and k degrees of freedom by generating a gamma random variable with 
mean 	 and with r = k/2. 

For LHS sampling , SAPHIRE considers several special cases, and uses the inverse CDF 
method in every case.  Let k be the degrees of freedom.  When k = 1, the random variable is 
the square of a normal random variable, and SAPHIRE finds the inverse CDF based on the 
inverse of a normal CDF.  When k = 2, the distribution is exponential, and SAPHIRE finds the 
inverse CDF explicitly.  For all other values of k, SAPHIRE begins with the Wilson-Hilferty 
approximation of the chi-squared inverse CDF. (Section 5.10.2. of Thisted 1988), or 0 if the 
Wilson-Hilferty approximation is negative.  It then refines this approximation by number i 
iteration (the method of false position), obtaining values for which the chi-squared CDF is ever 
closer to the specified value of the CDF.  The chi-squared CDF is computed as the equivalent 
gamma CDF, calculated using the algorithm GAMMP given by Section 6.2 of Press et al. 
(1986).  When the Wilson-Hilferty approximation is good, typically in the right tail of the 
distribution with k not very small, very little time is required for the refinement. 
 

Constrained Noninformative Distribution 

The constrained noninformative prior distribution is a diffuse distribution with a specified mean.  
The amount of diffuseness is set so that the distribution is noninformative except for the 
information given by the specified mean, neither too concentrated nor too diffuse.  The precise 
definition is given by Atwood (1994).  The parameter of interest is either an initiating event 
frequency or a basic event probability.  We proceed by transforming the model so that the 
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parameter of interest is approximately a location parameter.  In this transformed model, we find 
the maximum entropy distribution constrained by the specified mean for the original parameter.  
This distribution is as flat as possible subject to the constraint.  Then we transform back to the 
original model.  The resulting distribution is the constrained noninformative distribution on the 
parameter. 

The constrained noninformative distribution is a special type of maximum entropy distribution.  
As Atwood (1996) points out, if the uncertainty distribution has a finite range (which, for 
probabilities, it does, bounded between 0 and 1), then the function that maximizes entropy is a 
uniform distribution. A limitation in unconstrained noninformative distributions is that the mean 
value of a uniform 0-to-1 distribution is 0.5. Consequently, the prior distribution in any Bayesian 
calculation, having a mean of 0.5, would tend to pull the posterior distribution toward a mean 
value of 0.5. It was this limitation that motivated Atwood to develop the constrained 
noninformative distribution, where the constraint is that the prior distribution has a user-specified 
mean rather than a mean of 0.5.  Once the mean is specified, the analyst may use Atwood 
(1996) to determine an approximate distribution based on a beta distribution. The beta 
distribution requires two parameters, & and �.  Atwood (1996) supplies a table of applicable & 
parameters (as a function of the mean), but numerical values of & as a function of the mean are 
shown in Figure 16.  The second parameter, �, is found via the equation: 

� �
mean

mean�
�

1&�  . 

 

Figure 14.  Constrained noninformative alpha parameter as a function of the mean value 
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Dirichlet Distribution 

A k-variate random vector, (X1, X2, ... , Xk) is Dirichlet distributed with parameters 
1, 
2, ... 
k 
and 
k+1 if it has joint probability density function  

 

for 0 < xi and x1 + x2 + … + xk < 1. 

The Dirichlet distribution is a generalization of the Beta distribution with parameters a and b if 
we let k = 1, a = 
1 and b = 
2.  The mean of the ith Dirichlet variable, Xi, is  

�i = 
i / D 

where the denominator D is defined as 

D =  
1 + 
2 + … + 
k+1. 

Thus, an alternative parameterization is in terms of the means 	1, 	2, ... , 	k and either D or �= 

k+1.   

The marginal distributions of the individual Dirichlet variables are Beta distributions.  In 
particular, the ith variable, Xi, has the Beta distribution with parameters a = 
i and b =  D - 
i.  A 
set of k-variate Dirichlet variables are dependent random variables, but it is possible to 
transform from a set of k independent Beta distributed random variables into dependent 
Dirichlet random variables.  Specifically, if Y1, ... , Yk are independent random variables, such 
that the ith variable, Yi, has a Beta distribution with parameters a = 
i and b = D - 
1 - … - 
i-1, 
then the vector of k random variables (X1, X2, ... , Xk) defined by X1 = Y1 and 

Xi = (1 - X1 - ... - Xi-1)Yi  for  2 � i � k, 

are distributed as k-variate Dirichlet with parameters  
1, 
2, ... , 
k and �. 

It is also true that a subset of Dirichlet variables is also Dirichlet distributed.  For example, if 1 � i 
< j � k, then the pair (Xi, Xj) has the 2-variate Dirichlet distribution with parameters 
i, 
j and D- 

i - 
j. 

As an example, suppose a branch in an event tree has three mutually exclusive failure events 
A1, A2, A3 and the complement (success) event B.  Suppose the uncertainty in the probabilities 
of these events is modeled using a 3-variate Dirichlet distribution.  In other words, P(A1), P(A2) 
and P(A3) are modeled as Dirichlet with nominal values 	1, 	2 and 	3.  The remaining 
parameter � is the nominal value of P(B).  The alternate parameterization in terms of D is useful, 
because it is involved in the variances of the individual Dirichlet variables.  Specifically, the ith 
variable has variance 	i(1 - 	i)/(D + 1), so a smaller value of D corresponds to a large variance, 
which in turn means greater uncertainty about P(Ai).  Similarly, a large value of D corresponds 

f( x , x , , x ) =  
( + +  + )
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to a small variance or less uncertainty.  Variables with this distribution can be generated by first 
generating independent Beta variables, Y1 with parameters a = 
1 and b = D - 
1, Y2 with 
parameters 
2 and b = D - 
1 - 
2, and Y3 with parameters 
3 and D - 
1 - 
2 - 
3 = �.  Then, 
the required Dirichlet variables would be X1 = Y1, X2 = (1 - X1)Y2 and X3 = (1 - X1 - X2)Y3. 

If only one branch (say the first) is of interest, then the uncertainty can be given in terms of a 
Beta variable with mean 	1 = 
1/D and b = 
2 + 
3 + � = D - 
1.  Suppose it is required to 
consider jointly two of the events (say A1 and A2).  The "joint" uncertainty is modeled by a 2-
variate Dirichlet distribution with parameters 
1, 
2 and � = D - 
1 - 
2 = 
3 + �. 

 

Exponential Distribution 

The exponential distribution is commonly used for modeling a time to failure, but it is generally 
not used for modeling uncertainties.  One reason for its use in modeling failures and its disuse 
in modeling uncertainties is that it has only one parameter.  Therefore the mean determines 
the variance.  The exponential density is 

 
where the parameter � and the mean ��are related by 	 = 1/ �.  Note that the exponential 
density is a special case of the gamma density, with the gamma parameter r = 1.  Alternatively, 
if Y is �2(2), then X = Y/(2 �) has a gamma distribution with r = 1 and mean 	 = 1/ �, i.e. an 
exponential(�) distribution.  Therefore, anything that can be simulated with an exponential 
distribution can also be simulated with a gamma or chi-squared distribution. 

An exponential(�) random variable is generated by the inverse CDF method , as explained at 
the beginning of Section 9.3.  This method is recommended in Section 6.5.2 of Kennedy and 
Gentle (1980) for the gamma distribution with r = 1. 

 

Gamma Distribution 

The parameters of the gamma distribution are � and r.  The probability density function is 
given by 

 
for x > 0, where �(r) is the gamma function.  In SAPHIRE, the value in the uncertainty 
distribution is r.  The parameter � is calculated from the mean value by the formula � = r/�, 
since the mean is � = r/ �. 

SAPHIRE generates a gamma random variable in two stages.  First it generates a random 
variable Y from a gamma distribution with the desired r and with � = 1.  The algorithm used 
depends on the value of r: 

f(x) =  e- x� �

f(x) =  
(r) x e

r
r-1 - x� �

�
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if r < 1, SAPHIRE uses Algorithm GS of Ahrens and Dieter (1974), 

if r > 1, SAPHIRE uses Algorithm GA of Cheng (1977), 

if r = 1, SAPHIRE uses the inverse CDF method. 

Once Y has been generated, the gamma random variable with parameter r and with the 
desired mean 	 is defined as X = Y/ �, with � = r/	. 

For LHS sampling, SAPHIRE uses the fact that the gamma and the chi-squared distributions 
are different parameterizations of the same distribution.  SAPHIRE uses the inverse CDF 
method to generate LHS samples from a gamma distribution. 

 

Lognormal Distribution 

X has a lognormal distribution if lnX has a normal distribution.  The parameters used in 
SAPHIRE to describe the lognormal distribution are the mean of the lognormal distribution and 
the upper 95% error factor.  The mean value of the lognormal distribution, 	ln, can be 
expressed as: 

2
ln

2��
�

�
� e  

where 	 is the mean and 
 is the standard deviation of the underlying normal distribution.  
Likewise, the 95% error factor (EF) for the lognormal distribution is given by: 

 
�645.1eEF �  

where 1.645 is the 95th percentile of the standard normal distribution.  The density of the 
lognormal distribution is 

  
 
for x > 0. 
 
In SAPHIRE, a random variable X is sampled from the lognormal distribution as follows.  A 
random variable Y is generated from a normal distribution with mean '��and standard deviation 
(.  Then X is defined as X = exp(Y).  This is the procedure for simple Monte Carlo sampling 
and for Latin Hypercube sampling. 

Since SAPHIRE requires both the mean and EF, occasionally one will need to convert 
information into the required input parameters.  For example, if a probability distribution is 
known, but the median and standard deviation is available, these two inputs would need to be 

f(x) =  
1

x 2
e

2
-[ (x)- ] / 22 2

) �
� �ln
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converted into the associated mean and EF.  To assist in this conversion, we provide common 
translation equations for a set of lognormal parameters in Table 4. 

 

Table 4.  Conversion equations for various lognormal distribution parameters. 

 

Maximum Entropy Distribution 

The maximum entropy distribution is specified by its mean value, 	, and by a, the lower end of 
the range, and b, the upper end of the range.  Section C1 of Appendix C shows that if 	 is not 
at the midpoint of the range, the density has the form 

 

  
 
for a � x � b, with � a non-zero parameter.  If � is negative, the distribution is a truncated 
exponential distribution with parameter -�.  If � is positive, the density is of exponential form, 
an increasing function of x.  If instead 	 is the midpoint of the range, 	 = (a + b)/2, then the 
maximum entropy density is not of the form above, but instead is flat, a uniform density.  This 
is the limiting value for as � � 0. 

The density f(x) corresponds to a CDF of the form 
 

f(x) =  e  /  (e  -  e )x b a� � � �
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The parameter � and the user-input mean 	 are related by 
 

 
 
Section C-1 of Appendix C shows that 	 is a monotonic function of �.  As � � -*, 	 
approaches its minimum possible value, a, and as � � *, 	 approaches its maximum possible 
value, b.  This monotonicity is the basis for the algorithm given in Section C2 of Appendix C for 
finding � from the user inputs of 	, a, and b. 

When the user specifies a maximum entropy distribution with mean 	 and range [a, b], 
SAPHIRE first uses a numerical search to obtain the value of � satisfying the user-input mean 
equation above.  It then inverts the CDF explicitly and uses the inverse CDF method, by 
generating a random number U from a uniform distribution between 0 and 1, and calculating 

 
 
a random number from the maximum entropy distribution.  This method is used both for simple 
Monte Carlo sampling and for LHS sampling. 

Normal Distribution 

The additional parameter to describe the normal distribution in SAPHIRE is the standard 
deviation of the distribution, (.  The density function is given by  

 

  
 
where  

-*�< x < +*. 
 
SAPHIRE uses the Marsaglia-Bray algorithm, described on p. 203 of Kennedy and Gentle 
(1980), to generate a normal(0, 1) random variable Z.  Then X, a normal random variable with 
mean 	�and standard deviation (, is defined as X = 	�+ ( Z. 

For LHS sampling from a normal distribution, the inverse CDF method is used, with the inverse 
of the normal CDF F-1(U) computed as follows.  For 0.1 < U < 0.9, F-1 is found by the algorithm 
of Beasley and Springer (1977).  For U < 0.1 or U > 0.9, F-1 is approximated by Algorithm 
5.10.1 of Thisted (1988), due to Wichura.  The approximation is then refined by one application 
of Equation (5.9.2) of Thisted. 

F(x) =  (e - e ) /  (e  -  e )  .x a b a� � � �

� � �� � � � =  (be - ae ) /  (e  -  e ) -  1 /   ,  for  0  .b a b a +

X =  { [(e -  e )U +  e ] } /    ,b a aln � � � �

f(x) =  
1

2
e2

-(x- ) /22 2

) �
� �
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Triangular Distribution 

The additional parameters to describe the triangular distribution in SAPHIRE are the mode 
(most likely point on the curve) and the upper end point (b).  The density function is given by  
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where a is the lower end point and b is the upper end point. 
 
The mean is specified by the user, but in general can be found as 	 = (1/3) (a + b + mode).  
The triangular distribution is found in SAPHIRE 7.0 or higher.  A triangular distribution can be 
viewed as a mixture distribution and, as such, the inverse CDF method can be employed to 
sample from it.  The algorithm to sample the triangular distribution is from Butler (1970).  For 
LHS sampling, SAPHIRE uses the inverse CDF method to generate LHS samples from a 
triangular distribution. 

 

Uniform Distribution 

The mean of this distribution is M = (a+b)/2.  The value in the uncertainty distribution in 
SAPHIRE is b, the right (upper) endpoint of the distribution.  The value for a is calculated by 
the equation a = 2*M - b.  The density function for this distribution is 

 

 
for a � x � b. 
 

SAPHIRE generates a uniformly distributed random number using the prime modulus 
multiplicative linear congruential generator approach.  The modulus m for the generator is 231-
1 = 2,147,483,647 and the multiplier is 397,204,094. (Fishman and Moore, 1982)  This 
generates a sequence of m  -   1 distinct integers before repeating, in an order that appears 
random.  To obtain real numbers between 0 and 1, the integer obtained in this way is divided 
by m. 

Having generated a random variable Y uniform between 0 and 1, SAPHIRE obtains a random 
number uniform between a and b as X = a + (b-a)Y.  This is used for both simple Monte Carlo 
sampling and for LHS sampling. 

f(x) =
1

b - a
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9.5 Histograms 
SAPHIRE allows for either a discrete or a continuous distribution under this option.  The 
modeled quantity is a probability or a frequency.  When the PERCENT option is selected, the 
distribution is discrete on up to 100 values; the percents, giving the degree of belief for each 
value, must sum to 100.  If the RANGE or AREA option is selected, the density is a step 
function covering up to 100 adjacent intervals.  The function is constant within each interval, 
and the area under the entire function must equal 1.0. 

The histogram feature allows the user to approximate analytical distributions types not 
currently available in SAPHIRE or other distributions not fitting a common analytical form (e.g., 
multi-modal). For a continuous random variable, the histogram is an approximation to the 
probability density function in which area is equivalent to frequency, thus maintaining the 
continuous characteristic of the variable.  In other words, the bins of a histogram have an area 
(normalized to 1.0) representing the proportion of the density function lying in the interval given 
by the bin.  An example of a "range type" histogram is shown in Figure 15.  With this option, 
the starting probability is 0.0036 (and height of 15.38) while its end probability is 0.036.  The 
second bin has an end probability of 0.36 (and height of 1.538).  The area of each bin is 0.5.  
When this distribution is used, SAPHIRE will randomly sample values from the histogram bars 
(for example, it is equally likely, with overall probability of 0.5, to have a probability value 
between 0.0036 and 0.036). 

 

 

Figure 15.  Example of range histogram 

 
A second histogram type, "area," is closely related to the "range" type.  The area histogram 
type is like the range type in that it represents a bin (instead of a discrete point) and the 
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starting and ending probability values are required.  But, unlike the range histogram, the area 
histogram asks the user to specify the area of the bin directly rather than the magnitude of the 
bin.  Thus, in our case, the area of each bin is 0.5.  Consequently, the two histograms, the 
range and area, will be equivalent. 

The last histogram type is a discrete version of the bin-type histogram.  The "percentage" 
histogram  requires a discrete point and the corresponding percent associated with that point 
(in %).  The cumulative percent for all the points must total 100%.   

 
 

9.5 Correlation Classes 

The practice of using the same uncertainty distribution for a group of similar components has 
been common since the Reactor Safety Study (NRC 1975).  The PRA Procedures Guide 
(Hickman 1983) recommends this practice as well.  Philosophical arguments have been given 
to support this practice or used to give it credence.  Apostolakis and Kaplan (1981) discuss 
this issue from a Bayesian perspective, and they call it a "lack of knowledge" dependency.  
This dependency is present whenever the same data set is used for several components.  It is 
not a Bayesian or classical statistical phenomenon, but it is induced because of the way the 
data are used. 

For example, suppose that a plant has two motor-driven AFW pumps.  These pumps are 
virtually identical, and therefore are modeled as having the same unavailability, q.  The 
uncertainty distribution for q is taken from some database, and describes our best belief about 
the true value of q.  Because the two components have uncertainty distributions taken from the 
same source, if our estimate of q is too high (say) for one pump, it will be also be too high for 
the other pump, by the same amount.  Similarly, if our estimate is too low for one, it will be too 
low for the other by the same amount.  The uncertainty distributions for the two unavailabilities 
are perfectly correlated. 

This correlation of the uncertainties must be distinguished from the independence of the basic 
events.  The two basic events (failures of the pumps to be available) are independent; that is, 
the probability that one pump is unavailable is some number q, unaffected by whether the 
other pump is available or not.  However, our uncertainty about the value of q is totally 
correlated for the two basic events. 

The user tells SAPHIRE of this uncertainty correlation by putting the two basic events in a 
single correlation class.  When q is sampled from its uncertainty distribution, that same value 
of q is assigned to all the basic events in the correlation class.  After the probability of the top 
event has been calculated, on the next Monte Carlo pass a new (presumably different) value 
of q is drawn from the uncertainty distribution, and is assigned to all the basic events in the 
class. 

Let us now examine the effect of total correlation in accident sequence analysis.  Consider a 
simple example involving a cut set with two components.  Let q1 and q2 denote the 
unavailability of the two components in the cut set.  If the components are independent, then 
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 (9-1) 
is the cut set unavailability. 
 

As we begin the analysis, we can make one of two assumptions.  First, we can assume that 
the unavailability of each component is estimated from independent data sources.  For 
example, if the first basic event is failure of a pump and the second basic event is failure of a 
valve, the probabilities of these basic events will be estimated from independent sources, and 
therefore the two probabilities have independent uncertainty distributions.  The expected value 
and variance of Q are given by 

  (9-2) 
and  
 

  (9-3) 
 
These equations follow from the independence of the uncertainty distributions.   
 
If instead, the components are identical, then q1 = q2 = q, and Equations (9-2) and (9-3) 
reduce to 

  (9-4) 
and 

 (9-5) 
 
However, when the components are identical, Equations (9-4) and (9-5) are probably not 
correct.  The same source would presumably be used to obtain the uncertainty distribution for 
both unavailabilities.  Therefore, any value q that is used for one basic event should also be 
used for the others.  Equation (9-1) reduces to 

 
 
so the expected value is 
 

 (9-6) 
 
and  

 (9-7) 

Q =  q q
1 2

E(Q) =  E(q )E(q )1 2

- .var(Q) =  E(q )E(q ) - E(q )E(q )   .1
2

2
2 2

1 2

- .E(Q) =  E(q )E(q ) =  E(q)1 2
2

- . - .var(Q) =  E(q )  -  E(q)   .
22 4

Q =  q   ,2

E(Q) =  E(q )2

- .var(Q) =  E(q ) -  E(q )   .4 22
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A standard identity from statistics says that 
 

 
 

Therefore, Equation (9-6), the correct one, is larger than Equation (9-4), the incorrect one.  
This is why the point estimate and the mean of the uncertainty distribution are not equal in 
PRAs.  The point estimate for the example cut set is the product of the basic event means, 
given by Equation (9-4), whereas the mean of the cut set uncertainty distribution is given by 
the larger value in Equation (9-6).  Similarly, the variance should be calculated from Equation 
(9-7), not Equation (9-5).  In typical cases, including any case in which q is lognormally 
distributed, Equation (9-7) gives a larger value than Equation (9-5).  The effects are most 
pronounced when the distributions are highly skewed. 

It is suggested to use the following steps for grouping basic events into correlation classes: 

• Group all basic events by component type (e.g., MOV, AOV, MDP), 

• Within each component group, organize events into subgroups by failure mode (e.g., fail-to-
start, fail-to-run), 

• For time related basic events, group all events from each component failure mode group 
into sets according to the time parameter value used to quantify the event probability (e.g., 6 
hours, 720 hours), and 

• For demand related failures, no further grouping is necessary beyond the component failure 
model level. 

 
If different estimates are developed for components within the same component group (e.g., 
service water motor-driven pump, residual heat removal motor-driven pump) then these 
components should be treated in separate component groups. 

 

9.6 Sampling Techniques 

The Monte Carlo approach is the most fundamental approach to uncertainty analysis.  Simple 
Monte Carlo simulation consists of making repeated quantifications of the top event value 
using values selected at random from the uncertainty distributions of the basic events.  For 
each iteration of the Monte Carlo run, each basic event uncertainty distribution is sampled 
using a random number generator to select the failure probability of the basic event.  The top 
event probability or accident sequence frequency is calculated.  When this procedure has 
been repeated a predetermined number of times, the top event or accident sequence results  

E(q ) =  [E(q) ]  +  var(q) >  [E(q) ]   .2 2 2
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are sorted to obtain empirical estimates of the desired top event attributes such as the mean, 
median, 5th percentile, and 95th percentile.   A plot of the empirical uncertainty distribution is 
often obtained.  Figure 16 contains an example of an uncertainty distribution for an accident 
sequence.  For more information about the Monte Carlo technique the reader is referred to 
Hahn and Shapiro (1967). 

 
 

 

Figure 16.  Illustration of the uncertainty on accident sequence probability results 

 
To illustrate the Monte Carlo technique, consider a system with two components in series.  Let 
A denote failure of the first component and B failure of the second.  The cut sets for the system 
are A and B, so the equation for the top event (system) is  

 
S = A � B 
 
Let A and B have mean failure probabilities of 0.001 and 0.005, respectively.  Also assume that 
the uncertainty distribution for A is uniform from 0 to 0.002 and the distribution for B is normal 
with standard deviation of 0.001.  These distributions are shown in Figure 17 and Figure 18, 
respectively. 
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Figure 17.  Uncertainty distribution for Component A 

 

 

 

 

Figure 18.  Uncertainty distribution for Component B 

 
The point estimate for S is 0.006.  Table 5 contains a random sample of size 10 for this 
example.  Within this table, column 1 contains the sample for component A which has a 
uniform uncertainty distribution.  Column 2 contains the sample for failure of component B, and 
column 3 contains the sum of columns 1 and 2 which is the minimal cut set upper bound for 
the probability of failure of the system.  The bottom row is the average (mean) of the columns. 
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Table 5.  Random samples for the S system example. 

Iteration A B A � B 
1 0.00042 0.00500 0.00542 
2 0.00086 0.00661 0.00747 
3 0.00149 0.00570 0.00719 
4 0.00109 0.00605 0.00714 
5 0.00066 0.00420 0.00487 
6 0.00024 0.00609 0.00633 
7 0.00066 0.00396 0.00462 
8 0.00075 0.00293 0.00368 
9 0.00037 0.00500 0.00537 

10 0.00127 0.00597 0.00724 
    
mean 0.00078 0.00515 0.00593 

 
 
 

Overview of Latin Hypercube Sampling 

Latin Hypercube Sampling (LHS) selects n different values from each of the k variables X1, ... 
,Xk in the following manner.  The range of each variable is divided into n nonoverlapping 
intervals on the basis of equal probabilities for the intervals.  The n values thus obtained for X1 
are paired in a random manner with the n values of X2.  These n pairs are combined in a 
random manner with the n values of X3 to form n triplets, and so on, until n k-tuplets are 
formed.  This is the Latin Hypercube sample.  It is convenient to think of the LHS, or a random 
sample of size n, as forming an n x k matrix of inputs where the ith row contains specific 
values for each of the k input variables to be used on the ith evaluation of the cut sets. 

To help clarify how intervals are determined in the LHS, consider the simple example used in 
the previous section.  We want to generate an LHS sample of size 5.  The first step is to divide 
the uncertainty distributions of A and B into 5 equal probability areas each containing an area 
of 0.2.  For A this is easy since it has a uniform uncertainty distribution.  The points separating 
the cells are 0.0004, 0.0008, 0.0012, and 0.0016.  The areas are shown in Figure 19.  The 
uncertainty distribution for B is a normal distribution; it is harder to find the points that divide 
the areas into equal probability areas.  Probability tables or a calculator with an inverse normal 
calculation routine is needed.  The four points which define the 5 equal probability areas are 
4.16E-3, 4.75E-3, 5.25E-3, and 5.84E-3.  These are shown in Figure 20. 
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Figure 19.  Latin hypercube sample for Component A 

 

 

Figure 20.  Latin hypercube sample for Component B 
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The next step is to generate a random permutation of the integers (1, 2, 3, 4, 5).  In this 
example we get (2, 3, 4, 1, 5).  Now we choose a random offset for each basic event, 2 for A 
and 3 for B.  We start the basic permutation for A at the second element, yielding (3, 4, 1, 5, 
2), and we start the basic permutation for B at the third element, yielding (4, 1, 5, 2, 3).  
Combining these values yields Table 6. 

Table 6.  Randomly selected intervals for the LHS example cells. 

Computer Run Interval for A Interval for B 

1 3 4 

2 4 1 

3 1 5 

4 5 2 

5 2 3 
  
 
These five cells are shown in Figure 21.  The next step is to obtain random values for A and B 
for each of the intervals.  The first value for A lies in interval 3; thus, the value must be 
between 0.0008 and 0.0012.  To select a value in the cell, a random number U is generated 
from a uniform distribution between 0 and 1.  Then A is defined as 0.0008 + 0.0004U.  The 
corresponding value for B lies in interval 4; thus the value for B must lie between the 60th and 
80th percentiles of the normal distribution.  A new random number U is generated from a 
uniform distribution between 0 and 1, and V = 0.6 + 0.2U is therefore uniform between 0.6 and 
0.8.  Let F denote the standard normal CDF  Then Y = F-1(V) is sampled from between the 
60th and 80th percentiles of the standard uniform CDF  Finally B = 0.005 + 0.001Y is sampled 
from between the 60th and 80th percentiles of a normal distribution with mean 0.005 and 
standard deviation 0.001.  Table 7 summarizes the random numbers in this case. 

Table 7.  Randomly selected values for A and B using the LHS example. 

Computer 
Run 

Value for A Value for B Value for A�B 

1 9.454E-4 5.398E-3 6.343E-3 

2 1.512E-4 3.862E-3 5.374E-3 

3 6.102E-5 6.684E-3 6.745E-3 

4 1.827E-3 4.504E-3 6.331E-3 

5 7.068E-4 4.898E-3 5.605E-3 

Mean 1.010E-3 5.069E-3 6.080E-3 
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Figure 21.  Cells sampled in the LHS example 

 
This method of generating a permutation for each basic event, using a random offset of a 
single permutation, is less general than choosing a random permutation for each basic event.  
It is used in SAPHIRE to save storage and, secondarily, to save execution time. 

 

Comparison of Simple Monte Carlo and Latin Hypercube Sampling 

The following information is a comparison of Simple Monte Carlo simulation and LHS.  Table 8 
contains output from SAPHIRE for the sample problem in the previous section and also the 
exact values, which should be obtained if the sample sizes were infinite.  Figure 22 contains a 
plot of the cumulative distribution function for each sample.  The results are very similar for 
these two methods.  Notice the size of the samples for each.  The LHS method requires only a 
quarter of the sample size of ordinary Monte Carlo, for similar accuracy.  This must be 
balanced against the fact that for some distributions it takes longer to generate a random 
number for an LHS sample than for a simple Monte Carlo sample.  Nevertheless, LHS 
sampling can often substantially reduce the time required for an analysis, while obtaining 
similar accuracy. 
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Table 8.  Comparison of Monte Carlo and LHS for sample problem. 

 Monte Carlo LHS Exact 
Random Seed 51530 27290 - 
Sample Size 200 50 - 
Point estimate 5.995E-003 5.995E-003 6.00E-003 
Mean Value 6.008E-003 5.994E-003 6.00E-003 
5th Percentile Value 3.890E-003 3.876E-003 4.10E-003 
Median Value 6.103E-003 6.320E-003 6.00E-003 
95th Percentile Value 7.783E-003 7.816E-003 7.90E-003 
Minimum Sample Value 2.798E-003 2.789E-003 - 
Maximum Sample Value 8.944E-003 8.605E-003 - 
Standard Deviation 1.163E-003 1.245E-003 1.16E-003 
Skewness -1.973E-001 -3.071E-001 0.000 
Kurtosis 2.860E+000 2.747E+000 3.09 

 

 
 

 

Figure 22.  Cumulative distribution plots for example using Monte Carlo and LHS 
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9.7 Inverse C.D.F Method 

One method for generating random numbers, called the inverse CDF method, is used for 
several distributions in SAPHIRE.  Let X denote a random variable, let x denote a number, and 
let F denote the cumulative distribution function (CDF) of X.   It follows directly from the 
definition 

 

 
 
that F(X) is a uniformly distributed random variable between 0 and 1.  Therefore, generate U 
from a uniform distribution between 0 and 1, and solve F(X) = U for X=F-1(U). 
 
For example, if X is exponentially distributed with mean�	, the CDF is 
 
F(x) = 1 – e-x/	   . 
 
To generate an exponentially distributed random variable X, first generate a uniformly 
distributed random variable U and let X = F-1(U) = ln(1-U).  Actually ln(U) can be used instead 
of ln(1-U), because if U is uniformly distributed between 0 and 1, then so is 1-U. 

The inverse CDF method is only one of many methods of generating random numbers from a 
specified distribution.  For some distributions it is natural and fast, and for other distributions a 
different method may be quicker.  If the inverse CDF is hard to compute, for example if it must 
be found at any point by numerical iteration on the (non-inverse) CDF, then the inverse CDF 
method is not a fast way to generate random numbers. 

There is one application where the inverse CDF method is very natural.  This is in Latin 
Hypercube Sampling (LHS), where stratified portions of the distribution must be sampled.  For 
example, if 20 points are to be sampled, one point must be below the 5th percentile, one must 
be between the 5th and the 10th percentiles, one between the 10th and 15th, and so forth.  It 
is easy to sample in this way from a uniform distribution:  For example, to sample a uniform (0, 
1) distribution between its 10th and 15th percentiles, we must sample it and obtain a number 
between 0.10 and 0.15.  Do this by letting U be uniform between 0 and 1.  Then let Y equal 
0.10 + 0.05U, which is between 0.10 and 0.15.  Then use the relationship X = F-1(Y) where X is 
between the 10th and 15th percentiles of F, as required.  For this reason, all Latin Hypercube 
samples are generated in SAPHIRE using the inverse CDF method. 

Whenever a distribution is specified, for either the frequency of an initiating event or the 
probability of a basic event, SAPHIRE performs some preliminary checks, to help the user 
avoid entering illegal or unwise values.  Further, the parameters of the distribution are always 
checked for legality.  For example, the mean must be nonnegative and the other parameter(s) 
must be nonnegative or positive, for all of the distributions used in SAPHIRE when 
representing probabilities.  When a violation is found, SAPHIRE prints a message on the 
screen stating what is wrong.  When a parameter is legal but degenerate, such as a zero 

F(x) =  P(X  x)	
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standard deviation or a zero range, SAPHIRE prints a warning message, but allows the value 
to be used. 

The term parameter refers not to the numbers that define a distribution (such as a mean and 
variance) but to the quantity that has the uncertainty distribution, namely, the frequency of an 
initiating event or the probability of a basic event.  SAPHIRE looks at the probability that the 
uncertain parameter is outside of its allowed range.  That is, the probability of a basic event 
must lie between 0 and 1, and the frequency of an initiating event must be greater than 0.  
These are the allowed ranges of the uncertain parameters.  If, for example, the parameter is 
assigned a normal distribution, it is possible for the parameter to take a negative value, which 
is not allowed for probabilities.  If the parameter is a basic event probability, it must not exceed 
1.0, but the normal distribution (and some others) allows this with positive probability.  
SAPHIRE prints a warning message on the screen if the probability of exceeding the maximum 
legal value is greater than 5E-4, and a second warning message if the probability of being less 
than the minimum legal value is greater than 5E-4.  The user may then change the distribution. 

Later, if an illegal value is generated in the course of Monte Carlo simulation, the value is 
discarded and a new value is generated.  If LHS is performed instead of simple Monte Carlo 
simulation, the range is restricted to the legal portion of the distribution.  Thus, in either case 
the distribution is truncated to its legal portion.  When the truncated portion has a very small 
probability, the effect of the truncation is negligible.  When a substantial fraction of original 
distribution is illegal, however, the effect of the truncation is to change the distribution, 
including its mean, from what the user specified.  Therefore, it is unwise to use a distribution 
that puts substantial probability outside the allowed range of the parameter. 

Whenever a distribution is specified, SAPHIRE compares it to the constrained noninformative 
distribution having the same mean.  As described earlier, the constrained noninformative prior 
is a diffuse distribution with the specified mean, and with the amount of diffuseness 
corresponding to ignorance of everything except the mean.  If the user specifies a distribution 
having a variance larger than that of the constrained noninformative distribution, SAPHIRE 
prints a warning message on the screen.  The warning states that the specified distribution is 
very diffuse, even more diffuse than a model of ignorance.  The user has put more weight in 
the tails of the distribution than the constrained noninformative distribution does, and so the 
user may be overly pessimistic. 

There can be valid reasons for choosing a distribution that is more diffuse than the constrained 
noninformative distribution.  For example, the mean, treated as known for the constrained 
noninformative distribution, may not be known very well, and the user may desire to model this 
uncertainty by adding some extra spread to the distribution.  Or the user may be duplicating 
portions of published earlier work, where a highly diffuse distribution was used.  If, however, 
the user simply picked a distribution with a large variance, in an attempt to model great 
uncertainty, it may be preferable to use the constrained noninformative distribution or one with 
a comparable variance.
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10. SEISMIC EVENTS 

10.1 Fragility and Component Failure Probabilities 

The severity of an earthquake is measured by its peak ground acceleration, denoted g.  The 
fragility distribution of a component is the probability that the component fails, expressed as a 
function of g.  The fragility curve is a graph of this function, plotting the probability of failure 
against the peak ground acceleration.  For simplicity, the fragility is assumed to be based on a 
lognormal distribution.  The approach is based on Kennedy et al. (1980). 

For a particular component, let Af denote the "failure acceleration," the peak ground 
acceleration that is just sufficient to cause a component to fail.  It is random, because 
sometimes a component will fail when subjected to a certain acceleration and sometimes an 
apparently identical component will survive when subjected to the same acceleration.  The 
randomness is a really a property of the components.  Af is random in the frequentist sense; 
that is, it is the random outcome of a hypothetical repeatable experiment in which we are 
assumed able to measure the acceleration that is just enough to cause the particular 
component to fail.  This distribution is another way of expressing the fragility distribution, with 
large Af corresponding to small fragility. 

Assume for the moment that there is no uncertainty, only randomness as described above.  
Uncertainty will be modeled later.  Model the failure acceleration as a lognormal random 
variable: 

 (10-1) 
 
Here �R is a lognormal random variable such that ln(�R)/�R is normal(0,1), and 
 is the median 
failure acceleration.  For now, 
 is treated as being perfectly known.  The quantity �R is a 
parameter of the model.  The subscript R stands for "random," and is a reminder that this 
probability distribution refers to random differences between nominally like components, not to 
subjective uncertainty.  Another way to write (10-1) and the explanatory text is 
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Consider some specific acceleration g.  The probability of a component's failure, given that the 
component is subjected to this g, is: 

P[ g 0 Af ] = P[Af 	g ]  
 = P[ ln(Af/ 
)/�R 	 ln(g/ 
)/�R ] (10-3) 
  = �[ ln(g/ 
)/�R] 
 

f RA  =    .& 1
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where � is the standard normal cumulative distribution function, and the last step follows from 
Equation (10-2).  Equation (10-3) gives the fragility curve for the component, relating the 
assumed peak ground acceleration g to the probability that the component fails. 

For a PRA without an uncertainty analysis, Equation (10-3) is used for the basic event failure 
probability, conditional on the acceleration g.  The frequency of g is treated like the frequency 
of an initiating event. 

Now consider uncertainty.  Let a be the best estimate of the uncertain 
.  This is the quantity 
entered by the user in the field for median failure acceleration.  Model the uncertainty of 
 in 
the usual Bayesian way by treating 
 as a random variable with median a: 

 
 
where �U is a lognormal random variable such that ln(�U)/�U is normal(0,1).  This can be 
rewritten as 
 

)1,0()/ln( normala
R

/
�
&  

 
Note, the meaning of "best estimate" is different from the use in the non-seismic portions of 
SAPHIRE.  Here, the best estimate is the median of the uncertainty distribution, whereas in the 
non-seismic analysis the best estimate is the mean of the uncertainty distribution.  There are 
two reasons for this.  (1) It follows Kennedy et al. (1980), and so is consistent with customary 
use by seismic analysts.  (2) It is more conservative than using the mean.  The mean is larger 
than the median, and corresponds to a larger failure acceleration, hence a smaller fragility.  
Use of the mean failure acceleration as a nominal value would result in a larger nominal failure 
acceleration, and a smaller nominal fragility.  This would lead to more severe truncation of cut 
sets, and also a smaller nominal top event probability.  This is the reverse of the usual, non-
seismic, case.  There, the failure probability, not a failure acceleration, has an uncertainty 
distribution, and use of the mean instead of the median results in a larger nominal failure 
probability, less severe truncation of cut sets, and a larger nominal top event probability. 

In summary, the user inputs a, �R, and �U, where a estimates 
.  Here 
 is the median failure 
acceleration (the median of the distribution whose dispersion is determined by �R), and a is the 
median of the distribution quantifying uncertainty about 
, the distribution whose dispersion is 
determined by �U.  The uses by SAPHIRE of the input quantities are discussed next. 

For many purposes, the nominal basic event probabilities are used.  These include truncating 
cut sets, calculating the nominal top event probability, and calculating basic event 
importances.  Conditional on a peak ground acceleration g, the nominal probability of any 
basic event is given by Equation (10-3) with a substituted for 
. 

When performing an uncertainty analysis in a PRA, it is customary to quantify the uncertainties 
in the failure probabilities by Monte Carlo simulation.  This approach is followed in SAPHIRE.  

& 1 =  a U
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First, 
 is generated by Monte Carlo sampling, by letting z be generated by a standard normal 
random number generator, and letting 

 (10-4) 
 
For a given g, the failure probability for a component is given by substituting this value of 
 into 
Equation (10-3). 

A quantity of some interest is denoted HCLPF (pronounced hick-clip or hick-cliff), the 
maximum acceleration that corresponds to High Confidence of Low Probability of Failure.  The 
quantity is calculated as 

HCLPF = a exp[�1.645(�R + �U)] , 
 
which is derived as follows.  HCLPF requires both high confidence and low probability.  The 
words high and low are taken to mean 0.95 and 0.05, respectively.  Consider first the low-
probability portion:  In terms of the true, but unknown, median failure acceleration, 
, the 
probability of a component's failure is given by Equation (10-3).  The failure probability is low, 
that is, p 	 0.05, if ln(g/
)/�R at most the 5th percentile of the standard normal distribution.  
This says that 

ln(g/
)/�R 	 �1.645  , 
 
from which we obtain 
 
g 	 
�exp(�1.645�R)  . (10-5) 
 
That is the low-probability portion of the definition.  For the high-confidence portion, recall that 

 is not known, but has an uncertainty quantified by Equation (10-4).  Therefore, with high 
(95%) confidence we have 

ln(
/a)/�U 0 �1.645 
 
or, equivalently, 
 
a exp(�1.645�U) 	 & . 
 
Substitute this bound on 
 into Equation (10-5).  It follows that we have high confidence that 
Equation (10-5) is true if 

g 	 a exp(�1.645�U)exp(�1.645�R) / a exp[�1.645(�R + �U)]  . 
 

The largest such g is the expression on the right, the HCLPF value. 

& � =  aexp( z)  .U
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10.2 Frequencies of Seismic Events 

For cut set truncation, the user enters a single peak ground acceleration, g.  Equation (10-3) is 
used with this g and the best estimate of 
 to determine the nominal basic event probabilities.  
Cut sets are truncated based on these probabilities.  It is a mistake to enter a small value of g, 
because too many cut sets will be truncated. 

For all other portions of the analysis, the user may enter up to 20 peak ground accelerations gi 
that could be produced by an earthquake, and up to 20 corresponding frequencies, with units 
1/yr.  This assumes that the user knows the frequencies.  To account for uncertainty in the 
frequencies in a simple way, three sets of accelerations and frequencies can be entered, low, 
medium, and high.  The analysis can be based on the medium (best estimate) set, or on the 
low set (mild earthquake assumptions) or the high set (severe earthquake assumptions). 

Recall that non-seismic analyses have initiating events, with event frequencies.  Examples are 
loss of off-site power and a large LOCA.  A seismic analysis differs, because each postulated 
gi is an initiator with its corresponding frequency.  The events such as loss of off-site power 
and large LOCA are consequences of the earthquake.  We will call them "induced initiators," 
but mathematically, they are events just like basic events.  They have probabilities, not 
frequencies, and these probabilities are conditional on the value of gi.  Similarly, the basic 
events have probabilities that depend on gi, found using Equation (10-3) above.  In an 
accident sequence, the frequency of gi is multi plied by the probability of the induced initiator 
and by the probability of failure of each other component or system in the sequence, to yield 
the frequency of the sequence, with units 1/yr.  The frequency of a plant state is the sum of the 
frequencies of the sequences (with various levels of gi) corresponding to that plant state, plus 
the frequency of the plant state found by a non-seismic analysis assuming no earthquake. 

After setting up the initiators and the events as described above, SAPHIRE performs its 
seismic calculations in the same way that it performs calculations for non-seismic sequences. 

 

10.3 SAPHIRE Seismic Implementation 

The following discusses the features and use of the seismic module in SAPHIRE.  This is 
intended to introduce users who are already familiar with seismic and PRA analyses to the 
SAPHIRE seismic module interface, including how to input data and perform seismic 
calculations.  This is not intended to teach users how to do seismic-PRA. 

The discussion assumes the availability of internal-events PRA.  Specifically, random-failure 
composed system-models, accident sequence progression, and initiating events have all been 
defined and developed for the engineered system of interest (e.g., nuclear power plant).  The 
seismic analysis is being factored into that engineered system, which is already well 
understood and comprehensively modeled.  Therefore, functional vulnerabilities have been 
identified and the seismic analysis consists of converting to and adding in the seismic-induced 
failures. 
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SAPHIRE provides the flexibility to construct seismic risk analysis models by either (or a 
combination) of two methods.  First, seismic-specific event tree and fault tree models can be 
developed via the graphical interface.  Second, SAPHIRE contains a provision for performing 
transformations in the form of Boolean identities (i.e., A=A+B, A=B, or A=A*B).  This allows the 
user to build on an internal events analysis when developing a seismic model.  More 
specifically, after site-specific seismic vulnerabilities have been identified (through plant walk-
downs or some other site-specific review), they can be incorporated into an existing internal 
events analysis using a set of basic-event transformations that either replace or add the 
seismic failure events to the existing basic events. 

 
10.3.1 The Hazard Curve 

The hazard curve is the representation of the range of possible earthquakes.  It is commonly 
found in the form of a probability of exceedence curve, with the earthquake ground 
acceleration on the horizontal and the probability of exceeding that acceleration on the vertical 
axes.  (One source for this information is NUREG-1488.)  However, SAPHIRE utilizes this 
information in the form of a histogram (or more precisely, a discreet probability density 
distribution).  Specifically, the density needs to be arraigned into a maximum of 20 ground 
acceleration bins with each one assigned a yearly frequency of occurrence. 

To input this information into SAPHIRE, the user selects "Modify " from the SAPHIRE menu.  
Selecting "Histograms" from the sub-menu brings up a dialog box containing the list 
histograms.  Click the right mouse button for the pop-up menu containing options to be 
executed.  Selecting "Add" allows the user to actually create the histogram.  Each bin 
(numbered 1-20) is associated with an event name (e.g., HAZARDEVENT01), which is how 
that specific earthquake event (magnitude and frequency) is identified in the analysis.  Note 
that these event names are generic.  That is, only a single set of event names, corresponding 
to the 20 bins of a single histogram, are defined.  The data associated with a particular event 
name is taken from the histogram that is selected for use with a particular family.  Which 
histogram will be used in the analysis is identified by selecting the Project � Modify option.   

 
10.3.2 Modeling Seismic Event and Fault Trees 

The most straightforward approach (at least with respect to using SAPHIRE) for creating a 
seismic analysis model involves the development of a seismic event tree that prioritizes and 
links the seismic-induced internal events initiators with the earthquake (the true initiating 
event).  This single seismic event tree begins with a generic seismic-initiating event set to a 
value of 1.0.  [The actual magnitude (g- level) and frequency of the earthquake of interest are 
identified by the user and factored into the analysis when the cut sets are generated and 
quantified.]  The event tree top- events are those internal events initiators that have the 
potential to be induced by an earthquake.  They are listed in order of severity (in terms of 
challenging plant safety systems), with the more severe induced-initiators listed first.  This 
addresses the potential pitfall of over-counting core damage sequences (i.e., a single 
earthquake inducing both a large LOCA and a small LOCA at the same time).  However, these 
event tree top- events are treated as seismic basic- events (or fault trees) with associated 
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seismic fragility data.  The resulting end states are therefore the frequencies of seismically 
induced challenges (i.e., internal- events type initiators) to the plant.  These in turn can be 
identified as transfers to the systems analysis (internal-events accident sequences) event 
trees.  This linking will automatically replace the internal events analysis initiator on the 
systems analysis event tree with the transferred information from the seismic event tree.  This 
is how the linking between the earthquake, induced initiating event, and the system models are 
made. 

The actual system models are commonly fault trees.  As mentioned above, the seismic system 
models can be created as independent, stand-alone fault trees.  However, using SAPHIRE, 
they can also be integrated with the internal events analysis. 

SAPHIRE allows seismic failures to be identified with a specific Model Type.  A basic event will 
be able to “cloned” so that one failure model is used for one model type (e.g., internal events) 
while a different failure model (including failure parameters) is used in a different model type 
(e.g., seismic).  SAPHIRE will automatically make these cloned events in the database at the 
time the model type information is assigned to the basic event.  When editing a basic event, 
the dialog will have a “Applicability” option via the event attributes link (the other information for 
the attributes is to be determined).  The model type applicability attributes will define the 
event’s specific instance to be used for each model type.  The available model types are user 
defined and are available from the Project �  Model Type option. 
 
10.3.3 Basic Event Data - Fragilities and Uncertainty Data 

Basic events are defined in the basic event database.  Seismic failure data is usually 
characterized by a median fragility and two uncertainty terms representing the random 
uncertainty and the confidence uncertainty (�R and �U, respectively).  There is also an added 
factor that might or might not be included in seismic failure data called the structural response 
factor (SRF).  The SRF quantifies the amount of amplification or dampening of ground motion 
a particular piece of equipment experiences during an earthquake, by virtue of its location.  For 
example, during a postulated earthquake, a relay on the fourth floor of a building would likely 
experience a different magnitude of shaking compared to a relay on the first floor.  The SRF 
accounts for this difference.  SAPHIRE does not maintain the SRF information separately.  
Before entering the seismic fragility data, the SRF needs to be factored in, and then the SRF- 
adjusted fragility data is entered into the database. 

To enter seismic data into a seismic basic event record, go to the Failure Model for a selected 
basic event.  Selecting "G" or "H" defines the basic event as a seismic basic event.  The "G" 
and "H" simply identify the basis for the assumed magnitude of the peak ground acceleration 
(PGA) or g-level, for initially generating cut sets.  If the "G" option is selected, the user will 
need to specify a particular g level to be used (with the fragility curve) to calculate a point-
estimate probability for the cut set generation process.  The "H" option tells SAPHIRE to utilize 
the highest g level found on the user-specified hazard curve. 
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10.3.4 Generating and Quantifying Cut Sets 

SAPHIRE requires a failure probability for each basic event to generate cut sets.  For the 
seismic basic events, this requires an assumed earthquake magnitude to combine with the 
basic event fragility data to produce a failure probability.  The user can choose from two 
options, which are set individually for each basic event, the "G" or "H" option described in 
Section 10.6.   Note that if the user expects to enable the cut set truncation feature when 
generating cut sets, the most prudent approach is to specify the highest g-level (i.e., PGA in 
units of gravity) that might be considered in subsequent calculations.  Otherwise, cut sets that 
might be important in later analyses would be truncated because their seismic- induced failure 
probabilities fall below the truncation limit. 

Seismic cut set quantification is performed similar to a regular analysis.  The only difference is 
that the specific Model Type to be evaluated needs to be indicated during the analysis.   An 
important feature to keep in mind is that only a single cut set list is maintained for each system, 
sequence, or end state in SAPHIRE.  This limit also applies to seismic Model Type 
calculations. 
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11. COMPOUND EVENTS 

In SAPHIRE, a compound event is a basic event that has parameters that are basic events and 
constants, where these parameters are utilized by way of an external calculation.  Further, these 
parameters or sub events may themselves be other compound events, allowing a nested 
modeling approach.  Each of these compound events combines the sub-events based upon the 
selected function to determine its value.  These functions are called plug-in functions or just 
plug-ins.  A plug-in is software that follows an algorithm that combines the sub events and 
constants.  Currently there are eight plug-in libraries included in SAPHIRE.  These eight plug-in 
libraries and their included functions are explained briefly below.  Four of these plug-in libraries 
deal with the calculation of common-cause failure and the other three plug-in libraries are more 
general purpose in their nature. 

  

Common-Cause Plug-Ins 

PlugCCFMGL –  Performs Common Cause Failure calculations based on the Multiple 
Greek Letter methodology. 

  

PlugCCFAlpha - Performs Common Cause Failure calculations based on the Alpha Factor 
with the non-staggered testing methodology. 

 

PlugCCFStag - Performs Common Cause Failure calculations based on the Alpha Factor 
with the staggered testing methodology. 

   

PlugCCFBeta - Performs Common Cause Failure calculations based on the Beta Factor 
methodology. 

 

General Purpose Plug-Ins 

PlugUtil - Utility library to perform general mathematical operations on basic events 
(e.g., add two events together, calculate the minimal cut set upper bound 
of a group of basic events, and divide two basic events). 

 

PlugTimeSeries - Library to determine the probability that a process (a series of events 
sequential in time) spans a duration longer than the mission time. Each of 
the sequential events (up to 19) should be represented by other basic 
events with their own uncertainty distributions. 
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PlugCapacityLoad - Library to determine the chance that a load on a component exceeds its 
capacity (for example, stress versus strength). The load-capacity plug-in 
take applicable input values for only two parameters, the load and the 
capacity, and then calculates the probability that the load will be larger 
than the capacity.  This probability is the component’s failure probability 
because if the load on a component is higher than its actual capacity, the 
component will fail (by definition). 

   

Plug_LoopRec - Library sums the frequency (lambda) for the five classifications:  Plant 
Centered, Grid Related, Switchyard Related, Severe Weather, and 
Extreme Weather.  The event record containing the calculated probability 
is output.  The library also has a procedure that calculates plant specific 
diesel generator nonrecovery probabilities.    

 

For a basic event, the "C" calculation type is used to indicate that the basic event is a 
“compound event.”  Compound events are basic events that utilize an external (to SAPHIRE) 
calculation to determine its probability.  These external calculations are contained within a 
Windows-compatible library, called a dynamic link library (DLL).  Typically, the common DLLs 
are stored in the SAPHIRE tools folder and include calculations such as common cause failure 
probabilities and general calculations (via the “utility” library).  SAPHIRE will first check the 
project folder for the DLL and, if not found there, will search the SAPHIRE tools folder. 

The utility compound library has procedures for general operations such as adding basic events 
together, multiplying events, dividing events, etc.  In other words, it enables a handful of general 
purpose mathematical calculations to be performed on any basic events.  Included in this library 
is the “min-cut” calculation which will take the minimal cut set upperbound calculation on the 
specified basic events (up to 20 per compound event).  One could utilize this calculation to 
make a model via the “supercomponent” approach where a basic event is represented by other 
lower-level basic events.  The minimal cut sets would only contain the higher-level event (the 
supercomponent) but the event’s probability would automatically be determined by the 
compound DLL calculation.  Using these compound events allow the user to customize their risk 
and reliability assessment to handle complex calculations specific to their analysis needs.  The 
remainder of this section will cover, in detail, the calculations provided by the common-cause 
failure plug-in. 

 

11.1 General Structure of the Common Cause Failure Plug-in 

The older common-cause failure (CCF) plug-in libraries are based on work by Rasmuson 
(1998).  The actual functions of the CCF plug-ins will be explained below.  A group of four 
components with a failure of all four components necessary was selected to demonstrate the 
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functionality, but other group sizes (up to six) may be specified in SAPHIRE.  Note that the CCF 
plug-in has been superseded by the CCF R Calculation Type basic event. 

The event failures are noted as follows: 

 

I1, I2, I3, I4  - Indicates the independent failure of the subscripted component. 

C12, C13, C14, 

C23, C24, C34  - Indicates the common-cause failure of the 2 subscripted components. 

C123, C124, C134, 

C234  - Indicates the common-cause failure of the 3 subscripted components. 

C1234  - Indicates the common-cause failure of the 4 subscripted components. 

The Basic Parameter Model for CCF analysis defines the following: 

 1T = I1 U C12 U C13 U C14 U C123 U C124 U C134 U C1234 

 2T = I2 U C12 U C23 U C24 U C123 U C124 U C234 U C1234 

 3T = I3 U C13 U C23 U C34 U C123 U C134 U C234 U C1234 

 4T = I4 U C14 U C24 U C34 U C124 U C134 U C234 U C1234 

where the subscript T denotes total failure from all causes. 

The failure probability of 1T, 2T, 3T, or 4T is given by the following equation: 

QT= Q1+ 3Q2 + 3Q3 + Q4 

where Q1 = P[I1] = P[I2] = P[I3] = P[I4], Q2 = P[C12] = P[C13] = P[C14] = P[C23] = P[C24] = P[C34], Q3 

= P[C123] = P[C124] = P[C134] = P[C234], and Q4 = P[C1234]. 

The definitions of the Q Values, Q1, Q2, Q3, Q4,.. Qn , are where the CCF plug-in libraries differ.  
We will highlight the differences for the different methods. 

Multiple Greek Letter methodology defines the Q values in the following manner. 

Q1
(4) = (1-�)QT 

Q2
(4) = 1/3 �(1-�)QT 

Q3
(4) = 1/3 ��(1-�)QT 

Q4
(4) = ���QT 
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The generalization of this definition is given by 
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Alpha-Factor Model (Non –staggered) methodology defines the Q values in the following 
manner. 

Q1
(4) = T

t

Q
&
& )4(

1  

Q2
(4) = T

t

Q
&
&
3

2 )4(
2  

Q3
(4) = T

t

Q
&
& )4(

3  

Q4
(4) = T

t

Q
&
& )4(

44  

The generalization of this definition is given by 

Qk
(m) = 



�

�
��
�

�




�

�
��
�

�
�
� T

t

m
k Q

k
m

k
&

& )(

1
1

     

where 



�

�
m

k

m
kt k

1

)(&&   

and 



 

107 

� )!()!1
)!1(

1
1

kmk
m

k
m

��
�

�


�

�
��
�

�
�
�

 

Alpha-Factor Staggered Testing methodology defines the Q values in the following manner: 

Q1
(4)  =  TQ)4(

1&  
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Beta-Factor methodology defines the Q values in the following manner. 

Q1
(4)  =  (1-�)QT 

Q2
(4)  =  0 

Q3
(4)  =  0 

Q4
(4)  =  �QT 

The generalization of this definition is given by 

Qk
(m)  = (1-�)QT   for k = 1 

 for m > k > 1 

  �QT  for k = m 

There are equations to transform the alpha factors to the MGL factors and vice-versa.  These 
are explained here to allow the example to be worked in those three functions, but they are not 
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used in any of the CCF plug-ins.  Since our example is for a group of four components, we will 
assume all four components must fail.  Another way of stating this is a system of four 
components with a success criterion of 1-of-4.  Further, assume the value of QT = 0.01.   

The MGL parameters are: 

�  =  0.01 

�  =  0.4 

�  =  0.4 

 

These factors are converted to alpha-staggered by the following transformations, which are 
specific to a group of four components. 


1  =  1.0 – �  = 0.99 


2  =  (1.0 – �)�  = 0.006 


3  =  (1.0 – �)��  = 0.0024 


4  =  ���   = 0.0016 

The MGL factors are converted to alpha (non-staggered) by the following transformations, which 
are specific to a group of four components. 

 
1  =  
)2()2(6

)1(12
2�3�

�
���

�
  = 0.9958 


2  = 
)2()2(6

)1(6
2�3�

3�
���

�
  = 0.0030 


3  = 
)2()2(6

)1(4
2�3�

2�3
���

�
  = 0.0008 


4  = 
)2()2(6

3
2�3�

�32
���

  = 0.0004 

A key to understanding these CCF plug-in functions is to work with minimal cut sets.  The 
following list contains the 15 cut sets (think in terms of combinations of failures for the four 
components) that describe the failure of these components. 

 [I1, I2, I3, I4], [I1, I2, C34], [I1, I3, C24], [I1, I4, C23], [I2, I3, C14], [I2, I4, C13],  

[I3, I4, C12], [C12, C34], [C13, C24], [C14, C23], [I1, C234], [I2, C134], [I3, C124],   
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[I4, C123], and [C1234].  

The failure probability for the undesired event S = 1T � 2T � 3T � 4T which we denote by Qs is 
given, in terms of the basic parameter model by: 

Qs =  Q1
4+ 6Q1

2Q2 + 3Q2
2
 + 4Q1Q3

 + Q4 

 

Q Values from MGL 

Calculating the Q values from the MGL factors yields the following: 

Q1
(4)  =  (1-�)QT   = (1-0.01)*0.01  =  9.9E-3  

Q2
(4)  =  1/3 �(1-�)QT  = 1/3*0.01*(1-0.4)*0.01  =  2.0E-5  

Q3
(4)  =  1/3 ��(1-�)QT  = 1/3*0.01*.4*(1-0.4)*0.01 = 8.0E-6 

Q4
(4)  =  ���QT    = 0.01*0.4*0.4*0.01  = 1.6E-5 

 

Calculating value of Qs from the above equation yields the following: 

Qs =  Q1
4+ 6Q1

2Q2 + 3Q2
2
 + 4Q1Q3

 + Q4 

 =  9.9E-34+ 6*(9.9E-32 * 2.0E-5) + 3*(2.0E-5)2
 + 4*(9.9E-3)*8.0E-6)  +1.6E-5 

 =  1.633E-5 

 

Q Values from Alpha Non-Staggered  

Calculating the Q values from the Alpha Non-Staggered methodology factors yields the 
following: 



�

�
m

k

m
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1

)(&&   = 1*0.9958+2*0.0030+3*0.0008+4*0.0004  

   = 1.0058  

Q1
(4)  =  T

t

Q
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& )4(

1  = 0.9958/1.0058*0.01  = 9.9E-3  

Q2
(4)  =  T

t

Q
&
&
3

2 )4(
2  = 2*0.0030/3*1.0058*0.01 = 1.99E-5 
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Q3
(4)  =  T

t

Q
&
& )4(

3  = 0.0008/1.0058*0.01  = 7.95E-6 

Q4
(4)  =  T

t

Q
&
& )4(

44  = 4*0.0004/1.0058*0.01 = 1.59E-5 

Calculating value of Qs from the above equation yields the following: 

Qs = Q1
4+ 6Q1

2Q2 + 3Q2
2
 + 4Q1Q3

 + Q4 

= 9.9E-34+ 6*(9.9E-32 * 1,99E-5) + 3*(1.99E-5)2
 +  4*(9.9E-3)* 7.95E-6) +1.59E-5 

= 1.593E-5 

 

Q Values from Alpha Staggered  

Calculating the Q values from the Alpha Staggered methodology factors yields the following: 

Q1
(4)  =  TQ)4(

1&  =  0.99*0.01   = 9.9E-3 

Q2
(4)  =  TQ)4(

23
1&  = 0.006*0.01/3  = 2.0E-5 

Q3
(4)  =  TQ)4(

33
1&  = 0.0024*0.01/3  = 8.0E-6 

Q4
(4)  =  TQ)4(

4&  = 0.0016*0.01  = 1.6E-5 

Calculating value of Qs from the above equation yields the following: 

Qs = Q1
4+ 6Q1

2Q2 + 3Q2
2
 + 4Q1Q3

 + Q4 

= 9.9E-34+ 6*(9.9E-32 * 2.0E-5) + 3*(2.0E-5)2
 + 4*(9.9E-3)*8.0E-6)  +1.6E-5 

=  1.633E-5 

 

Q Values from Beta Factor  

Calculating the Q values from the Beta factor methodology yields the following: 

Q1
(4) = (1-�)QT  = (1-0.01)*0.01 = 9.9E-3 

Q2
(4) = 0   
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Q3
(4) = 0   

Q4
(4) = �QT  = 0.01*0.01  = 1.0E-4 

Calculating value of Qs from the above equation yields the following: 

Qs = Q1
4+ 6Q1

2Q2 + 3Q2
2
 + 4Q1Q3

 + Q4 

= 9.9E-34+ 6*(9.9E-32 * 0.0) + 3*(0.0)2
 + 4*(9.9E-3)*0.0) +1.0E-4 

= 1.0001E-4 

Note that the beta factor is conservative since it assumes that a conditional failure will fail all 
redundant trains in the CCF group. 
 
 

11.2 Using the Common Cause Failure Plug-in 

This section will describe how the older CCF plug-in calculates probabilities during an event 
assessment.  This is what the CCF value is, given that one or more of the input events has 
failed or is out of service.  SAPHIRE can use two treatments to calculate the CCF value.  The 
first is based on the work of Rasmuson (1998) and the principle that the potential exists for 
common-cause failures to occur in any situation.   The second is based on the concept of 
reducing component count whenever an independent event fails or is taken out of service (not 
for a failure).  We will look at each in turn. 

Using the same group of four components with a failure of all four components necessary, let us 
examine the impact of one component in a failed state, where we consider the possibility of the 
remaining components failing conditional on the first failure.  Next we’ll examine two 
components in a failed state, then three components in a failed state.  It is important to work this 
through in terms of cut sets.  For the example, we will utilize the Q values from the MGL 
methodology. 

The One Component Failure Case 

First assume that component 1 has failed, so the conditional failure probability of S given 1T is 
given by: 

P[S| 1T]  = 
]1[

]4321P[

T

TTTT

P
���    

=   QS / QT  

= 1.633E-5/1.0E-2 = 1.633E-3 
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The Two Component Failure Case 

Next assume that components 1 and 2 have failed, so the conditional failure probability of S 
given 1T and 2T is given by: 

P[S| 1T � 2T]  =  
]21[

]4321P[

TT

TTTT

P �

���   

The numerator remains the same.  It is the calculation of the denominator that is vital.  Lets go 
back to the Basic Parameter Model for CCF analysis definition of 1T and 2T: 

1T  = I1 U C12 U C13 U C14 U C123 U C124 U C134 U C1234 

2T  = I2 U C12 U C23 U C24 U C123 U C124 U C234 U C1234 

The intersection of 1T and 2T yields: 

1T � 2T  = (I1 U C12 U C13 U C14 U C123 U C124 U C134 U C1234) � 

(I2 U C12 U C23 U C24 U C123 U C124 U C234 U C1234) 

  = C12 U C123 U C124 U C1234 

Using the Q values derived from the MGL methodology, we can calculate  

P[1T � 2T] = Q2 + 2Q3 + Q4 

 = 2.0E-5 + 2 * 8.0E-6 + 1.6E-5 

     = 5.2E-5 

and 

Qs = Q1
4+ 6Q1

2Q2 + 3Q2
2
 + 4Q1Q3

 + Q4 

= 9.9E-34+ 6*(9.9E-32 * 2.0E-5) + 3*(2.0E-5)2
 + 4*(9.9E-3)*8.0E-6) +1.6E-5 

= 1.633e-5 

Therefore 

Qs/ P[1T � 2T] = 1.633e-5/5.2E-5 

 = 0.3140  
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The Three Component Failure Case 

Next assume that components 1 and 2 and 3 have failed, so the conditional failure probability of 
S given 1T and 2T and 3T is given by: 

P[S| 1T � 2T � 3T] = 
]321[

]4321P[

TTT

TTTT

P ��

���
  

The numerator again remains the same.  It is the calculation of the denominator that is vital.  
Lets go back to the Basic Parameter Model for CCF analysis definition of 1T, 2T and 3T: 

1T  =  I1 U C12 U C13 U C14 U C123 U C124 U C134 U C1234 

2T  =  I2 U C12 U C23 U C24 U C123 U C124 U C234 U C1234 

3T  =  I3 U C13 U C23 U C34 U C123 U C134 U C234 U C1234 

 

The intersection of 1T and 2T and 3T yields: 

1T � 2T � 3T  = (I1 U C12 U C13 U C14 U C123 U C124 U C134 U C1234) � 

(I2 U C12 U C23 U C24 U C123 U C124 U C234 U C1234) � 

(I3 U C13 U C23 U C34 U C123 U C134 U C234 U C1234) 

 = C123 U C1234 

Using the Q values derived from the MGL methodology, we can calculate  

P[1T � 2T � 3T]  = Q3 + Q4       = 8.0E-6 + 1.6E-5  =  2.4E-5 

and 

Qs = Q1
4+ 6Q1

2Q2 + 3Q2
2
 + 4Q1Q3

 + Q4 

= 9.9E-34+ 6*(9.9E-32 * 2.0E-5) + 3*(2.0E-5)2
 +  4*(9.9E-3)*8.0E-6) +1.6E-5 

=  1.633e-5 

Therefore 

Qs/ P[1T � 2T � 3T]  = 1.633e-5/2.4E-5 

  = 0.6804  
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The One Component Outage Case 

First assume that component 1 has failed, so the conditional failure probability of S given 1M is 
given by: 

P[S| 1M]  = 
]1[

]4321P[

M

TTTT

P
���

  

Here are the fifteen cut sets that represent the possible failures of the four components. 

[I1, I2, I3, I4], [I1, I2, C34], [I1, I3, C24], [I1, I4, C23], [I2, I3, C14], [I2, I4, C13],  

[I3, I4, C12], [C12, C34], [C13, C24], [C14, C23], [I1, C234], [I2, C134], [I3, C124],   

[I4, C123], and [C1234].  

Let’s modify the cut sets based on the knowledge that I1 is out. 

[I2, I3, I4], [I2, C34], [I3, C24], [I4, C23], [I2, I3, C14], [I2, I4, C13],  

[I3, I4, C12], [C12, C34], [C13, C24], [C14, C23], [C234], [I2, C134], [I3, C124],   

[I4, C123], and [C1234].  

The probability then becomes: 

Qs|1M  = Q1
3+ 3Q1Q2 + 3Q1

2Q2+ 3Q2
2
 + Q3

 + 3Q1Q3
 + Q4 

= 9.9E-33+ 3*(9.9E-3 * 2.0E-5) + 3*(9.9E-32 * 2.0E-5) + 3*(2.0E-5)2
   + 9.9E-3 +  

3*(9.9E-3)*8.0E-6)  + 1.6E-5 

=  2.58E-5 

The Two Component Outage Case 

First assume that component 1 and 2 are out for preventive maintenance, so the conditional 
failure probability of S given 1M and 2M is given by: 

P[S| 1M � 2M]  = 
]21[

]4321P[

MM

TTTT

P �

���
  

Here are the fifteen cut sets that represent the possible failures of the four components. 

[I1, I2, I3, I4], [I1, I2, C34], [I1, I3, C24], [I1, I4, C23], [I2, I3, C14], [I2, I4, C13],  

[I3, I4, C12], [C12, C34], [C13, C24], [C14, C23], [I1, C234], [I2, C134], [I3, C124],   

[I4, C123], and [C1234].  



 

115 

Let’s modify the cut sets based on the knowledge that I1 and I2 are out. 

[I3, I4], [C34], [I3, C24], [I4, C23], [I3, C14], [I4, C13],  

[C13, C24], [C14, C23], [C234], [C134], [I3, C124],   

[I4, C123], and [C1234].  

The probability then becomes: 

 

Qs|P[1M � 2M] = Q1
2+ Q2 +4Q1Q2 + 2Q2

2
 + 2Q3

 + 2Q1Q3
 + Q4 

= 9.9E-32+ 2.0E-5 + 4*(9.9E-3 * 2.0E-5) + 2*(2.0E-5)2
  +    2*8.0E-6 + 

2*(9.9E-3)*8.0E-6)  + 1.6E-5 

= 1.51E-4 

 

The Three Component Outage Case 

First assume that component 1, 2, and 3 are out for preventive maintenance, so the conditional 
failure probability of S given 1M, 2M and 3M is given by: 

  

P[S| 1M � 2M � 3M]  = 
]321[

]4321P[

MMM

TTTT

P ��

���
  

Here are the fifteen cut sets that represent the possible failures of the four components. 

  

[I1, I2, I3, I4], [I1, I2, C34], [I1, I3, C24], [I1, I4, C23], [I2, I3, C14], [I2, I4, C13],  

[I3, I4, C12], [C12, C34], [C13, C24], [C14, C23], [I1, C234], [I2, C134], [I3, C124],   

[I4, C123], and [C1234].  

 

Let’s modify the cut sets based on the knowledge that I1, I2, and I3 are out. 

[I4], [C34], [C24],  [C14], [C234], [C134], [C124], and [C1234].  
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The probability then becomes: 

Qs|P[1M � 2M � 3M] = Q1+ 3Q2 + 3Q3
 + Q4 

= 9.9E-3+ 3*2.0E-5 + 3*8.0E-6 + 1.6E-5 

= 1.00E-2 

Using the same group of four components with a failure of all four components necessary, let us 
examine the impact of components that are either failed or out for preventive maintenance.  The 
potential exists for common-cause failures to occur.  The independent failure of the component 
out for maintenance cannot occur, but the common-cause failure can occur for others in the 
group.  First, we will examine the one component that has failed and then the other component 
that is out for preventive maintenance.  Then, the case of two components that fail with one 
more component that is out for maintenance will be explored.  Lastly, we will discuss the case 
where one component is failed with two more components out for maintenance. 

Again, we list the fifteen cut sets that represent the possible failures of the four components. 

 [I1, I2, I3, I4], [I1, I2, C34], [I1, I3, C24], [I1, I4, C23], [I2, I3, C14], [I2, I4, C13],  

[I3, I4, C12], [C12, C34], [C13, C24], [C14, C23], [I1, C234], [I2, C134], [I3, C124],   

[I4, C123], and [C1234].  

 

One Component Failed and another Out for Preventive Maintenance 

First assume that component 1 has failed and component 2 is out for maintenance, so the 
conditional failure probability of S given 1T and 2m is given by: 

P[S|1T � 2M]  = 
]1[

]2P[ / ]4321P[

T

MTTTT

P
���

  

Here are the fifteen cut sets that represent the possible failures of the four components. 

[I1, I2, I3, I4], [I1, I2, C34], [I1, I3, C24], [I1, I4, C23], [I2, I3, C14], [I2, I4, C13],  

[I3, I4, C12], [C12, C34], [C13, C24], [C14, C23], [I1, C234], [I2, C134], [I3, C124],   

[I4, C123], and [C1234].  

Let’s modify the cut sets based on the knowledge that I2 is out for maintenance. 

[I1, I3, I4], [I1, C34], [I1, I3, C24], [I1, I4, C23], [I3, C14], [I4, C13],  

[I3, I4, C12], [C12, C34], [C13, C24], [C14, C23], [I1, C234], [C134], [I3, C124],   
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[I4, C123], and [C1234].  

 

The probability then becomes: 

Qs|2M|1T  = (Q1
3+ 3Q1Q2 + 3Q1

2Q2+ 3Q2
2
 + Q3

 + 3Q1Q3
 + Q4)/ QT 

       = (9.9E-33+ 3*(9.9E-3 * 2.0E-5) + 3*(9.9E-32 * 2.0E-5) + 3*(2.0E-5)2
   +  

    9.9E-3 +  3*(9.9E-3)*8.0E-6)  + 1.6E-5) / 1.0E-2 

= 2.58E-3 

Two Components Failed and One Component Out for Preventive Maintenance 

First assume that component 1 and 2 have failed and 3 is out for preventive maintenance, so 
the conditional failure probability of S given 1T and 2T and 3M is given by: 

P[S| 1T � 2T � 3m]  = 
]21[

3 / ]4321P[

TT

MTTTT

P �

���
  

First the numerator is changed to reflect the impact of 3m.  Here are the fifteen cut sets that 
represent the possible failures of the four components. 

[I1, I2, I3, I4], [I1, I2, C34], [I1, I3, C24], [I1, I4, C23], [I2, I3, C14], [I2, I4, C13],  

[I3, I4, C12], [C12, C34], [C13, C24], [C14, C23], [I1, C234], [I2, C134], [I3, C124],   

[I4, C123], and [C1234].  

Let’s modify the cut sets based on the knowledge that component I3 is out. 

 

[I1, I2, I4], [I1, I2, C34], [I1, C24], [I1, I4, C23], [I2, C14], [I2, I4, C13],  

[I3, I4, C12], [C12, C34], [C13, C24], [C14, C23], [I1, C234], [I2, C134], [C124],   

[I4, C123], and [C1234].  

 

Qs | P[3M]  = Q1
3+ 3Q1Q2 + 3Q1

2Q2+ 3Q2
2
 + Q3

 + 3Q1Q3
 + Q4 

= 9.9E-33+ 3*(9.9E-3 * 2.0E-5) + 3*(9.9E-32 * 2.0E-5) + 3*(2.0E-5)2
   +  

9.9E-3 +  3*(9.9E-3)*8.0E-6)  + 1.6E-5 
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= 2.58E-5 

Then the denominator is calculated and applied to the numerator. Lets go back to the Basic 
Parameter Model for CCF analysis definition of 1T and 2T: 

1T =  I1 U C12 U C13 U C14 U C123 U C124 U C134 U C1234 

2T  =  I2 U C12 U C23 U C24 U C123 U C124 U C234 U C1234 

The intersection of 1T and 2T yields: 

1T � 2T  = (I1 U C12 U C13 U C14 U C123 U C124 U C134 U C1234) � 

(I2 U C12 U C23 U C24 U C123 U C124 U C234 U C1234) 

= C12 U C123 U C124 U C1234 

Using the Q values derived from the MGL methodology, we can calculate 

 P[1T � 2T]  = Q2 + 2Q3 + Q4 

          = 2.0E-5 + 2 * 8.0E-6 + 1.6E-5 

= 5.2E-5 

Combining the numerator and the denominator, the answer is 

Qs | P[2M �1T � 2T]  = (Q1
3+ 3Q1Q2 + 3Q1

2Q2+ 3Q2
2
 + Q3

 + 3Q1Q3
 + Q4) /Q2 + 2Q3 + Q4 

= 2.58E-5 / 5.2E-5 

= 4.96E-1 

 

One Component Failed and Two Components Out for Preventive Maintenance 

First assume that component 1 has failed and components 2 and 3 are out for preventive 
maintenance, so the conditional failure probability of S given 1T, 2M and 3M is given by: 

P[S| 1T � 2M � 3M]  = 
]1[

]32P[ / ]4321P[

T

MMTTTT

P
����

  

Here are the fifteen cut sets that represent the possible failures of the four components. 

  

[I1, I2, I3, I4], [I1, I2, C34], [I1, I3, C24], [I1, I4, C23], [I2, I3, C14], [I2, I4, C13],  
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[I3, I4, C12], [C12, C34], [C13, C24], [C14, C23], [I1, C234], [I2, C134], [I3, C124],   

[I4, C123], and [C1234].  

 

Let’s modify the cut sets based on the knowledge that I2 and I3 are out. 

[I1, I4], [I1, C34], [I1, C24], [C14], [I4, C13], [I4, C12], [C12, C34], [C13, C24],  

[I1, C234], [C134], [C124], [I4, C123], and [C1234].  

The probability then becomes: 

Qs|P[1T � 2M � 3M] = (Q1
2+ Q2 +4Q1Q2 + 2Q2

2
 + 2Q3

 + 2Q1Q3
 + Q4 )/ QT 

 = (9.9E-32+ 2.0E-5 + 4*(9.9E-3 * 2.0E-5) + 2*(2.0E-5)2
  +  2*8.0E- 

6 + 2*(9.9E-3)*8.0E-6)  + 1.6E-5) / 1.0E-2 

= 1.51E-2 

 

11.3 General Structure of the LOOP Recovery Plug-in 

SAPHIRE version 8 is equipped with a loss of offsite power (LOOP) recovery plug-in for 
calculating LOOP initiating event frequencies and offsite power recovery failure probabilities.  
The plug-in also calculates plant specific diesel generator nonrecovery probabilities.  The 
following sections describe the plug-in calculations that must be performed and the parameters 
that must be stored to make the plug-in work.  A section is also provided that describes how to 
configure a SAPHIRE basic event to use the plug-in to calculate loss of offsite power initiating 
event frequency, or offsite power recovery failure probability. 

SAPHIRE assumes the LOOP initiating event frequency (�T) is the sum from all the individual 
LOOP frequency subclasses combined, or 



�

�
4

1i
iT ��   (11-1) 

The four classes of LOOP initiating event identified are:  

• Plant-centered.  A LOOP event in which the design and operational characteristics of the 
nuclear power plant itself play the major role in the cause and duration of the loss of offsite 
power.  The line of demarcation between plant-centered and switchyard-centered LOOP 
events is the nuclear power plant main and station auxiliary transformers high-voltage 
terminals.  Both transformers are considered to be part of the switchyard. 
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• Switchyard-centered.  A LOOP event in which the equipment, whether human-induced or 
actual equipment failure, in the switchyard play the major role in the loss of offsite power. 

• Grid-related.  A LOOP event in which the initial failure occurs in the interconnected 
transmission grid that is outside the direct control of plant personnel. 

• Weather-related. A LOOP event caused by weather, in which the weather is widespread, not 
just centered at the site, and capable of major disruption.  Weather is defined to be weather 
with forceful and non-localized effects.  

 
The LOOP frequency and nonrecovery probability calculations that follow must be performed 
for each of the above LOOP subcategories separately, and must be performed for a composite 
representing all categories together.  The LOOP plug-in must perform the calculation 
described by Equation 11-1 using specified parameters in such a way that both the correct 
point estimate and correct uncertainty distribution of 4T is obtained from the uncertainty 
distributions of the 4i.  Given the use of SAPHIRE basic events to represent the 4i, this should 
follow from the standard SAPHIRE sampling procedures. 

 

LOOP Recovery Failure Probabilities 

The expression used for calculating the probability of failing to recover offsite power is given 
by: 
 

OPRF long short long short (    |   ) = P (   L >   |  L >   )t t t tP  (11-2) 

 
where L is the duration of a LOOP, and tlong is a sequence-dependent time requirement that is 
greater than tshort.  The interpretation of tlong and tshort are model and sequence specific.  The 
most common application is to station blackout sequences where tlong will correspond to either a 
battery depletion time or a core uncovery time and tshort will correspond to a short-term recovery 
interval based on the time to uncover the reactor core if no safety systems function.  In the 
current generation of SPAR models tshort is most often zero unless there are multiple failure to 
recover offsite power events in a given sequence.  In these sequences the first event calculation 
would use a  tshort of zero and the remaining power recovery failure probabilities would be 
conditional on the previous failure event.  

The probability that offsite power will not be recovered at time t is the fraction of all LOOP 
events with duration L greater than t, or 
 

� � � � � �tFdllftLP L
t

L ���5 6
�

1   (11-3) 
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where fL is the density function for the distribution of observed LOOP durations, and FL is the 
cumulative distribution form of  fL .  Combining Equations 11-2 and 11-3 gives the general 
expression for offsite power recovery failure probabilities. 
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6

6
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�

1
1

|  (11-4) 

 

Equation 11-4 can be generalized so that recovery failure probabilities can be calculated when 
LOOP frequency and LOOP recovery information is divided into plant, switchyard, grid, and 
weather subclasses by frequency-weighting the class probabilities as follows 
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Equation 11-5 is the most general form for calculating LOOP nonrecovery probabilities that are 
consistent with past and anticipated future LOOP modeling methods.  

Eide, et al provides a Weibull-based form of fL as 

 -  (  t  /    )
L

t  (  t ) =   f et
&

&

�&
�

� �
� 

� �

 (11-6)  

where 


 = the distribution shape parameter, and 

� = the distribution scale parameter. 

 

Using Equation 11-4 and Equation 11-6 gives the following general expression for failure to 
recover offsite power at time tlong for LOOP class i, conditional on failure to recover offsite power 
at time tshort 
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Equation 11-7 is presently applied when evaluating a specific class of LOOP, as in initiating 
event assessments where the class of initiating event is known. For a frequency-weighted 
average recovery failure probability is required and Equation 11-7 becomes 

 

i
ishort

i
ilong

t

t

i
i

T
shortlongOPRF

e
ettP &

&

�

�

�
� )/(

)/(4

1

1)|(
�

�

�

�        (11-8) 

 

Diesel Nonrecovery Probabilities 

The Plug_LoopRec library provides a method to produce nonrecovery probabilities of an 
emergency diesel generator.  By selecting the procedure type “DG_RECOVERY and providing 
SAPHIRE with the appropriate Recovery Time, Alpha, and Beta parameters, SAPHIRE will 
calculate a DG nonrecovery probability.  Equation 11-6 is the general Weibull-based form for 
calculating DG nonrecovery probabilities. 
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12. PHASE MISSION CALCULATIONS 

New to the SAPHIRE 8 design related to phased-mission analysis are the following attributes: 

• General phase information (names, descriptions, time, character identifier) are stored at the 
project level and are user definable. 

• Basic events are extended to allow for multiple phases (and associated failure models) to be 
specified. 

• Event trees allow for phase information to be indicated as a function of moving through the 
event tree scenario. 

• The cut set solving methods are phase-aware in order to provide correct analysis results. 

SAPHIRE allows modeling system configuration and associated failure (or success) as a 
function of the mission phase.  At the basic event level, the various SAPHIRE failure models 
(e.g., fails on demand, fails to run without repair) will be selectable for each phase to determine 
the basic events phase susceptibility.  The analysis methods will modify cut sets that have 
phase information, for example a component that fails in an early phase will also be failed in a 
later phase unless it has been repaired between phases. 

 

12.1.1 General Phase Information 

A SAPHIRE project allows the user to specify the general phase and analysis type applicability 
information. This information will include: 

 
Item 

Data 
Structure 

 
Description 

Phase (or 
applicability) name 

24 
characters 

A general (short) name for the phase, for example 
“Phase 1” or “Seismic” 

Phase ID 2 characters A (short) identifier used to append to a basic event 
name in order to generate phase mission cut sets 

Phase description 120 
characters 

General descriptive text 

Phase duration Time variable The duration of the phase 
Phase units Time units The time units (hr, min. sec, etc.) on the phase duration 
Preceding phase Name The name of the preceding phase, if applicable 
Phase color identifier RGB Color A color setting for graphical display use. 
 

The user has access to the general phase information via the “Modify � Project � Phase” 
option.  Note that the phase duration should be an actual duration value. The “preceding phase” 
indicates which phase precedes the phase. For example, a "phase 1" might have duration of 
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100 hours, with no preceding phase while "phase 2" has duration of 100 hours with a preceding 
phase of “phase 1.”  A total of 100 phases are available to the user within a single project. 

 

12.1.2 Event Tree Phase or Applicability Modifications 

Event trees are tied to one or more phases. For each top event in the event tree graphic, an 
“editing” node is available so the user may modify the nodal information (event tree text; 
assignment of fault trees or split fraction probabilities; phase information). Each node may be 
assigned to a single phase if desired—however, the phase assignment must proceed 
chronologically through the accident sequence.  If a node does not have Phased-Mission 
information assigned to it, the last phase found in a preceding node is assumed to be 
applicable.  

 

12.1.3 Analysis Capabilities Phase Modifications 

Additional processing is required to ensure that the correct minimal cut sets are generated. For 
example, if a cut set is found where a component is failed during an early phase and is 
successful during a later phase, then this cut set would be removed. In the case where a 
component is failed during an early phase and is also failed in a later phase, the conditional 
probability of the component failing in the later phase given it was already failed is 1.0 (in other 
words, the later failure is a TRUE house event, or can simply be removed from the cut set 
leaving the initial failure event). In the case where a component is successful in an early phase 
but failed in a later phase, this cut set would be left as-is since this is a valid scenario. Lastly, in 
the case where a component is successful in an early phase and successful in a later phase, 
this cut set would be left as-is since this is also a valid scenario. Three different situations are 
used when evaluating the cut sets: 

1. A combination of failure and success resulting in an impossible scenario 

2. A combination of failures where basic event probabilities may need to be adjusted 

3. A combination of successes and/or failures resulting in a valid scenario. 

Complicating the cut set analysis will be the evaluation of sequences, where components may 
fail or succeed, depending on the particulars of the sequence. Processing success logic or 
evaluating the “delete term” method will require checks on Phased-Mission enabled events. 
Further complicating the cut set evaluation will be possible inclusion of recovery basic events 
and common-cause failure basic events. 

To illustrate the processing steps that must be accomplished during the cut set generation, two 
example problems are described. The first uses a single component type and factors in possible 
recovery. The second uses two redundant components, includes potential recovery, and models 
common-cause failures.  Note that SAPHIRE currently does not include any method to identify a 
specific non-recovery basic event to it applicable failure events. 
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12.1.3.1 Phase Analysis Case 1 

For Case 1, a single component is called to function in two different parts of the Phased-
Mission, both in Phase 1 and in Phase 2. The structure of the logic models used for this 
example is shown in Figure 23. In the fault trees, consider the component (A) recoverable in 
Phase 1 – thus an AND of the non-recovery probability (event NRA1) to the failure of A in the X 
fault tree. The failure of A is not recoverable in phase 2. 

The cut sets that appear from the event tree sequences are: 

 

Sequence 1:  /A1 * /A2  +  /A2 *  /NRA1  (two cut sets) 

Sequence 2:  A2 * /NRA1  +  /A1 * A2  (two cut sets) 

Sequence 3:  A1 * NRA1 * /A2   (one cut set) 

Sequence 4:  A1 * NRA1 * A2   (one cut set) 

 

where “/” indicates the success of the event, “*” indicates AND operation, and “+” indicates OR 
operations.  

Evaluate these cut sets considering that component A (described by A1 and A2) is evaluated in 
different phases. Evaluate each cut set for the four sequences. 

 

Sequence 1 

/A1 * /A2 

This cut set represent the success of A in both phases. Consequently, this is a valid cut set. 

/A2 *  /NRA1  . 

This cut set represents the successful recovery of A in phase 1 and then success of A in phase 
2. However, there is no successful recovery of A in phase 1 (in this cut set) since there is no 
failure of A (in phase 1) in the cut set. Consequently, this cut set is not valid and must be 
removed from the cut set list. 

The resulting (correct) cut set for this sequence should be: 

/A1 * /A2 . 
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Figure 23.  Event and fault trees used for Case 1 calculation 

 

Sequence 2 

A2 * /NRA1  

This cut set represents the successful recovery of A in phase 1 and then failure of A in phase 2. 
However, there is no successful recovery of A in phase 1 since there is not a failure of A (in 



 

127 

phase 1) in the cut set. Consequently, this cut set is not valid and must be removed from the cut 
set list. 

/A1 * A2  

This cut set represents the success of A in phase 1 and the failure of A in phase 2. 
Consequently, this is a valid cut set. 

The resulting (correct) cut set for this sequence should be: 

/A1 * A2 . 

 

Sequence 3 

A1 * NRA1 * /A2  

This cut set represents the failure of A in phase 1, the failure to recover A in phase 1, and 
success of A in phase 2. However, there cannot exist component A both failed early in the 
accident scenario and successful later in the accident scenario [P(/A2 | A1*NRA1) = 0]. 
Consequently, this cut set is not valid and must be removed from the cut set list. Note that this 
assumes that, in time, phase 1 precedes phase 2. 

The resulting (correct) cut set for this sequence should be: 

<FALSE> . 

 

Sequence 4 

A1 * NRA1 * A2 

This cut set represents the failure of A in phase 1, the failure to recover A in phase 1, and failure 
of A in phase 2. However, if A is failed in an early phase, it is guaranteed failed in a later phase 
in the accident scenario [P(A2 | A1*NRA1) = 1]. Consequently, this cut set is must be adjusted 
by removing the basic events representing failures of A in the later phase(s). 

The resulting (correct) cut set for this sequence should be: 

A1 * NRA1 . 

 

12.1.3.2 Phase Analysis Case 2 

For Case 2, two components are called to function in two different parts of the Phased-Mission, 
both in Phase 1 and in Phase 2. The structure of the logic models used for this example is 
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shown in Figure 24. In the fault trees, we consider the components (A and B) recoverable in 
Phase 1 and Phase 2 – thus we AND the non-recovery probability (event NRA1 and NRA2) to 
the component failure in the S (either S1 or S2) fault tree.  In addition, the example considers 
the possibility for common-cause failure.  Note though that SAPHIRE does not currently track 
common-cause failure adjustments through the phase-based cut sets. 

The cut sets that appear from the event tree sequences are: 

Sequence 1 

/A2 * /CCF1 * /CCF2 * /NRB1 + 

/A2 * /CCF1 * /CCF2 * /NRA1 + 

/B2 * /CCF1 * /CCF2 * /NRB1 + 

/B2 * /CCF1 * /CCF2 * /NRA1 + 

/A2 * /B1 * /CCF1 * /CCF2 + 

/A1 * /B2 * /CCF1 * /CCF2 + 

/B1 * /B2 * /CCF1 * /CCF2 + 

/A1 * /A2 * /CCF1 * /CCF2 + 

/B1 * /CCF1 * /CCF2 * /NRB2 + 

/A1 * /CCF1 * /CCF2 * /NRB2 + 

/A1 * /CCF1 * /CCF2 * /NRA2 + 

/B1 * /CCF1 * /CCF2 * /NRA2 + 

/CCF1 * /CCF2 * /NRB1 * /NRB2 + 

/CCF1 * /CCF2 * /NRA1 * /NRB2 + 

/CCF1 * /CCF2 * /NRA2 * /NRB1 + 

/CCF1 * /CCF2 * /NRA1 * /NRA2    (16 cut sets) 
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Figure 24. Event and Fault Trees used for Case 2 Calculation 
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Sequence 2 

/A1 * /CCF1 * CCF2 + 

/B1 * /CCF1 * CCF2 + 

/CCF1 * CCF2 * /NRA1 + 

/CCF1 * CCF2 * /NRB1 + 

/CCF1 * NRA2 * /NRB1 * NRB2 + 

A2 * /B1 * B2 * /CCF1 * NRA2 * NRB2 + 

/A1 * A2 * B2 * /CCF1 * NRA2 * NRB2 + 

A2 * B2 * /CCF1 * /NRA1 * NRA2 * NRB2  (eight cut sets) 

Sequence 3 

A1 * /A2 * B1 * /CCF2 * NRA1 * NRB1 + 

A1 * B1 * /B2 * /CCF2 * NRA1 * NRB1 + 

/B2 * CCF1 * /CCF2 + 

/A2 * CCF1 * /CCF2 + 

A1 * B1 * /CCF2 * NRA1 * /NRA2 * NRB1 + 

A1 * B1 * /CCF2 * NRA1 * NRB1 * /NRB2 + 

CCF1 * /CCF2 * /NRB2 + 

CCF1 * /CCF2 * /NRA2  (eight cut sets) 

Sequence 4 

A1 * B1 * CCF2 * NRA1 * NRB1 +   

CCF1 * CCF2 + 

A1 * A2 * B1 * B2 * NRA1 * NRA2 * NRB1 * NRB2 + 

A2 * B2 * CCF1 * NRA2 * NRB2    (four cut sets) 

where “/” indicates the success of the event, “*” indicates AND operation, and “+” indicates OR 
operations.  

 

Evaluate these cut sets considering that component A (described by A1 and A2) and 
component B (described by B1 and B2) is evaluated in different phases.  

Sequence 1 

/A2 * /B1 * /CCF1 * /CCF2 
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This cut set represents the success of A in phase 2 and B in phase 1. Note that success of A 
implies that the CCF is successful in phase 1 (which is seen) and success of B implies that the 
CCF is successful in phase 2 (which is also seen). This is a valid cut set. 

/A2 * /CCF1 * /CCF2 * /NRA1 

This cut set represents the successful recovery of A in phase 1 and then success of A in phase 
2. However, we cannot have a successful recovery of A in phase 1 (in this cut set) since we do 
not see a failure of A (in phase 1) in the cut set. Consequently, this cut set is not valid and must 
be removed from the cut set list. 

The resulting (correct) cut set for this sequence should be: 

(/A2 * /B1 * /CCF1 * /CCF2) + (/A1 * /B2 * /CCF1 * /CCF2) + (/B1 * /B2 * /CCF1 * /CCF2) + (/A1 
* /A2 * /CCF1 * /CCF2). 

 

Sequence 2 

/CCF1 * CCF2 * /NRA1 

This cut set represents the successful recovery of A in phase 1 and then failure of A and B in 
phase 2. However, we cannot have successful recovery of A in phase 1 since we do not see a 
failure of A (in phase 1) in the cut set. Consequently, this cut set is not valid and must be 
removed from the cut set list. 

/A1 * /CCF1 * CCF2 

This cut set represent the success of A in phase 1 and the failure of A and B in phase 2. 
Consequently, this is a valid cut set. 

/CCF1 * NRA2 * /NRB1 * NRB2 

This cut set represents the successful recovery of A in phase 2 and B in phase 2. However, we 
can not a successful recovery if we do not also see the failure of the corresponding component. 
Consequently, this cut set is not valid and must be removed from the cut set list. 

A2 * /B1 * B2 * /CCF1 * NRA2 * NRB2 

This cut set represents the success of B in phase 1 then the failure of both A and B (and the 
failure to recover both A and B) in phase 2. Consequently, this is a valid cut set. 

The resulting (correct) cut set for this sequence should be: 

(/A1 * /CCF1 * CCF2) + (/B1 * /CCF1 * CCF2) + (A2 * /B1 * B2 * /CCF1 * NRA2 * NRB2) + (/A1 
* A2 * B2 * /CCF1 * NRA2 * NRB2). 
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Sequence 3 

A1 * /A2 * B1 * /CCF2 * NRA1 * NRB1 

This cut set represents the failure of A in phase 1, the failure to recover A in phase 1, and 
success of A in phase 2 (in addition to B failing in phase 1). However, component A both failed 
early in the accident scenario and is successful later in the accident scenario [P(/A2 | A1*NRA1) 
= 0]. Consequently, this cut set is not valid and must be removed from the cut set list. 

/B2 * CCF1 * /CCF2 

This cut set represents the CCF of A and B in phase 1 and the success of B in phase 1. 
However, component B cannot be successful in a later phase once it is failed in an early phase. 
Consequently, this cut set is not valid and must be removed from the cut set list. 

CCF1 * /CCF2 * /NRA2 

This cut set represents the CCF of A and B in phase 1 and the success of either A or B in phase 
2. However, A or B cannot be successful in a later phase once it is failed in an early phase. 
Consequently, this cut set is not valid and must be removed from the cut set list. 

The resulting (correct) cut set for this sequence should be: 

<FALSE> 

Sequence 4 

A1 * B1 * CCF2 * NRA1 * NRB1 

This cut set represents the failure of A and B in phase 1 (and not recovered) and CCF in phase 
2. However, if both A and B are failed in an early phase, they are guaranteed failed in a later 
phase in the accident scenario [P(CCF2 | A1*NRA1*B1*NRB1) = 1].  Consequently, this cut set 
is must be adjusted by removing the basic events representing failures of A and B (CCF2) in the 
later phase(s).  

CCF1 * CCF2 

This cut set represents the CCF of A and B in phase 1 and in phase 2. However, P(CCF2 | 
CCF1) = 1. Consequently, use Check 3 to adjust this cut set. 

A2 * B2 * CCF1 * NRA2 * NRB2 

This cut set represents the CCF of A and B in phase 1 and failure of A and B in phase 2. 
However, failure of a component in an initial phase implies failure of that component in later 
phase(s). Consequently, use Check 3 to adjust this cut set. 

The resulting (correct) cut set for this sequence should be: 

(A1 * B1 * NRA1 * NRB1) + (CCF1) + (A1 * B1 * NRA1 * NRA2 * NRB1 * NRB2) 
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13. INTEGRATED MODEL SOLVING USING MODEL TYPES 

Some risk analysis approaches require modeling failures due to causes other than “random” 
types of failures, such as fires, floods, or seismic events.  Historically, model types other than 
“Random” were created using basic event transformations in SAPHIRE, and were run as 
separate models.  Now, SAPHIRE Version 8 uses the Model Type definitions to create models 
such as “Random,” as well as other user-specified types. 

In Version 8 a virtual basic event will allow the user to specify a basic event’s model type(s) as 
well as different reliability models for each applicable model type, and will display this 
information in one “virtual” basic event.  In effect, SAPHIRE is extending a single basic event 
into multiple failure types, one for each Model Type.  This capability allows for combinations of 
model types to be run at the same time, and presents cut sets which can contain mixtures of 
basic events of different model types (e.g., Fire + Random).   

The solving of the fault trees and event trees is transparent to the user, which improves user 
checks of the logic and model solving.  For example, in the expanded view of the fault tree, 
SAPHIRE will display the logical relation of system basic events which may be subject to 
random failure or other conditions as indicated by their respective Model Type.  

If the Version 8 “Model Type” feature is used to build integrated models, then basic events 
following different initiators (as part of an accident sequence) may have different unreliability 
models and probabilities assigned.  Consider, for example, a fire event tree which transfers to a 
loss of offsite power event tree.  System failures in the loss of offsite power event tree could be 
due to fire-related only, random, or fire-related + random events.  The random failure of a 
component could be given one type of unreliability model, and the fire-related failure of the 
same component could be assigned a different unreliability model.  It may also be desired to 
model fire sequence-specific component failure probabilities by assigning different fault trees to 
different sequences.  This approach would result in assigning sequence specific fire-related 
component failure probabilities prior to solving.  Post-processing rules could also be used to 
change the basic event’s probability.  

To evaluate models using the Version 8 Model Type feature, one of the options available during 
the “solve” step is to choose which Model Type(s) to be evaluated.  For additional details on the 
solve option, refer to Volume 3 (Users’ Guide) of this NUREG. 
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14. POST-PROCESSING RULES 

The SAPHIRE “post-processing rules” are textual logic rules that allow for the alteration or 
deletion of fault tree or sequence cut sets.  Although previously called "recovery rules," the 
post-processing rules have evolved from the simple inclusion of recovery events into a 
powerful rule-based system for cut set manipulation.  The post-processing rules can be used 
which for probabilistic risk assessment techniques include; 

• The automated inclusion of sequence recovery events 
• The inclusion of common-cause failure cut sets 
• The elimination of mutually-exclusive events (e.g., impossible combinations of events). 
 

The rules follow a format similar to the structure that is found in traditional programming 
languages (e.g., BASIC or PASCAL).  As such, the ability exists to define "macros" and 
"if...then" type of structures.  The rules may be developed for a particular fault tree, all fault 
trees, a particular sequence, a single event tree, or all sequences.  In Table 9 we list the 
objects which may be manipulated by way of recovery rules. 

Table 9.  Applicable objects with post-processing rules. 

Item Menu Name of post-processing rules 

Specific fault tree Fault Trees Fault Trees Rules 

All fault trees Fault Trees Project Rules 

Specific sequence Sequences Sequence Rules 

Single event tree Sequences Event Tree Rules 

All sequences Sequences Project Rules 

 

 
Post-processing rules follow a typical “if… then” type of structure.  The rules are entered in a 
free-form text editor within SAPHIRE.  However, the rules can be exported and loaded through 
MAR-D.  Use of the recovery rules could result in non-minimal cut sets (for example, one could 
add event X to a cut sets already containing X.  Consequently, the typical steps one would 
take in performing an analysis when using the recovery rules are 

1. Solve fault tree or sequence cut sets 
2. Apply post-processing  rules to applicable fault trees or sequences 
3. Perform a “Cut Set Update” to fault tree or sequence cut sets in order to remove any 

non-minimal cut sets from Step 2. 
4. Display or report results 
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The recovery rule editor searches existing fault tree or sequence cut sets for cut sets matching 
the search criteria defined in the rule.  The post-processing rule is used to modify the cut sets 
matching the search criteria.  As such, a nomenclature has been defined to allow users to 
specify exactly what is to be done on the cut sets generated by SAPHIRE.  The general 
symbols used in the post-processing rules include: 

 
14.1.1.1 Symbols  

| Denotes a comment line  ~  Operator for or "not present" 
*  Logical AND operator   +  Logical OR operator 
/  Complement     (  )   Parentheses 

 
Example of the search criteria (for basic events X, Y, and Z) are shown in Table 10. 
 

Table 10.  Examples of search criteria used in the SAPHIRE post-processing rules. 

Search Criteria Meaning of the Search Criteria 

X 

~X 

/X 

X * Y 

X + Y 

X*(Y + Z) 

~X*Y 

always 

Basic event X appears in the cut set 

Basic event does not occur in the cut set 

Success of event X appears in the cut set 

Both events X and Y appear in the cut set 

Either event X or Y appear in the cut set 

Either X and Y or X and Z appear in cut set in the cut set 

Y does appear and X does not appear 

Pre-defined macro-name means the criteria is always 
met. 

 
 
To illustrate the use of post-processing rules, several examples are provided.  Each example 
has comments to clarify what the rule does. 
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14.1.1.2 Post-processing Rule Structure (Example 1 – if-then) 

| The "if-then" Rule Structure: 
| This rule adds a recovery action BUSREC  when electric bus B or C is failed if  EL-BUS-B + 
EL-BUS-C then recovery = BUSREC;  
|  This keyword line must end with a semicolon. 
endif   

 
 
 
14.1.1.3 Post-processing Rule Structure (Example 2 – if-then-else) 

|  The "if-then-elsif" Structure: 
|  This rule deletes the cut set if both diesel generators are out for maintenance. 
|  If the two DGs fail randomly, add a common cause event. 
if (DG-1-MAINT * DG-2-MAINT) then 
DeleteRoot; 
elsif  (DG-1-RAND * DG-2-RAND) then 
| Copy the original cut set, remove the two failure events, then add CC 
CopyRoot; 
DeleteEvent = DG-1-RAND; 
DeleteEvent = DG-2-RAND; 
AddEvent = DG-CCF-1AND2; 
endif  

 
 

 
14.1.1.4 Post-processing Rule Structure (Example 3 – appending recovery actions) 

|  The rule attaches the recovery action NRAC-12HR to every cut set for a particular sequence. 
|  This rule would be typed into the event tree sequence rule editor for the sequence of 
|  interest. 
| A rule to apply NRAC-12HR recovery event to all cut sets in the sequence. 
if always then 
   recovery = NRAC-12HR; 
endif 
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14.1.1.5 Post-processing Rule Structure (Example 4 – mutually exclusive event 
removal)

| This rule could be placed in either (or both) the fault tree project rules or the event 
| tree project rules. 
| Define a macro to get those cut sets that have combinations of two motor driven 
| pumps out for maintenance. 
PUMPS-IN-MAINT = MDP-A-MAINT * MDP-B-MAINT; 
| Search for the maintenance events and then delete cut set. 
if PUMPS-IN-MAINT then 
   | Delete the cut set 
   DeleteRoot; 
endif 
 
 
14.1.1.6 Post-processing Rule Structure (Example 5 – including common-cause failure 
events)

| The search criteria identifies the failure combination of two auxiliary feedwater pumps. 
| If these two basic events are found in a cut set then a new cut set will be created that 
| replaces the independent failures of the two pumps with a single common-cause basic event. 
| This rule could be placed in either (or both) the fault tree project rules or the event tree project 
| rules. 
| Define a macro to only pick up those cut sets that have 
| combinations of AFW-PUMP-A and AFW-PUMP-B. 
CCF-AFW-PUMPS = AFW-PUMP-A * AFW-PUMP-B; 
| Search for the AFW pump basic events and make a new 
| cut set with the CCF event. 
if CCF-AFW-PUMPS then 
   | First make a copy of the original cut set 
   CopyRoot; 
   | Now remove the two independent failure events 
   DeleteEvent = AFW-PUMP-A; 
   DeleteEvent = AFW-PUMP-B; 
   | Now add the CCF event 
   AddEvent = AFW-PUMP-CCF; 
endif 
 
Lastly, we close this section by listing, in Table 11, all of the keywords available to the user 
when entering post-processing rules in SAPHIRE. 
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Table 11.  Keywords utilized in the post-processing rule process in SAPHIRE. 

Keyword or 
symbol 

Definition Usage 

 

if  then 
Keyword that indicates a search 
criteria is being specified.   

if "search criteria" then 

   perform some action on each cut set; 

endif 

 

endif 
Keyword that indicates the end of a 
particular rule.   

if "search criteria" then 

   perform some action on each cut set; 

endif 

 

else 
Keyword that specifies some action 
to be taken if all the search 
criteria(s) are not met.  The else 
should be the last condition in the 
recovery rule. 

if "search criteria" then 

   perform some action on each cut set; 

else 

   perform some other action on each cut 
set if search criteria not met; 

endif 

 

elsif 
Keyword that specifies an 
alternative search criteria.  Any 
number of elsifs can be used within 
a recovery rule.   

if "search criteria" then 

   perform some action on each cut set; 

elsif "2nd search criteria" then 

   perform some other action on each cut 
set; 

elsif "3rd search criteria" then 

   perform some other action on each cut 
set; 

endif 

 

Always 
Keyword that indicates that every 
cut set that is being evaluated 
satisfies the search criteria.   

if always then 

   perform some action on each cut set; 

endif 

 

init( ) 
Keyword used in the search criteria 
to indicate that a sequence cut set 
has a particular initiating event.   

if init(INITIATOR-NAME) * "other search 
criteria if needed" then 

   perform some action on each cut set; 

endif 
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Keyword or 
symbol 

Definition Usage 

 

~ 
Symbol used in the search criteria 
to indicate that a particular event 
will not be in the cut set that is 
being evaluated. 

if (~SEARCH-CRITERIA) * "other search 
criteria if needed" then 

... 

The search criteria will be satisfied for all 
cut sets that do not contain SEARCH-
CRITERIA (and also contains the 
optional "other search criteria").  
SEARCH-CRITERIA may be either an 
initiating event, basic event, macro, or 
logic expression. 

 

/ 
Symbol used to represent a 
complemented event (i.e., the 
success of a failure basic event). 

if (/BASIC-EVENT) * "other search 
criteria" then 

 

The search criteria will be satisfied for all 
cut sets that contain the complement of 
BASIC-EVENT (and also contains the 
optional "other search criteria"). 

 

| 
Symbol used to represent a 
comment contained in the rules.  
Everything on a line to the right of 
this symbol will be ignored by the 
rule compiler. 

| Place your comments here! 

 

| Note that blank lines are also 
permissible! 

 

; 
Symbol to indicate the end of a 
macro line or a line that modifies 
the cut set being evaluated. 

| usage for a macro command 

MACRO-NAME = "search criteria" ; 

| usage for a cut set modification line 

   recovery = RECOVERY-EVENT ; 

 

* 
Symbol to indicate the logical AND 
command. 

if SEARCH-CRITERIA1 * SEARCH-
CRITERIA2 then 

The search criteria will be satisfied for all 
cut sets that match SEARCH-
CRITERIA1 and SEARCH-CRITERIA2.  
The SEARCH-CRITERIA# may be either 
an initiating event, basic event, macro, 
or logic expression. 
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Keyword or 
symbol 

Definition Usage 

 

+ 
Symbol to indicate the logical OR 
command. 

if SEARCH-CRITERIA1 + SEARCH-
CRITERIA2 then 

The search criteria will be satisfied for all 
cut sets that match either SEARCH-
CRITERIA1 or SEARCH-CRITERIA2.  
The SEARCH-CRITERIA# may be either 
an initiating event, basic event, macro, 
or logic expression. 

 

( ) 
Symbols to indicate a specific 
grouping of items. 

if (A + B) * (C + D) then 

The search criteria above would return 
all cut sets that contain: 

[A * C], [A * D], [B * C], or [B * D]. 

system( ) Keyword used in the search criteria 
to indicate that a fault tree 
contributes to the existence of the 
cut set that is being evaluated. 

if system(ECS) then 

  perform some action on each cut set 

endif 

 

Recovery = 
Keyword that indicates that a 
recovery event is going to be 
added to the cut set being 
evaluated  (SAPHIRE keeps record 
of all recovery events).  

if "search criteria" then 

   recovery = NAME-OF-RECOVERY; 

endif 

 

AddEvent = 
Keyword that indicates that an 
event will be added to the cut set 
being evaluated. 

if "search criteria" then 

   AddEvent = EVENT-NAME; 

Endif 

 

DeleteEvent= 
Keyword that indicates that an 
event will be deleted from the cut 
set being evaluated. 

if "search criteria" then 

   DeleteEvent = EVENT-NAME; 

Endif 

 

NewCutset; 
Keyword that indicates that a new, 
empty cut set will be added to the 
list of cut sets.  This new cut set 
then becomes the cut set that is 
being evaluated. 

if "search criteria" then 

   NewCutset; 

   now make additions to the empty cut 
set... 

endif 

 

DeleteRoot; 
Keyword that indicates that the 
original cut set (i.e., that cut set 
that satisfied the search criteria) 
will be deleted. 

if "search criteria" then 

   DeleteRoot; 

Endif 
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Keyword or 
symbol 

Definition Usage 

 

CopyCutset; 
Keyword that indicates that the cut 
set being evaluated will be copied 
and added to the list of cut sets.  
This copied cut set then becomes 
the cut set that is being evaluated. 

if "search criteria" then 

   CopyCutset; 

   now make modification to a copy of the 
cut set... 

endif 

 

CopyRoot; 
Keyword that indicates that the 
original cut set (i.e., that cut set 
that satisfied the search criteria) 
will be copied.  This copied cut set 
will then become the cut set that is 
being evaluated.  

if "search criteria" then 

   CopyRoot; 

   now make modifications to a copy of 
the original cut set... 

endif 

 

MACRO 
A macro is a user-definable 
keyword that specifies a search 
criteria.  The macro name must be 
all upper-case, must be 16 
characters or less, and must not 
include any of the restricted 
characters (e.g., a space, *, ?, \, /).  
The macro line can wrap around to 
more than one line, but must end 
with a semicolon. 

MACRO-NAME = SEARCH-CRITERIA; 

if MACRO-NAME "and other search 
criteria" then 

   perform some action on each cut set...;

endif 

 

|Macros are only applicable in the 
|particular rule they are entered into 
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15. DEFINING END STATES USING PARTITIONING RULES 

In standard application of PRA models, accident sequences are defined via event tree logic 
structures.  Each accident sequence indicates a string of events that, if they occur, may lead to 
an undesired outcome.  For each of these sequences, different outcomes may be specified in 
order to group or analyze like outcomes (i.e., end state aggregation).  In order to assist analysts 
in assigning end states to specific sequences, SAPHIRE includes the ability to define outcome 
states via programmatic rules.  These rules, called “partition rules,” are similar in structure to the 
“recovery rules” described in Section 12. 

In general, the partitioning rule editor tests the existing sequence cut sets for the presence or 
absence of specific combinations of basic events or initiating events, and assigns characters in 
the end state name when the criteria are met.  This allows end state names to be built as the 
rules are applied.  For example, if we wanted to define a rule that looked for cut sets containing 
an initiating event called “LOSP” and assigned those cut sets to an end state called “ES_LOSP,” 
we would construct a partition rule like: 

If init(LOSP)  then 
  Partition = “ES_LOSP”; 
endif 
 

SAPHIRE would then search through the list of cut sets (when the partition rules are applied) to 
find those that meet the search criteria.  Each cut set may be assigned an end state, where the 
end state text is up to 24 characters long.  Also, partition rules may be defined sequentially so 
that the first rule can set just a portion of the end state text (say, for example, the first two 
characters) while other later rules set other parts of the end state text (say, for example, the 
third and fourth characters). 

Other examples of the partition rules are listed below. 

 Partition Rule Structure (Example 1 – if-then) 

| The "if-then" Rule Structure: 
| This rule adds -SBO as characters 4 through 7 of the end state name 
| when both DG-A and DG-B are present in the cut sets.    
| The ??? are placeholders in the end state name.  (The end state name is initially blank.) 
if DG-A * DG-B  then 
   partition = "???-SBO"; 
      endif 
| Note that the partition statement must end with a semicolon. 
| The end state name must be � 24 characters. 
| The end state characters are enclosed in quotation marks. 
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15.1.1.1 Partition Rule Structure (Example 2 – if-always) 

| The "if-always" Rule Structure. This rule adds END as the first 3 characters in every cut set. 
if always then partition = "END"; 
endif 
 

15.1.1.2 Partition Rule Structure (Example 3 – if-then-elsif) 

| The "if-then-elsif" Structure: 
| This rule adds characters 4 through 7 to the end state name. 
| When both DG-A and DG-B are failed, -SBO is added. 
| When DG-A is failed (but not DG-B), characters -DGA are added. 
| When DG-B is failed (but not DG-A), characters -DGB are added. 
if DG-A * DG-B then 
    partition = "???-SBO"; 
elsif DG-A then         
   partition = "???-DGA";     
elsif DG-B then        
  partition = "???-DGB";   
endif             

  

15.1.1.3 Partition Rule Structure (Example 4 – Current Partition) 

|  The “Current Partition” Rule Structure: 
|  This rule uses end state created by a rule to gather multiple end states into single end state. 
|  This rule can use wild cards as part of its search criteria. 
|  The rule below first creates two end states, one containing cut sets with DG-A and one 
containing cut sets with DG-B. 
|  The rule then reassigns the end states for those cut sets containing 
|  both DG-A and DG-B to the end state “A-AND-B”. 
 if  DG-A  then 
   partition = “A?"; 
 endif 
 if  DG-B  then 
   partition = “?B"; 
 endif 
|  Demonstrate use of “wild cards (cannot use *)” with CurrentPart( ) keyword. 
 if  CurrentPart(A?) + CurrentPart(?B)  then 
   partition = “A-AND-B”; 
 endif 
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15.1.1.4 Partition Rule Structure (Example 5 – Global Partition) 

| The "GlobalPartition" Rule Structure: 
| This rule globally partitions all cut sets in a sequence to an end state. 
| This option is activated by using the keyword “GlobalPartition” instead 
| of the normal “partition” keyword. 
| This example “GlobalPartition” rule will gather all sequence cut sets that 
| pertain to specified sequence logic. 
| Cut sets will be put into an endstate called CD-SEQ2 if they are found in 
| sequences that contain the following sequence logic 
| LOSP * ECS * /CCS. 
| Cut sets will be put into an endstate called CD-SEQ3 if they are found in 
| sequences that contain the following sequence logic 
| LOSP * ECS * CCS. 
|if  INIT(LOSP) * SYSTEM(ECS) * SYSTEM(/CCS)  then 
  GlobalPartition = “CD-SEQ2"; 
elsif  INIT(LOSP) * SYSTEM(ECS) * SYSTEM(CCS)  then 
  GlobalPartition = “CD-SEQ3"; 
endif 
 

To finish this section, we list all of the available keywords utilized in the partition rules in Table 
12. 
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Table 12.  Keywords utilized in the SAPHIRE end state partition rules. 

Keyword or 
symbol 

Definition Usage 

 

if  then 
Keyword that indicates a search 
criteria is being specified.   

if "search criteria" then 

   perform some action on each cut set; 

endif 

 

endif 
Keyword that indicates the end of 
a particular rule.   

if "search criteria" then 

   perform some action on each cut set; 

endif 

 

else 
Keyword that specifies some 
action to be taken if all the 
search criteria(s) are not met.  
The else should be the last 
condition in the recovery rule. 

if "search criteria" then 

   perform some action on each cut set; 

else 

   perform action on each cut set if 

   search criteria not met; 

endif 

 

elsif 
Keyword that specifies an  
alternative search criteria.  Any 
number of elsifs can be used 
within a recovery rule.   

if "search criteria" then 

   perform some action on each cut set; 

elsif "2nd search criteria" then 

   perform action on each cut set; 

elsif "3rd search criteria" then 

   perform action on each cut set; 

endif 

 

always 
Keyword that indicates that every 
cut set that is being evaluated 
satisfies the search criteria.   

if always then 

   perform some action on each cut set; 

endif 

 

INIT( ) 
Keyword used in the search 
criteria to indicate that a 
sequence cut set has a particular 
initiating event.   

if INIT(INITIATOR-NAME) * "other 
search criteria if needed" then 

   perform some action on each cut set; 

endif 

 

system( ) 
Keyword used in the search 
criteria to indicate that the 
sequence logic contains the 
particular top event. 

if system(TOP EVENT) * “other search 
criteria if needed” then 

   perform action on each sequence; 

endif 
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Keyword or 
symbol 

Definition Usage 

 

~ 
Symbol used in the search 
criteria to indicate that a 
particular event will not be in the 
cut set that is being evaluated. 

if (~SEARCH-CRITERIA) * "other search 
criteria if needed" then 

... 

The search criteria will be satisfied for all 
cut sets that do not contain SEARCH-
CRITERIA (and also contains the 
optional "other search criteria").   

 

/ 
Symbol used to represent a 
complemented event (i.e., the 
success of a system or basic 
event). 

if (/BASIC-EVENT) then 

 

The search criteria will be satisfied for all 
cut sets that contain the complement of 
BASIC-EVENT. 

 

; 
Symbol to indicate the end of a 
macro line or a line that modifies 
the cut set being evaluated. 

| usage for a macro command 

MACRO-NAME = "search criteria" ; 

| usage for a cut set modification line 

   partition = ENDSTATE ; 

 

* 
Symbol to indicate the logical 
AND command. 

if SEARCH-CRITERIA1 * SEARCH-
CRITERIA2 then 

 

The search criteria will be satisfied for all 
cut sets that match SEARCH-
CRITERIA1 and SEARCH-CRITERIA2. 

 

+ 
Symbol to indicate the logical OR 
command. 

if SEARCH-CRITERIA1 + SEARCH-
CRITERIA2 then 

 

The search criteria will be satisfied for all 
cut sets that match either SEARCH-
CRITERIA1 or SEARCH-CRITERIA2.   

 

partition = 
Keyword that indicates the end 
state characters for cut sets 
meeting the search criteria will be 
modified according to the text 
after the equal sign. 

if "search criteria" then 

   partition = “END_STATE_NAME”; 

endif 
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Keyword or 
symbol 

Definition Usage 

 

CurrentPart( ) 
Keyword that searches for cut 
sets that have already been 
assigned to the endstate 
indicated. 

if CurrentPart(CORE-DAMAGE) then 

   partition = “NEW-CORE-DAMAGE”; 

endif 

 

GlobalPartition= 
Keyword to indicate that all cut 
sets in a particular sequence will 
be assigned to the end state 
identified after the equal sign. 

if "search criteria" then 

   GlobalPartition = “MY-END-STATE”; 

Endif 

 

transfer = 
Keyword to indicate the event 
tree to be created and 
transferred to for the sequence 
meeting the search criteria.  The 
sequence end state frequency 
will be used as the initiating 
event frequency for the new 
event tree. 

if "search criteria" then 

   GlobalPartition = “CORE-DAMAGE”; 

   transfer = LEVEL-2-TREE; 

endif 

 

 

 

 



 

149 

16. WORKSPACE ANALYSIS ROUTINES 

16.1 Multi-Pass Solution 

In previous versions of SAPHIRE, the generation of minimal cut sets was a linear three-step 
process.  First, one generated the failure data.  Second, the minimal cut sets were generated.  
Third, any post-processing via “recovery rules” was performed. 

This linear analysis process is prone to error and analysis limitations.  For example, if a basic 
event is set to TRUE to indicate a failure, then any applicable recovery rules using that basic 
event will never be applied since the basic event does not appear in the cut sets. 

In addition to the cut set solution methods described earlier in this report, SAPHIRE 8 has an 
improved analysis method described as “multi-pass.”  The older method of analysis is called 
“single-pass.” 

In SAPHIRE 8 for analysis that compares a nominal against a changed case, SAPHIRE uses 
the steps below for the “single-pass” solution: 

1. Recalculate the “nominal case” to be able to determine the increase in risk. 
a. Generate basic event data with no change sets marked.  If the no 

test/maintenance (T&M) option is used, all T&M events will be set to zero. 
b. Solve all sequence cut sets using a predetermined (but low) truncation. 
c. Apply recovery rules to all sequence cut sets. 
d. If identified in the project constants, perform a cut set update to ensure 

non-minimal cut sets are removed. 
e. Re-quantify the cut sets. 
f. Store the cut set results via a base case update. 

2. Calculate the risk increase. 
a. Generate basic event data with changes indicated by the analyst. If the 

no test/maintenance option is used, all T&M events will be set to zero. 
b. Solve sequence cut sets using the same truncation for the “nominal” 

case. 
c. Apply recovery rules to all sequence cut sets. 
d. If identified in the project constants, perform a cut set update to ensure 

non-minimal cut sets are removed. 
e. Re-quantify the cut sets. 
f. Store the cut set results for use in determining the change. 

 

In SAPHIRE 8 for analysis that compares a nominal against a changed case, SAPHIRE uses 
the steps below for the “multi-pass” solution: 

1. Recalculate the “nominal case” to be able to determine the increase in risk. 
a. Generate basic event data with no change sets marked.  If the no 

test/maintenance option is used, all T&M events will be set to zero. 
b. Solve all sequence cut sets using a predetermined (but low) truncation. 
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c. Apply recovery rules to all sequence cut sets. 
d. Perform a cut set update to ensure non-minimal cut sets are removed. 
e. Re-quantify the cut sets to ensure they have the proper values. 
f. Store the cut set results via a base case update. 

2. Calculate the risk increase. 
a. Generate basic event data with changes indicated by the analyst and 

store these values for use in Step 2g.  If the no test/maintenance option is 
used, all T&M events will be set to zero. 

b. Change TRUE events to 1.0 events (to ensure application of recovery 
rules). 

c. Solve sequence cut sets using the same truncation for the “nominal” 
case. 

d. Apply recovery rules to all sequence cut sets. 
e. Change events having a probability of 1.0 to TRUE events (to ensure that 

non-minimal cut sets will be removed during the next step). 
f. Perform a cut set update to ensure non-minimal cut sets are removed. 
g. Re-quantify the cut sets so they have the proper values stored from step 

2a. 
h. Store the cut set results for use in determining the change. 

 

The user has the option to select either the single-pass option or multi-pass option.  However, 
the single-pass option will only be displayed if indicated via the Project User Settings.  Since the 
multi-pass option provides an improved analysis approach (over the older single-pass option), it 
is the default analysis method. 

 

16.2 Events and Condition Assessment Uncertainty Analysis 

Two general calculations are performed in the ECA Workspace, initiating event assessment and 
condition assessment. For the former, a single metric, the conditional core damage probability 
(CCDP), is calculated. This metric is used in an absolute sense in that its numerical value is not 
subtracted from a nominal value to obtain an increase in risk. However, the condition 
assessment calculation requires two metrics, a CCDP and a core damage probability (CDP). In 
this calculation, the risk increase (over the time of the condition) is calculated. 

Historically, only a point estimate value was calculated for the condition assessment CCDP and 
CDP. These two values were then subtracted to find the risk increase. However, a variety of 
complications arise when this approach is used, specifically on the change in risk measure, or 
“event importance” (Ie) which is given by the relationship  

Importanceevent = CCDP – CDP = Ie  

where: CCDP = the conditional core damage frequency (CCDF)* duration of the condition 

   CDP = the core damage frequency (CDF)* duration of the condition 
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The uncertainty results are based on sampling from the component’s variability and then solving 
for the CCDF and CDF based on the sampled probability.  SAPHIRE then subtracts CDF from 
CCDF to obtain a sampled �CCDF, which is multiplied by the duration.  SAPHIRE stores this 
calculated value and continues this process for the number of samples noted.  Once SAPHIRE 
has performed the number of specified samples, it orders the �CCDP values and pulls out the 
5th, 50th, and 95th, then calculates the mean by summing up the �CCDPs and divides it by the 
number of samples. 

The algorithm used to determine the uncertainty on the Ie using either Monte Carlo or Latin 
Hypercube sampling is given below: 

1. Solve all cut sets (to the project truncation level) for all sequences. Two lists are solved 
and stored, one for the nominal CDP case and one for the condition CCDP case.  

2. Create a list of all basic events appearing in cut sets for either the nominal or condition 
cut sets. There will be a total of J number of basic events.  

 
3.  Start the uncertainty sampling loop.  

 
For I = 1 to N, where N is the total number of iterations specified by the user.  
 
a. Go through the list of J events. For each event, obtain a random sample. If events 

are correlated, obtain a single value for all events in that correlation group. If an 
event is modified for the condition case, it will appear in the list twice, once to be 
used for the nominal (CDP) case and once for the condition (CCDP) case, with its 
values set for the respective case.  

 
b. Calculate CDPI, where CDP = 1 – exp(- �CDF * Duration). The �CDF is the value of the 

core damage frequency from the nominal case cut sets quantified using the samples 
obtained in Step 3a.  

 
c. Calculate CCDPI, where CCDP = 1 – exp(- �CCDF * Duration). The �CCDF is the value of 

the core damage frequency from the condition case cut sets quantified using the 
samples obtained in Step 3a.  

 
d. Calculate Ie, where Ie = CCDPI - CDPI.  
 
e. Store Ie, CCDPI, and CDPI into their own respective array, where each array is N 

elements long.  
 

Repeat the For I loop N times.  
 

4.  Once the For I loop is complete and the three results arrays (Ie, CCDP, and CDP) are 
populated, sort each array.  

 
5. From each result array, determine the moments and percentiles.  
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The graph of the uncertainty analysis, as shown in Figure 25, is added to Version 8 reports in 
the ECA interface.  It color codes the percentages of the probability distribution function 
between the orders of magnitudes. 

 

 
 

Figure 25.  Graph of ECA uncertainty analysis 
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17. USING MACROS IN SAPHIRE 

SAPHIRE version 8 is equipped with a feature that allows for the usage of macros to run 
specified menu or analysis steps in a medium outside of SAPHIRE.  This feature is useful for 
tedious and repetitive analysis procedures in databases or several databases.  Macros in 
SAPHIRE are different than the scripts used in the linking, recovery and partition rule editors.  
Those scripts are used to define a combination of rule based operands, systems, or basic 
events for linking event trees or adding basic event recovery actions or end state partitions.  
Conversely, macros are keywords in a text file format that SAPHIRE uses to automatically 
perform “analysis menu” functions.  Though not directly designed to perform model 
modifications (i.e. modify basic event data, fault tree logic and event tree logic), most “modify” 
functions which can be used via macros are implemented by calling the MAR-D extract and load 
feature. 

Macros are “programmed” using a standard text editor.  The macros are coded with keywords 
that SAPHIRE recognizes as a specific menu or analysis functions.  These keywords are listed 
in Table 13. 

The embedded macro code uses tags, similar to those in an "HTML" or "XML" type file to run 
the actual associated macro. The tags are classified as verbs or "actions" which are the main 
actions or operations performed on a plant model; classes of "objects" which are acted upon by 
the verbs; and "parameters" which are passed to the actions.  Each action, class, and 
parameter has opening and closing tags that mark the series of commands performed during a 
macro scenario.  This code contains the declarations for all the tags used by the macro. A 
macro also contains functions and procedures that parse the steps into its actions and verbs; 
initializes the routines and parameters in the tool from the macro specified inputs; runs the code; 
and outputs results into a user-defined text file.  The macros themselves can be run in normal or 
a “debug” mode. All the commands executed can be submitted into an output ASCII text log file.  
Results are output into a separate ASCII text file.  Time, date and user identification information 
is logged along with the test results.  Comment capability is available in the macro language. 

To develop a macro, the “macro manager” should be access which provides a text editor (to 
create the macro) and a save option.  Once a macro is saved using the macro manager, it is 
stored in the project’s Shared\Macros folder.  A macro can then be executed by selecting it in 
the list of macros by using the File � Macro option.  
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Table 13.  Keywords for SAPHIRE Macros. 

Keyword Use/Example Notes 

<add> <add>     · · · 

</add> 

This keyword will add a new item to a list.  Using this 
keyword, a basic event could be added to a MAR-D cut set 
listing or a change set added to a database. 

<analysis type> <analysis type>4 
</analysis type> 

This keyword is used to specify analysis type that SAPHIRE 
is to perform calculation in.  Random = 1, Fire = 2, Flood = 3, 
Seismic = 4, etc.  For this example the analysis type would 
be “seismic”. 

<analysis> <analysis>random 
</analysis> 

This keyword is used to specify specific analysis type during  
a base case update.  For this example, during the base case 
update, the analysis type would be “random.” 

<base case 
update> 

<base case update> 

(analysis type 
specified) </base 
case update> 

This keyword is used to specify the start and end a base 
case update action.  

<basic event> <basic event>     · · · 

</basic event> 

This keyword is used to specify the start and end of a basic 
event action.  Generally, basic event actions involves 
extracting or loading MAR-D files or adding/deleting a basic 
event from a MAR-D file. 

<calc type> <calc type>1</calc 
type> 

This keyword is used to specify the calculation type.  For this 
example, calculation type 1 would be use in the change set.  

<case> <case>base</case> This keyword is used to specify the base or current case.  
For this example, the base case would be invoked. 

<change set> <change set>      · · · 

</change set> 

This keyword is used to specify the start and end of change 
set operations.  For example, a change set can be added, 
deleted, marked or unmarked. 

<class> <class>     · · · 

</class> 

This keyword is used to specify the start and end of an event 
class operation (i.e., class type basic event change in a 
change set).  Within this keyword function, the class of the 
basic events to be changed and their desired changes is 
specified. 

<comment> <comment>      
information 
</comment> 

This keyword is used to specify the start and end of a macro 
comment block.  Any text can be located within the comment 
block. 
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Keyword Use/Example Notes 

<compare file> <compare file> 

    <input 1>FILE1 

    </input1> 

    <input 2>FILE2 

    </input2> 

</compare file> 

This keyword is used to specify the start and end of a file 
comparison. Used with <input 1>, <input 2> tags to specify 
the two files to compare (report files).  The results of the 
comparison can be viewed in a file using the 
<output>filename</output> keyword. 

<condition> <condition>      · · · 

</condition> 

This keyword is used to specify the start and end of a 
selected GEM condition assessment process.  Within the 
condition block, a GEM condition assessment can be added, 
deleted, marked or unmarked. 

<delete> <delete>      · · · 

</delete> 

This keyword is used to specify the start and end of a list 
item to be deleted. Using this keyword, a basic event could 
be deleted to a MAR-D cut set listing and then reloaded or a 
change set deleted from a database. 

<description> <description> 

text description 
</description> 

This keyword is used to specify a text description to change 
set, flag set, or scenario.  For example if a change set is 
created, <description>Class change - All 
events</description>, the text between the description block 
would be added as the change set’s description. 

<duration> <duration>72 
</duration> 

This keyword is used to specify a duration time for a GEM 
condition assessment.  For this example, the duration time 
would be 72 hours. 

<end state> <end state>      · · · 

</end state> 

This keyword is used to specify the start and end of an end 
state operation.  Within the end state keyword blocks, end 
states can be marked, gathered, solved, and an uncertainty 
analysis performed. 

<end> <end> </end> This keyword is used to specify the end of a scenario. 

<event name> <event name> BE 
NAME </event 
name> 

This keyword is used to specify an event name to be 
adjusted during a change set operation.   For this example, 
the basic event BE NAME, could be adjusted within a change 
set block. 

<event tree> <event tree>      · · · This keyword is used to specify the start and end of an event 
tree operation.  Within the event tree keyword block, an 
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Keyword Use/Example Notes 

</event tree> event tree can be marked, unmarked, and linked. 

<exclude> <exclude> FT-1 
</exclude> 

This keyword is used to specify the name of a event tree, 
fault tree, or sequence to be excluded in an operation.  For 
this example, fault tree FT-1, would be excluded from any 
operation. 

<extract> <extract>      · · · 

</extract> 

This keyword is used to specify the start and end of a MAR-D 
extract operation.  Within the extract keyword block, the 
MAR-D file type and file name is specified. 

<fault tree> <fault tree>      · · · 

</fault tree> 

This keyword is used to specify the start and end of a fault 
tree operation.  Within the fault tree keyword block, cut sets 
can be solved, flag sets applied, uncertainty analysis and 
importance measures can be performed.  

<file name> <file name> 
TEMP.BEI </file 
name> 

This keyword is used to specify a file name for MAR-D 
extract and load functions.  For this example, the file name is 
MAR-D file with a name “TEMP.BEI”.  This keyword is also 
used to specify report output files names. 

<flag set> <flag set>       · · · 

</flag set> 

This keyword is used to specify the start and end of flag set 
operations.  For example, a flag set can be added, deleted, 
and applied to fault trees and sequences. 

<gather method> <gather method>by 
sequence</gather 
method> 

This keyword is used to specify the specific end state gather 
operation.  For this example, the cut sets would be gathered 
“by sequence.” 

<generate> <generate> 

</generate> 

This keyword is used to specify the generate option.  The 
generate command implements the changes in a change set 
or flag set and moves from the base case to the current case 
for an analysis. 

<group> <group>yes</group
> 

This keyword is used to specify the use of group importance 
measures or not.  For this example, the group importance is 
“on”. 

<ie name> <ie name>IE-LOSP 
</ie name> 

This keyword is used to specify the initiating event name.  
For this example, the initiating event “IE-LOSP” would be 
selected during a GEM initiating event assessment. 

<importance> <importance>       · · 
·</importance> 

This keyword is used to specify the start and end of an 
importance measure operation. 
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Keyword Use/Example Notes 

<include> <include>FT-1 
</include> 

A keyword used to specify the name of a event tree, fault 
tree, or sequence to be included in an operation.  For this 
example, fault tree FT-1, would be included in the operation. 

<init event> <init event>      · · · 

</init event> 

This keyword is used to specify the start and end of a GEM 
initiating event assessment.. 

<initial prompt> <initial prompt> yes 
</initial prompt> 

This keyword is not necessary to run a macro.  However, if 
“yes” is specified (as in this example) in the initial prompt 
block, a confirmation box is displayed that ask the analyst do 
confirm the operation of the macro-script.  

<input 1> <input 1> 
FILENAME1</input 
1> 

This keyword is used to designate the first file in a compare 
operation.  For this example, the first file is called 
FILENAME1. 

<input 2> <input 2> 
FILENAME2</input2
> 

This keyword is used to designate the second file in a 
compare operation.  For this example, the second file is 
called FILENAME2. 

<lambda> <lambda> 1.0E-2 
</lambda> 

This keyword is used to specify the value.  For this example, 
the lambda value would be 1.0E-2. 

<link> <link> </link> This keyword is used to link event trees. 

<load> <load>      · · · 

</load> 

This keyword is used to specify the start and end of a MAR-D 
load operation.  This operation can load in additional MAR-D 
files or files that have been modified 

<logic show 
save> 

<logic show save> 
</logic show save> 

This keyword is used to show and save fault tree logic . 

<loop class> <loop class> grid 
</loop class> 

This keyword is used to specify the type of loop classification 
being used during an analysis.  For this example, the loop 
class would be “Grid-related”. 

<mark event tree 
mask> 

<mark event tree 
mask> LOSP 
</mark event tree 
mask> 

This keyword is used to specify the specific event tree mask 
and is used during sequence analysis.  For this example, all 
sequences generated with the event tree LOSP would be 
marked. 

<mark logic fault 
tree> 

<mark logic fault 
tree>*</mark logic 
fault tree> 

This keyword is used to select a specific sequence having a 
specific fault tree logic during sequence analysis. 
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Keyword Use/Example Notes 

<mark mask> <mark mask> * 
</mark mask> 

This keyword is used to specify the specific fault trees or 
event trees to mark.  For this example, a “*” would mark all 
fault or event trees in the list (depending on if you were under 
a <fault tree> or <event tree> function block). 

<mark name> <mark name> 
NAME1</mark 
name> 

This keyword is used to specify the specific condition name 
in GEM.  For this example, the condition assessment NAME1 
would be marked. 

 

<mark sequence 
mask> 

<mark sequence 
mask> ATWS 
</mark sequence 
mask> 

This keyword is used to specify the specific sequence mask.  
For this example, all ATWS sequences would be selected for 
analysis.   

<mark sequence 
name> 

<mark sequence 
name> LOSP2 
</mark sequence 
name> 

This keyword is used to mark a specific sequence for 
sequence analysis.  For this example, the sequence named 
LOSP2 would be marked.. 

<mask operation> <mask 
operation>and 
</mask operation> 

This keyword is used to specify the specific mask operation 
for masking/marking sequences.  The logic mask operator 
can either be “OR” or “AND”.  This function block allows 
more flexibility in selecting event tree names, sequence 
names and fault tree names for sequence analysis. 

<mask> <mask> </mask> This keyword is used in conjunction with others. 

<method> <method> mcs 
</method> 

This keyword is used to specify the specific uncertainty 
method.  For this example, the uncertainty method would be 
Monte Carlo.  For Latin Hypercube, “lhs” would be used. 

<mission time> <mission time> 10 
</mission time> 

This keyword is used to specify the specific mission time 
value.  Mission time can be in scientific notation i.e.<mission 
time>1.0E+1</mission time>.  For this example the mission 
time would be 10 hours. 

<name> <name> test name 
</name> 

This keyword is used to specify the name of a specific test 
passed in by a DOS script file, i.e. <name>%P-11</name>.  
It is also used to specify the name of a change set, flag set, 
fault tree, event tree, etc to be added or deleted during an 
operation.   

<output> <output> file name This keyword is used to specify the output to a specific file 
name.  For example,  <output>compare.rpt</output>, would 
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Keyword Use/Example Notes 

</output> output to a text file called “compare.rpt”. 

<page> <page> </page> This keyword is used to turn on the MAR-D paging option. 

<partition> <partition> 
</partition> 

This keyword is used to turn on the partition option for event 
trees. 

<probability> <probability> 0.02 
</probability> 

This keyword is used to specify a specific probability.  For 
this example the probability of 0.02 would be used in a 
change set. 

<process> <process> 
</process> 

This keyword is used to specify the start and end of a 
condition assessment timed test. 

<program exit> <program exit> 
</program exit> 

This keyword is used to specify the end of the macro script. 

<project> <project> </project> This keyword is used to specify a “project level” uncertainty 
operation. 

<recover> <recover> 
</recover> 

This keyword is used to start the cut set recovery process. 

<report 
destination> 

<report 
destination>F 
</report destination>

This keyword is used to specify the destination of the report 
output.  There are three options:  “F” is a file, “V” is a screen 
view, and “P” is a default printer.  It the report destination is 
not specified, the default is to a file. 

<report format> <report format>A 
</report format> 

This keyword is used to specify the type of report format that 
is outputted.  There are three options:  “A” is text file, “R” is 
RTF format, and “H” is HTML format.  The default is text 
format. 

<report> <report>      · · 
·</report> 

This keyword is used to specify a report creating operation. 

<sample> <sample> 5000 
</sample> 

This keyword is used to specify the number of samples in an 
uncertainty calculation.  For this example, 5000 samples 
would be ran for the uncertainty operation. 

<scenario> <scenario>       · · · 

</scenario> 

This keyword is used to specify a specific scenario sequence 
of events.  This keyword is used to help identify various 
macro-script functions in a file.   

<seed> <seed>1234</seed> This keyword is used to specify the random number seed in 
an uncertainty measure calculation.  If a “0” is used, then the 
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Keyword Use/Example Notes 

clock number is implemented.  For this example, the seed 
number would be “1234”. 

<seismic bin> <seismic bin> 9 
</seismic bin> 

This keyword is used to specify the histogram bin number for 
a seismic analysis. 

<sequence> <sequence>       · · · 

</sequence> 

This keyword is used to specify the start and end of a 
sequence operation. 

<set units> <set units> 
PPerYear  

</set units> 

This keyword is used to specify the project units.  For this 
example “per year” would be used.  Other units include per 
month, per week, and per day. 

<setup> <setup>      · · · 

</setup> 

This keyword is used to specify the test scenario state of 
operation.  This keyword is used to during the validation and 
verification macro-script tests. 

<show save> <show save></show 
save> 

This keyword displays a fault tree graphic and saves it. 

<single> <single> </single> This keyword is used to specify a single event operation in a 
change set operation.  To types of change sets are available, 
single and class changes. 

<slice save> <slice save>      · · · 

</slice save> 

This keyword is used to specify a cut set slice save 
operation.  This feature allow for specific cut sets to be saved 
in a file (or end state). 

<solve> <solve>      · · · 

</solve> 

This keyword is used to specify a fault tree/sequence solve 
operation (i.e. solve for cut sets). 

<sort order> <sort order> name 
</sort order> 

This keyword is used to specify the type of sorted order of 
the output.  This is used for sorting using a specified 
importance measure.  This function sorts the basic events in 
alphabetical order. 

<start> <start> </start> This keyword is used to specify the start of a new validation 
and verification test. 

<sub type> <sub type>base only 
</sub type> 

This keyword is used to specify a report sub-type.  For this 
example, the sub-type report is for base case results only. 
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Keyword Use/Example Notes 

<suscept> <suscept> 4 
</suscept> 

This keyword is used to specify an event susceptibility value.  
1=random, 2=fire, 3=flood, 4=seismic, etc. 

<tau> <tau>4</tau> This keyword is used to specify a specific tau value in a 
change set. 

<truncation> <truncation> 1.0E-
12 </truncation> 

This keyword is used to specify a probability cut off level, a 
truncation.  This function block is used within the <solve> 
block. 

<type> <type>cut 
set</type> 

This keyword is used to specify the report type.  For this 
example, the report type would be for a cut set output report. 

<uncertainty> <uncertainty>       · · 
· 

</uncertainty> 

This keyword is used to specify an uncertainty measure 
operation. 

<unmark> <unmark></unmark
> 

This keyword is used to clear any marked change sets in a 
plant model prior to additional analysis. 

<update> <update></update> This keyword is used to specify an update operation for a cut 
set. 

<verbose> <verbose> 

      · · · 

</verbose> 

This keyword is used to specify the verbose option on for the 
verification and validation test procedure of SAPHIRE.  This 
keyword is used to setup the level of detail in the test results 
output files. 

affected <sub type> affected 
</sub type> 

Parameter setting for a change set report that shows affected 
events adjusted in the change set (i.e. shows current case 
data) 

all <sub type> all </sub 
type> 

Parameter setting for a change set report that shows both 
affected and unaffected basic events (i.e. shows both current 
and base case). 

and <mask 
operation>and 
</mask operation> 

Parameter setting for setting for filtering masking/marking 
selections for fault trees and sequences. 

ascii <report format> ascii 
</report format> 

Parameter setting for setting the report file out format to 
delimited ascii text. 
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Keyword Use/Example Notes 

average <loop class> 
average </loop 
class> 

Parameter setting for use with GEM initiating event 
operations.  Set the loop class to be a combined average of 
Grid related, Plant centered, severe weather, and extremely 
severe weather classes. 

base <case>base</case> Parameter setting to specify the base case is to be used.  

by partition <gather method> by 
partition </gather 
method> 

Parameter setting for selection of an end state gather 
technique to be “gather cut sets by partition”. 

by sequence <gather method>by 
sequence</gather 
method> 

Parameter setting for selection of an end state gather 
technique to be “gather cut sets by sequence”.  

combination <type> combination 
</type> 

Parameter setting to specify a combination report type 
(summary report) for fault tree, sequences and end states 
reports. 

current <case>current</cas
e> 

Parameter setting to specify the current case is to be used. 

current base <sub type>current 
base</sub type> 

Parameter setting for selection of a report sub type to have 
output for both the current case and the base case. 

current only <sub type>current 
only</sub type> 

Parameter setting for selection of a report sub type to be 
current case only. 

cut set <type>cut 
set</type> 

Parameter setting for selection of a report type to be for “cut 
sets.” i.e. the output file will contain cut sets. 

 

debug  Parameter setting for selecting the mode of the log file output 
used for validation and verification testing. 

detail  Parameter setting for selecting the mode of the log file output 
in a high detail mode. 

esw <loop class> esw 
</loop class> 

Parameter setting for use with GEM initiating event 
operations.  Sets the loop class to “extreme severe weather.” 

file  Parameter setting for TBD 

grid <loop class> grid Parameter setting for use with Initiating Event operations.  



 

163 

Keyword Use/Example Notes 

</loop class> Set the loop class to “grid related.” 

group <type>group</type> Parameter setting for selection of an importance measure 
calculation type “group.” 

interval <type>interval 
</type> 

Setting for selection of an importance measure calculation, 
“interval.”  The other option is “ratio”. 

lhs <method>lhs 
</method> 

Parameter setting for Latin Hypercube Simulation method in 
an uncertainty calculation. 

mcs <method>mcs 
</method> 

Parameter setting for Monte Carlo Simulation method in an 
uncertainty calculation. 

name <name>%P-10 
</name> 

Parameter setting for assigning the name of the database (or 
project) that the macro-script is being used on to the test 
scenario.  For this example, if the project name was “TEST”, 
then the name of the scenario would be “TEST-10”.   

no <initial prompt>no 
</initial prompt> 

Parameter setting for turning off a feature.  For this example, 
the conformation prompt would not be implemented. 

none  Parameter setting for TBD 

or <mask operation>or 
</mask operation> 

Parameter setting for setting for filtering masking/marking 
selections for fault trees and sequences. 

PPerDay <set units> PPerDay 
</set units> 

Parameter setting for <set units> to be “per day.” 

PPerDemand <set units> 
PPerDemand </set 
units> 

Parameter setting for <set units> to be “per demand.” 

PPerHour <set units> 
PPerHour </set 
units> 

Parameter setting for <set units> to be “per hour.” 

PPerMinute <set units> 
PPerMinute </set 
units> 

Parameter setting for <set units> to be “per minute.” 

PPerMonth <set units> 
PPerMonth </set 
units> 

Parameter setting for <set units> to be “per month.” 
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PPerWeek <set units> 
PPerWeek </set 
units> 

Parameter setting for <set units> to be “per week.” 

PPerYear <set units> 
PPerYear </set 
units> 

Parameter setting for <set units> to be “per year.” 

plant centered <loop class>plant 
centered</loop 
class> 

Parameter setting for use with an Initiating Event operation.  
Sets the loop class to “plant centered.” 

print <report destination> 
print </report 
destination> 

Parameter setting for selecting a report output option to be to 
a system default printer. 

project <type>project</type
> 

Parameter setting for selection of an uncertainty calculation 
type to “project”. 

random <analysis>random</
analysis> 

Parameter setting for an analysis type to random. 

ratio <type>ratio</type> Parameter setting for selection of an importance measure 
calculation to be “ratio”.  The other option is “interval” 

results <type>results</type
> 

Parameter setting for selection of a report type for analysis 
results. 

rtf <report format> rtf 
</report format> 

Parameter setting for setting the file output format of a report 
to be RTF format. 

severe weather <loop class>severe 
weather</loop 
class> 

Parameter setting for use with initiating event operations.  
Set loop class to severe weather.” 

single <type>single</type> Parameter setting for selection of an importance measure 
calculation to single. 

unaffected <sub type> 
unaffected </sub 
type> 

Parameter setting for a change set report that shows 
unaffected events not adjusted in the change set (i.e. shows 
base case data) 

uncertainty <type>uncertainty 
</type> 

Parameter setting for selection of an importance measure 
calculation to be by “uncertainty.” 
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view <report destination> 
view </report 
destination> 

Parameter setting for selecting a report output option to be to 
screen for viewing. 

yes <group>yes</group
> 

Parameter setting for turning on a feature. 

 
 
The macro shown in Table 14 is designed for the DEMO project that accompanies the 
SAPHIRE  program.  The macro can be created using any standard text editor.  The following 
macro, when run, creates a change set called “Example” and adds a description to it.  The 
change set adjusts the probability of basic event C-PUMP-A to 1.0E-1.  The macro then marks 
the change set and generates the new data.  Next, all the sequences are marked and new cut 
sets are solved.  Finally, the new cut set listing is displayed on the screen. 



 

166 

Table 14.  Example macro using the Demo project. 

<comment> 

The following is an example SCRIPT that can be run in the DEMO project of SAPHIRE. 

This simple SCRIPT performs the following functions automatically when implemented 

using the "Run Macro..." command: 

 Creates a Change Set named "EXAMPLE". 

 Adds a description to the change set. 

 Changes the probability of basic event C-PUMP-A to 1.0E-1. 

 Generates the new data. 

 Marks all Sequences. 

 Solves for cuts sets. 

 Generates a report of the new cut sets to the screen. 

</comment> 

<change set> 

  <add> 

 <name>EXAMPLE</name> 

 <description>Changes C-PUMP-A probability to 1.0E-1</description> 

    <single> 

 <event name>C-PUMP-A</event name> 

 <probability>1.0E-1</probability> 

    </single> 

  </add> 

  <mark name>EXAMPLE</mark name> 

  <generate></generate> 

</change set> 
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<sequence> 

  <unmark></unmark> 

  <include> 

    <mark event tree mask>*</mark event tree mask> 

    <mask operation>or</mask operation> 

    <mark sequence mask>*</mark sequence mask> 

    <mask operation>or</mask operation> 

    <mark logic fault tree>*</mark logic fault tree> 

  </include> 

  <solve></solve> 

    <report> 

 <type>cut set</type> 

 <report destination>view</report destination> 

    </report> 

</sequence> 
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Appendix A  

 

Fault Tree Quantification Example 
 

 A1.  INTRODUCTION 

This appendix contains a worked example of the reduction and quantification of a simple fault 
tree.  The minimal cut sets are obtained using a cut set algorithm and also using Boolean 
equations.  The minimal cut sets are then quantified using the rare event approximation; the 
minimal cut set upper bound, and the inclusion-exclusion rule to obtain the exact solution.  
These quantification steps are worked out in detail.  Finally, basic event importance measures 
are calculated to show how the calculations are done. 

This appendix uses the notation + for U and * for �. 

 

 A2.  FAULT TREE INPUT 

The fault tree for this example is shown in Figure A-1.  It contains a 2/3 combination gate.  The 
alphanumeric input for the fault tree is shown in the following: 

Alphanumeric Fault Tree (Shown in Figure A-1)  

TOP  AND     GATE1 GATE2 

GATE1 2/3     GATE3 GATE4   B1 

GATE2 OR    B1       B3       B4 

GATE3 OR      B2       B4 

GATE4 AND B3       B5 

 

Each row corresponds to a gate in the fault tree.  The first entry is the gate name.  The next 
entry is the gate type.  The remaining entries are the inputs to the gate. 

Next, we show the fault tree logic when the 2/3 combination gate (GATE1) is expanded into 
AND and OR gates.  The new gates are FT-N/M-1, FT-N/M-2, and FT-N/M-3.  The 
alphanumeric coding of the fault tree is shown below: 



 

A-3 

 

Alphanumeric Fault Tree with Expanded Gates  

 TOP  AND GATE1         GATE2 

 GATE1 OR      FT-N/M-1  FT-N/M-2     FT-N/M-3 

 GATE2 OR      B1            B3            B4 

 GATE3 OR      B2            B4 

 FT-N/M-1 AND    GATE3         B3            B5 

 FT-N/M-2 AND    GATE3         B1 

 FT-N/M-3        AND B3   B5  B1 

 

Figure A-1.  Example fault tree graphic 
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CUT SET GENERATION (Top-down approach) 

In this section the minimal cut sets are obtained using a top-down approach.  The steps are 
illustrated in detail so that the reader can understand all of the calculation details.  In practice, 
several of the steps can be performed together. 

Step 1 (TOP) 

To start the algorithm the TOP gate is replaced by its inputs.  If the TOP gate is an OR gate, 
then each input becomes a row.  If the TOP gate is an AND gate, the inputs are placed in the 
same row.  Thus, the first step is the following: 

GATE1  GATE2 

Step 2 (GATE1)      

In this step, GATE1 is replaced by its three inputs.  Since GATE1 is an OR gate each input 
becomes a row.  This results in the following: 

FT-N/M-1  GATE2 

FT-N/M-2  GATE2 

FT-N/M-3  GATE2 

Step 3 (FT-N/M-1) 

In this step, FT-N/M-1 is replaced by its inputs GATE3, B3 and B5.  Only the first row was 
modified since the gate is an AND gate.  The results are: 

B3   B5   GATE2  GATE3 

FT-N/M-2   GATE2 

FT-N/M-3   GATE2 

Step 4 (FT-N/M-2) 

Next, FT-N/M-2 is expanded.  It is an AND gate so it is replaced by its inputs in every row that 
contains it.  The results of this step are: 

B3   B5   GATE2   GATE3 

B1   GATE2   GATE3 

FT-N/M-3   GATE2 
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Step 5 (FT-N/M-3)     

Gate FT-N/M-3 is selected to process.  It is also an AND gate and appears in only one row of 
the table in step 4.  Thus, no rows are added in this step.  The gate is replaced by its inputs.  
The results are: 

B3   B5       GATE2   GATE3 

B1  GATE2   GATE3 

B1   B3       B5       GATE2 

Step 6 (GATE3)          

GATE3 is selected to be expanded next.  GATE3 is an OR gate with two inputs.  For the first 
row in the table in step 5, GATE3 is replaced by one of its inputs.  The row is then repeated and 
the gate name replaced by its other inputs.  The results of this step are: 

B2   B3   B5      GATE2         (Replace GATE3 by B2.) 

B1   B2    GATE2 (Replace GATE3 by B2.) 

B3   B4   B5      GATE2         (Replace GATE3 by B4.) 

B1   B4    GATE2      (Replace GATE3 by B4.) 

B1   B3   B5      GATE2         (Does not involve GATE3.) 

Notice that two new rows were added in this step. 

Step 7 (GATE2)  

In this step, GATE2 is processed.  Notice that GATE2 appears in every row of the table in step 
6.  GATE2 is an OR gate with 3 inputs.  Thus, the number of rows will increase, but the number 
of entries in each row will remain the same.  The number of rows will be three times the number 
in the table of step 6.  That is, the table for this step will consist of 15 rows.  The table for this 
step is the following: 

B2   B3   B5   B1    

B1   B2   B1     

B3   B4   B5   B1     (Replace GATE2 by B1.) 

B4   B1   B1    

B1   B3   B5   B1 

  

B2   B3   B5   B3     
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B1   B2   B3     

B3   B4   B5   B3     (Replace GATE2 by B3.) 

B1   B4   B3 

B1   B3   B5   B3 

 

B2   B3   B5   B4 

B1   B2   B4 

B3   B4   B5   B4     (Replace GATE2 by B4.) 

B1   B4   B4 

B1   B3   B5   B4 

 

Step 8 (Idempotence A*A=A) 

At this point, all of the gates have been resolved so that only basic events occur in the table.  
The next step is to apply the Law of Idempotence, A*A = A.  The results are: 

B2  B3  B5  B1 =  B1  B2  B3  B5 

B1  B2  B1      =  B1  B2 

B3  B4  B5  B1  =  B1  B3  B4  B5 

B4  B1  B1      =  B1  B4 

B1  B3  B5  B1  =  B1  B3  B5 

B2  B3  B5  B3  =  B2  B3  B5 

B1  B2  B3      =  B1  B2  B3 

B3  B4  B5  B3  =  B3  B4  B5 

B1  B4  B3      =  B1  B3  B4 

B1  B3  B5  B3  =  B1  B3  B5 

B2  B3  B5  B4  =  B2  B3  B4  B5 

B1  B2  B4      =  B1  B2  B4 

B3  B4  B5  B4  =  B3  B4  B5 

B1  B4  B4      =  B1  B4 

B1  B3  B5  B4  =  B1  B3  B4  B5 
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Step 9 (Absorption A+(A*B)=A) 

The next step is the absorption step.  That is, nonminimal cut sets must be eliminated, as well 
as duplicate rows.  In the following table, the rows that are eliminated have a line through them 
and the reason it is eliminated is provided to the left.  The results are: 

B1  B2 

B1  B2  B3        Eliminated by B1 B2  

B1  B2  B3  B5    Eliminated by B1 B2 

B1  B2  B4        Eliminated by B1 B2 

B1  B3  B4        Eliminated by B1 B4 

B1  B3  B4  B5    Eliminated by B1 B4 

B1  B3  B4  B5    Eliminated by B1 B4 

B1  B3  B5 

B1  B3  B5        Repeated cut set 

B1  B4  

B1  B4           Repeated cut set 

B2  B3  B4  B5    Eliminated by B2 B3 B5 

B2  B3  B5 

B3  B4  B5 

B3  B4  B5        Repeated cut set 

 

Step 10 (Final minimal cut sets) 

The remaining 5 sets are the minimal cut sets for this example.  They are: 

B1  B2 

B1  B4 

B1  B3  B5 

B2  B3  B5 

B3  B4  B5 

 

A3.  BOOLEAN EQUATION FOR THE FAULT TREE 

In this section the Boolean equation form of the fault tree is used to obtain the minimal cut sets.  
The steps below are not the only way the equations can be combined and reduced.  Many of 
the steps illustrated below can be combined and performed simultaneously.  These steps are 
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presented to illustrate the various concepts and show how they parallel the cut set algorithm 
illustrated in the previous section. 

The equation form of the fault tree is: 

TOP  =  GATE1 * GATE2 

GATE1  =  FT-N/M-1 + FT-N/M-2 + FT-N/M-3 

GATE2  =  B1 + B3 + B4 

GATE3  =  B2 + B4 

FT-N/M-1  =  GATE3 * B3 * B5 

FT-N/M-2  =  GATE3 * B1 

FT-N/M-3  =  B1 * B3 * B5  

 

Step 1 

The first step is to start with the TOP equation: 

TOP  =  GATE1 * GATE2. 

Step 2 

In this step GATE1 and GATE2 are replaced by their inputs.  This results in the following 
equation: 

TOP  =  (FT-N/M-1 + FT-N/M-2 + FT-N/M-3) * (B1 + B3 + B4). 

Step 3 

In this step the three expanded gates (FT-N/M-1, FT-N/M-2, and FT-N/M-3) are replaced by 
their inputs 

TOP  =  (GATE3 * B3 * B5 + GATE3 * B1 + B1 * B3 * B5) * (B1 + B3 + B4). 

Step 4 

Next GATE3 is replaced by its inputs to obtain 

TOP  =  (B1 + B3 + B4) * [(B2 + B4)(B3*B5) + (B2 + B4) * B1 + B1*B3*B5]. 
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At this point all gates have been replaced by their inputs, and the equation consists of basic 
events only. 

Step 5 

The next step is to expand and combine the terms in the square brackets.  This yields 

TOP  =  (B1 + B3 + B4) * (B2*B3*B5 + B3*B4*B5 + B1*B2 + B1*B4 + B1*B3*B5). 

Step 6 

The terms in the first set of parentheses are distributed across the second set to yield 

TOP  =   B1 * (B2*B3*B5 + B3*B4*B5 + B1*B2 + B1*B4 + B1*B3*B5) 

       + B3 * (B2*B3*B5 + B3*B4*B5 + B1*B2 + B1*B4 + B1*B3*B5) 

       + B4 * (B2*B3*B5 + B3*B4*B5 + B1*B2 + B1*B4 + B1*B3*B5). 

Step 7 

Each term is now expanded to yield 

TOP  =   B1*B2*B3*B5 + B1*B3*B4*B5 + B1*B1*B2 + B1*B1*B4 + B1*B1*B3*B5 

       + B3*B2*B3*B5 + B3*B3*B4*B5 + B1*B2*B3 + B1*B3*B4 + B1*B3*B3*B5 

       + B2*B3*B4*B5 + B3*B4*B4*B5 + B1*B2*B4 + B1*B4*B4 + B1*B3*B4*B5. 

Step 8 (Idempotence) 

The Law of Idempotence (A*A=A) is now applied.  This produces 

TOP  =   B1*B2*B3*B5 + B1*B3*B4*B5 + B1*B2 + B1*B4 + B1*B3*B5 

       + B2*B3*B5 + B3*B4*B5 + B1*B2*B3 + B1*B3*B4 + B1*B3*B5 

       + B2*B3*B4*B5 + B3*B4*B5 + B1*B2*B4 + B1*B4 + B1*B3*B4*B5. 

Step 9 (Absorption) 

Finally, the nonminimal cut sets are eliminated.  The terms that are eliminated are shown with a 
line through them. 

TOP  =   B1*B2*B3*B5 + B1*B3*B4*B5 + B1*B2 + B1*B4 + B1*B3*B5 

    + B2*B3*B5 + B3*B4*B5 + B1*B2*B3 + B1*B3*B4 + B1*B3*B5 

       + B2*B3*B4*B5 + B3*B4*B5 + B1*B2*B4 + B1*B4 + B1*B3*B4*B5 
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Minimal Cut Set Equation 

The final minimal cut set equation is 

TOP  =  B1*B2 + B1*B4 + B1*B3*B5 + B2*B3*B5 + B3*B4*B5. 

These are exactly the same minimal cut sets that were obtained in Section A2. 

 

 A4.  CUT SET QUANTIFICATION 

In this section the different ways of quantifying the minimal cut sets are compared.  Numerical 
results are treated in the next section.  The objective is to illustrate the complexity of the exact 
solution and also the Boolean algebra required in calculating it.   

The minimal cut set equation is the starting point for the calculations.  From Section A2 or A3, 
we have 

P[TOP]    =      P[B1*B2 + B1*B4 + B1*B3*B5 + B2*B3*B5 + B3*B4*B5] 

Exact Solution 

The inclusion-exclusion rule (i.e., the min-max option) is used to calculate the exact solution.  
Basically, it is the sum of the probability of the individual sets, minus the sum of the probability 
of all possible pairs, plus the sum of the probabilities of all possible combinations of three, minus 
the probabilities of all possible combinations of four, plus the probability of intersection of all five 
minimal cut sets.  This calculation is shown in Table A-1. 
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Table A-1  Exact solution, Step 1. 

P[TOP] = P[{B1*B2}] 

         + P[{B1*B4}] 

         + P[{B1*B3*B5}] 

         + P[{B2*B3*B5}] 

         + P[{B3*B4*B5}] 

 

         - P[{B1*B2} * {B1*B4}] 

         - P[{B1*B2} * {B1*B3*B5}] 

         - P[{B1*B2} * {B2*B3*B5}] 

         - P[{B1*B2} * {B3*B4*B5}] 

         - P[{B1*B4} * {B1*B3*B5}] 

         - P[{B1*B4} * {B2*B3*B5}] 

         - P[{B1*B4} * {B3*B4*B5}] 

         - P[{B1*B3*B5}  * {B2*B3*B5}] 

         - P[{B1*B3*B5}  * {B3*B4*B5}] 

         - P[{B2*B3*B5}  * {B3*B4*B5}] 

 

         + P[{B1*B2} * {B1*B4} * {B1*B3*B5}] 

         + P[{B1*B2} * {B1*B4} * {B2*B3*B5}] 

         + P[{B1*B2} * {B1*B4} * {B3*B4*B5}] 

         + P[{B1*B2} * {B1*B3*B5} * {B2*B3*B5}] 

         + P[{B1*B2} * {B1*B3*B5} * {B3*B4*B5}] 

         + P[{B1*B2} * {B2*B3*B5} * {B3*B4*B5}] 

         + P[{B1*B4} * {B1*B3*B5} * {B2*B3*B5}] 

         + P[{B1*B4} * {B1*B3*B5} * {B3*B4*B5}] 

         + P[{B1*B4} * {B2*B3*B5} * {B3*B4*B5}] 

         + P[{B1*B3*B5} * {B2*B3*B5}  * {B3*B4*B5}] 

 

         - P[{B1*B2} * {B1*B4} * {B1*B3*B5} * {B2*B3*B5}] 

         - P[{B1*B2} * {B1*B4} * {B1*B3*B5} * {B3*B4*B5}] 
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From Table A-1 we see that the intersection of most of the sets contain common terms, e.g., B1 
B2 and B1 B4 have B1 in common.  The intersections must be reduced to simplest form by use 
of the Law of Idempotence (A*A=A).  The results of this are shown in Table A-2. 

In most situations, the basic events are assumed to be statistically independent.  That is, 
P[AB]=P[A]P[B].  The results of this step are shown in Table A-3. 

Minimal Cut Set Upper Bound 

The minimal cut set upper bound for our example is shown in Table A-4. 

Rare Event Approximation  

The first term of the inclusion-exclusion rule is an upper bound for the probability of the TOP 
event.  For our example the rare event approximation is  

P[TOP]  =   P[B1*B2] + P[B1*B4] + P[B1*B3*B5] + P[B2*B3*B5] + P[B3*B4*B5]. 
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Table A-2.  Exact solution after applying Law of Idempotence. 

P[TOP]   =  P[B1*B2] 

          + P[B1*B4] 

          + P[B1*B3*B5] 

          + P[B2*B3*B5] 

          + P[B3*B4*B5] 

 

          - P[B1*B2*B4] 

          - P[B1*B2*B3*B5] 

          - P[B1*B2*B3*B5] 

          - P[B1*B2*B3*B4*B5] 

          - P[B1*B3*B4*B5]           

 - P[B1*B2*B3*B4*B5] 

          - P[B1*B3*B4*B5] 

          - P[B1*B2*B3*B5] 

          - P[B1*B3*B4*B5] 

          - P[B2*B3*B4*B5] 

 

          + P[B1*B2*B3*B4*B5] 

          + P[B1*B2*B3*B4*B5] 

          + P[B1*B2*B3*B4*B5] 

          + P[B1*B2*B3*B4*B5] 

          + P[B1*B2*B3*B4*B5] 

          + P[B1*B2*B3*B4*B5] 

          + P[B1*B2*B3*B4*B5] 

          + P[B1*B2*B3*B4*B5] 

          + P[B1*B2*B3*B4*B5] 

          + P[B1*B2*B3*B4*B5] 

          - P[B1*B2*B3*B4*B5] 
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Table A-3.  Exact solution, using assumed statistical independence of basic events. 

P[TOP]  = P[B1] * P[B2] 

         + P[B1] * P[B4] 

         + P[B1] * P[B3] * P[B5] 

         + P[B2] * P[B3] * P[B5] 

         + P[B3] * P[B4] * P[B5] 

         - P[B1] * P[B2] * P[B4] 

         - P[B1] * P[B2] * P[B3] * P[B5] 

         - P[B1] * P[B2] * P[B3] * P[B5] 

         - P[B1] * P[B2] * P[B3] * P[B4] * P[B5] 

         - P[B1] * P[B3] * P[B4] * P[B5] 

         - P[B1] * P[B2] * P[B3] * P[B4] * P[B5] 

         - P[B1] * P[B3] * P[B4] * P[B5] 

         - P[B1] * P[B2] * P[B3] * P[B5] 

         - P[B1] * P[B3] * P[B4] * P[B5] 

         - P[B2] * P[B3] * P[B4] * P[B5] 

         + P[B1] * P[B2] * P[B3] * P[B4] * P[B5] 

         + P[B1] * P[B2] * P[B3] * P[B4] * P[B5] 

         + P[B1] * P[B2] * P[B3] * P[B4] * P[B5] 

         + P[B1] * P[B2] * P[B3] * P[B4] * P[B5] 

         + P[B1] * P[B2] * P[B3] * P[B4] * P[B5] 

        + P[B1] * P[B2] * P[B3] * P[B4] * P[B5] 

         + P[B1] * P[B2] * P[B3] * P[B4] * P[B5] 

         + P[B1] * P[B2] * P[B3] * P[B4] * P[B5] 

         + P[B1] * P[B2] * P[B3] * P[B4] * P[B5] 

         + P[B1] * P[B2] * P[B3] * P[B4] * P[B5] 

         - P[B1] * P[B2] * P[B3] * P[B4] * P[B5] 

         - P[B1] * P[B2] * P[B3] * P[B4] * P[B5]
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Table A-4.  Minimal cut set upper bound calculations for example. 

P[TOP] =  1 - (1 - P[{B1*B2}]) * (1 - P[{B1*B4}]) * (1 - P[{B1*B3*B5}]) * (1 -P[{B2*B3*B5}]) *   (1 - 
P[{B3*B4*B5}]) 

 

    = P[{B1*B2}] 

     + P[{B1*B4}] 

     + P[{B1*B3*B5}] 

      + P[{B2*B3*B5}] 

      + P[{B3*B4*B5}] 

 

      - P[{B1*B2}] * P[{B1*B4}] 

      - P[{B1*B2}] * P[{B1*B3*B5}] 

      - P[{B1*B2}] * P[{B2*B3*B5}] 

      - P[{B1*B2}] * P[{B3*B4*B5}] 

      - P[{B1*B4}] * P[{B1*B3*B5}] 

      - P[{B1*B4}] * P[{B2*B3*B5}] 

      - P[{B1*B4}] * P[{B3*B4*B5}] 

      - P[{B1*B3*B5}] * P[{B2*B3*B5}] 

      - P[{B1*B3*B5}] * P[{B3*B4*B5}] 

      - P[{B2*B3*B5}] * P[{B3*B4*B5}] 

 

      + P[{B1*B2}] * P[{B1*B4}] * P[{B1*B3*B5}] 

      + P[{B1*B2}] * P[{B1*B4}] * P[{B2*B3*B5}] 

      + P[{B1*B2}] * P[{B1*B4}] * P[{B3*B4*B5}] 

      + P[{B1*B2}] * P[{B1*B3*B5}] * P[{B2*B3*B5}] 

      + P[{B1*B2}] * P[{B1*B3*B5}] * P[{B3*B4*B5}] 

      + P[{B1*B2}] * P[{B2*B3*B5}] * P[{B3*B4*B5}] 

      + P[{B1*B4}] * P[{B1*B3*B5}] * P[{B2*B3*B5}] 

      + P[{B1*B4}] * P[{B1*B3*B5}] * P[{B3*B4*B5}] 

      + P[{B1*B4}] * P[{B2*B3*B5}] * P[{B3*B4*B5}] 

      + P[{B1*B3*B5}] * P[{B2*B3*B5}] * P[{B3*B4*B5}]
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A5. NUMERICAL CALCULATIONS 

This section contains numerical calculations illustrating the formulas developed in the previous 
section.  The basic event probabilities for our example problem are the following: 

P(B1)  = q1 = 0.01 

P(B2)  = q2 = 0.02 

P(B3)  = q3 = 0.03 

P(B4)  = q4 = 0.04 

P(B5)  = q5 = 0.05 

The cut set unavailabilities, denoted by Ci, are calculated below: 

C1 = P(B1*B2)     = P(B1)*P(B2)        = q1q2    = 0.01 * 0.02         = 2.0E-4 

C2 = P(B1*B4)     = P(B1)*P(B4)        = q1q4    = 0.01 * 0.04         = 4.0E-4 

C3 = P(B1*B3*B5)  = P(B1)*P(B3)*P(B5) = q1q3q4  = 0.01 * 0.03 * 
0.05  = 1.5E-5 

C4 = P(B2*B3*B5)  = P(b2)*P(B3)*P(B5) = q2q3q5  = 0.02 * 0.03 * 
0.05  = 3.0E-5 

C5 = P(B3*B4*B5)  = P(B3)*P(B4)*P(B5) = q3q4q5  = 0.03 * 0.04 * 
0.05  = 6.0E-5 

Using the cut set unavailabilities, the rare event approximation and the minimal cut set upper 
bound can be calculated.  The rare event approximation is: 

Rare Event Approximation = C1 + C2 + C3 + C4 + C5 = 7.050E-4 

The minimal cut set upper bound is: 

Min Cut Upper Bound  = 1 - (1-C1) * (1-C2) * (1-C3) * (1-C4) * (1-C5)  

                     = 1 - 0.9998 * 0.9996 * 0.999985 * 0.99997 * 0.99994 

                     = 1 - 0.99929515 = 7.0485386E-4 

The exact solution calculations are shown in Table A-6.  Table A-5 compares the results of the 
three calculation formulas.   
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Table A-7 shows the probabilities of the contributors (listed in Table A-4) for the minimum cut 
set upper bound.  A line-by-line examination shows that some lines of Table A-7 have certain 
basic event probabilities repeated and that this is the only difference between Tables A-6 and 
A-7.  A corresponding comparison can be made of Tables A-3 and A-4. 

 
 

 Table A-5  Comparison of Results 

 Type of Calculation  Unavailability 

     Min Cut Upper Bound  7.04854E-4 

     Rare Event Approximation  7.05000E-4 

     Sum of 1st and 2nd order termsa  6.93076E-4 

     Sum of 1st* 2nd and 3rd order termsa  6.93196E-4 

     Sum of 1st* 2nd* 3rd* and 4th order termsa  6.93136E-4 

     Sum of all terms (Exact answer)a  6.93148E-4 

    a.  See Table A-6 for details. 
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Table A-6.  Calculations for exact solution. 

        Basic Events in Term       Unavailability  

        +  B1  B2                    2.000E-04 

        +  B1  B4                     4.000E-04 

        +  B1  B3  B5                 1.500E-05 

        +  B2  B3  B5                 3.000E-05 

        +  B3  B4  B5                 6.000E-05 

        -  B1  B2  B4                -8.000E-06 

        -  B1  B2  B3  B5            -3.000E-07 

        -  B1  B2  B3  B5            -3.000E-07 

        -  B1  B2  B3  B4  B5       -1.200E-08 

        -  B1  B3  B4  B5            -6.000E-07 

        -  B1  B2  B3  B4  B5      -1.200E-08 

        -  B1  B3  B4  B5            -6.000E-07 

        -  B1  B2  B3  B5            -3.000E-07 

        -  B1  B3  B4  B5            -6.000E-07 

        -  B2  B3  B4  B5            -1.200E-06 

        +  B1  B2  B3  B4  B5        1.200E-08 

        +  B1  B2  B3  B4  B5        1.200E-08 

        +  B1  B2  B3  B4  B5        1.200E-08 

        +  B1  B2  B3  B4  B5        1.200E-08 

        +  B1  B2  B3  B4  B5        1.200E-08 

        +  B1  B2  B3  B4  B5        1.200E-08 

        +  B1  B2  B3  B4  B5        1.200E-08 

        +  B1  B2  B3  B4  B5        1.200E-08 

        +  B1  B2  B3  B4  B5        1.200E-08 

        +  B1  B2  B3  B4  B5        1.200E-08 

        -  B1  B2  B3  B4  B5        -1.200E-08 
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Table A-7.  Probabilities of contributors to minimal cut set upper bound. 

   Basic Events in Term                  Unavailability 

   +  B1 B2                                           2.000E-04 

   +  B1 B4                                           4.000E-04 

   +  B1 B3 B5                                        1.500E-05 

   +  B2 B3 B5                                        3.000E-05 

   +  B3 B4 B5                                        6.000E-05 

 

   -  B1 B2 B1 B4                                    -8.000E-08 

   -  B1 B2 B1 B3 B5                          -3.000E-09 

   -  B1 B2 B2 B3 B5                          -6.000E-09 

   -  B1 B2 B3 B4 B5                      -1.200E-08 

   -  B1 B4 B1 B3 B5                    -6.000E-09 

   -  B1 B4 B2 B3 B5                  -1.200E-08 

   -  B1 B4 B3 B4 B5                      -2.400E-08 

   -  B1 B3 B5 B2 B3 B5                    -4.500E-10 

   -  B1 B3 B5 B3 B4 B5                    -9.000E-10 

   -  B2 B3 B5 B3 B4 B5              -1.800E-09 

 

   +  B1 B2 B1 B4 B1 B3 B5              1.200E-12 

   +  B1 B2 B1 B4 B2 B3 B5            2.400E-12 

   +  B1 B2 B1 B4 B3 B4 B5            4.800E-12 

   +  B1 B2 B1 B3 B5 B2 B3 B5      9.000E-14 

   +  B1 B2 B1 B3 B5 B3 B4 B5 1.800E-13 

   +  B1 B2 B2 B3 B5 B3 B4 B5       3.600E-13 

   +  B1 B4 B1 B3 B5 B2 B3 B5       1.800E-13 

   +  B1 B4 B1 B3 B5 B3 B4 B5 3.600E-13 

   +  B1 B4 B2 B3 B5 B3 B4 B5          7.200E-13 

   +  B1 B3 B5 B2 B3 B5 B3 B4 B5     2.700E-14 

   -  B1 B2 B1 B4 B1 B3 B5 B2 B3 B5 -3.600E-17 
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 A6.  IMPORTANCE MEASURES 

Basic Event Probabilities 

P(B1) = q1 = 0.01  P(B2) = q2 = 0.02 

P(B3) = q3 = 0.03  P(B4) = q4 = 0.04 

P(B5) = q5 = 0.05 

C1 = P(B1*B2)     = P(B1)*P(B2)        = q1q2    = 0.01 * 0.02         = 2.0E-4 

C2 = P(B1*B4)     = P(B1)*P(B4)        = q1q4    = 0.01 * 0.04         = 4.0E-4 

C3 = P(B1*B3*B5)  = P(B1)*P(B3)*P(B5) = q1q3q4  = 0.01 * 0.03 * 
0.05  = 1.5E-5 

C4 = P(B2*B3*B5)  = P(b2)*P(B3)*P(B5) = q2q3q5  = 0.02 * 0.03 * 
0.05  = 3.0E-5 

C5 = P(B3*B4*B5)  = P(B3)*P(B4)*P(B5) = q3q4q5  = 0.03 * 0.04 * 
0.05  = 6.0E-5 

Q = C1 + C2 + C3 + C4 + C5 = 7.050E-4 

 

Fussell-Vesely Importance Measure 

B1 -  FV(B1)  = (C1 + C2 + C3)/Q  = (2.0E-4 + 4.0E-4 + 1.5E-5)/7.05E-4  = 0.8723 

B2 -  FV(B2)  = (C1 + C4)/Q  = (2.0E-4 + 3.E-5) / 7.05E-4  = 0.3262 

B3 -  FV(B3)  = (C3+C4+C5)/Q  = 1.05E-5/7.05E-5  = 0.1489 

B4 -  FV(B4)  = (C2+C5)/Q  = 4.0E-4 + 4.6E-4/7.05E-4  = 0.6525 

B5 -  FV9B5)  = (C3+C4+C5)/Q  = 1.05E-4 / 7.05E-4  = 0.1489 

 

Risk Reduction Importance 

For B1, set q1 = 0.0.  Then we get 

C1 = P(B1*B2)     = P(B1)*P(B2)        = q1q2    = 0.01 * 0.02         = 0 
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C2 = P(B1*B4)     = P(B1)*P(B4)        = q1q4    = 0.01 * 0.04         = 0 

C3 = P(B1*B3*B5)  = P(B1)*P(B3)*P(B5)  = q1q3q4  = 0.01 * 0.03 * 
0.05  = 0 

C4 = P(B2*B3*B5)  = P(b2)*P(B3)*P(B5)  = q2q3q5  = 0.02 * 0.03 * 
0.05  = 3.0E-5 

C5 = P(B3*B4*B5)  = P(B3)*P(B4)*P(B5)  = q3q4q5  = 0.03 * 0.04 * 
0.05  = 6.0E-5 

 

Using these results, the risk reduction ratio is 

RRR(B1)  = 7.05E-4/(3.0E-5+6.0E-5)  = 7.05E-4/9.0E-5  = 7.833, 

and the risk reduction difference is 

RRD(B1)  = 7.05E-4 - 9.0E-5  = 6.15e-4. 

 

Risk Increase Importance 

For B1, set q1 = 1.0.  Then we get 

C1 = P(B1*B2)     = P(B1)*P(B2)        = q1q2    = 1.0  * 0.02         = 0.02 

C2 = P(B1*B4)     = P(B1)*P(B4)        = q1q4    = 1.0  * 0.04         = 0.04 

C3 = P(B1*B3*B5)  = P(B1)*P(B3)*P(B5)  = q1q3q4 = 1.0  * 
0.03 * 0.05  = 1.5E-3 

C4 = P(B2*B3*B5)  = P(b2)*P(B3)*P(B5)  = q2q3q5  = 0.02 
* 0.03 * 0.05  = 3.0E-5 

C5 = P(B3*B4*B5)  = P(B3)*P(B4)*P(B5)  = q3q4q5  = 0.03 
* 0.04 * 0.05  = 6.0E-5 

Using these results, the risk increase ratio is 

RIR(B1) = 6.159E-2/7.05E-4 = 86.36, 

and the risk increase difference is 

RID(B1) = 6.159E-2 - 7.05E-4 = 6.089E-2. 
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Birnbaum Importance 

B(B1) = 6.159E-2 - 9.0E-5 = 6.15E-5. 

Structural Importance 

B1 appears in three cut sets 

Table A-8  Ratio importance measures 

 

Table A-9  Difference importance measures 

 

 Num Probability Fussell-  Risk           Risk 

 of  of           Vesely        Reduction      Increase 

Name Occ.      Failure      Importance       Ratio         Ratio 

-----    ----    -----------    -----------    -----------    ----------- 

 B1       3        1.000E-2       8.723E-1       7.832          8.611E+1 

 B4       2        4.000E-2       6.524E-1       2.877          1.664E+1 

 B2       2        2.000E-2       3.261E-1       1.484          1.696E+1 

 B3       3        3.000E-2       1.489E-1       1.175          5.809E+0 

 B5       3        5.000E-2       1.489E-1       1.175          3.827E+0 

 Num.    Probability Birnbaum Risk           Risk 
 of         of         Importance      Reduction      Increase 
Name      Occ.      Failure        Measure       Difference Difference 
------    ----    -----------    -----------    -----------    ----------- 
 B1        3        1.000E-2       6.061E-2       6.149E-4       5.999E-2 

 B4        2        4.000E-2       1.148E-2       4.599E-4       1.102E-2 

 B2        2        2.000E-2       1.148E-2       2.299E-4       1.125E-2 

 B3        3        3.000E-2       3.494E-3       1.049E-4       3.389E-3 

 B5        3        5.000E-2       2.097E-3       1.049E-4       1.993E-3 
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Appendix B 

 

 Common Cause Failure Calculations 

 
 B.1  Common Cause Failure Adjustments 

SAPHIRE will allow for common cause failure (CCF) adjustments by using formal Boolean 
reduction.  Assume we have a system S of: 

S    AND   A_TRAIN  B_TRAIN 

A_TRAIN   OR   Ai  CCF  SUPPORT_1 

B_TRAIN   OR   Bi  CCF  SUPPORT_2 

SUPPORT_1  OR   p1 

SUPPORT_2  OR   p2 

 

So the system cut sets are: 

S = CCF + Ai*Bi + Ai*p2 + p1*Bi 

where CCF is common-cause failure of components A and B 

If we fail component A, so we need to calculate: 

P[S|At]  = P[S and At] / P[At] 

where At = Ai or CCF 

Thus, 

[S and At] = (CCF + Ai*Bi + Ai*p2 + p1*Bi) and (Ai or CCF) 

  = (CCF*Ai + Ai*Bi*Ai + Ai*p2*Ai + p1*Bi*Ai + CCF*CCF + Ai*Bi*CCF + 

   Ai*p2*CCF + p1*Bi*CCF) 

However, CCF*Ai = CCF*Bi = 0, so we can reduce this down to: 
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[S and At]  = (Ai*Bi + Ai*p2 + CCF) 

Now, assuming we are using the alpha factor method 

P[S|At]  = P[S and At] / P[At] 

= P[Ai*Bi + Ai*p2 + CCF] / P[At] 

= P[Ai*Bi] / P[At] + P[Ai*p2] / P[At] + P[CCF] / P[At] 

= (
1 Qt* 
1 Qt) / Qt + 
1 Qt *p2 / Qt + 
2 Qt / Qt 

= (
1)2*Qt + 
1*p2 + 
2 

where Qt=P[At] 

SAPHIRE 8 is aware of any situation where one or more of the independent events are modified 
from its nominal condition.  Included in this determination will be changes that affect CCF 
objects in: 

• Fault tree logic or cut sets 
• Sequence logic or cut sets 
• End state cut sets 
 

For example, say the user modifies A_FTS from the fault tree above when using a change set.  
In this change set, the user indicates that A_FTS was failed (unknown failure).  When the 
change set is invoked and the user then goes to solve all of the fault trees, SAPHIRE will check 
each fault tree to determine if the modified A_FTS is part of a CCF module in the i’th fault tree 
logic.  If it is, then SAPHIRE will solve the fault tree conditional upon the failure of A_FTS as 
indicated.  If it is not, then SAPHIRE will solve the fault tree using the traditional solution 
method. 

Note that end state cut sets will be evaluated slightly different than either fault tree or sequence 
logic.  In SAPHIRE, end state cut sets are not “solved,” they are gathered from already solved 
logic models.  Consequently, the end state cut sets will need to be re-evaluated in a fashion 
similar to solving a logic model.  The conditionality will need to be imposed on the cut sets, but 
in this case cut sets that are not affected may simply be ignored from modification.  Conversely, 
any cut set containing elements of an affected CCF module will need to be evaluated as noted 
above. 

It may not be possible to treat CCF objects as independent subtrees, whereby these trees will 
be solved last and the condition (if any) will be imposed directly on this subtree.   

For example, if we revisit the example above, where we condition on At, where At = Ai or CCF, 
and only apply the condition to the CCF event in the logic model: 

[S and At] = [CCF and (Ai or CCF)] + Ai*Bi + Ai*p2 + p1*Bi 
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= [CCF*Ai + CCF*CCF] + Ai*Bi + Ai*p2 + p1*Bi 

However, CCF*Ai = 0, so we can reduce this down to: 

[S and At] = [CCF] + Ai*Bi + Ai*p2 + p1*Bi 

Note that this result is different than imposing the condition onto the entire logic structure (as 
done above) where we found [S and At] = (Ai*Bi + Ai*p2 + CCF).  If we only condition the CCF 
event, we see that an additional term p1*Bi remains as part of the calculation.  However, this 
term is not correct.  Looking at the system logic, we see that: 

A_TRAIN  OR  Ai  CCF  p1 

When this gate is conditioned by At occurring, then we have 

(Ai or CCF) and (Ai or CCF or p1) 

= Ai*Ai + CCF*Ai + p1*Ai + Ai*CCF + CCF*CCF + p1*CCF 

= Ai + p1*Ai + CCF+ p1*CCF 

= Ai + p1*Ai + CCF 

In other words, once either Ai or CCF occurs, any cut set with the event p1 from this gate is 
non-minimal and should not appear in the list of minimal cut sets. 

B.2  Detailed Example Calculation  

For this section, first assume we have a three-component common-cause group where only one 
component is needed for success.  The Boolean expression for this system is:   

S = AT � BT � CT. 

The minimal cut sets and Basic Parameter Model (BPM) expression for this group are the 
following:  

Cut Sets BPM 

{AI, BI, CI} 

{AI, CBC} 

{BI, CAC} 

{CI, CAB} 

{CABC}. 

Q1^3 + 

3 * Q1 * Q2 + 

Q3 
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The potential cut sets {CAB, CAC}, {CAB, CBC}, and {CAC, CBC} are not evaluated since the 
intersection of the events in each of these potential cut set is assumed to be the null set.  In 
other words, we do not make a distinction from {CAB, CAC} and {CABC} and simply subsume that 
term with multiple separate CCF events. 

Table B-1 provides a summary of the CCF modifications to be made for the various independent 
event modifications.  A few comments on these adjustments include: 

1. Dependent failures condition on the specific dependent failures (e.g., A and B) and any 
additional dependent failures ALSO containing those two failures. 
 

2. The T/M conditions on the complement of the independent failure (e.g., /Ai). 
 

3. A success event conditions on the complement of the total failure (e.g., /At). 
 

4. The Ignore condition attempts to "map down" the system since the level of redundancy 
is reduced.  The proposed approach takes the two highest alpha factors (e.g., 
2 and 
3 
in the first example), adds them together as a new 
k-1, and then uses that new alpha 
factor as if the CCF had one less level of redundancy.  This approach conserves CCF 
probabilities since the alpha factors still sum to 1.0. 
 

5. The “virtual” event part of the CCF cut sets should be modified to reflect the conditional 
probability associated with that cut set.  For example, in the case of an “unknown” 
failure, the cut set MOV-CC-A * A-RCCF-3-3-BC has a value of 6.370E-6.  However, the 
event MOV-CC-A has a probability of 1.0 (it was assumed that A has the unknown 
failure) – consequently the A-RCCF-3-3-BC virtual event will have a probability of 
6.370E-6. 
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Table B-1.  CCF Analysis Table for the three-component (1-of-3 success criteria) example. 

Note 1:  Qt = At = 1E-3, 
1 = 0.980, 
2 = 0.0130, 
1 = 0.0070, assumed staggered testing model. 

Note 2:  The case of all independent failures {AI, BI, CI} is ignored in the table and the SAPHIRE CCF module. 

Modification 
Type 

Conditional Calculation SAPHIRE Treatment Result 

Nominal Baseline calculation 

 

Cut sets 

 

{AI, CBC}, {BI, CAC}, {CI, CAB}, 
{CABC} 

 

P(S) = (3/2) 
1Qt 
2Qt + 
3Qt 

 

 

No modification from 
baseline: 

 

1 * Q3 + 
3 * Q1 * Q2 

Total =7.019E-6 

# Terms Value 
# 
1 

MOV-CC-C 

A-RCCF-3-3-AB 

6.370E-09 

# 
2 

MOV-CC-B 

A-RCCF-3-3-AC 

6.370E-09 

# 
3 

MOV-CC-A 

A-RCCF-3-3-BC 

6.370E-09 

# 
4 

A-RCCF-3-3-ABC 7.000E-06 

 

Unknown failure Condition on an unknown 
failure, AT 

 

S � AT  = {AI, CBC}, {BI, CAC}, 
{CI, CAB}, {CABC} 

 

1 * Q3/Qt + 
3 * Q1 * Q2/Qt 

Total = 7.019E-3 

# Terms Value 
# 1 MOV-CC-C 

A-RCCF-3-3-AB 

6.370E-06 

# 2 MOV-CC-B 6.370E-06 



 

 
B-8

Modification 
Type 

Conditional Calculation SAPHIRE Treatment Result 

P(S | AT ) = P(S � AT )/P(AT ) = 

(3/2) 
1Qt 
2 + 
3 

 

 

 

A-RCCF-3-3-AC 
# 3 MOV-CC-A 

A-RCCF-3-3-BC 

6.370E-06 

# 4 A-RCCF-3-3-ABC 7.0000E-03 
 

Two unknown 
failures 

Condition on two unknown 
failures, AT and BT 

 

S � (AT � BT) = {AI, CBC}, 
{BI, CAC}, {CI, CAB}, {CABC} 

 

P(S | AT � BT ) = P(S � AT � BT) / 
P(AT � BT) = 

[(3/2) 
1Qt 
2Qt] / [�]+ 

[
3Qt] / [�] 

where � = (
1Qt)2 + 
1Qt 
2Qt + 
(1/2)
2Qt + 
3Qt 

 

1 * Q3/ � + 
3 * Q1 * Q2/ � 

Total = 4.850E-1 

# Terms Value 
# 1 MOV-CC-C 

A-RCCF-3-3-AB 

4.401E-04 

# 2 MOV-CC-B 

A-RCCF-3-3-AC 

4.401E-04 

# 3 MOV-CC-A 

A-RCCF-3-3-BC 

4.401E-04 

# 4 A-RCCF-3-3-ABC 4.8365E-1 
 

Dependent 
failure 

Condition on two (A and B) 
dependent failures, CAB or CABC 

1 * Q1 * Q2/(Q2+Q3) + 

1 * Q3/(Q2+Q3) 

Total = 5.190E-1 

# Terms Value 
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Modification 
Type 

Conditional Calculation SAPHIRE Treatment Result 

 

S � (CAB or CABC)  = {CI, CAB}, 
{CABC} 

 

P(S | CAB or CABC) = P(S � CAB 

or CABC)/P(CAB or CABC) = 

 (
1Qt 
2Qt + 
3Qt) /(
2Qt + 
3Qt) 

# 1 MOV-CC-C 

A-RCCF-3-3-AB 

4.7185E-04 

# 2 A-RCCF-3-3-ABC 5.1852E-1 
 

Independent 
failure 

Condition on an independent 
failure, AI 

 

S � AI  = {AI, CBC} 

 

P(S | AI ) = P(S � AI )/P(AI ) = 

(1/2) 
2 Qt 

1 * Q1 * Q2/Q1 Total = 6.5E-6  

# Terms Value 
# 1 MOV-CC-A 

A-RCCF-3-3-BC 

6.500E-06 

 

Two independent 
failures 

Condition on two independent 
failures, AI and BI 

 

S � (AI �BI) = Ø 

 

P(S | AI �BI) = 0.0 

<FALSE> 

In this case, there is no 
CCF contribution since 
there is only a single 
component remaining. 

Total = 0  

# Terms Value 
# 1 <FALSE>  0.0 
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Modification 
Type 

Conditional Calculation SAPHIRE Treatment Result 

New Probability 

(higher 1E-2) 

Redo the baseline calculation, 
but use the smallest value for Qt 
(in this case 1E-3) 

 

P(S ) = (3/2) 
1Qt 
2Qt + 
3Qt 

 

1 * Q3 + 
3 * Q1 * Q2 

Total =7.019E-6 

# Terms Value 
# 
1 

MOV-CC-C 

A-RCCF-3-3-AB 

6.370E-09 

# 
2 

MOV-CC-B 

A-RCCF-3-3-AC 

6.370E-09 

# 
3 

MOV-CC-A 

A-RCCF-3-3-BC 

6.370E-09 

# 
4 

A-RCCF-3-3-ABC 7.000E-06 

 

New Probability 

(lower 1E-4) 

Redo the baseline calculation, 
but use the smallest value for Qt 
(in this case 1E-4) 

 

P(S ) = (3/2) 
1Qt 
2Qt + 
3Qt 

 

1 * Q3 + 
3 * Q1 * Q2 

Total = 7.002E-7 

# Terms Value 
# 1 MOV-CC-C 

A-RCCF-3-3-AB 

6.370E-11 

# 2 MOV-CC-B 

A-RCCF-3-3-AC 

6.370E-11 

# 3 MOV-CC-A 

A-RCCF-3-3-BC 

6.370E-11 

# 4 A-RCCF-3-3-ABC 7.000E-07 
 

Test and 
Maintenance 

Find new cut sets by ANDing 
with NOT an independent failure 
/AI 

1 * Q3 + 
2 * Q1 * Q2 

Total = 7.013E-6 

# Terms Value 
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Modification 
Type 

Conditional Calculation SAPHIRE Treatment Result 

 

S � /AI = {/AI, BI, CAC}, {/AI, 
CI, CAB}, {/AI, CABC} 

 

P(S) = (2/2) 
1Qt 
2Qt  + 
3Qt 

 

Steps: 

1. Condition on /AI 
2. Remove all of the /AI parts 
of the remaining cut sets 
3. Do not divide the remaining 
cut sets by any value. 

# 1 MOV-CC-C 

A-RCCF-3-3-AB 

6.3100E-09 

# 2 MOV-CC-B 

A-RCCF-3-3-AC 

6.3100E-09 

# 3 A-RCCF-3-3-ABC 7.0000E-06 
 

Not Failed Condition on NOT failure /AT 

 

S � /AT = Ø 

 

P(S | /AI ) = 0.0 

<FALSE> 

(if one component works, 
system is not failed in this 
example) 

Total = 0  

# Terms Value 
# 1 <FALSE>  0.0 

 

 

Ignore Map the system down to two 
component group. 

1 * Q2’ 

Where Q2’ = (
2 + 
3)Qt 

Total = 2.000E-5 

# Terms Value 
# 1 A-RCCF-3-3-BC  2.000E-5 

 

 
TRUE house 
event 

This case will be treated as an 
unknown failure. 

  

Probability of 1.0 This case will be treated as an 
independent failure. 

  

 



 

 
B-12

For the second example, assume we have a three-component common-cause group where two 
components are needed for success (see Table B-2 for details).  The Boolean expression for 
this system is:   

S = (AT � BT ) � (BT � CT) � (AT � CT)

The minimal cut sets and Basic Parameter Model (BPM) expression for this group are the 
following:  

Cut Sets BPM 

{AI,BI} 

{AI,CI} 

{BI,CI} 

{CAB} 

{CAC} 

{CBC} 

{CABC} 

 

3 * Q1^2 + 

3 * Q2 + 

Q3 

B.3  Flag Set Adjustment for CCF Basic Events 

An additional complication related to CCF events is related to sequence flag sets.  Flag sets are 
a special type of change set which are applied to specified sequences after solving fault trees 
and event tree sequences.  Flag sets will modify a basic event to be True, False, or Ignore. 

When a flag set is applied to a sequence and one (or more) component is set to TRUE, system 
redundancy is reduced – however the associated CCF probability is not automatically adjusted 
in many analysis tools for the new common cause failure group (which would be one less if one 
component is set to TRUE).  In SAPHIRE Version 8, CCF probabilities are automatically 
adjusted in the affected sequence when a flag set reduces redundancy.  This capability 
removes the potential to underestimate CCF probabilities when using sequence flag sets.  Note, 
however, that the CCF probability adjustment can be applied only for the RASP CCF method for 
basic events specified with calculation type R (not the compound CCF basic events which are of 
calculation type C).  To invoke this capability in SAPHIRE, mark the checkbox under the Project 
� User Settings � RASP CCF option. 
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Table B-2.  CCF Analysis Table for the three-component (2-of-3 success criteria) example 

Note 1:  Qt = At = 1E-3, 
1 = 0.980, 
2 = 0.0130, 
1 = 0.0070, assumed staggered testing model. 

Note 2:  The case of all independent failures {AI, BI, CI} is ignored in the table and the SAPHIRE CCF module. 

Modification Type Conditional Calculation SAPHIRE Treatment Result 
Nominal Baseline calculation 

 

Cut sets 

 

{CBC}, {CAC}, {CAB}, {CABC} 

 

P(S) = (3/2) 
2Qt + 
3Qt 

 

No modification from 
baseline: 

 

3 * Q2 + 

Q3 

Total =2.650E-5 

# Terms Value 
# 1 A-RCCF-3-3-AB 6.500E-06 
# 2 A-RCCF-3-3-AC 6.500E-06 
# 3 A-RCCF-3-3-BC 6.500E-06 
# 4 A-RCCF-3-3-ABC 7.000E-06 

 

Unknown Condition on an unknown failure, 
AT 

 

S � AT  = { AI, CBC}, {CAC}, {CAB}, 
{CABC} 

 

P(S | AT ) = P(S � AT )/P(AT ) = 

1 * Q3/Qt + 

2 * Q2/Qt + 
1 * Q1 * Q2/Qt 

Total = 2.001E-2 

# Terms Value 
# 1 A-RCCF-3-3-AB 6.500E-03 
# 2 A-RCCF-3-3-AC 6.500E-03 
# 3 MOV-CC-A 

A-RCCF-3-3-BC 

6.370E-06 

# 4 A-RCCF-3-3-ABC 7.0000E-03 
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Modification Type Conditional Calculation SAPHIRE Treatment Result 
(1/2) 
1Qt 
2 + (2/2) 
2 + 
3 

 

 
Two unknown 
failures 

Condition on two unknown 
failures, AT and BT 

 

S � (AT � BT) = {AI, CBC}, 
{BI, CAC}, {CAB}, {CABC} 

 

P(S | AT � BT ) = P(S � AT � BT) / 
P(AT � BT) = 

[(2/2) 
1Qt 
2Qt] / [�] + 

[(1/2) 
2Qt]  / [�] + 

[
3Qt] / [�] 

where � = (
1Qt)2 + 
1Qt 
2Qt + 
(1/2)
2Qt + 
3Qt 

 

1 * Q3/� + 
2 * Q1 * Q2/� + 

1 * Q2/� 

Total = 9.336E-1 

# Terms Value 
# 1 A-RCCF-3-3-AB 4.491E-01 
# 2 MOV-CC-B 

A-RCCF-3-3-AC 

4.401E-04 

# 3 MOV-CC-A 

A-RCCF-3-3-BC 

4.401E-04 

# 4 A-RCCF-3-3-ABC 4.8365E-1 

 

Note that the 0.9336 value represents the system 
failure probability contribution from just CCF.  The 
portion of the failure probability from 
“independent” terms is 0.06642. 

Dependent Condition on multiple dependent 
failures, CAB or CABC 

 

1 * Q2/(Q2+Q3) + 

1 * Q3/(Q2+Q3) 

Total = 1.0000 

# Terms Value 
# 1 A-RCCF-3-3-AB 4.8148E-1 
# 2 A-RCCF-3-3-ABC 5.1852E-1 
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Modification Type Conditional Calculation SAPHIRE Treatment Result 
S � (CAB or CABC)  = {CAB}, {CABC} 

 

P(S | CAB or CABC) = P(S � CAB or 
CABC)/P(CAB or CABC) = 

 (
2Qt + 
3Qt) /(
2Qt + 
3Qt) 
 

Independent 

Condition on an independent 
failure, AI 

 

S � AI  = {AI, CBC} 

 

P(S | AI ) = P(S � AI )/P(AI ) = 

(1/2) 
2 Qt 

1 * Q1 * Q2/Q1 Total = 6.5E-6  

# Terms Value 
# 1 MOV-CC-A 

A-RCCF-3-3-BC 

6.500E-06 

 

Two independent 
failures 

Condition on two independent 
failures, AI and BI 

 

S � (AI �BI) = Ø 

 

P(S | AI �BI) = 0.0 

<FALSE> 

In this case, there is no CCF 
contribution since there are 
no components remaining. 

Total = 0  

# Terms Value 
# 1 <FALSE>  0.0 

 

Note that the portion of the system failure 
probability due to independent terms is 1.0. 

New Probability 

(higher 1E-2)  

Redo the baseline calculation, but 
use the smallest value for Qt (in 
this case 1E-3) 

3 * Q2 + 

Q3 

Total =2.650E-5 

# Terms Value 
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Modification Type Conditional Calculation SAPHIRE Treatment Result 
  

P(S) = (3/2) 
2Qt + 
3Qt 

 

# 1 A-RCCF-3-3-AB 6.500E-06 
# 2 A-RCCF-3-3-AC 6.500E-06 
# 3 A-RCCF-3-3-BC 6.500E-06 
# 4 A-RCCF-3-3-ABC 7.000E-06 

 

New Probability 

(lower 1E-4) 

Redo the baseline calculation, but 
use the smallest value for Qt (in 
this case 1E-4) 

 

P(S) = (3/2) 
2Qt + 
3Qt 

 

3 * Q2 + 

Q3 

Total = 2.650E-6 

# Terms Value 
# 1 A-RCCF-3-3-AB 6.500E-07 
# 2 A-RCCF-3-3-AC 6.500E-07 
# 3 A-RCCF-3-3-BC 6.500E-07 
# 4 A-RCCF-3-3-ABC 7.000E-07 

 

Test and 
Maintenance  

Find new cut sets by ANDing with 
NOT an independent failure /AI 

 

S � /AI = {/AI, CBC}, {/AI, CAC}, {/AI, 
CAB}, {/AI, CABC} 

 

 

P(S) = (3/2) 
2Qt + 
3Qt 

1 * Q3 + 
3 * Q2 

Steps: 

1. Condition on /AI 
2. Remove all of the /AI parts 
of the remaining cut sets 
3. Do not divide the cut sets 
by any value. 

Total = 2.650E-5 

# Terms Value 
# 1 A-RCCF-3-3-AB 6.500E-06 
# 2 A-RCCF-3-3-AC 6.500E-06 
# 3 A-RCCF-3-3-BC 6.500E-06 
# 4 A-RCCF-3-3-ABC 7.000E-06 

 

Not Failed  Condition on NOT failure /AT 

 

S � /AT = {/AI, /CAB, /CAC, /CABC, 
CBC} 

1 * Q2 Total = 6.5000E-6 

# Terms Value 
# 1 /MOV-CC-A 6.5000E-6 
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Modification Type Conditional Calculation SAPHIRE Treatment Result 
 

P(S | /AT ) = � [(1/2)
2Qt] / � 

 

where � = (1- 
1Qt)(2)[1- (1/2) 

2Qt] (1- 
3Qt) 

/A-RCCF-3-3-AB 

/A-RCCF-3-3-AC 

/A-RCCF-3-3-ABC 

A-RCCF-3-3-BC 

Note that the portion of the system failure 
probability due to independent terms is 9.604E-7. 

Also, the event A-RCCF-3-3-BC should be 
assigned the value of 6.5000E-6.  The other terms 
(e.g., /MOV-CC-A) are equal to 1.0. 

Ignore Map the system down to two 
component group. 

<FALSE> 

In this case, there is no CCF 
contribution since only single 
failures remain (B or C). 

Total = 0  

# Terms Value 
# 1 <FALSE>  0.0 

 

TRUE house event This case will be treated as an 
unknown failure. 

  

Probability of 1.0 This case will be treated as an 
independent failure. 
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Appendix C 

 

 Maximum Entropy Distribution
   

 C.1  Facts About the Maximum Entropy Distribution 

C.1.1  Form of the Distribution 

Consider a distribution with density f defined on a finite range [a, b].  The entropy of the 
distribution is defined as 

-7[lnf(x)]f(x)dx  .  (C-1) 

This can be approximated by 

-�(lnpi)pi ,  (C-2) 

by dividing the x-axis into equally spaced intervals with midpoints xi and width �x, and letting pi = 
f(xi)�x.  The approximation can be made arbitrarily good by making �x arbitrarily small, and the 
number of terms in the sum correspondingly large. 

Suppose that the distribution is required to have mean �.  To find the values of pi that maximize 
(C-2) subject to the constraints �pi = 1 and �xipi = �, use the method of Lagrange multipliers:  
differentiate  

-�(lnpi)pi + �1(�pi - 1) + �2(�xipi - �) 

with respect to each pi and with respect to �1 and �2, and set each of these first derivatives to zero.  
This results in the original constraints, and equations of the form 

-(pi/pi) - lnpi + �1 + �2xi = 0  . 

These equations imply that 

lnpi = �2xi + (�1 - 1) 

for all i.  This is equivalent to 

pi = (C exp(�2xi) 
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for some constants C and �2, which may depend on the width �x.  Therefore, Expression (C-1) is 
maximized, subject to the constraint �f(x)dx = 1, by making 

 f(x) = ce�x 

for some constants c and �. 

If � is zero, then f is constant, a uniform density.  Consider now the case with � � 0.  Because f 
integrates to 1, it follows that f must be of the form 

f(x) = �e�x / (e�b - e�a)   for � � 0  .  (C-3) 

Therefore, the cumulative distribution function is 

F(x) = (e�x - e�a) / (e�b - e�a)   for � � 0  . 

If � is negative, the distribution given by (C-3) is a truncated exponential distribution with param-
eter -�, a decreasing function of x.  If � is positive, the density is of exponential form, an increasing 
function of x.  If � is 0, the density is flat, neither increasing nor decreasing. 

 

C.1.2  � as a Function of � 

First, if � is zero, then f is a uniform density, so the mean is the midpoint of the range: 

� = (a + b)/2   for �=0  .  (C-4) 

If instead the density is given by Equation (B-3), the mean is � = 7xf(x)dx.  To evaluate this, 
integrate 7xf(x)dx by parts, obtaining 

� = (be�b - ae�a)/(e�b - e�a) - 1/�  ,  for � � 0  .  (C-5) 

 

C.1.3  Continuity of � as a Function of � 

Equations (C-4) and (C-5) define � as a function of � for all �.  To show that the function is 
continuous at � = 0, rewrite (B-5) as a single fraction.  Now use Taylor's Theorem with the 
remainder term to write 

ea� = 1 + a� + ½ a2�2 + �3c(�; a) 
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where c(�; a) is bounded and continuous as � � 0.  Write eb� similarly, work out the algebra, and 
cancel terms to show that the limit of (B-5) as � � 0 is (C-4).  Therefore, Equations (C-4) and (C-5) 
together define � as a continuous function of �. 

 

C.1.4  Monotonicity of � as a Function of � 

The numerical problem for software like SAPHIRE is to solve Equation (C-5) for � in terms of �.  
Before developing a numerical method, we first show some facts about the relation between � 
and �, culminating with the fact that � is a monotone increasing function of �. 

First, let us use a more convenient parameterization.  Let c (for "center") be defined by 

c = (a + b)/2  

and let r (for "range") be defined by 

r = (b - a)/2, 

so that a = c - r, and b = c + r.  In this parameterization, Equation (B-5) becomes 

� = c + rg(�)  , 

with 

g(�) = [ (e�r + e-�r)/(e�r - e-�r) - 1/�r ]  for � � 0  (C-6) 

and g(�) defined by continuity at � = 0. 

From Equation (C-6) it is clear that g(-�) = -g(�), that is, g is an odd function.  By continuity, 
therefore, g(0) = 0.  This value of 0 could also have been obtained directly from Equation (C-4).  
Note also that g(�) � 1 as � 8 *, and similarly g(�) � -1 as � � -*.  These translate to the following 
facts about �. 

�(�) � c – r = a   as � � -* 

�(0)  = c 

�(�) � c + r  = b   as � � *  . 

The first and third cases correspond to distributions that are as asymmetrical as possible, and the 
second case, with � = 0, corresponds to a uniform distribution.  Therefore, as � ranges over the 
real line � attains any value between the minimum possible value of a and the maximum possible 
value of b.  It remains to be shown than � is monotone in �, so that every value of � corresponds 
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to only one value of �.  It is enough to show that � is monotone in � for � > 0; the result for � < 0 
follows from the antisymmetry of g.  To do this, we calculate the first derivative of �, and examine 
it for � > 0. 

To reduce the number of occurrences of � in the expression for �, for � > 0 multiply the numerator 
and denominator in the large fraction in Equation (C-6) by e�r, resulting in 

�  = c + rg(�) 

 = c + r[ (e2�r + 1)/(e2�r - 1) - 1/�r ] 

 = c + r[ (e� + 1)/(e� - 1) - 2/	 ] (C-7) 

with 	 defined as 2�r.  Therefore, by the usual rules for differentiation and a bit of algebra, 

(��/�	) = 2r[ -e�/(e�-1)2  +  1/	2 ]  , 

and  

(��/��)  = (��/�	)x(�	/��) 

  = 4r2[ -e�/(e�-1)2  +  1/	2 ]  . (C-8) 

It must be shown that Expression (C-8) is positive for 	 > 0.  This is equivalent to showing that 

(e� - 1)2 > 	2e�, 

which is equivalent, when 	 > 0, to 

e� - 1 > 	e�/2  . 

Expand both sides in their Taylor series.  The inequality is equivalent to 

1)!-(j2
 = 

i!2
 > 

j!
     

-1j

j

1=j
i

i

0=i

j

1=j
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The corresponding terms in the leftmost and rightmost summations are equal if j � 2, while each 
term on the left is larger than the term on the right if j > 2 and 	 > 0.  Therefore the inequality is 
true, and equation (C-8) is positive for 	 > 0, and � is monotone increasing in �, as was to be 
shown. 
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C.2  Method for Finding � Corresponding to � 

C.2.1  Conceptual Method 

The monotonicity proved above suggests the following natural method for finding the value of � 
corresponding to a specified �.  Suppose, for example, that the specified � is less than c.  Then � 
must be less than 0.  Beginning with �0 = 0, try successively smaller values (values farther to the 
left of 0) of �.  Call them �1, �2, and so forth, and let �i be the value from Equation (C-5) corre-
sponding to �i.  Let �k be the first such value found that is less than the required �.  Then the 
required � must be in the interval from �k to �k-1.  Try a value between �k and �k-1, and decide 
whether it is too large or too small by whether the corresponding � is too large or too small.  Keep 
repeating this step, each time shrinking the interval in which the required � must lie, until � is 
determined to the desired accuracy.  The formal implementation of the algorithm for shrinking the 
interval is called the "method of false position" and is discussed in books on numerical analysis. 

As implemented in SAPHIRE, the parameter � is considered primary, the parameter that the user 
enters, and � is considered an intermediate means to obtain �.  Therefore the search for � 
continues until �(�) differs from the originally input � by less than r×10-5.  This is considered at 
least as accurate as the normal user's knowledge of �. 

In rare cases, r can be so small that r×10-5 would underflow.  In these cases the search continues 
until the interval for � has relative length (= length/�) < 5×10-5 or absolute length < (5×10-8)/r.  This 
results in possible inaccuracy in � of at most 1 in the fifth digit, except when |�r| < 1×10-3.  This is 
considered sufficient for the intended applications. 

C.2.2  Numerical Computation of � in Terms of � 

The computation of � uses Expression (C-7), with 	 = 2�r.  When 	 approaches 0, the expressions 
in the two denominators in Expression (C-7) both approach 0, and the computer is unable to 
evaluate Expression (C-7) as it is written.  Therefore, an approximation is used when 	 is near 0, 
based on the Taylor series for the exponential function: 

e� = 1 + 	 + 	2/2 + 	3/6 + 	4/24 + ... 
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In this way the expression in square brackets in Expression (C-7) can be rewritten as follows. 

33

3 2 - 
1-e
1+e     

 

If, to the numerical accuracy of the computer, 1 + 	2/6 is equal to 1, then the numerator and the 
denominator in the square brackets are each equal to 1 + 	/2, and the entire expression equals 
	/6.  Therefore, SAPHIRE evaluates � as 

c + r	/6 

if 	 is so small that 1 + 	2/6 = 1, and evaluates � by Expression (C-7) otherwise. 
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