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Abstract 
 

The goal of the 7X performance testing was to assure Sandia National Laboratories, 
Cray Inc., and the Department of Energy that Red Storm would achieve its 
performance requirements which were defined as a comparison between ASCI Red 
and Red Storm.  Our approach was to identify one or more problems for each 
application in the 7X suite, run those problems at multiple processor sizes in the 
capability computing range, and compare the results between ASCI Red and Red 
Storm.  The first part of this report describes the two computer systems, the 
applications in the 7X suite, the test problems, and the results of the performance tests 
on ASCI Red and Red Storm.  During the course of the testing on Red Storm, we had 
the opportunity to run the test problems in both single-core mode and dual-core mode 
and the second part of this report describes those results.  Finally, we reflect on 
lessons learned in undertaking a major head-to-head benchmark comparison. 
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1. INTRODUCTION 
 
1.1. Background 
 
The goal of the 7X performance testing is to assure Sandia National Laboratories (SNL), Cray 
Inc., and the Department of Energy (DOE) that Red Storm will achieve its performance 
requirements and to assess whether major applications will realize at least a seven-fold 
performance increase on the new Red Storm system relative to its predecessor ASCI Red.  The 
focus is on problem sizes and processor counts representative of capability computing; i.e. single 
application runs that use 20% to 100% of the processors on ASCI Red. 
 
The performance tests are defined as a comparison between ASCI Red and Red Storm.  In 
general, the Red Storm contract calls for a series of speedup comparisons using selected 
applications at various problem sizes [1].  Our approach is to identify one or more problems for 
each application, run those problems at two or three processor sizes, and compare the results 
between ASCI Red and Red Storm. 
 
The Red Storm supercomputer, originally built in 2005 with 2.0 Ghz single-core Opteron 
processors, received several upgrades to processors, memory, and system software in 2006, 
2007, and 2008.  In mid-2008, after the completion of the 7X runs, the center section of Red 
Storm was upgraded to quad-core processors and all nodes were upgraded to a uniform 2GB 
memory per node.  Red Storm compute nodes were 2.4 Ghz dual-core Opteron processors during 
the course of the 7X testing.  Users had the option of running applications on both cores on each 
node of the system, or on only one core per node.  The latter option is useful for those 
applications which are memory intensive and cannot abide having a node’s memory partitioned 
between the two cores.  During the course of executing 7X applications on Red Storm, results 
were collected in both single-core mode and dual-core mode.  In this report, we will describe the 
state of Red Storm as it was during the 7X testing, prior to the quad-core upgrade. 
 
Since the processor speeds were upgraded by 20% (from 2.0 Ghz to 2.4 Ghz) on Red Storm 
before results were gathered, the real target should now be 8.4X, not 7X.  We will, however, 
continue to use the 7X descriptor throughout this report when referring to performance testing. 
 
The report is organized in the following manner:  The remainder of this section presents the basic 
history, layout, and operation of ASCI Red and Red Storm in order to fully understand and 
contrast their performance.  Section 2 and Section 3 discuss the guidelines for 
application/problem selection and application/problem runs, respectively.  Section 4 contains a 
detailed listing of the applications under test with problem size information.  Section 5 contains 
an overview of activities and roles and Section 6 discusses project and data management.  7X 
performance testing results are presented in Section 7 and Section 8 discusses single-core vs. 
dual-core results.  Section 9 contains a summary and lessons learned in undertaking a major 
head-to-head benchmark comparison. 
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1.2. ASCI Red 
 
ASCI Red, the first computer in the Advanced Strategic Computing Initiative (ASCI) program, 
was built by Intel and installed at Sandia in late 1996 [2,3].  The design was based on the Intel 
Paragon computer.  The goal was to deliver a true teraflop machine by the end of 1996 that 
would be capable of running an ASCI application using all memory and nodes by September of 
1997.  ASCI Red was the world’s first teraflop machine [3].  In December, 1996, three quarters 
of ASCI Red was measured at a world record 1.06 TFLOPS on MP LINPACK and held the 
record for fastest supercomputer in the world for several consecutive years, maxing out at 2.38 
TFLOPS after a processor and memory upgrade in 1999 [2,3,4].  ASCI Red was 
decommissioned in 2006, shortly after completing the 7X runs. 
 
The ASCI Red supercomputer was a distributed memory MIMD (Multiple Instruction, Multiple 
Data) message-passing computer.  The design provided high degrees of scalability for I/O, 
memory, compute nodes, storage capacity, and communications; standard parallel interfaces also 
made it possible to port parallel applications to the machine.  The machine was structured into 
four partitions: Compute, Service, I/O, and System.  Parallel applications executed in the 
Compute Partition which contained nodes optimized for floating point performance.  The 
compute nodes had only the features required for efficient computation – they were not purposed 
for general interactive services.  The Service Partition provided an integrated, scalable host that 
supported interactive users (log-in sessions), application development, and system 
administration. The I/O Partition supported disk I/O, a scalable parallel file system and network 
services. The System Partition supported initial booting and system Reliability, Availability, and 
Serviceability (RAS) capabilities.  A block diagram of ASCI Red illustrating the Compute, 
Service, I/O, and System partitions is reproduced in Figure 1. 
 
 

 
 

Figure 1.  ASCI Red Block Diagram – Compute, Service, I/O, and System Partitions 
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In normal operation, disconnect cabinets divided ASCI Red into two sides; unclassified and 
classified.  In its full configuration, ASCI Red consisted of four rows, each with an unclassified 
end and a classified end.  The unclassified ends of the rows appeared to the users as a single 
machine named Janus, and the classified ends of the rows appeared as a single machine named 
Janus-s.  Each end was a significant parallel computer in its own right, with a peak 
computational rate of approximately 780 Gflop.  Since each end was always connected to a LAN 
(barring catastrophic failure or other rare circumstance), files on both systems were always 
available.  Each end had its own set of disks for file storage, service nodes to handle user logins, 
I/O nodes to handle I/O requests, and system nodes for system monitoring and control, in 
addition to the computational nodes, on which parallel applications ran. 
 
The precise configuration was 1168 compute nodes on the unclassified end and 1166 compute 
nodes on the classified end. The middle section contained 2176 compute nodes and could be 
switched between the unclassified end and the classified end.  Thus the total number of compute 
nodes on ASCI Red was 4510. 
 
ASCI Red used two operating systems, the Teraflops Operating System on the Service, I/O, and 
System Partitions, and a Sandia-developed lightweight kernel (Cougar) on the Compute nodes.  
The Teraflops Operating System was Intel's distributed version of UNIX (POSIX 1003.1 and 
XPG3, AT&T System V.3 and 4.3 BSD Reno VFS) developed for the Paragon XP/S 
Supercomputer.  It was a full-featured version of UNIX, used for boot and configuration support, 
system administration, user logins, user commands/services, and development tools.  The 
operating system in the Compute Partition was Cougar, which was Intel's port of Puma, a light-
weight operating system for the TOPS, based on the very successful SUNMOS system for the 
Paragon.  SUNMOS, and subsequently Puma, were developed by Sandia National Laboratories 
(SNL) and the University of New Mexico.  Cougar was a very efficient and high-performance 
operating system providing program loading, memory management, message-passing support, 
some signal handling and exit handling, and run-time support for the supported languages.  
Cougar was very small, occupying less that 300 KBytes of RAM. 
 
This combination of operating systems made it possible to specialize for specific tasks and 
standard programming tools to make the supercomputer both familiar to the user and non-
intrusive for the scalable application.  The machine provided a single system image to the user.  
The users perceived the system as a single UNIX machine even though the operating system was 
actually running on a distributed collection of nodes.  To the user, the system had the look and 
feel of a UNIX-based supercomputer.  All the standard facilities associated with a UNIX 
workstation were available to the user, yet the compute partition running the Cougar operating 
system had only those features required for computation.  The Cougar operating system could 
therefore be small in size and very fast.  The combination of these two operating systems was a 
powerful approach. 
 
Since Cougar was a minimal operating system, system services and support for the interactive 
user were provided by the host operating system (the Paragon-derived UNIX OS running in the 
Service Partition).  All access to hardware resources came from the Q-Kernel, the lowest-level 
component of Cougar.  Above the Q-Kernel sat the process control thread (PCT), which ran in 
user space and managed processes.  User applications sat at the highest level.  As with most MPP 
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systems, the basic programming model in Cougar was based on message passing. FORTRAN77, 
FORTRAN90, C and C++ were supported.  The interactive debugger and performance analysis 
tools understood these languages and mapped onto original source code. 
 
One interesting feature of ASCI Red concerned the processor “mode”.  While message passing 
was used between nodes, shared memory mechanisms were used to exploit parallelism on a 
node.  Each compute node had two processors.  The second processor could be used in one of 
four modes: 
 
 Proc 0 option – ignored the second processor – default mode – entire system RAM on the 

node was available to the application (256 MB). 
 Proc 1 option – used the second processor as a communication co-processor. 
 Proc 2 option – used the second processor to run an additional application thread. 
 Proc 3 option – this mode treated each processor as a separate compute node – virtual 

mode – the processors shared memory so only half the system RAM was available to the 
application (128 MB). 

 
The 7X testing was performed on ASCI Red in Proc 0 and Proc 3 modes only. 
 
 
1.3. Red Storm 
 
Red Storm, the follow-on computer to ASCI Red, was built by Cray and installed at Sandia in 
early 2005.  Red Storm is a distributed memory, massively parallel supercomputer modeled on 
ASCI Red.  Red Storm itself is a dual-headed machine, being split between classified (Red) and 
unclassified (Black) use.  Each end is anchored in a specific network.  The classified portion of 
Red Storm (redstorm-s.sandia.gov) is anchored in Sandia's Classified Network (SCN).  The 
unclassified portion of Red Storm (redstorm.sandia.gov) is anchored in Sandia's Restricted 
Network (SRN). 
 
The Red Storm architecture facilitates simultaneous usage on the unclassified and classified sides 
of the machine.  In normal operation, disconnect cabinets divide Red Storm into two sides; 
unclassified and classified.  The initial configuration was 2688 compute nodes on the 
unclassified end and 2688 compute nodes on the classified end.  The middle section contained 
4992 compute nodes and could be switched between the unclassified end and the classified end.  
Thus the total number of compute nodes was 10368. 
 
A fifth row of cabinets was added in an August-October 2006 upgrade, bringing node counts to 
3360 on the unclassified side and 3360 on the classified side.  The middle section contains 6240 
nodes.  The total number of compute nodes is now 12960.  Each compute node was upgraded to 
dual-core topology, bringing total processor count to 25920.  Processor speed was upgraded from 
2.0 Ghz to 2.4 Ghz. 
 
In 2005, Red Storm was measured at 36 TF on MP LINPACK.  Following the fifth row addition 
and upgrade from 2.0 Ghz single-core Opteron processors to 2.4 Ghz dual-core Opterons in 
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2006, Red Storm was measured at 101.4 TF on MP LINPACK, making it the second machine to 
surpass 100 TF.  Red Storm was measured at 102.2 TF on MP LINPACK in 2007 [5].   
 
Red Storm combines commodity and open source components with custom-designed 
components to create a system that can operate efficiently at immense scale.  The basic scalable 
component is the node.  There are two types of nodes; compute nodes run user applications and 
service nodes provide support functions, such as managing the user's environment, handling I/O, 
and booting the system.  Basic internal services such as networking and file system access run on 
the specially designated and configured service nodes.  Each compute node or service node is a 
logical grouping of a processor, memory, and a data routing resource. 
 
Cray XT3 systems use a simple memory model: for applications distributed across numerous 
nodes, each instance of the application has its own processor and local memory.  Remote 
memory is the memory on the nodes running the associated application instance – there is no 
shared memory. 
 
The system interconnection network is the data-routing resource that Cray XT3 systems use to 
maintain high communication rates as the number of nodes increases.  The system 
interconnection network enables the system to achieve an appropriate balance between processor 
speed and interconnection bandwidth. 
 
To a user, Red Storm appears as a collection of Linux-based login nodes that have access to the 
Red Storm file systems as well as the compute nodes. Activities such as compilation, job 
submission, and job monitoring are performed on login nodes. The collection of login nodes 
appears to the user as a single system. 
 
At the core of Red Storm is the compute partition, where parallel jobs execute. Since the 
compute partition is switchable between the classified and unclassified ends of the machine, the 
actual size of the compute partition on either end will vary over time. 
 
Each Red Storm compute node has dual-core topology.  The 7X testing was performed on Red 
Storm in both SN and VN modes. 
 
 SN option – ignore the second processor – default mode – entire system RAM on the 

node is available to the application. 
 VN option – each processor is a separate compute node – only half the system RAM on 

the node is available to each processor. 
 
The software environment is summarized as follows:  Operating systems include Linux on 
service and I/O nodes (SuSE Enterprise Server), Catamount VN lightweight kernel on compute 
nodes, and Linux on RAS monitors.  The run-time system includes a logarithmic job launch 
utility (yod), the node allocator (CPA), and the batch system workload manager (PBS).  The high 
performance file system is Lustre.  The user environment includes PGI compilers (Fortran, C, 
C++), various libraries (MPI, I/O, Math, MPI-2), the showmesh utility for displaying node states 
and job layouts on the mesh, the Totalview debugger, and a performance monitor. 
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The lightweight compute node OS is fundamental to the Sandia architecture.  It is essential for:  
(1) maximizing CPU resources, by reducing OS and runtime system overhead; (2) maximizing 
memory resources, with a small memory footprint and large page support; (3) maximizing 
network resources, with no virtual memory and physically contiguous address mapping; (4) 
increasing reliability, with a small code base and reduced complexity; (5) deterministic 
performance, with a high degree of repeatability; (6) scalability, for which OS resources must be 
independent of job size. 
 
Other computing systems in the Red Storm Environment are used for job preparation (such as 
meshing) and visualization. Visualization can be performed on Red RoSE and Black RoSE, 
companion clusters to Red Storm that support classified and unclassified visualization and data 
services, respectively. High-speed data links ensure fast data migration between Red Storm and 
other systems inside Sandia's computing environment. Special scripts ensure that the data 
movement is both simple and robust. 
 
A block diagram of Red Storm illustrating the three functional hardware partitions 1) Compute, 
2) Service and I/O, and 3) RAS/System Management is reproduced in Figure 2.  While Red 
Storm has many characteristics in common with ASCI Red, it also differs in many ways.  The 
system parameters for ASCI Red and Red Storm are summarized in Table 1 [3, 5]. 
 
 

 
 
Figure 2.  Red Storm Block Diagram – Three Functional Hardware Partitions 1) Compute, 

2) Service and I/O, and 3) RAS/System Management 
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 ASCI Red Red Storm 
Compute Nodes 
(Red/Center/Black) 

4510 (1166/2176/1168) 12960 (3360/6240/3360) 

Compute Processors 
(Red/Center/Black) 

9020 (2332/4352/2336)  
PII Xeon 333Mhz 

25920 (6720/12480/6720)  
Opteron Dual-core 2.4Ghz 

Service Nodes 
(Red/Black) 
Disk I/O Nodes 
(Red/Black) 

52 (26/26) 
 
73 (37/36) 

640 (320/320) Service and I/O partition 
(login, service, I/O, administrative nodes) 

System Nodes 
(Red / Black) 

2 (1/1) RAS and System Management Partition 

Network Nodes 
(Red/Black) 

12 (6/6) Ethernet ATM 100 (50/50) 10GigE to RoSE 
20 (10/10) 1GigE to login nodes 

Number of Cabinets 96 (76 compute/20 disk) 155 (135 compute/20 service & I/O) 
Interconnect Topology 3-D Mesh (x,y,z) 

(38x32x2) 
3-D Mesh (x,y,z) 
(27x20x24) 

Architecture Dist. Memory MIMD Dist. Memory MIMD 
Theoretical Peak 
Performance 

3.15 TF 124.42 TF 

MP-Linpack Performance 2.38 TF 102.2 TF (2007) 
Total Memory 1.21 TB 39.19 TB 
System Memory B/W 2.5 TB/s 78.12 TB/s 
Disk Storage 
(Total/per Color) 

12.5 TB / 6.25 TB 340 TB / 170 TB 

Parallel File System B/W 
(Total/per Color) 

2.0 GB/s / 1.0 GB/s 100 GB/s / 50 GB/s 
sustained disk transfer rate 

External Network 
(Total/per Color) 

0.4 GB/s / 0.2 GB/s 50 GB/s / 25 GB/s 
sustained network transfer rate to RoSE 

Interconnect B/W   
MPI Latency 15 us 1 hop,  

20 us max 
~4.78 us 1 hop,  
~7.78 us max 

Bi-Directional Link 
B/W 

800 MB/s 9.6 GB/s 

Minimum Bi-Section 
B/W 

51.2 GB/s 4.61 TB/s 

Full System RAS   
RAS Network 10 Mb Ethernet 100 Mb and 1 Gb Ethernet 
RAS Processors 1 for each 32 CPUs 1 for each 4 CPUs 

Operating System   
Compute Nodes Cougar Catamount VN 
Service and I/O Nodes TOS (OSFI) Linux 
RAS Nodes VX-Works Linux 

Red/Black Switch   
Switches 2/row 4/row 

 
Table 1.  System Parameters – ASCI Red vs. Red Storm 
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2. GUIDELINES FOR APPLICATION AND PROBLEM SELECTION 
 
The key criteria for application and problem selection are discussed at length in The 7X 
Cookbook [6].  One of the mandates of 7X testing is that applications and problem sets shall be 
“real”.  The 7X testing effort is attempting to characterize production job behavior by exercising 
applications-of-interest with production input files and algorithms.  Each of the chosen 
applications is either a significant DOE production application or an idealized benchmark 
application that is based upon and closely resembles the behavior of a major DOE production 
application. 
 
The same calculation will be run on ASCI Red and Red Storm.  The primary metric is wall-clock 
time as measured by the elapsed time to execute the entire job script, including any pre and post 
processing [7].  The two calculations should give equivalent answers.  The answers might not be 
numerically identical due to different sequences of operations, math libraries or numerical round-
off, but the analysts should be comfortable that they are giving the “same” answer.  For example, 
the answers may agree to only 6 significant digits. 
 
Problems should be chosen to use as many ASCI Red resources (processor, memory) as possible 
in order to place reasonable stress on Red Storm.  Problem sizes are deliberately chosen so that 
jobs run on ASCI Red should range from ~4-8 hours of wall-clock time [7].  Simplified 
geometries are preferred in order to simplify input file creation and to avoid meshing problems 
during benchmarking.  All applications should use standard production capabilities including 
I/O, checkpoint/restart, and visualization files.  When an application can be run using alternative 
algorithms, such as ALEGRA with and without contact, said application may have more than 
one benchmark problem in the suite. 
 
We will test each application in “standard” mode (with the exception of PARTISN and SPPM 
where we will skip standard mode and proceed directly to stretch mode).  We will also test each 
application in “stretch” and/or “maximum” mode.  Figure 3 shows an overlay of node counts on 
ASCI Red vs. Red Storm to highlight the regimes under test. 
 

1. Standard – the standard size should be easily run and accurately measured on both 
platforms.  This standard will be used to calibrate the testing and to check for shifts in 
performance due to changes in the underlying system software.  Standard refers to “Large 
– proc 0” on ASCI Red and “Small” on Red Storm. 

2. Stretch – the stretch size will fully occupy the large configuration of ASCI Red.  Stretch 
refers to “Large – proc 3” on ASCI Red and “Large (SN)/Small (VN)” on Red Storm.  
Problem sets will need to accommodate the reduced memory available in ASCI Red 
stretch mode. 

3. Maximum – selected applications (CTH, ITS, PARTISN, SAGE, SALINAS, SPPM, 
UMT2K) may also be run in maximum size that requires an operational configuration of 
ASCI Red’s entire compute node partition.  Maximum refers to “Jumbo – proc 0 or 
Jumbo – proc 3” on ASCI Red and “Large (SN)/Small (VN) or Large” on Red Storm.  
Where maximum runs are not feasible on ASCI Red, the corresponding stretch sizes shall 
be considered sufficient. 
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Figure 3.  Standard, Stretch, and Maximum Modes on ASCI Red and Red Storm 
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3. GUIDELINES FOR APPLICATION AND PROBLEM RUNS 
 
For the purposes of the 7X testing, the versions of the applications run on both platforms should 
be identical, subject only to changes required to make the applications run on both systems 
(ASCI Red and Red Storm) [6].  This requirement implies that the 7X benchmarking team needs 
to carefully manage the source code for each application.  The SNL and Cray teams will both 
need access to the source code and input decks to build binaries and execute the runs.  System 
and support libraries (e.g. glibc) required for the application to link and run may differ between 
the systems.  Numeric and message passing libraries may differ, but the differences should not 
include substantive algorithm changes unless such changes were induced by the Red Storm 
architecture. 
 
SNL will port each application to Red Storm and provide Cray with access to the source code, 
on-site at Sandia, for the purpose of 7X compilation.  All access to source code is subject to 
export control restrictions.  Cray must obtain licenses for any other use of the 7X application 
source code. 
 
SNL personnel will run the tests on ASCI Red, with Cray personnel witnessing the process and 
validating the results.  Cray personnel will run the tests on Red Storm, with SNL personnel 
witnessing the process and validating the results. 
 
The Red Storm hardware configuration and software stack was designed to minimize any need 
for application source code modifications when porting any application from ASCI Red to Red 
Storm.  Consequently, any modifications required in the source code itself are of interest to both 
the Sandia Red Storm design teams and to Cray.  Any changes introduced into the 7X 
application code base that were required so that the application will correctly compile and run on 
Red Storm need to be shared among the Red Storm design teams, including Cray. 
 
The Makefiles and scripts used to build the applications may require changes during the port to 
Red Storm.  For example, the compiler options and switches used may vary.  Similarly, job 
launch options may differ.  Such changes are acceptable and need only be identified and tracked 
as support to the end-users of Red Storm.  However, the final configuration switches used for the 
7X benchmark runs must be properly documented and logged into the status database. 
 
Each application on Red Storm should be validated against known “gold standard” results 
provided by SNL, LANL, or LLNL as appropriate.  Discrepancies in the output must be 
validated with designated Labs points of contact.  Similar validation runs should be carried out 
on ASCI Red for any applications that are not currently in production on ASCI Red such as 
PARTISN, SAGE, SPPM, and UMT2K.  Validation should include checkpoint/restart and 
visualization outputs. 
 
The output of the benchmarking runs should be checked for proper completion, proper creation 
of output files, and approximate size of files.  Where possible, the same validation procedures as 
used by the functional testing team will be used to validate the 7X runs.  Each test case (a 
specific benchmark and size) will be run 2-3 times on ASCI Red and Red Storm. 
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Speedup for each benchmark size will be calculated by dividing the average of the runs on ASCI 
Red by the average of the runs on Red Storm.  Speedup for each application will be calculated by 
dividing the arithmetic average of the benchmark speedups on ASCI Red by the arithmetic 
average of the benchmark speedups on Red Storm.  Overall speedup will be measured as 
specified in the contract [1]: “The speedup of each of the applications above will be measured as 
a number, nominally around 7, and these numbers will be linearly averaged with equal weights.” 
 
For a given benchmark and size (e.g. SPPM on 4500 processors), all runs must be made with the 
same compiled binary.  Final 7X testing runs shall be allocated exclusive use of the platform in 
order to eliminate any contention for machine resources (i.e. only one 7X application running on 
the mesh at a time and no other users on the platform during 7X testing). 
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4. 7X APPLICATION SUITE 
 
Ten applications comprise the final 7X test suite:  ALEGRA Contact, ALEGRA NoContact, 
CTH, ITS, PARTISN, PRESTO, SAGE, SALINAS, SPPM, and UMT2K.  The ten applications 
and the twenty-five test problems in the 7X suite are shown graphically in Figure 4.  Following 
Figure 4, we describe each of these applications and test problems.  Lastly, Table 2 summarizes 
the test problem sizes for each application. 
 
 

 
 

Figure 4.  7X Application Suite 
 
 
The thermal code CALORE is also described below although it was not part of the final 7X test 
suite.  At the problem sizes required, we had sufficient issues on ASCI Red that required 
substitution of ALEGRA NoContact for CALORE. 
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4.1. ALEGRA (QSEM with Contact) 
 
Randall M. Summers  rmsumme@sandia.gov Application POC 
Joshua Robbins  jrobbin@sandia.gov  Analyst 
Allen C. Robinson  acrobin@sandia.gov  Analyst 
 
ALEGRA is used to simulate the dynamic material response of complex configurations [8].  It 
solves coupled physics problems in 2D or 3D using Lagrangian, Eulerian, and/or ALE 
coordinates.  The code runs efficiently on massively parallel computers and contains a large 
variety of physics options including hydrodynamics, magnetohydrodynamics with external 
circuit coupling, radiation transport, thermal conduction, and dual ion and electron temperatures.  
The ALEGRA Contact problem is a Quasistatic electromechanics (QSEM) problem in which a 
curved impactor depoles a potted active ceramic element. 
 
 
4.2. ALEGRA (QSEM without Contact) 
 
Randall M. Summers  rmsumme@sandia.gov Application POC 
Joshua Robbins  jrobbin@sandia.gov  Analyst 
Allen C. Robinson  acrobin@sandia.gov  Analyst 
 
The ALEGRA No Contact problem is a QSEM problem identical to the contact problem except 
the boundary condition is a prescribed displacement rather than an impactor.  This eliminates the 
need for contact. 
 
 
4.3. CALORE 
 
Eugene Hertel   esherte@sandia.gov  Application POC 
Bruce Bainbridge  blbainb@sandia.gov  Analyst 
 
CALORE is a thermal code that simulates heat transfer processes that occur during the operation 
and manufacturing of complex engineering systems [9].  CALORE has been used to analyze 
complex three-dimensional geometries and the safe operation of weapon systems, including their 
components and delivery vehicles, in both normal and abnormal thermal environments. 
 
The CALORE test problem is based on a model of an electronic component that has seen 
engineering use at Sandia.  Two versions of the model exist: one consisting of 600K tetrahedrons 
and another that has 3.6M tetrahedrons.  The model has an aluminum housing and several 
internal circuit boards populated with integrated circuits.  There are seven empty compartments 
and one compartment filled with a low density material.  As the problem runs, the chips heat up, 
which heats the internal air spaces and walls and causes the material that fills one compartment 
to decompose.  The physics of the problem encompasses: conduction, nonlinear materials, 
element death, enclosure radiation, far-field radiation, convection, and bulk nodes. 
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4.4. CTH 
 
Eugene Hertel   esherte@sandia.gov  Application POC 
James Simmons  jsimmo@sandia.gov  Analyst 
David Crawford  dacrawf@sandia.gov  Analyst 
 
CTH is a multimaterial, large-deformation, strong shock wave, solid mechanics code [10].  CTH 
has models for multiphase, elastic viscoplastic, porous and explosive materials.  Three-
dimensional rectangular meshes; two-dimensional rectangular and cylindrical meshes; and one-
dimensional rectilinear, cylindrical and spherical meshes are available.  CTH is used for studying 
armor/antiarmor interactions, warhead design, high explosive initiation physics, and weapons 
safety issues.  The test problem is the shock physics in 3D of a large conical shaped charge. 
 
 
4.5. ITS 
 
Leonard Lorence  ljloren@sandia.gov  Application POC 
Brian C. Franke  bcfrank@sandia.gov  Analyst 
 
The Integrated Tiger Series (ITS) code permits Monte Carlo solution of linear time-independent 
coupled electron/photon transport radiation transport problems, with or without the presence of 
macroscopic electric and magnetic fields of arbitrary spatial dependence [11,12].  Physical rigor 
is provided by employing accurate cross sections, sampling distributions, and physical models 
for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 
1.0 keV.  Mulitgroup ITS Version 5.0 (April 1, 2002) contains (1) improvements to the ITS 3.0 
continuous-energy codes, (2) multigroup codes with adjoint transport capabilities, (3) parallel 
implementations of all ITS codes, (4) a general purpose geometry engine for linking with CAD 
or other geometry formats, and (5) the Cholla facet geometry library.  The 7X runs will perform 
the Starsat MITS test with CAD flow and geometry and ACIS simulation mode. 
 
 
4.6. PARTISN 
 
Adolphy Hoisie  hoisie@lanl.gov  Application POC 
Courtenay T. Vaughan ctvaugh@sandia.gov  Analyst 
 
The Parallel Time-dependent SN (PARTISN) code package is designed to solve the time-
independent or dependent multigroup discrete ordinates form of the Boltzmann transport 
equation in several different geometries [13].  PARTISN provides neutron transport solutions on 
orthogonal meshes with adaptive mesh refinement in 1D, 2D or 3D.  Much effort has been 
devoted to making PARTISN efficient on massively parallel computers.  The package can be 
coupled to nonlinear multiphysics codes that run for weeks on thousands of processors to finish 
one simulation.  The test problem is “Sntiming”, in which flux and eigenvalue convergence are 
monitored by PARTISN. 
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4.7. PRESTO 
 
Arne Gullerud   asgulle@sandia.gov  Application POC 
Arne Gullerud   asgulle@sandia.gov  Analyst 
 
PRESTO is a Lagrangian, three-dimensional explicit, transient dynamics code for the analysis of 
solids subjected to large, suddenly applied loads [14].  PRESTO is designed for problems with 
large deformations, nonlinear material behavior, and contact.  There is a versatile element library 
incorporating both continuum and structural elements. 
 
The contact algorithm is supplied by ACME.  The contact algorithm detects contacts that occur 
between elements in the deforming mesh and prevents those elements from interpenetrating each 
other.  This is done on a decomposition of just the surface elements of the mesh.  The contact 
algorithm is communication intensive and can change as the problem progresses. 
 
The brick walls problem consists of a number of rectangular bricks, each meshed using 3x3x6 
elements.  The bricks are stacked in an alternating fashion in a plane to produce a wall which is 
three elements thick.  Four of these walls are lined up in the thin direction.  The walls are then 
given a sudden pressure loading such that they compress against each other.  Since all of the 
bricks are meshed independently, they interact with each other through contact on their outer 
surfaces.  Each brick is located on one processor so the only communication for the finite 
element portion of the code is for the determination of the length of the next time step.  As the 
problem grows with the number of processors, the contact problem also grows.  Although there 
is no analytic solution for this problem, it provides a large amount of contact with respect to the 
number of elements.  There are 1.67 times as many faces to be considered in contact as there are 
elements, so the cost of contact dominates the computation.  This serves as an excellent test to 
exercise large-scale global contact and to demonstrate the parallel scaling of the algorithm. 
 
 
4.8. SAGE 
 
Adolphy Hoise  hoise@lanl.gov  Application POC 
Courtenay T. Vaughan ctvaugh@sandia.gov  Analyst 
 
SAIC’s Adaptive Grid Eulerian (SAGE) hydrocode is a multidimensional, multimaterial 
hydrodynamics code with adaptive mesh refinement that uses second-order accurate numerical 
methods [15].  SAGE represents a large class of production computing applications at Los 
Alamos National Laboratory (LANL).  It is a large-scale parallel code written in Fortran 90 and 
uses MPI for interprocessor communications.  It routinely runs on thousands of processors for 
months at a time on capability computing systems in the DOE complex.  The test problem is an 
asteroids simulation of 45 degree, 3D, granite asteroid impact into a stratified medium of water, 
calcite, granite crust, and mantle. 
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4.9. SALINAS 
 
Garth M. Reese  gmreese@sandia.gov  Application POC 
Manoj Bhardwaj  mbkhard@sandia.gov  Analyst 
 
The model that will be used is a 1 unit cube.  The cube will first be decomposed into subcubes 
using an nsub x nsub x nsub partition.  Then each cube will be meshed using nelem x nelem x 
nelem hex8 elements.  The x=0 face will be clamped, and x=1 face will have an x-directional 
load.  The cube starts at the origin (0,0,0) and extends to (1,1,1).  The faces are parallel to the 3 
coordinate directions (x,y,z).  We can use “pmesh” to create these models on the fly.  We will 
solve transient dynamics problem. 
 
SALINAS is a massively parallel implicit structural mechanics/dynamics code aimed at 
providing a scalable computational workhorse for extremely complex finite element (FE) stress, 
vibration, and transient dynamics models with tens or hundreds of millions of degrees of 
freedom (dofs) [16]. The SALINAS software predicts vibrational loads for components within 
larger systems, design optimization, frequency response information for guidance and space 
systems, and modal data necessary for active vibration control. SALINAS is used to predict 
mechanical response in normal and hostile STS1 environments for RB2 systems and missiles.  
The software is a tool for understanding and predicting structural response.  It is used for both 
production type calculations and for research and development, especially with respect to 
development of joint and interface models. 
 
The test problem is a transient dynamics problem based on one unit cube model.  The cube will 
first be decomposed into subcubes using an nsub x nsub x nsub partition.  Then each cube will be 
meshed using nelem x nelem x nelem hex8 elements.  The x=0 face will be clamped, and x=1 
face will have an x-directional load.  The cube starts at the origin (0,0,0) and extends to (1,1,1).  
The faces are parallel to the three coordinate directions (x,y,z).  We use “pmesh” to create the 
models on the fly. 
 
 
4.10. SPPM 
 
John C. Gyllenhaal  gyllen@llnl.gov  Application POC 
Courtenay T. Vaughan ctvaugh@sandia.gov  Analyst 
 
PPM (Piecewise Parabolic Method) is a 3-D hydrodynamics code used to model a wide range of 
shock physics problems [17].  It performs PPM hydrodynamics in Lagrangian style using a 
Riemann solver.  A simple gamma-law equation of state is used, and an initially uniform grid 
with either periodic or continuation boundary conditions is assumed.  The SPPM benchmark 
solves a 3D gas dynamics problem on a uniform Cartesian mesh, using a simplified version of 
PPM, hence the "s" for simplified [18, 19].  The code is written to simultaneously exploit explicit 
threads for multiprocessing shared memory parallelism and domain decomposition with message 
passing for distributed parallelism.  It represents the current state of ongoing research which has 
demonstrated good processor performance, excellent multi-threaded efficiency, and excellent 
message passing parallel speedups all at the same time.  The SPPM program was written in 
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Fortran77 with all system dependent calls taking place through C. It uses a small number of MPI 
routines for communication between nodes. 
 
The hydrodynamics algorithm involves a split scheme of X, Y, and Z Lagrangian and remap 
steps which are computed as three separate passes or sweeps through the mesh per timestep, each 
time sweeping in the appropriate direction with the appropriate operator.  Each such sweep 
through the mesh requires approximately 680 FLOPs to update all of the state variables for each 
real mesh cell.  Message passing is used to update ghost cells with data from neighboring 
domains three times per timestep and occurs just before each of the X, Y, and Z sweeps.  
Multiple threads are used to manipulate data and update pencils of cells in parallel. 
 
 
4.11. UMT2K 
 
Bor Chan    chan1@llnl.gov  Application POC 
Courtenay T. Vaughan ctvaugh@sandia.gov  Analyst 
 
The UMT benchmark is a 3D, deterministic, multigroup, photon transport code for unstructured 
meshes [20].  UMT 1.2, referred to as UMT2K for clarity, performs exactly the same physics as 
previous versions of UMT (i.e., UMT 1.1, referred to as UMT98) but now includes additional 
features that are commonly found in large Lawrence Livermore National Laboratory (LLNL) 
parallel applications.  These features include mixed MPI and OMP support for large-scale 
parallelism, an OMP-based C computation kernel called from an MPI-based Fortran90 driver, a 
new mechanism for synthetically generating very large distributed meshes, a parallel 
checkpoint/restart mechanism, and graphics output files.  The transport code solves the first-
order form of the steady-state Boltzmann transport equation.  The equation's energy dependence 
is modeled using multiple photon energy groups.  The angular dependence is modeled using a 
collocation of discrete directions, or "ordinates."  The spatial variable is modeled with an 
"upstream corner balance" finite volume differencing technique.  The solution proceeds by 
tracking through the mesh in the direction of each ordinate.  For each ordinate direction all 
energy groups are transported, accumulating the desired solution on each zone in the mesh.  
Hence, memory access patterns may vary substantially for each ordinate on a given mesh, and 
the entire mesh is "swept" multiple times.  Note, however, that having the energy group loop on 
the inside significantly improves cache reuse, because all of the geometrical information related 
to sweeping an ordinate direction is the same for each energy group. 
 
The code works on unstructured meshes, which it generates at run-time using a two-dimensional 
unstructured mesh (read in) and extruding it in the third dimension a user-specified amount.  This 
allows the generation of a wide variety of input problem sizes and facilitates "constant work" 
scaling studies.  The MPI-based parallelism in the Fortran portion uses mesh decomposition to 
distribute the mesh across the specified MPI tasks.  The OMP-based parallelism in the C kernel 
then divides the ordinates among the OMP threads.  This C kernel's computation time typically 
completely dominates the execution time of the benchmark. 
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Application Run Size ASCI Red Red Storm 

ALEGRA Contact Standard 2048 Large – proc 0 Small 
 Stretch 6484 Large – proc 3 Large (SN), Small (VN) 
ALEGRA NoContact Standard 2048 Large – proc 0 Small 
 Stretch 6484 Large – proc 3 Large (SN), Small (VN) 
CALORE Standard 2048 Large – proc 0 Small 
 Stretch 6484 Large – proc 3 Large (SN), Small (VN) 
CTH Standard 2000 Large – proc 0 Small 
 Stretch 6480 Large – proc 3 Large (SN), Small (VN) 
 Maximum 9000 Jumbo – proc 3 Large 
ITS Standard 3200 Large – proc 0 Small 
 Maximum 4500 Jumbo – proc 0 Large (SN), Small (VN) 
 Stretch 6500 Large – proc 3 Large (SN), Small (VN) 
 Maximum 9000 Jumbo – proc 3 Large 
PARTISN Maximum 4096 Jumbo – proc 0 Large (SN), Small (VN) 
 Stretch 6480 Large – proc 3 Large (SN), Small (VN) 
 Maximum 8930 Jumbo – proc 3 Large 
PRESTO Standard 2036 Large – proc 0 Small 
 Stretch 6360 Large – proc 3 Large (SN), Small (VN) 
SAGE Standard 2048 Large – proc 0 Small 
 Maximum 4500 Jumbo – proc 0 Large (SN), Small (VN) 
SALINAS Standard 2744 Large – proc 0 Small 
 Maximum 4096 Jumbo – proc 0 Large (SN), Small (VN) 
SPPM Maximum 4500 Jumbo – proc 0 Large (SN), Small (VN) 
 Stretch 6561 Large – proc 3 Large (SN), Small (VN) 
 Maximum 9000 Jumbo – proc 3 Large 
UMT2K Standard 3200 Large – proc 0 Small 
 Maximum 4500 Jumbo – proc 0 Large (SN), Small (VN) 

 
Table 2.  Test Problem Sizes 
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5. ACTIVITIES AND ROLES 
 
Completion of the 7X benchmarking task requires cooperation among SNL, LLNL, LANL, and 
Cray. 
 
5.1. SNL Responsibilities: Code Teams 
 
The code teams will designate code releases to be used and identify test problems for each 
application, along with problem sizes and ASCI Red running modes.  Problem sizes should 
include those needed for testing and scalability studies on Red Storm.  Input files must be 
developed for each problem and size and the code teams must also work with the 7X systems 
team to port applications to Red Storm.  Code teams will provide the 7X team with instructions 
on how to compile each application and how to assemble the input files if the actual files are not 
provided directly.  Code teams will also provide either full source code snapshots or access to a 
source code repository in which the code to be used is appropriately tagged for later retrieval. 
 
 
5.2. SNL Responsibilities: 7X Team 
 
The 7X team will organize and manage the performance testing effort.  A data repository will be 
created for all testing information.  The team will develop, test, and document the benchmarking 
procedures and work with the code teams to develop input files, problem sizes, and running 
modes.  The 7X team will also provide assistance to SNL code teams in porting the 7X 
applications to Red Storm and work with LANL and LLNL points of contact to port non-SNL 
applications to Red Storm.  The 7X team will execute all official baseline runs on ASCI Red, run 
and validate each problem set at its standard size on Red Storm, and partner with Cray engineers 
to complete all necessary official runs and validations on Red Storm. 
 
 
5.3. LANL and LLNL Responsibilities 
 
LLNL and LANL teams will designate the code releases to be used and assist SNL in identifying 
test problems, problem sizes, and ASCI Red running modes for their candidate applications.  The 
LLNL and LANL teams will also assist SNL in developing input files for each test problem/size 
and provide the 7X team with instructions on how to port/compile each application on Red 
Storm. 
 
 
5.4. Cray Responsibilities 
 
Cray will work with SNL to ensure that all applications compile and run on Red Storm for all 
problems and sizes.  Cray engineers will partner with the 7X team to compile binaries for Red 
Storm and execute the official runs on Red Storm.  Official runs will be executed with 
designated SNL personnel as witnesses. 
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5.5. Staffing Roles 
 
Each of the benchmark tests described in Section 4 require the following staffing assignments: 
 
Application POC: Point of contact for a specific application code. 
Application Analyst: Technical point of contact concerning the creation of input problem files 

and sizes, compilation issues, and validation of results. 
Library POC: Point of contact for a specific application library. 
SNL Run Manager: SNL individual responsible for performing benchmark runs on ASCI Red. 
SNL Witness: SNL individual responsible for checking and validating benchmark runs 

on Red Storm. 
Cray Run Manager: Cray individual responsible for performing benchmark runs on Red Storm. 
Cray Witness: Cray individual responsible for checking and validating benchmark runs 

on ASCI Red. 
 
Table 3 shows the application and library points of contact. 
 

Application Role Contact Lab 
ALEGRA POC Randall M. Summers SNL 
 Analyst(s) Joshua Robbins, Allen C. Robinson SNL 
CALORE POC Eugene Hertel SNL 
 Analyst Bruce Bainbridge SNL 
CTH POC Eugene Hertel SNL 
 Analyst(s) James Simmons, David Crawford SNL 
ITS POC Leonard Lorence SNL 
 Analyst Brian C. Franke SNL 
PARTISN POC Adolphy Hoisie LANL 
 Analyst Courtenay T. Vaughan SNL 
PRESTO POC, Analyst Arne Gullerud SNL 
SAGE POC Adolphy Hoisie LANL 
 Analyst Courtenay T. Vaughan SNL 
SALINAS POC Garth M. Reese SNL 
 Analyst Manoj Bhardwaj SNL 
SPPM POC John C. Gyllenhaal LLNL 
 Analyst Courtenay T. Vaughan SNL 
UMT2K POC Bor Chan LLNL 
 Analyst Courtenay T. Vaughan SNL 
Exodus, NetCDF POC Greg D. Sjaardema SNL 
Exodus, NetCDF – Alegra POC Richard R. Drake SNL 
HDF POC Marty Barnaby SNL 
Sierra POC Kathryn Aragon SNL 
Trilinos POC Michael A. Heroux SNL 

 
Table 3.  Application/Library Points of Contact 
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6. PROJECT AND DATA MANAGEMENT 
 
Many data items need to be tracked during the 7X benchmarking.  Two data repositories will be 
used: 1) relational database for projects, status, and result management 2) file repository for 
document, build, input, and output file management. 
 
6.1. Project Database 
 
A relational database has been developed that will store all relevant status and result information.  
The information in this database will be used to track both status and to extract final results.  For 
example, when a data run occurs, the database will be used both to set up the run and to log 
relevant information about the results.  The database currently uses a PostgresSQL [21] server 
located on a development workstation.  Interfaces to the relational database were developed in 
Perl (for command-line use).  Web-based status reporting can be added if required.  Preliminary 
status reporting interfaces have been developed that allow a user to extract data from the project 
database and format it as graphs, charts, or tables using Unix-based tools. 
 
6.2. Test Management 
 
A simple XML-based scripting language has been developed that will allow the 7X testers to 
specify, run, and log the results of each benchmark.  The implementation of this language is 
called rst.  Using rst, one can 
 
 Specify a test to be run. 
 Compile application binaries and capture extended output for later inclusion into the 

database. 
 Run a test in either batch or interactive mode and capture run-time information for later 

inclusion in the database. 
 Write results data back into the database. 

 
The tool has been designed to minimize impact on the HPC engines where it runs.  In particular, 
it can run without requiring access to a database server when compiling applications or when 
running the actual tests. 
 
6.3. File Management 
 
A SourceForge [22] project repository has been created to support all of the file management 
necessary for running and reviewing the benchmarks.  SourceForge is a collaborative software 
development tool that supports web-based interactions, collaborative communications and file 
sharing.  Underlying the web interface is a source code management system based on CVS [23].  
Access to files can be controlled and limited to certain users via role-based access controls.  The 
input files, build scripts, and run scripts for each application and benchmark will reside on the 
SourceForge site.  When a benchmark needs to be executed, the files can be retrieved, the 
application built (if necessary) and the test run.  The resulting test output files will be pushed 
back into the SourceForge repository, while the test results will be logged into the relational 
database. 
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7. RESULTS – HOW MUCH FASTER IS RED STORM ON THE 7X 
APPLICATIONS? 

 
An effort was made to set up the test problems so that each would require ~4-8 hours wall-clock 
execution time on ASCI Red and, therefore, about 1 hr. on Red Storm.  This goal was largely 
met, as seen in Figure 5, although it was not possible to scale the PARTISN test problem to that 
level.  The SALINAS test problems ran for slightly more than an hour on Red Storm, as the 
SALINAS speedups on Red Storm were only a factor of 6 to 8 over ASCI Red, lower than for all 
of the other applications. 
 
 

 
 

Figure 5.  Application Execution Times on ASCI Red and Red Storm 
 
 
We have not thoroughly investigated the cause for the lower than expected speedup for 
SALINAS, however we observed that the total Finite Element Tearing and Interconnecting 
(FETI) solution time to wall-clock time was much closer to one in the ASCI Red runs than for 
the Red Storm runs. For example, a typical 2744 proc 0 mode run on ASCI Red, took 30419 
wall-clock seconds with 29025 seconds spent in the FETI solve step which equates with 95% of 
the wall-clock time spent in the FETI solve.  By comparison, a typical 2744 VN mode run on 
Red Storm took 4733 wall-clock seconds to complete with 3400 seconds spent in the FETI solve 
step.  The FETI solve step occupied only 72% of the total wall-clock time.  We will need to 
profile SALINAS on Red Storm to determine what is occurring during the “unproductive” 28% 
(1333 seconds). 
 
Figure 6 shows the speedups achieved on Red Storm relative to ASCI Red.  An average speedup 
of 20X is observed across the test suite, far above the hoped-for seven-fold improvement.  Three 
caveats are in order:  (1) the average speedup is unduly influenced by the extremely large 
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speedup (65X) measured for PARTISN (and, to a lesser extent, by SAGE) on Red Storm.  We 
can speculate that ASCI Red may have been in a degraded state when the PARTISN runs were 
made, but this cannot be proven since the system is no longer available; (2) processor speeds 
were upgraded by 20% on Red Storm before these results were gathered, so the real target should 
now be 8.4X, not 7X; (3) Although our intent was to perform all testing on ASCI Red and Red 
Storm in “exclusive” mode (i.e. only one 7X application running on the mesh at a time and no 
other users on  the platform during 7X testing), the Red Storm testing was almost never 
“exclusive”.  We often ran several 7X applications concurrently and other users were allowed to 
run jobs on Red Storm during the 7X testing due to program milestone needs.  Our testing on 
ASCI Red was always “exclusive”.  This may indeed have disadvantaged Red Storm 
performance results; however, we cannot determine the extent of the effect. 
 
If we discard the maximum and minimum speedup values (65X for PARTISN 8930 processors 
and 6X for SALINAS 4096 processors), we obtain a 19X average speedup.  If we discard the 
highest two values (65X for PARTISN 8930 processors and 42X for SAGE 4500 processors), we 
still obtain an 18X average speedup, well above the 7X target. 
 
 

 
 

Figure 6.  Application Speedup - ASCI Red vs. Red Storm 
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8. RESULTS – SINGLE-CORE VS. DUAL-CORE COMPARISON ON 
RED STORM 

 
The upgrade of Red Storm to dual-core sockets provided the option of specifying either one or 
two cores per socket when launching an application.  As noted above, the 7X tests can be 
performed on Red Storm in either SN or VN mode:  (1) the SN option, which is the default, 
ignores the second core and makes all user memory on the node available to the application; (2) 
the VN option, which treats each core as a separate compute node and makes only half the user 
memory on the node available to each core.  If applications can run efficiently in VN mode on 
Red Storm, this frees up sockets for other applications. 
 
In Figure 7, we compare the Red Storm results in terms of execution time for SN and VN runs of 
the test problems, as well as a few pre-upgrade runs (2.0 Ghz single-core Opteron processors).  
Run times in yellow were performed pre-upgrade (2.0 Ghz single-core).  Run times in blue were 
obtained on 2.4 Ghz dual-core, but the second core of each node was left idle.  Run times in red 
used both cores on the node and only required half as many compute nodes as the run times in 
blue, freeing nodes for other production work. 
 
 

 
 
Figure 7.  Comparison of SN and VN Results on Red Storm (includes pre-upgrade 2.0 Ghz 

single-core results for three applications) 
 
 
Most of the applications are demonstrating a small-to-modest performance hit (5-30%) for using 
the second core in VN mode.  The average efficiency drop was 17% for VN mode vs. SN mode 
(post-upgrade).  PARTISN is again an outlier with the largest dual-core performance penalty in 
the test suite.  Interestingly, the 6484 processor ALEGRA No Contact test shows a very slight 
performance acceleration in VN mode relative to the same number of cores in SN mode. 
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Pre-upgrade runs were available for three applications in the 7X suite.  These runs were 
performed using the 2.0 Ghz single-core Opteron processors that were in place prior to the Red 
Storm system upgrade.  ITS shows a speedup commensurate with the 20% increase in processor 
speed due to the upgrade, but little benefit is seen for UMT2K and SAGE for upgrading to the 
2.4 Ghz dual-core Opteron processors. 
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9. SUMMARY AND LESSONS LEARNED 
 
In preparation for the testing and acceptance of the Red Storm system, a suite of 
applications/benchmarks were developed to assess whether major applications would realize at 
least a seven-fold performance increase on the new system relative to its predecessor.  This 
methodology has subsequently proven quite valuable in addressing diverse performance issues: 
e.g. the benefits of processor and memory upgrades, particularly the benefits of dual-core 
processors. 
 
Red Storm has achieved its requirement of 7X performance over ASCI Red, posting an average 
speed-up of 20X.  We find that although most of the individual applications show at least a 12-
fold to 15-fold performance improvement over the ASCI Red system, there are interesting 
outliers:  PARTISN shows run time speed-ups of up to 65X while SALINAS manages only a 
6X-8X performance increase.  The results validate Red Storm as a capability platform for major 
scientific and engineering codes on 2K-10K processors. 
 
We also compared single-core (SN) and dual-core (VN) runs on Red Storm to investigate the 
efficiency that users might experience when utilizing both cores on the node.  Dual-core 
performed well on the 7X applications, often completing in nominally the same time as single-
core runs.  The average efficiency drop was 17% for VN mode vs. SN mode with most of the 
applications demonstrating a small-to-modest performance hit (5-30%) for using the second core 
in VN mode.  The results validate the efficacy of the dual-core upgrade, as most of these 
applications make efficient use of the second core.  Applications that can run efficiently in VN 
mode on Red Storm have the potential to free up sockets for other applications. 
 
The availability and applicability of this test suite to answer design questions and evaluate 
upgrade options, such as the dual-core upgrade, further validates the need for evaluation of 
capability-class, massively parallel systems with real applications. 
 
Many of the 7X applications are routinely used to benchmark and evaluate other new systems, 
e.g. highly parallel cluster systems that are acquired to serve as capacity computing systems.  
However, there are some serious limitations to this methodology.  Several of the applications 
discussed here require major porting efforts whenever a new system is to be tested.  This is 
particularly true of the Sierra framework-based applications, such as CALORE and PRESTO, as 
well as other large, modern, object-oriented applications such as ALEGRA.  Some applications 
can require a week or two to be built for a new system, even if no portability issues are 
encountered. 
 
When the comparison testing is spread out over a long period of time, it will undoubtedly be 
necessary to adjust to changes in the computing environment.  Upgrades to the operating system, 
compilers, file systems, etc. can prove quite challenging.  The application code may not compile 
the first time out of the chute with a new compiler.  Application codes also “evolve”, which is 
also quite challenging when striving for some level of test consistency over time. 
 
It is also challenging to perform tests on a platform at hardware end-of-life.  The ASCI Red 
hardware had been in service for many years and Mean Time Between Failure becomes a 
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consideration in these types of performance tests.  We were also left to speculate that ASCI Red 
may have been in a degraded state when the PARTISN runs were made, but this cannot be 
proven since ASCI Red was decommissioned before we completed our Red Storm runs.  By the 
time the disparity was apparent between PARTISN run times on the two platforms, ASCI Red 
was no longer available for repeat runs.  It would be desirable in future system procurements to 
ensure overlap in platform operations until all testing is complete. 
 
When standing up any new parallel computing system, an argument could be made for using an 
appropriate subset of the large complex application codes in addition to simpler 
application/benchmark codes for quick portability.  We see a need for compact applications 
based on “real” applications, and there are recent research and development efforts to create new 
compact applications, so that testing and evaluation of new systems and potential procurements 
can be done in a timely manner [24]. 
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