

SANDIA REPORT
SAND2011-0068
Unlimited Release
Printed April 2011

7X Performance Results – Final Report:
ASCI Red vs Red Storm

Robert A. Ballance, Michael E. Davis, Dennis C. Dinge, Thomas A. Gardiner, Karen
Haskell, John P. Noe, and Joel O. Stevenson

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration
under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

2

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any
of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
 U.S. Department of Energy
 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831

 Telephone: (865) 576-8401
 Facsimile: (865) 576-5728
 E-Mail: reports@adonis.osti.gov
 Online ordering: http://www.osti.gov/bridge

Available to the public from
 U.S. Department of Commerce
 National Technical Information Service
 5285 Port Royal Rd.
 Springfield, VA 22161

 Telephone: (800) 553-6847
 Facsimile: (703) 605-6900
 E-Mail: orders@ntis.fedworld.gov
 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

3

SAND2011-0068
Unlimited Release
Printed April 2011

7X Performance Results - Final Report:
ASCI Red vs. Red Storm

Robert A. Ballance and John P. Noe
Scientific Computing Systems

Karen Haskell and Joel O. Stevenson

Scientific Applications and User Support

Thomas A. Gardiner
HEDP Theory

Sandia National Laboratories

P.O. Box 5800
Albuquerque, New Mexico 87185-MS0609

Michael E. Davis, Dennis C. Dinge

Cray Inc.
Albuquerque, New Mexico

Abstract

The goal of the 7X performance testing was to assure Sandia National Laboratories,
Cray Inc., and the Department of Energy that Red Storm would achieve its
performance requirements which were defined as a comparison between ASCI Red
and Red Storm. Our approach was to identify one or more problems for each
application in the 7X suite, run those problems at multiple processor sizes in the
capability computing range, and compare the results between ASCI Red and Red
Storm. The first part of this report describes the two computer systems, the
applications in the 7X suite, the test problems, and the results of the performance tests
on ASCI Red and Red Storm. During the course of the testing on Red Storm, we had
the opportunity to run the test problems in both single-core mode and dual-core mode
and the second part of this report describes those results. Finally, we reflect on
lessons learned in undertaking a major head-to-head benchmark comparison.

4

ACKNOWLEDGMENTS

The authors thank Bob Benner, Sue Phelps, Hal Meyer, Mahesh Rajan, John Van Dyke, and
Courtenay Vaughan for their assistance with compiling, configuring, and troubleshooting on
ASCI Red and Red Storm. Many thanks also to the ASCI Red system administrators (Frank
Jaramillo, Mike Martinez, Paul Sanchez, Sean Taylor) and the Red Storm system administrators
(Dick Dimock, Victor Kuhns, Barry Oliphant, Robert Purdy, and Jason Repik) and support staff
for their assistance. Thanks also to Mark Hamilton (1543) for assistance in setting up the
SourceForge repository.

The authors thank Cray Research engineers Paul Burkhardt, Doug Enright, and Ron Pfaff for
their assistance with compiling and optimizing the codes for Red Storm runs.

Sue Phelps, Sue Kelly, Mike McGlaun, Jim Tomkins, and Courtenay Vaughan have all provided
help, suggestions, and guidance as the predecessor [6] to this report was assembled. However,
the authors are solely responsible for any errors or omissions.

We also thank the application code developers for their assistance: Bruce Bainbridge
(CALORE), Manoj Bhardwaj (SALINAS), Kevin Brown (PRESTO), Dave Crawford (CTH),
John Daly (SAGE), Rich Drake (ALEGRA), Brian Franke (ITS), Galen Gizler (SAGE), Arne
Gullerud (PRESTO), Adolphy Hoisie (PARTISN, SAGE), Tolulope Okusanya (CALORE),
Garth Reese (SALINAS), Josh Robbins (ALEGRA), Allen Robinson (ALEGRA), Jim Simmons
(CTH), and Riley Wilson (SALINAS).

5

CONTENTS

1. Introduction ... 7
1.1. Background ... 7
1.2. ASCI Red .. 8
1.3. Red Storm ... 10

2. Guidelines for Application and Problem Selection .. 15

3. Guidelines for Application and Problem RUNS ... 17

4. 7X Application Suite... 19
4.1. ALEGRA (QSEM with Contact) .. 20
4.2. ALEGRA (QSEM without Contact) ... 20
4.3. CALORE... 20
4.4. CTH... 21
4.5. ITS... 21
4.6. PARTISN .. 21
4.7. PRESTO .. 22
4.8. SAGE .. 22
4.9. SALINAS .. 23
4.10. SPPM .. 23
4.11. UMT2K ... 24

5. Activities and Roles .. 27
5.1. SNL Responsibilities: Code Teams .. 27
5.2. SNL Responsibilities: 7X Team ... 27
5.3. LANL and LLNL Responsibilities ... 27
5.4. Cray Responsibilities .. 27
5.5. Staffing Roles.. 28

6. Project and Data Management .. 29
6.1. Project Database .. 29
6.2. Test Management .. 29
6.3. File Management .. 29

7. Results – How Much Faster is Red Storm on the 7X Applications? 31

8. Results – Single-Core vs. Dual-Core Comparison on Red Storm .. 33

9. Summary and Lessons Learned .. 35

10. References ... 37

Distribution ... 39

6

FIGURES

Figure 1. ASCI Red Block Diagram – Compute, Service, I/O, and System Partitions 8
Figure 2. Red Storm Block Diagram – Three Functional Hardware Partitions 1) Compute, 2)
Service and I/O, and 3) RAS/System Management .. 12
Figure 3. Standard, Stretch, and Maximum Modes on ASCI Red and Red Storm 16
Figure 4. 7X Application Suite .. 19
Figure 5. Application Execution Times on ASCI Red and Red Storm 31
Figure 6. Application Speedup - ASCI Red vs. Red Storm ... 32
Figure 7. Comparison of SN and VN Results on Red Storm (includes pre-upgrade 2.0 Ghz
single-core results for three applications) ... 33

TABLES

Table 1. System Parameters – ASCI Red vs. Red Storm... 13
Table 2. Test Problem Sizes ... 25
Table 3. Application/Library Points of Contact ... 28

7

1. INTRODUCTION

1.1. Background

The goal of the 7X performance testing is to assure Sandia National Laboratories (SNL), Cray
Inc., and the Department of Energy (DOE) that Red Storm will achieve its performance
requirements and to assess whether major applications will realize at least a seven-fold
performance increase on the new Red Storm system relative to its predecessor ASCI Red. The
focus is on problem sizes and processor counts representative of capability computing; i.e. single
application runs that use 20% to 100% of the processors on ASCI Red.

The performance tests are defined as a comparison between ASCI Red and Red Storm. In
general, the Red Storm contract calls for a series of speedup comparisons using selected
applications at various problem sizes [1]. Our approach is to identify one or more problems for
each application, run those problems at two or three processor sizes, and compare the results
between ASCI Red and Red Storm.

The Red Storm supercomputer, originally built in 2005 with 2.0 Ghz single-core Opteron
processors, received several upgrades to processors, memory, and system software in 2006,
2007, and 2008. In mid-2008, after the completion of the 7X runs, the center section of Red
Storm was upgraded to quad-core processors and all nodes were upgraded to a uniform 2GB
memory per node. Red Storm compute nodes were 2.4 Ghz dual-core Opteron processors during
the course of the 7X testing. Users had the option of running applications on both cores on each
node of the system, or on only one core per node. The latter option is useful for those
applications which are memory intensive and cannot abide having a node’s memory partitioned
between the two cores. During the course of executing 7X applications on Red Storm, results
were collected in both single-core mode and dual-core mode. In this report, we will describe the
state of Red Storm as it was during the 7X testing, prior to the quad-core upgrade.

Since the processor speeds were upgraded by 20% (from 2.0 Ghz to 2.4 Ghz) on Red Storm
before results were gathered, the real target should now be 8.4X, not 7X. We will, however,
continue to use the 7X descriptor throughout this report when referring to performance testing.

The report is organized in the following manner: The remainder of this section presents the basic
history, layout, and operation of ASCI Red and Red Storm in order to fully understand and
contrast their performance. Section 2 and Section 3 discuss the guidelines for
application/problem selection and application/problem runs, respectively. Section 4 contains a
detailed listing of the applications under test with problem size information. Section 5 contains
an overview of activities and roles and Section 6 discusses project and data management. 7X
performance testing results are presented in Section 7 and Section 8 discusses single-core vs.
dual-core results. Section 9 contains a summary and lessons learned in undertaking a major
head-to-head benchmark comparison.

8

1.2. ASCI Red

ASCI Red, the first computer in the Advanced Strategic Computing Initiative (ASCI) program,
was built by Intel and installed at Sandia in late 1996 [2,3]. The design was based on the Intel
Paragon computer. The goal was to deliver a true teraflop machine by the end of 1996 that
would be capable of running an ASCI application using all memory and nodes by September of
1997. ASCI Red was the world’s first teraflop machine [3]. In December, 1996, three quarters
of ASCI Red was measured at a world record 1.06 TFLOPS on MP LINPACK and held the
record for fastest supercomputer in the world for several consecutive years, maxing out at 2.38
TFLOPS after a processor and memory upgrade in 1999 [2,3,4]. ASCI Red was
decommissioned in 2006, shortly after completing the 7X runs.

The ASCI Red supercomputer was a distributed memory MIMD (Multiple Instruction, Multiple
Data) message-passing computer. The design provided high degrees of scalability for I/O,
memory, compute nodes, storage capacity, and communications; standard parallel interfaces also
made it possible to port parallel applications to the machine. The machine was structured into
four partitions: Compute, Service, I/O, and System. Parallel applications executed in the
Compute Partition which contained nodes optimized for floating point performance. The
compute nodes had only the features required for efficient computation – they were not purposed
for general interactive services. The Service Partition provided an integrated, scalable host that
supported interactive users (log-in sessions), application development, and system
administration. The I/O Partition supported disk I/O, a scalable parallel file system and network
services. The System Partition supported initial booting and system Reliability, Availability, and
Serviceability (RAS) capabilities. A block diagram of ASCI Red illustrating the Compute,
Service, I/O, and System partitions is reproduced in Figure 1.

Figure 1. ASCI Red Block Diagram – Compute, Service, I/O, and System Partitions

9

In normal operation, disconnect cabinets divided ASCI Red into two sides; unclassified and
classified. In its full configuration, ASCI Red consisted of four rows, each with an unclassified
end and a classified end. The unclassified ends of the rows appeared to the users as a single
machine named Janus, and the classified ends of the rows appeared as a single machine named
Janus-s. Each end was a significant parallel computer in its own right, with a peak
computational rate of approximately 780 Gflop. Since each end was always connected to a LAN
(barring catastrophic failure or other rare circumstance), files on both systems were always
available. Each end had its own set of disks for file storage, service nodes to handle user logins,
I/O nodes to handle I/O requests, and system nodes for system monitoring and control, in
addition to the computational nodes, on which parallel applications ran.

The precise configuration was 1168 compute nodes on the unclassified end and 1166 compute
nodes on the classified end. The middle section contained 2176 compute nodes and could be
switched between the unclassified end and the classified end. Thus the total number of compute
nodes on ASCI Red was 4510.

ASCI Red used two operating systems, the Teraflops Operating System on the Service, I/O, and
System Partitions, and a Sandia-developed lightweight kernel (Cougar) on the Compute nodes.
The Teraflops Operating System was Intel's distributed version of UNIX (POSIX 1003.1 and
XPG3, AT&T System V.3 and 4.3 BSD Reno VFS) developed for the Paragon XP/S
Supercomputer. It was a full-featured version of UNIX, used for boot and configuration support,
system administration, user logins, user commands/services, and development tools. The
operating system in the Compute Partition was Cougar, which was Intel's port of Puma, a light-
weight operating system for the TOPS, based on the very successful SUNMOS system for the
Paragon. SUNMOS, and subsequently Puma, were developed by Sandia National Laboratories
(SNL) and the University of New Mexico. Cougar was a very efficient and high-performance
operating system providing program loading, memory management, message-passing support,
some signal handling and exit handling, and run-time support for the supported languages.
Cougar was very small, occupying less that 300 KBytes of RAM.

This combination of operating systems made it possible to specialize for specific tasks and
standard programming tools to make the supercomputer both familiar to the user and non-
intrusive for the scalable application. The machine provided a single system image to the user.
The users perceived the system as a single UNIX machine even though the operating system was
actually running on a distributed collection of nodes. To the user, the system had the look and
feel of a UNIX-based supercomputer. All the standard facilities associated with a UNIX
workstation were available to the user, yet the compute partition running the Cougar operating
system had only those features required for computation. The Cougar operating system could
therefore be small in size and very fast. The combination of these two operating systems was a
powerful approach.

Since Cougar was a minimal operating system, system services and support for the interactive
user were provided by the host operating system (the Paragon-derived UNIX OS running in the
Service Partition). All access to hardware resources came from the Q-Kernel, the lowest-level
component of Cougar. Above the Q-Kernel sat the process control thread (PCT), which ran in
user space and managed processes. User applications sat at the highest level. As with most MPP

10

systems, the basic programming model in Cougar was based on message passing. FORTRAN77,
FORTRAN90, C and C++ were supported. The interactive debugger and performance analysis
tools understood these languages and mapped onto original source code.

One interesting feature of ASCI Red concerned the processor “mode”. While message passing
was used between nodes, shared memory mechanisms were used to exploit parallelism on a
node. Each compute node had two processors. The second processor could be used in one of
four modes:

 Proc 0 option – ignored the second processor – default mode – entire system RAM on the

node was available to the application (256 MB).
 Proc 1 option – used the second processor as a communication co-processor.
 Proc 2 option – used the second processor to run an additional application thread.
 Proc 3 option – this mode treated each processor as a separate compute node – virtual

mode – the processors shared memory so only half the system RAM was available to the
application (128 MB).

The 7X testing was performed on ASCI Red in Proc 0 and Proc 3 modes only.

1.3. Red Storm

Red Storm, the follow-on computer to ASCI Red, was built by Cray and installed at Sandia in
early 2005. Red Storm is a distributed memory, massively parallel supercomputer modeled on
ASCI Red. Red Storm itself is a dual-headed machine, being split between classified (Red) and
unclassified (Black) use. Each end is anchored in a specific network. The classified portion of
Red Storm (redstorm-s.sandia.gov) is anchored in Sandia's Classified Network (SCN). The
unclassified portion of Red Storm (redstorm.sandia.gov) is anchored in Sandia's Restricted
Network (SRN).

The Red Storm architecture facilitates simultaneous usage on the unclassified and classified sides
of the machine. In normal operation, disconnect cabinets divide Red Storm into two sides;
unclassified and classified. The initial configuration was 2688 compute nodes on the
unclassified end and 2688 compute nodes on the classified end. The middle section contained
4992 compute nodes and could be switched between the unclassified end and the classified end.
Thus the total number of compute nodes was 10368.

A fifth row of cabinets was added in an August-October 2006 upgrade, bringing node counts to
3360 on the unclassified side and 3360 on the classified side. The middle section contains 6240
nodes. The total number of compute nodes is now 12960. Each compute node was upgraded to
dual-core topology, bringing total processor count to 25920. Processor speed was upgraded from
2.0 Ghz to 2.4 Ghz.

In 2005, Red Storm was measured at 36 TF on MP LINPACK. Following the fifth row addition
and upgrade from 2.0 Ghz single-core Opteron processors to 2.4 Ghz dual-core Opterons in

11

2006, Red Storm was measured at 101.4 TF on MP LINPACK, making it the second machine to
surpass 100 TF. Red Storm was measured at 102.2 TF on MP LINPACK in 2007 [5].

Red Storm combines commodity and open source components with custom-designed
components to create a system that can operate efficiently at immense scale. The basic scalable
component is the node. There are two types of nodes; compute nodes run user applications and
service nodes provide support functions, such as managing the user's environment, handling I/O,
and booting the system. Basic internal services such as networking and file system access run on
the specially designated and configured service nodes. Each compute node or service node is a
logical grouping of a processor, memory, and a data routing resource.

Cray XT3 systems use a simple memory model: for applications distributed across numerous
nodes, each instance of the application has its own processor and local memory. Remote
memory is the memory on the nodes running the associated application instance – there is no
shared memory.

The system interconnection network is the data-routing resource that Cray XT3 systems use to
maintain high communication rates as the number of nodes increases. The system
interconnection network enables the system to achieve an appropriate balance between processor
speed and interconnection bandwidth.

To a user, Red Storm appears as a collection of Linux-based login nodes that have access to the
Red Storm file systems as well as the compute nodes. Activities such as compilation, job
submission, and job monitoring are performed on login nodes. The collection of login nodes
appears to the user as a single system.

At the core of Red Storm is the compute partition, where parallel jobs execute. Since the
compute partition is switchable between the classified and unclassified ends of the machine, the
actual size of the compute partition on either end will vary over time.

Each Red Storm compute node has dual-core topology. The 7X testing was performed on Red
Storm in both SN and VN modes.

 SN option – ignore the second processor – default mode – entire system RAM on the

node is available to the application.
 VN option – each processor is a separate compute node – only half the system RAM on

the node is available to each processor.

The software environment is summarized as follows: Operating systems include Linux on
service and I/O nodes (SuSE Enterprise Server), Catamount VN lightweight kernel on compute
nodes, and Linux on RAS monitors. The run-time system includes a logarithmic job launch
utility (yod), the node allocator (CPA), and the batch system workload manager (PBS). The high
performance file system is Lustre. The user environment includes PGI compilers (Fortran, C,
C++), various libraries (MPI, I/O, Math, MPI-2), the showmesh utility for displaying node states
and job layouts on the mesh, the Totalview debugger, and a performance monitor.

12

The lightweight compute node OS is fundamental to the Sandia architecture. It is essential for:
(1) maximizing CPU resources, by reducing OS and runtime system overhead; (2) maximizing
memory resources, with a small memory footprint and large page support; (3) maximizing
network resources, with no virtual memory and physically contiguous address mapping; (4)
increasing reliability, with a small code base and reduced complexity; (5) deterministic
performance, with a high degree of repeatability; (6) scalability, for which OS resources must be
independent of job size.

Other computing systems in the Red Storm Environment are used for job preparation (such as
meshing) and visualization. Visualization can be performed on Red RoSE and Black RoSE,
companion clusters to Red Storm that support classified and unclassified visualization and data
services, respectively. High-speed data links ensure fast data migration between Red Storm and
other systems inside Sandia's computing environment. Special scripts ensure that the data
movement is both simple and robust.

A block diagram of Red Storm illustrating the three functional hardware partitions 1) Compute,
2) Service and I/O, and 3) RAS/System Management is reproduced in Figure 2. While Red
Storm has many characteristics in common with ASCI Red, it also differs in many ways. The
system parameters for ASCI Red and Red Storm are summarized in Table 1 [3, 5].

Figure 2. Red Storm Block Diagram – Three Functional Hardware Partitions 1) Compute,

2) Service and I/O, and 3) RAS/System Management

13

 ASCI Red Red Storm
Compute Nodes
(Red/Center/Black)

4510 (1166/2176/1168) 12960 (3360/6240/3360)

Compute Processors
(Red/Center/Black)

9020 (2332/4352/2336)
PII Xeon 333Mhz

25920 (6720/12480/6720)
Opteron Dual-core 2.4Ghz

Service Nodes
(Red/Black)
Disk I/O Nodes
(Red/Black)

52 (26/26)

73 (37/36)

640 (320/320) Service and I/O partition
(login, service, I/O, administrative nodes)

System Nodes
(Red / Black)

2 (1/1) RAS and System Management Partition

Network Nodes
(Red/Black)

12 (6/6) Ethernet ATM 100 (50/50) 10GigE to RoSE
20 (10/10) 1GigE to login nodes

Number of Cabinets 96 (76 compute/20 disk) 155 (135 compute/20 service & I/O)
Interconnect Topology 3-D Mesh (x,y,z)

(38x32x2)
3-D Mesh (x,y,z)
(27x20x24)

Architecture Dist. Memory MIMD Dist. Memory MIMD
Theoretical Peak
Performance

3.15 TF 124.42 TF

MP-Linpack Performance 2.38 TF 102.2 TF (2007)
Total Memory 1.21 TB 39.19 TB
System Memory B/W 2.5 TB/s 78.12 TB/s
Disk Storage
(Total/per Color)

12.5 TB / 6.25 TB 340 TB / 170 TB

Parallel File System B/W
(Total/per Color)

2.0 GB/s / 1.0 GB/s 100 GB/s / 50 GB/s
sustained disk transfer rate

External Network
(Total/per Color)

0.4 GB/s / 0.2 GB/s 50 GB/s / 25 GB/s
sustained network transfer rate to RoSE

Interconnect B/W
MPI Latency 15 us 1 hop,

20 us max
~4.78 us 1 hop,
~7.78 us max

Bi-Directional Link
B/W

800 MB/s 9.6 GB/s

Minimum Bi-Section
B/W

51.2 GB/s 4.61 TB/s

Full System RAS
RAS Network 10 Mb Ethernet 100 Mb and 1 Gb Ethernet
RAS Processors 1 for each 32 CPUs 1 for each 4 CPUs

Operating System
Compute Nodes Cougar Catamount VN
Service and I/O Nodes TOS (OSFI) Linux
RAS Nodes VX-Works Linux

Red/Black Switch
Switches 2/row 4/row

Table 1. System Parameters – ASCI Red vs. Red Storm

14

Page Intentionally Blank

15

2. GUIDELINES FOR APPLICATION AND PROBLEM SELECTION

The key criteria for application and problem selection are discussed at length in The 7X
Cookbook [6]. One of the mandates of 7X testing is that applications and problem sets shall be
“real”. The 7X testing effort is attempting to characterize production job behavior by exercising
applications-of-interest with production input files and algorithms. Each of the chosen
applications is either a significant DOE production application or an idealized benchmark
application that is based upon and closely resembles the behavior of a major DOE production
application.

The same calculation will be run on ASCI Red and Red Storm. The primary metric is wall-clock
time as measured by the elapsed time to execute the entire job script, including any pre and post
processing [7]. The two calculations should give equivalent answers. The answers might not be
numerically identical due to different sequences of operations, math libraries or numerical round-
off, but the analysts should be comfortable that they are giving the “same” answer. For example,
the answers may agree to only 6 significant digits.

Problems should be chosen to use as many ASCI Red resources (processor, memory) as possible
in order to place reasonable stress on Red Storm. Problem sizes are deliberately chosen so that
jobs run on ASCI Red should range from ~4-8 hours of wall-clock time [7]. Simplified
geometries are preferred in order to simplify input file creation and to avoid meshing problems
during benchmarking. All applications should use standard production capabilities including
I/O, checkpoint/restart, and visualization files. When an application can be run using alternative
algorithms, such as ALEGRA with and without contact, said application may have more than
one benchmark problem in the suite.

We will test each application in “standard” mode (with the exception of PARTISN and SPPM
where we will skip standard mode and proceed directly to stretch mode). We will also test each
application in “stretch” and/or “maximum” mode. Figure 3 shows an overlay of node counts on
ASCI Red vs. Red Storm to highlight the regimes under test.

1. Standard – the standard size should be easily run and accurately measured on both
platforms. This standard will be used to calibrate the testing and to check for shifts in
performance due to changes in the underlying system software. Standard refers to “Large
– proc 0” on ASCI Red and “Small” on Red Storm.

2. Stretch – the stretch size will fully occupy the large configuration of ASCI Red. Stretch
refers to “Large – proc 3” on ASCI Red and “Large (SN)/Small (VN)” on Red Storm.
Problem sets will need to accommodate the reduced memory available in ASCI Red
stretch mode.

3. Maximum – selected applications (CTH, ITS, PARTISN, SAGE, SALINAS, SPPM,
UMT2K) may also be run in maximum size that requires an operational configuration of
ASCI Red’s entire compute node partition. Maximum refers to “Jumbo – proc 0 or
Jumbo – proc 3” on ASCI Red and “Large (SN)/Small (VN) or Large” on Red Storm.
Where maximum runs are not feasible on ASCI Red, the corresponding stretch sizes shall
be considered sufficient.

16

Figure 3. Standard, Stretch, and Maximum Modes on ASCI Red and Red Storm

17

3. GUIDELINES FOR APPLICATION AND PROBLEM RUNS

For the purposes of the 7X testing, the versions of the applications run on both platforms should
be identical, subject only to changes required to make the applications run on both systems
(ASCI Red and Red Storm) [6]. This requirement implies that the 7X benchmarking team needs
to carefully manage the source code for each application. The SNL and Cray teams will both
need access to the source code and input decks to build binaries and execute the runs. System
and support libraries (e.g. glibc) required for the application to link and run may differ between
the systems. Numeric and message passing libraries may differ, but the differences should not
include substantive algorithm changes unless such changes were induced by the Red Storm
architecture.

SNL will port each application to Red Storm and provide Cray with access to the source code,
on-site at Sandia, for the purpose of 7X compilation. All access to source code is subject to
export control restrictions. Cray must obtain licenses for any other use of the 7X application
source code.

SNL personnel will run the tests on ASCI Red, with Cray personnel witnessing the process and
validating the results. Cray personnel will run the tests on Red Storm, with SNL personnel
witnessing the process and validating the results.

The Red Storm hardware configuration and software stack was designed to minimize any need
for application source code modifications when porting any application from ASCI Red to Red
Storm. Consequently, any modifications required in the source code itself are of interest to both
the Sandia Red Storm design teams and to Cray. Any changes introduced into the 7X
application code base that were required so that the application will correctly compile and run on
Red Storm need to be shared among the Red Storm design teams, including Cray.

The Makefiles and scripts used to build the applications may require changes during the port to
Red Storm. For example, the compiler options and switches used may vary. Similarly, job
launch options may differ. Such changes are acceptable and need only be identified and tracked
as support to the end-users of Red Storm. However, the final configuration switches used for the
7X benchmark runs must be properly documented and logged into the status database.

Each application on Red Storm should be validated against known “gold standard” results
provided by SNL, LANL, or LLNL as appropriate. Discrepancies in the output must be
validated with designated Labs points of contact. Similar validation runs should be carried out
on ASCI Red for any applications that are not currently in production on ASCI Red such as
PARTISN, SAGE, SPPM, and UMT2K. Validation should include checkpoint/restart and
visualization outputs.

The output of the benchmarking runs should be checked for proper completion, proper creation
of output files, and approximate size of files. Where possible, the same validation procedures as
used by the functional testing team will be used to validate the 7X runs. Each test case (a
specific benchmark and size) will be run 2-3 times on ASCI Red and Red Storm.

18

Speedup for each benchmark size will be calculated by dividing the average of the runs on ASCI
Red by the average of the runs on Red Storm. Speedup for each application will be calculated by
dividing the arithmetic average of the benchmark speedups on ASCI Red by the arithmetic
average of the benchmark speedups on Red Storm. Overall speedup will be measured as
specified in the contract [1]: “The speedup of each of the applications above will be measured as
a number, nominally around 7, and these numbers will be linearly averaged with equal weights.”

For a given benchmark and size (e.g. SPPM on 4500 processors), all runs must be made with the
same compiled binary. Final 7X testing runs shall be allocated exclusive use of the platform in
order to eliminate any contention for machine resources (i.e. only one 7X application running on
the mesh at a time and no other users on the platform during 7X testing).

19

4. 7X APPLICATION SUITE

Ten applications comprise the final 7X test suite: ALEGRA Contact, ALEGRA NoContact,
CTH, ITS, PARTISN, PRESTO, SAGE, SALINAS, SPPM, and UMT2K. The ten applications
and the twenty-five test problems in the 7X suite are shown graphically in Figure 4. Following
Figure 4, we describe each of these applications and test problems. Lastly, Table 2 summarizes
the test problem sizes for each application.

Figure 4. 7X Application Suite

The thermal code CALORE is also described below although it was not part of the final 7X test
suite. At the problem sizes required, we had sufficient issues on ASCI Red that required
substitution of ALEGRA NoContact for CALORE.

20

4.1. ALEGRA (QSEM with Contact)

Randall M. Summers rmsumme@sandia.gov Application POC
Joshua Robbins jrobbin@sandia.gov Analyst
Allen C. Robinson acrobin@sandia.gov Analyst

ALEGRA is used to simulate the dynamic material response of complex configurations [8]. It
solves coupled physics problems in 2D or 3D using Lagrangian, Eulerian, and/or ALE
coordinates. The code runs efficiently on massively parallel computers and contains a large
variety of physics options including hydrodynamics, magnetohydrodynamics with external
circuit coupling, radiation transport, thermal conduction, and dual ion and electron temperatures.
The ALEGRA Contact problem is a Quasistatic electromechanics (QSEM) problem in which a
curved impactor depoles a potted active ceramic element.

4.2. ALEGRA (QSEM without Contact)

Randall M. Summers rmsumme@sandia.gov Application POC
Joshua Robbins jrobbin@sandia.gov Analyst
Allen C. Robinson acrobin@sandia.gov Analyst

The ALEGRA No Contact problem is a QSEM problem identical to the contact problem except
the boundary condition is a prescribed displacement rather than an impactor. This eliminates the
need for contact.

4.3. CALORE

Eugene Hertel esherte@sandia.gov Application POC
Bruce Bainbridge blbainb@sandia.gov Analyst

CALORE is a thermal code that simulates heat transfer processes that occur during the operation
and manufacturing of complex engineering systems [9]. CALORE has been used to analyze
complex three-dimensional geometries and the safe operation of weapon systems, including their
components and delivery vehicles, in both normal and abnormal thermal environments.

The CALORE test problem is based on a model of an electronic component that has seen
engineering use at Sandia. Two versions of the model exist: one consisting of 600K tetrahedrons
and another that has 3.6M tetrahedrons. The model has an aluminum housing and several
internal circuit boards populated with integrated circuits. There are seven empty compartments
and one compartment filled with a low density material. As the problem runs, the chips heat up,
which heats the internal air spaces and walls and causes the material that fills one compartment
to decompose. The physics of the problem encompasses: conduction, nonlinear materials,
element death, enclosure radiation, far-field radiation, convection, and bulk nodes.

21

4.4. CTH

Eugene Hertel esherte@sandia.gov Application POC
James Simmons jsimmo@sandia.gov Analyst
David Crawford dacrawf@sandia.gov Analyst

CTH is a multimaterial, large-deformation, strong shock wave, solid mechanics code [10]. CTH
has models for multiphase, elastic viscoplastic, porous and explosive materials. Three-
dimensional rectangular meshes; two-dimensional rectangular and cylindrical meshes; and one-
dimensional rectilinear, cylindrical and spherical meshes are available. CTH is used for studying
armor/antiarmor interactions, warhead design, high explosive initiation physics, and weapons
safety issues. The test problem is the shock physics in 3D of a large conical shaped charge.

4.5. ITS

Leonard Lorence ljloren@sandia.gov Application POC
Brian C. Franke bcfrank@sandia.gov Analyst

The Integrated Tiger Series (ITS) code permits Monte Carlo solution of linear time-independent
coupled electron/photon transport radiation transport problems, with or without the presence of
macroscopic electric and magnetic fields of arbitrary spatial dependence [11,12]. Physical rigor
is provided by employing accurate cross sections, sampling distributions, and physical models
for describing the production and transport of the electron/photon cascade from 1.0 GeV down to
1.0 keV. Mulitgroup ITS Version 5.0 (April 1, 2002) contains (1) improvements to the ITS 3.0
continuous-energy codes, (2) multigroup codes with adjoint transport capabilities, (3) parallel
implementations of all ITS codes, (4) a general purpose geometry engine for linking with CAD
or other geometry formats, and (5) the Cholla facet geometry library. The 7X runs will perform
the Starsat MITS test with CAD flow and geometry and ACIS simulation mode.

4.6. PARTISN

Adolphy Hoisie hoisie@lanl.gov Application POC
Courtenay T. Vaughan ctvaugh@sandia.gov Analyst

The Parallel Time-dependent SN (PARTISN) code package is designed to solve the time-
independent or dependent multigroup discrete ordinates form of the Boltzmann transport
equation in several different geometries [13]. PARTISN provides neutron transport solutions on
orthogonal meshes with adaptive mesh refinement in 1D, 2D or 3D. Much effort has been
devoted to making PARTISN efficient on massively parallel computers. The package can be
coupled to nonlinear multiphysics codes that run for weeks on thousands of processors to finish
one simulation. The test problem is “Sntiming”, in which flux and eigenvalue convergence are
monitored by PARTISN.

22

4.7. PRESTO

Arne Gullerud asgulle@sandia.gov Application POC
Arne Gullerud asgulle@sandia.gov Analyst

PRESTO is a Lagrangian, three-dimensional explicit, transient dynamics code for the analysis of
solids subjected to large, suddenly applied loads [14]. PRESTO is designed for problems with
large deformations, nonlinear material behavior, and contact. There is a versatile element library
incorporating both continuum and structural elements.

The contact algorithm is supplied by ACME. The contact algorithm detects contacts that occur
between elements in the deforming mesh and prevents those elements from interpenetrating each
other. This is done on a decomposition of just the surface elements of the mesh. The contact
algorithm is communication intensive and can change as the problem progresses.

The brick walls problem consists of a number of rectangular bricks, each meshed using 3x3x6
elements. The bricks are stacked in an alternating fashion in a plane to produce a wall which is
three elements thick. Four of these walls are lined up in the thin direction. The walls are then
given a sudden pressure loading such that they compress against each other. Since all of the
bricks are meshed independently, they interact with each other through contact on their outer
surfaces. Each brick is located on one processor so the only communication for the finite
element portion of the code is for the determination of the length of the next time step. As the
problem grows with the number of processors, the contact problem also grows. Although there
is no analytic solution for this problem, it provides a large amount of contact with respect to the
number of elements. There are 1.67 times as many faces to be considered in contact as there are
elements, so the cost of contact dominates the computation. This serves as an excellent test to
exercise large-scale global contact and to demonstrate the parallel scaling of the algorithm.

4.8. SAGE

Adolphy Hoise hoise@lanl.gov Application POC
Courtenay T. Vaughan ctvaugh@sandia.gov Analyst

SAIC’s Adaptive Grid Eulerian (SAGE) hydrocode is a multidimensional, multimaterial
hydrodynamics code with adaptive mesh refinement that uses second-order accurate numerical
methods [15]. SAGE represents a large class of production computing applications at Los
Alamos National Laboratory (LANL). It is a large-scale parallel code written in Fortran 90 and
uses MPI for interprocessor communications. It routinely runs on thousands of processors for
months at a time on capability computing systems in the DOE complex. The test problem is an
asteroids simulation of 45 degree, 3D, granite asteroid impact into a stratified medium of water,
calcite, granite crust, and mantle.

23

4.9. SALINAS

Garth M. Reese gmreese@sandia.gov Application POC
Manoj Bhardwaj mbkhard@sandia.gov Analyst

The model that will be used is a 1 unit cube. The cube will first be decomposed into subcubes
using an nsub x nsub x nsub partition. Then each cube will be meshed using nelem x nelem x
nelem hex8 elements. The x=0 face will be clamped, and x=1 face will have an x-directional
load. The cube starts at the origin (0,0,0) and extends to (1,1,1). The faces are parallel to the 3
coordinate directions (x,y,z). We can use “pmesh” to create these models on the fly. We will
solve transient dynamics problem.

SALINAS is a massively parallel implicit structural mechanics/dynamics code aimed at
providing a scalable computational workhorse for extremely complex finite element (FE) stress,
vibration, and transient dynamics models with tens or hundreds of millions of degrees of
freedom (dofs) [16]. The SALINAS software predicts vibrational loads for components within
larger systems, design optimization, frequency response information for guidance and space
systems, and modal data necessary for active vibration control. SALINAS is used to predict
mechanical response in normal and hostile STS1 environments for RB2 systems and missiles.
The software is a tool for understanding and predicting structural response. It is used for both
production type calculations and for research and development, especially with respect to
development of joint and interface models.

The test problem is a transient dynamics problem based on one unit cube model. The cube will
first be decomposed into subcubes using an nsub x nsub x nsub partition. Then each cube will be
meshed using nelem x nelem x nelem hex8 elements. The x=0 face will be clamped, and x=1
face will have an x-directional load. The cube starts at the origin (0,0,0) and extends to (1,1,1).
The faces are parallel to the three coordinate directions (x,y,z). We use “pmesh” to create the
models on the fly.

4.10. SPPM

John C. Gyllenhaal gyllen@llnl.gov Application POC
Courtenay T. Vaughan ctvaugh@sandia.gov Analyst

PPM (Piecewise Parabolic Method) is a 3-D hydrodynamics code used to model a wide range of
shock physics problems [17]. It performs PPM hydrodynamics in Lagrangian style using a
Riemann solver. A simple gamma-law equation of state is used, and an initially uniform grid
with either periodic or continuation boundary conditions is assumed. The SPPM benchmark
solves a 3D gas dynamics problem on a uniform Cartesian mesh, using a simplified version of
PPM, hence the "s" for simplified [18, 19]. The code is written to simultaneously exploit explicit
threads for multiprocessing shared memory parallelism and domain decomposition with message
passing for distributed parallelism. It represents the current state of ongoing research which has
demonstrated good processor performance, excellent multi-threaded efficiency, and excellent
message passing parallel speedups all at the same time. The SPPM program was written in

24

Fortran77 with all system dependent calls taking place through C. It uses a small number of MPI
routines for communication between nodes.

The hydrodynamics algorithm involves a split scheme of X, Y, and Z Lagrangian and remap
steps which are computed as three separate passes or sweeps through the mesh per timestep, each
time sweeping in the appropriate direction with the appropriate operator. Each such sweep
through the mesh requires approximately 680 FLOPs to update all of the state variables for each
real mesh cell. Message passing is used to update ghost cells with data from neighboring
domains three times per timestep and occurs just before each of the X, Y, and Z sweeps.
Multiple threads are used to manipulate data and update pencils of cells in parallel.

4.11. UMT2K

Bor Chan chan1@llnl.gov Application POC
Courtenay T. Vaughan ctvaugh@sandia.gov Analyst

The UMT benchmark is a 3D, deterministic, multigroup, photon transport code for unstructured
meshes [20]. UMT 1.2, referred to as UMT2K for clarity, performs exactly the same physics as
previous versions of UMT (i.e., UMT 1.1, referred to as UMT98) but now includes additional
features that are commonly found in large Lawrence Livermore National Laboratory (LLNL)
parallel applications. These features include mixed MPI and OMP support for large-scale
parallelism, an OMP-based C computation kernel called from an MPI-based Fortran90 driver, a
new mechanism for synthetically generating very large distributed meshes, a parallel
checkpoint/restart mechanism, and graphics output files. The transport code solves the first-
order form of the steady-state Boltzmann transport equation. The equation's energy dependence
is modeled using multiple photon energy groups. The angular dependence is modeled using a
collocation of discrete directions, or "ordinates." The spatial variable is modeled with an
"upstream corner balance" finite volume differencing technique. The solution proceeds by
tracking through the mesh in the direction of each ordinate. For each ordinate direction all
energy groups are transported, accumulating the desired solution on each zone in the mesh.
Hence, memory access patterns may vary substantially for each ordinate on a given mesh, and
the entire mesh is "swept" multiple times. Note, however, that having the energy group loop on
the inside significantly improves cache reuse, because all of the geometrical information related
to sweeping an ordinate direction is the same for each energy group.

The code works on unstructured meshes, which it generates at run-time using a two-dimensional
unstructured mesh (read in) and extruding it in the third dimension a user-specified amount. This
allows the generation of a wide variety of input problem sizes and facilitates "constant work"
scaling studies. The MPI-based parallelism in the Fortran portion uses mesh decomposition to
distribute the mesh across the specified MPI tasks. The OMP-based parallelism in the C kernel
then divides the ordinates among the OMP threads. This C kernel's computation time typically
completely dominates the execution time of the benchmark.

25

Application Run Size ASCI Red Red Storm

ALEGRA Contact Standard 2048 Large – proc 0 Small
 Stretch 6484 Large – proc 3 Large (SN), Small (VN)
ALEGRA NoContact Standard 2048 Large – proc 0 Small
 Stretch 6484 Large – proc 3 Large (SN), Small (VN)
CALORE Standard 2048 Large – proc 0 Small
 Stretch 6484 Large – proc 3 Large (SN), Small (VN)
CTH Standard 2000 Large – proc 0 Small
 Stretch 6480 Large – proc 3 Large (SN), Small (VN)
 Maximum 9000 Jumbo – proc 3 Large
ITS Standard 3200 Large – proc 0 Small
 Maximum 4500 Jumbo – proc 0 Large (SN), Small (VN)
 Stretch 6500 Large – proc 3 Large (SN), Small (VN)
 Maximum 9000 Jumbo – proc 3 Large
PARTISN Maximum 4096 Jumbo – proc 0 Large (SN), Small (VN)
 Stretch 6480 Large – proc 3 Large (SN), Small (VN)
 Maximum 8930 Jumbo – proc 3 Large
PRESTO Standard 2036 Large – proc 0 Small
 Stretch 6360 Large – proc 3 Large (SN), Small (VN)
SAGE Standard 2048 Large – proc 0 Small
 Maximum 4500 Jumbo – proc 0 Large (SN), Small (VN)
SALINAS Standard 2744 Large – proc 0 Small
 Maximum 4096 Jumbo – proc 0 Large (SN), Small (VN)
SPPM Maximum 4500 Jumbo – proc 0 Large (SN), Small (VN)
 Stretch 6561 Large – proc 3 Large (SN), Small (VN)
 Maximum 9000 Jumbo – proc 3 Large
UMT2K Standard 3200 Large – proc 0 Small
 Maximum 4500 Jumbo – proc 0 Large (SN), Small (VN)

Table 2. Test Problem Sizes

26

Page Intentionally Blank

27

5. ACTIVITIES AND ROLES

Completion of the 7X benchmarking task requires cooperation among SNL, LLNL, LANL, and
Cray.

5.1. SNL Responsibilities: Code Teams

The code teams will designate code releases to be used and identify test problems for each
application, along with problem sizes and ASCI Red running modes. Problem sizes should
include those needed for testing and scalability studies on Red Storm. Input files must be
developed for each problem and size and the code teams must also work with the 7X systems
team to port applications to Red Storm. Code teams will provide the 7X team with instructions
on how to compile each application and how to assemble the input files if the actual files are not
provided directly. Code teams will also provide either full source code snapshots or access to a
source code repository in which the code to be used is appropriately tagged for later retrieval.

5.2. SNL Responsibilities: 7X Team

The 7X team will organize and manage the performance testing effort. A data repository will be
created for all testing information. The team will develop, test, and document the benchmarking
procedures and work with the code teams to develop input files, problem sizes, and running
modes. The 7X team will also provide assistance to SNL code teams in porting the 7X
applications to Red Storm and work with LANL and LLNL points of contact to port non-SNL
applications to Red Storm. The 7X team will execute all official baseline runs on ASCI Red, run
and validate each problem set at its standard size on Red Storm, and partner with Cray engineers
to complete all necessary official runs and validations on Red Storm.

5.3. LANL and LLNL Responsibilities

LLNL and LANL teams will designate the code releases to be used and assist SNL in identifying
test problems, problem sizes, and ASCI Red running modes for their candidate applications. The
LLNL and LANL teams will also assist SNL in developing input files for each test problem/size
and provide the 7X team with instructions on how to port/compile each application on Red
Storm.

5.4. Cray Responsibilities

Cray will work with SNL to ensure that all applications compile and run on Red Storm for all
problems and sizes. Cray engineers will partner with the 7X team to compile binaries for Red
Storm and execute the official runs on Red Storm. Official runs will be executed with
designated SNL personnel as witnesses.

28

5.5. Staffing Roles

Each of the benchmark tests described in Section 4 require the following staffing assignments:

Application POC: Point of contact for a specific application code.
Application Analyst: Technical point of contact concerning the creation of input problem files

and sizes, compilation issues, and validation of results.
Library POC: Point of contact for a specific application library.
SNL Run Manager: SNL individual responsible for performing benchmark runs on ASCI Red.
SNL Witness: SNL individual responsible for checking and validating benchmark runs

on Red Storm.
Cray Run Manager: Cray individual responsible for performing benchmark runs on Red Storm.
Cray Witness: Cray individual responsible for checking and validating benchmark runs

on ASCI Red.

Table 3 shows the application and library points of contact.

Application Role Contact Lab
ALEGRA POC Randall M. Summers SNL
 Analyst(s) Joshua Robbins, Allen C. Robinson SNL
CALORE POC Eugene Hertel SNL
 Analyst Bruce Bainbridge SNL
CTH POC Eugene Hertel SNL
 Analyst(s) James Simmons, David Crawford SNL
ITS POC Leonard Lorence SNL
 Analyst Brian C. Franke SNL
PARTISN POC Adolphy Hoisie LANL
 Analyst Courtenay T. Vaughan SNL
PRESTO POC, Analyst Arne Gullerud SNL
SAGE POC Adolphy Hoisie LANL
 Analyst Courtenay T. Vaughan SNL
SALINAS POC Garth M. Reese SNL
 Analyst Manoj Bhardwaj SNL
SPPM POC John C. Gyllenhaal LLNL
 Analyst Courtenay T. Vaughan SNL
UMT2K POC Bor Chan LLNL
 Analyst Courtenay T. Vaughan SNL
Exodus, NetCDF POC Greg D. Sjaardema SNL
Exodus, NetCDF – Alegra POC Richard R. Drake SNL
HDF POC Marty Barnaby SNL
Sierra POC Kathryn Aragon SNL
Trilinos POC Michael A. Heroux SNL

Table 3. Application/Library Points of Contact

29

6. PROJECT AND DATA MANAGEMENT

Many data items need to be tracked during the 7X benchmarking. Two data repositories will be
used: 1) relational database for projects, status, and result management 2) file repository for
document, build, input, and output file management.

6.1. Project Database

A relational database has been developed that will store all relevant status and result information.
The information in this database will be used to track both status and to extract final results. For
example, when a data run occurs, the database will be used both to set up the run and to log
relevant information about the results. The database currently uses a PostgresSQL [21] server
located on a development workstation. Interfaces to the relational database were developed in
Perl (for command-line use). Web-based status reporting can be added if required. Preliminary
status reporting interfaces have been developed that allow a user to extract data from the project
database and format it as graphs, charts, or tables using Unix-based tools.

6.2. Test Management

A simple XML-based scripting language has been developed that will allow the 7X testers to
specify, run, and log the results of each benchmark. The implementation of this language is
called rst. Using rst, one can

 Specify a test to be run.
 Compile application binaries and capture extended output for later inclusion into the

database.
 Run a test in either batch or interactive mode and capture run-time information for later

inclusion in the database.
 Write results data back into the database.

The tool has been designed to minimize impact on the HPC engines where it runs. In particular,
it can run without requiring access to a database server when compiling applications or when
running the actual tests.

6.3. File Management

A SourceForge [22] project repository has been created to support all of the file management
necessary for running and reviewing the benchmarks. SourceForge is a collaborative software
development tool that supports web-based interactions, collaborative communications and file
sharing. Underlying the web interface is a source code management system based on CVS [23].
Access to files can be controlled and limited to certain users via role-based access controls. The
input files, build scripts, and run scripts for each application and benchmark will reside on the
SourceForge site. When a benchmark needs to be executed, the files can be retrieved, the
application built (if necessary) and the test run. The resulting test output files will be pushed
back into the SourceForge repository, while the test results will be logged into the relational
database.

30

Page Intentionally Blank

31

7. RESULTS – HOW MUCH FASTER IS RED STORM ON THE 7X
APPLICATIONS?

An effort was made to set up the test problems so that each would require ~4-8 hours wall-clock
execution time on ASCI Red and, therefore, about 1 hr. on Red Storm. This goal was largely
met, as seen in Figure 5, although it was not possible to scale the PARTISN test problem to that
level. The SALINAS test problems ran for slightly more than an hour on Red Storm, as the
SALINAS speedups on Red Storm were only a factor of 6 to 8 over ASCI Red, lower than for all
of the other applications.

Figure 5. Application Execution Times on ASCI Red and Red Storm

We have not thoroughly investigated the cause for the lower than expected speedup for
SALINAS, however we observed that the total Finite Element Tearing and Interconnecting
(FETI) solution time to wall-clock time was much closer to one in the ASCI Red runs than for
the Red Storm runs. For example, a typical 2744 proc 0 mode run on ASCI Red, took 30419
wall-clock seconds with 29025 seconds spent in the FETI solve step which equates with 95% of
the wall-clock time spent in the FETI solve. By comparison, a typical 2744 VN mode run on
Red Storm took 4733 wall-clock seconds to complete with 3400 seconds spent in the FETI solve
step. The FETI solve step occupied only 72% of the total wall-clock time. We will need to
profile SALINAS on Red Storm to determine what is occurring during the “unproductive” 28%
(1333 seconds).

Figure 6 shows the speedups achieved on Red Storm relative to ASCI Red. An average speedup
of 20X is observed across the test suite, far above the hoped-for seven-fold improvement. Three
caveats are in order: (1) the average speedup is unduly influenced by the extremely large

32

speedup (65X) measured for PARTISN (and, to a lesser extent, by SAGE) on Red Storm. We
can speculate that ASCI Red may have been in a degraded state when the PARTISN runs were
made, but this cannot be proven since the system is no longer available; (2) processor speeds
were upgraded by 20% on Red Storm before these results were gathered, so the real target should
now be 8.4X, not 7X; (3) Although our intent was to perform all testing on ASCI Red and Red
Storm in “exclusive” mode (i.e. only one 7X application running on the mesh at a time and no
other users on the platform during 7X testing), the Red Storm testing was almost never
“exclusive”. We often ran several 7X applications concurrently and other users were allowed to
run jobs on Red Storm during the 7X testing due to program milestone needs. Our testing on
ASCI Red was always “exclusive”. This may indeed have disadvantaged Red Storm
performance results; however, we cannot determine the extent of the effect.

If we discard the maximum and minimum speedup values (65X for PARTISN 8930 processors
and 6X for SALINAS 4096 processors), we obtain a 19X average speedup. If we discard the
highest two values (65X for PARTISN 8930 processors and 42X for SAGE 4500 processors), we
still obtain an 18X average speedup, well above the 7X target.

Figure 6. Application Speedup - ASCI Red vs. Red Storm

33

8. RESULTS – SINGLE-CORE VS. DUAL-CORE COMPARISON ON
RED STORM

The upgrade of Red Storm to dual-core sockets provided the option of specifying either one or
two cores per socket when launching an application. As noted above, the 7X tests can be
performed on Red Storm in either SN or VN mode: (1) the SN option, which is the default,
ignores the second core and makes all user memory on the node available to the application; (2)
the VN option, which treats each core as a separate compute node and makes only half the user
memory on the node available to each core. If applications can run efficiently in VN mode on
Red Storm, this frees up sockets for other applications.

In Figure 7, we compare the Red Storm results in terms of execution time for SN and VN runs of
the test problems, as well as a few pre-upgrade runs (2.0 Ghz single-core Opteron processors).
Run times in yellow were performed pre-upgrade (2.0 Ghz single-core). Run times in blue were
obtained on 2.4 Ghz dual-core, but the second core of each node was left idle. Run times in red
used both cores on the node and only required half as many compute nodes as the run times in
blue, freeing nodes for other production work.

Figure 7. Comparison of SN and VN Results on Red Storm (includes pre-upgrade 2.0 Ghz

single-core results for three applications)

Most of the applications are demonstrating a small-to-modest performance hit (5-30%) for using
the second core in VN mode. The average efficiency drop was 17% for VN mode vs. SN mode
(post-upgrade). PARTISN is again an outlier with the largest dual-core performance penalty in
the test suite. Interestingly, the 6484 processor ALEGRA No Contact test shows a very slight
performance acceleration in VN mode relative to the same number of cores in SN mode.

34

Pre-upgrade runs were available for three applications in the 7X suite. These runs were
performed using the 2.0 Ghz single-core Opteron processors that were in place prior to the Red
Storm system upgrade. ITS shows a speedup commensurate with the 20% increase in processor
speed due to the upgrade, but little benefit is seen for UMT2K and SAGE for upgrading to the
2.4 Ghz dual-core Opteron processors.

35

9. SUMMARY AND LESSONS LEARNED

In preparation for the testing and acceptance of the Red Storm system, a suite of
applications/benchmarks were developed to assess whether major applications would realize at
least a seven-fold performance increase on the new system relative to its predecessor. This
methodology has subsequently proven quite valuable in addressing diverse performance issues:
e.g. the benefits of processor and memory upgrades, particularly the benefits of dual-core
processors.

Red Storm has achieved its requirement of 7X performance over ASCI Red, posting an average
speed-up of 20X. We find that although most of the individual applications show at least a 12-
fold to 15-fold performance improvement over the ASCI Red system, there are interesting
outliers: PARTISN shows run time speed-ups of up to 65X while SALINAS manages only a
6X-8X performance increase. The results validate Red Storm as a capability platform for major
scientific and engineering codes on 2K-10K processors.

We also compared single-core (SN) and dual-core (VN) runs on Red Storm to investigate the
efficiency that users might experience when utilizing both cores on the node. Dual-core
performed well on the 7X applications, often completing in nominally the same time as single-
core runs. The average efficiency drop was 17% for VN mode vs. SN mode with most of the
applications demonstrating a small-to-modest performance hit (5-30%) for using the second core
in VN mode. The results validate the efficacy of the dual-core upgrade, as most of these
applications make efficient use of the second core. Applications that can run efficiently in VN
mode on Red Storm have the potential to free up sockets for other applications.

The availability and applicability of this test suite to answer design questions and evaluate
upgrade options, such as the dual-core upgrade, further validates the need for evaluation of
capability-class, massively parallel systems with real applications.

Many of the 7X applications are routinely used to benchmark and evaluate other new systems,
e.g. highly parallel cluster systems that are acquired to serve as capacity computing systems.
However, there are some serious limitations to this methodology. Several of the applications
discussed here require major porting efforts whenever a new system is to be tested. This is
particularly true of the Sierra framework-based applications, such as CALORE and PRESTO, as
well as other large, modern, object-oriented applications such as ALEGRA. Some applications
can require a week or two to be built for a new system, even if no portability issues are
encountered.

When the comparison testing is spread out over a long period of time, it will undoubtedly be
necessary to adjust to changes in the computing environment. Upgrades to the operating system,
compilers, file systems, etc. can prove quite challenging. The application code may not compile
the first time out of the chute with a new compiler. Application codes also “evolve”, which is
also quite challenging when striving for some level of test consistency over time.

It is also challenging to perform tests on a platform at hardware end-of-life. The ASCI Red
hardware had been in service for many years and Mean Time Between Failure becomes a

36

consideration in these types of performance tests. We were also left to speculate that ASCI Red
may have been in a degraded state when the PARTISN runs were made, but this cannot be
proven since ASCI Red was decommissioned before we completed our Red Storm runs. By the
time the disparity was apparent between PARTISN run times on the two platforms, ASCI Red
was no longer available for repeat runs. It would be desirable in future system procurements to
ensure overlap in platform operations until all testing is complete.

When standing up any new parallel computing system, an argument could be made for using an
appropriate subset of the large complex application codes in addition to simpler
application/benchmark codes for quick portability. We see a need for compact applications
based on “real” applications, and there are recent research and development efforts to create new
compact applications, so that testing and evaluation of new systems and potential procurements
can be done in a timely manner [24].

37

10. REFERENCES

1. Contract for Red Storm, Internal Document 32124, Sandia National Laboratories,

Albuquerque, NM, Sept. 23, 2002.
2. Paul Hommert, Dona Crawford, Rena A. Haynes, George W. Davidson, William J. Camp,

Doug Brown, Arthur L. Hale, Juan C. Meza, Accelerated Strategic Computing Initiative,
SAND96-2659C, Sandia National Laboratories, Albuquerque, NM, 1996.

3. James L. Tomkins, The ASCI Red TFLOPS Supercomputer, SAND96-2659C, pg 17-18,
Sandia National Laboratories, Albuquerque, NM, 1996. An excerpt from this report can be
found at http://www.sandia.gov/ASCI/Red/RedFacts.htm

4. Timothy G. Mattson and Greg Henry, The ASCI Option Red Supercomputer, Intel
Corporation, 1997.

5. R. A. Ballance, Red Storm Web Site, Sandia National Laboratories, Albuquerque, NM,
2008. http://redstormweb.sandia.gov/RedStorm

6. R. A. Ballance, The 7X Cookbook, Version 1.5.1, Internal Document, Sandia National
Laboratories, Albuquerque, NM, Jan. 10, 2005.

7. Preliminary Cray Test Document for Red Storm, Draft Cray Internal Document, Dec. 11,
2003.

8. T. A. Haill, et al., Multi-dimensional z-pinch calculations with Alegra, Pulsed Power Plasma
Science, IEEE, Las Vegas, NV, June 2001.

9. Steve Gianoulikis, et al., Calore Thermal Analysis Code, SAND2005-4127P, Sandia
National Laboratories, Albuquerque, NM, 2005.

10. E. S. Hertel, et al., CTH: A Software Family for Multidimensional Shock Physics Analysis,
Proceedings 19th International Symposium on Shock Waves, 1, 274ff, Universite de
Provence, France, 1993.

11. Brian C. Franke, Ronald P. Kensek and Thomas W. Laud, ITS Version 5.0: The Integrated
TIGER Series of Coupled Electron/Photon Monte Carlo Transport Codes with CAD
Geometry, SAND2004-5172, Sandia National Laboratories, Albuquerque, NM, 2004.

12. M. Rajan, et al., Performance Analysis, Modeling and Enhancement of Sandia’s Integrated
TIGER Series (ITS) Coupled Electron/Photon Monte Carlo Transport Code, Proceedings of
LACSI Symposium, Santa Fe, NM, Oct. 2005.

13. Transport Methods CCS-4, Los Alamos National Laboratory, Los Alamos, NM.
14. J. Richard Koteras and Arne S. Gullerud, Presto User's Guide Version 1.05, SAND2003-

1089, Sandia National Laboratories, Albuquerque, NM, 2003.
15. D. J. Kerbyson, et al., Predictive Performance and Scalability Modeling of a Large Scale

Application, Proceedings of the ACM-IEEE International Conference HPC and Networking
(SC01), Nov. 2001.

16. Garth Reese, Salinas – Strategic Vision, Internal Document, Sandia National Laboratories,
Albuquerque, NM, April 2, 2008.

17. P. Colella and P. R. Woodward, The Piecewise Parabolic Method (PPM) for Gas-Dynamical
Simulations, J. Comput. Phys., 54, pg. 174-201, 1984.

18. J. Owens, The ASCI sPPM Benchmark Code, Lawrence Livermore National Laboratory,
Livermore, CA, 1996.

19. T. Spelce, Early Performance Results from the LLNL/NNSA Purple Computer, UCRL-
PRES-22309, SCICOMP 12, Boulder, CO, July 17-21, 2006.

38

20. B. Chan, The UMT Benchmark Code, Lawrence Livermore National Laboratory,
Livermore, CA, 2002,

21. Bruce Momjian, PostgresSQL: Introduction and Concepts, Addison-Wesley, Reading, MA,
USA, 2001.

22. VA Software, SourceForge 3.1 User Guide, 2002.
23. Per Cederqvist, Version Management with CVS, Version 1.12.5.
24. D. A. Bader et al., Designing Scalable Synthetic Compact Applications for Benchmarking

High Productivity Computing Systems, Cyberinfrastructure Technology Watch, 2 (4B), 1-
10, Nov. 2006.

39

DISTRIBUTION

Electronic Distribution

1 MS0372 Arne S. Gullerud 1525
1 MS0378 Richard R. Drake 1431
1 MS0378 Allen C. Robinson 1431
1 MS0380 Manoj K. Bhardwaj 1542
1 MS0380 Garth M. Reese 1542
1 MS0380 Christopher Riley Wilson 1542
1 MS0382 Mark E. Hamilton 1543
1 MS0633 Bruce L. Bainbridge 2952
1 MS0633 Brian C. Franke 1341
1 MS0807 Robert A. Ballance 9328
1 MS0807 Michael E. Davis 9326
1 MS0807 Dennis C. Dinge 9326
1 MS0807 Karen Haskell 9326
1 MS0807 John P. Noe 9328
1 MS0807 Joel O. Stevenson 9326
1 MS0807 Hal Meyer 9326
1 MS0807 Dino Pavlakos 9326
1 MS0807 Mahesh Rajan 9326
1 MS0807 Michal A. Martinez II 9328
1 MS0807 Paul E. Sanchez 9328
1 MS0807 Dick Dimock 9328
1 MS0807 Victor G. Kuhns 9328
1 MS0807 Barry J. Oliphant 9328
1 MS0807 Roberto J. Purdy 9328
1 MS0807 Jason J. Repik 9328
1 MS0823 Frank Jaramillo 9324
1 MS0836 David A. Crawford 1541
1 MS0836 James S. Simmons 1541
1 MS0836 Tolulope O. Okusanya 1541
1 MS0972 Kevin H. Brown 5575
1 MS1185 Sue C. Phelps. 5417
1 MS1189 Thomas A. Gardiner 1641
1 MS1195 Joshua Robbins 1646
1 MS1319 Suzanne M. Kelly 1423
1 MS1319 Courtenay T. Vaughan 1423
1 MS1319 John P. Van Dyke 1423
1 MS1319 Robert E. Benner, Jr. 1422
1 MS1322 James L. Tomkins 1420
1 MS0899 Technical Library 9536

Los Alamos National Laboratory
Attn: R Adolphy Hoisie
PO Box 1663
Los Alamos, NM 87545

40

