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EXECUTIVE SUMMARY 
 
 
The current U.S. Nuclear Regulatory Commission (NRC) licensing process for digital systems 
rests on deterministic engineering criteria.  In its 1995 probabilistic risk assessment (PRA) policy 
statement, the Commission encouraged the use of PRA technology in all regulatory matters to 
the extent supported by the state-of-the-art in PRA methods and data.  Although many activities 
have been completed in the area of risk-informed regulation, the risk-informed analysis process 
for digital systems has not yet been satisfactorily developed.  Since digital instrumentation and 
control (I&C) systems are expected to play an increasingly important role in nuclear power plant 
(NPP) safety, the NRC established a digital system research plan that defines a coherent set of 
research programs to support its regulatory needs.  One of the research programs included in 
the NRC’s digital system research plan addresses risk assessment methods and data for digital 
systems.  Digital I&C systems have some unique characteristics, such as using software, and 
may have different failure causes and/or modes than analog I&C systems; hence, their 
incorporation into NPP PRAs entails special challenges. 
 
The objective of the NRC’s digital system risk research is to identify and develop methods, 
analytical tools, and regulatory guidance for (1) including models of digital systems into NPP 
PRAs, and (2) using information on the risks of digital systems to support the NRC’s risk-
informed licensing and oversight activities.  For several years, Brookhaven National Laboratory 
(BNL) has worked on NRC projects to investigate methods and tools for the probabilistic 
modeling of digital systems, as documented mainly in NUREG/CR-6962 and NUREG/CR-6997.  
However, the scope of this research principally focused on hardware failures, with limited 
reviews of software failure experience and software reliability methods.  NRC also sponsored 
research at the Ohio State University investigating the modeling of digital systems using 
dynamic PRA methods. These efforts, documented in NUREG/CR-6901, NUREG/CR-6942, and 
NUREG/CR-6985, included a functional representation of the system’s software but did not 
explicitly address failure modes caused by software defects or by inadequate design 
requirements.  An important identified research need is to establish a commonly accepted basis 
for incorporating the behavior of software into digital I&C system reliability models for use in 
PRAs.  To address this need, BNL is exploring the inclusion of software failures1 into the 
reliability models of digital I&C systems, such that their contribution to the risk of the associated 
NPP can be assessed. 
 
Presently, there is no consensus method for modeling digital systems in an NPP PRA.  In this 
study, a review of currently available quantitative software reliability methods (QSRMs) was 
performed with the objective of cataloging potential methods that can be used to quantify 
software failure rates and demand failure probabilities of digital systems at NPPs such that the 
system models can be integrated into a PRA.  The QSRMs were identified by reviewing 
research on digital system modeling methods sponsored by the NRC or by the National 
Aeronautics and Space Administration, performed by international organizations, and published 
in journals and conferences.  The QSRMs were categorized, described, and evaluated 
regarding their strengths and limitations for PRA applications.  Note that specific 

                                                            

1 Software failure can be defined as not successfully performing a specified/intended function or 
performing unintended actions.  A software failure occurs when some inputs to the software occur and 
interact with the internal state of the digital system to trigger a fault that was introduced into the software 
during the software lifecycle. 
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recommendations regarding which QSRMs have the most potential for integration into a PRA, 
and are therefore candidates for further assessment, are beyond the scope of this study. 
 
It is possible that reliability models of digital systems may include software failures representing 
different software failure modes at different levels of detail (e.g., the software may be modeled 
as separate software modules).  However, a review of the literature revealed that practically all 
available QSRMs consider the software system as a whole, not as separate modules or broken 
down by failure mode.  Depending on the reliability modeling method used for digital systems in 
a PRA, and the associated level of modeling detail, different QSRMs may be needed to quantify 
the digital system reliability model.  It may also be necessary to separately model different types 
of software (e.g., application-specific software and operating system software), using different 
QSRMs.  In addition, It is well recognized that software failures are sensitive to the context 
(environment) in which the software is operating.  Therefore, it is important that the software 
context be accounted for when modeling software failures in an NPP PRA (e.g., the specific 
system function being evaluated and the associated success criteria, as well as other relevant 
conditions in the plant). 
 
In general, for PRA modeling purposes, there are two types of digital systems at an NPP, 
namely, control and protection systems.  A control system, such as a feedwater control system, 
performs its control function during normal plant operation.  In contrast, a protection system, 
such as a reactor protection system (RPS), monitors the condition of the plant during normal 
operation, but only generates a reactor trip or other appropriate signal if a need arises.  A 
control system may fail and cause a reactor trip, which would be included in a PRA as an 
initiating event (e.g., a loss of feedwater).  An initiating event in a PRA, which is the starting 
point of an accident sequence analysis, is characterized by its annual frequency.  Therefore, the 
frequency that a control system fails causing an initiating event needs to be estimated.  A 
protection system may have two different failure modes.  For example, an RPS may fail to 
generate a reactor trip signal when needed or it may generate a spurious trip signal.  A spurious 
trip signal would be included in a PRA as an initiating event and can be modeled in the same 
way failure of a control system is modeled, that is, in terms of an annual frequency.  On the 
other hand, given the occurrence of some other initiating event that leads to the need for a 
reactor trip, a failure to generate a reactor trip signal would be modeled in the PRA in terms of a 
demand failure probability.  Therefore, even for a single system, different QSRMs may also 
need to be used depending on the failure modes of interest, that is, a failure-rate based method 
and a failure-on-demand based method.  
 
As part of the study, a set of desirable characteristics for QSRMs for modeling the digital 
systems operating at an NPP was proposed.  The desirable characteristics can be used in 
evaluating available QSRMs and their applications to determine if the characteristics are 
satisfied.  In particular, it is desirable that a method be capable of demonstrating the high 
reliability of a safety-critical system (e.g., a failure on demand probability on the order of 10-5, 
commensurate with an analog RPS).  Although an itemized evaluation of the reviewed methods 
against the desirable characteristics is beyond the scope of this study, the information 
documented in this report is useful for performing such an evaluation.       
 
Only a few publicly available studies that attempted to quantify software failure rates and 
demand failure probabilities were performed by organizations that are related to the nuclear 
industry, for example, the Bayesian Belief Network (BBN) studies performed at the Technical 
Research Center of Finland VTT and Halden Reactor Project.  However, these particular 
studies did not address NPP digital systems.  Even fewer publicly available studies were 
performed specifically to analyze digital systems at an NPP and these studies were explorative 
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in nature.  For example, the BBN study performed at the Korean Atomic Energy Research 
Institute (KAERI) addressed the quality of the software requirement specification of an RPS.  
However, even in this latter case, the part of the study involving quantification of the software 
reliability is not publicly available.  Therefore, the majority of methods reviewed in this report are 
those that have been used in other, non-nuclear industries. 
 
The reviewed QSRMs were separated into the following four major categories: 
 
(1) Software reliability growth methods – Time-based methods that use test data to estimate 

software failure rates that, in turn, are employed to ascertain whether a particular software 
can be released, by demonstrating that its failure rate meets the desired level. 

(2) BBN methods – Methods that use a probabilistic graphical model depicting a set of random 
variables (represented by nodes) and their conditional independencies via a directed acyclic 
graph (“acyclic” means the graph does not form a feedback loop).   

(3) Test-based methods - Methods that essentially employ standard statistical methods for the 
results of software tests ,and possibly for operational data, in the same way as hardware 
data is analyzed 

(4) Other methods – Methods that include (a) a correlation approach that estimates software 
failure rate at the end of the software testing stage by making use of the software 
engineering practices of past software development projects, and implemented in a software 
tool called “Frestimate”; (b) metrics-based methods that estimate software failure rates and 
probabilities by correlating software engineering measures (SEMs)/metrics and software 
reliability; and (c) the context-based software risk model (CSRM) that combines traditional 
PRA approaches (e.g., event trees) with an advanced (dynamic) modeling approach  to 
integrate the contributions of digital hardware and software into a model of overall system 
risk.  In addition, a few studies that considered rule/standard-based methods and software 
diversities were reviewed.  

 
The principal findings of the QSRM review are provided below. 
 
1. Most of the existing QSRMs were not developed specifically for supporting quantification of 

software failure rates and demand failure probabilities to be used in reliability models of 
digital systems.  However, they do estimate software failure rates or probabilities, and use 
the estimates in supporting decision making during software development.  Some of these 
methods only estimate software failure rates (as opposed to demand failure probabilities), 
and would generally be applicable only to NPP control systems and the spurious actuation 
of protection systems, and not to the failure of protection systems to initiate their protective 
function(s), as discussed earlier.  In the case of software reliability growth models (SRGMs), 
it is possible that they could be generalized or extended to model demand-type failures of 
protection systems. 

 
2. There are many SRGMs in the literature, but none is generally superior to the others, 

because all are based on assumed empirical formulas that are not applicable to all 
situations.   An SRGM that provides the best fit for one set of data may not provide the best 
fit for a different data set.  Standard goodness-of-fit methods can be used to identify the 
SRGM which provides the best fit for a given set of data, and techniques for determining 
which method makes better predictions are available.  It should also be noted that 
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performing the analysis with multiple SRGMs can be used as one means of addressing 
modeling uncertainty. 

 
The many methods and terminologies in the literature suggest that unifying SRGMs may be 
desirable, especially those methods in the exponential Non-Homogeneous Poisson Process 
(NHPP) category.  A generalization of SRGMs in terms of an NHPP is provided in this 
report. 

 
3. BBN methods have the capability to aggregate disparate information about software (e.g., 

aggregation of software failure data and quality of software lifecycle activities that is 
assessed using expert elicitation) and to include parameter uncertainties as a part of the 
modeling.  However, there are challenges in developing a BBN that takes full advantage of 
these capabilities, including the substantial development effort that is needed, the expertise 
of the BBN developers, the qualification of any experts used to elicit information relevant to 
estimating model parameters, and the availability of thorough documentation of the software 
development activities.  Another challenge is that qualitative evidence (e.g., the impact of 
software development quality on software reliability) needs to be quantified.  Since there 
may not be sufficient available data to “anchor” the conversion of the qualitative information 
to quantitative values, the uncertainty in the resultant quantitative estimates from the experts 
may be very large, which may make it difficult to demonstrate the small failure probabilities 
often associated with safety-related systems (a limitation common to many QSRMs). 

 
4. Test-based methods are used in this study to demonstrate that a very large number of tests, 

~105, must be conducted (and no failures observed) to demonstrate a mean software failure 
probability on demand of 10-5 (which is expected of an NPP safety-related system like an 
RPS).  Besides the large number of tests required, there is also the concern that the testing 
environment may not represent the actual operating environment to which the software is 
exposed during operation in an NPP, which is a serious limitation on the accuracy of the 
testing results.  Note, this issue applies to any QSRMs that use test data (e.g., SRGMs).  
Lastly, testing may not uncover errors in requirements and specifications of software, which 
have caused many software failures, though this limitation is common among many of the 
QSRMs reviewed. 

 
5. The general concept of performing correlation/regression analyses using past software 

development experience is reasonable.  However, because of the unavailability of detailed 
information on the past software development projects and the correlation/regression 
analyses used to construct the predictive model contained in Frestimate, this specific 
method could not be evaluated in detail.  Based on a review of the information available, 
some potential limitations of the predictive model contained in Frestimate include 
(1) subjectivity in the responses to the survey of software-development practices; (2) large 
uncertainties associated with the process for determining the ratio between inherent defects 
and failure rate, because it does not involve the use of information related to the specific 
software being assessed; and (3) it is not known whether Frestimate was validated or 
benchmarked by organizations independent from the organization (SoftRel, LLC) that 
developed it.  Also, similar to most QSRMs, Frestimate does not specifically account for the 
context in which software operates, does not consider specific software failure modes, and 
does not appear to be capable of estimating probabilistic parameters of software when the 
expected values of the parameters are small, as would be expected for protection systems 
in an NPP. 
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6. NUREG/CR-6848 documents the use of 6 metrics methods for predicting software reliability 
(referred to as reliability prediction systems [RePSs]), each based on one of the 40 “root”2 
software engineering measures (SEMs) identified and ranked by a set of experts, as 
documented in NUREG/GR-0019.  The RePSs were developed by applying available 
methods, concepts, and empirical formulas, and do not represent new innovative methods.  
Some of the methods use engineering insights (as opposed to application-specific 
information) to develop empirical formulas representing the relationship between software 
reliability, that is, failure rate and probability, and software engineering measures.  Since the 
empirical formulas are not laws of software reliability, their general applicability and accuracy 
are limited.  Lastly, NUREG/CR-6848 considers that the results of the study validated the 
overall approach by showing that highly ranked SEMs produce results that are closer to the 
true answer.  However, such a conclusion depends on the quantification methods developed 
and associated with the SEMs.  Alternative quantification methods that may produce very 
different results can be developed and associated with the SEMs (as indicated in 
NUREG/GR-0019) and potentially lead to a different conclusion.   

 
7. CSRM is not specifically an approach to estimating the probability or rate of failure modes of 

a particular software (i.e., it is not technically a QSRM), but is more of an overall integrated 
risk-modeling approach that incorporates hardware, software, and the static or dynamic 
interactions between them.  It appears reasonable as a means of risk-informing the software 
testing process in support of assessing software reliability.  Aspects of the CSRM approach 
can also be used to support quantifying software failure rates or demand failure probabilities 
for inclusion into an existing digital system reliability model.  The most unique aspect of the 
CSRM approach is the context-based, risk-informed testing using a logically defined and 
partitioned input-parameter space for scenarios that involve off-nominal conditions (i.e., 
scenarios involving anomalous events, such as one or more component hardware failures).  
This context-based evaluation has to be carried out for each software-related failure 
scenario that involves a combination of software and hardware failures.  The publicly 
available reports specifically on CSRM provide only one example of the implementation of 
the context-based, risk-informed testing approach.  The CSRM reports suggest that such 
testing can be practically accomplished for the potentially large number of software failure 
modes that may need to be addressed given the level of resolution that CSRM applies in 
modeling software behavior, but it is not clear from the available information what amount of 
time and resources would be required.  It should also be noted that the context-based, risk-
informed testing is not meant to be applied to scenarios that occur under nominal system 
conditions (e.g., those that do not involve hardware failures), since these types of scenarios 
can be quantified using existing software reliability estimation models. 

 

                                                            

2 As stated in NUREG/CR-6848, “the measure on which RePS construction is based is termed the ‘root’ of 
the RePS.  Other measures within the RePS are defined as ‘support’ measures.” 



 

xi 

ACRONYMS AND ABBREVIATIONS 
 
 
AIAA American Institute of Aeronautics and Astronautics 
ANSI American National Standards Institute 
 
BBN Bayesian Belief Network 
BN Bayesian Network 
BNL Brookhaven National Laboratory 
 
CCF Common Cause Failure 
cdf Cumulative Distribution Function 
CSRM Context-Based Software Risk Model 
 
DBN Dynamic Bayesian Network 
DD Defect Density 
 
ESFAS Engineered Safety Features Actuation System 
 
FSW Flight Software 
 
I&C Instrumentation and Control 
IEC International Electrotechnical Commission 
IEEE Institute of Electrical and Electronics Engineers 
 
KAERI  Korean Atomic Energy Research Institute 
KSLOC Thousand Source Lines of Code 
 
LLNL Lawrence Livermore National Laboratory 
LOC Loss of the Crew 
 
M-ADS A helicopter location identification system 
MTTF Mean Time to Failure 
 
NASA National Aeronautics and Space Administration 
NHPP Non-Homogeneous Poisson Process 
NPP Nuclear Power Plant 
NRC Nuclear Regulatory Commission 
 
OOBN Object-Oriented Bayesian Network 
 
PACS Personnel Access Control System 
pdf Probability Density Function 
pfd Probability of Failure on Demand 
PRA Probabilistic Risk Assessment 
PSA Probabilistic Safety Assessment 
 
QSRM Quantitative Software Reliability Method 
 



 

xii 

ACRONYMS AND ABBREVIATIONS (CONT’D) 
 
REM 610 A motor-protection relay system 
RPS Reactor Protection System 
RSDIMU Redundant Strapped Down Inertia Measurement Unit 
 
SDLC Software Development Life Cycle 
SEM Software Engineering Measures 
SIL Safety Integrity Level 
SPAM-150-C A motor-protection relay system 
SRGM Software Reliability Growth Model 
SSE Sum of Square Errors 
STS Space Transportation System 
SW Software 
 
UMD University of Maryland 
 
V&V Verification and Validation 
 
 
 
 
  
  
 



 

1-1 

 

1. INTRODUCTION 
 
1.1 Background 
 
Nuclear power plants (NPPs) traditionally relied upon analog instrumentation and control (I&C) 
systems for monitoring, control, and protection functions.  With a shift in technology from analog 
systems to digital systems with their functional advantages (e.g., fault-tolerance, self-testing, 
signal validation, and process system diagnostics), plants have begun such replacement, while 
new plant designs fully incorporate digital I&C systems.  However, digital systems have some 
unique characteristics, such as using software, and may have different failure causes and/or 
modes than the analog systems; hence, their incorporation into NPP probabilistic risk 
assessments (PRAs) entails special challenges.   
 
The current U.S. Nuclear Regulatory Commission (NRC) licensing process for digital systems 
rests on deterministic engineering criteria.  In its 1995 PRA policy statement [USNRC 1995], the 
Commission encouraged the use of PRA technology in all regulatory matters to the extent 
supported by the state-of-the-art in PRA methods and data.  Although many activities have been 
completed in the area of risk-informed regulation, the risk-informed analysis process for digital 
systems has not yet been satisfactorily developed.  Since digital I&C systems are expected to 
play an increasingly important role in NPP safety, the NRC established a digital system 
research plan [USNRC 2001] that defines a coherent set of research programs to support its 
regulatory needs.  One of the research programs included in the NRC’s digital system research 
plan addresses risk assessment methods and data for digital systems. 
 
The objective of the NRC’s digital system risk research is to identify and develop methods, 
analytical tools, and regulatory guidance for (1) including models of digital systems into NPP 
PRAs, and (2) using information on the risks of digital systems to support the NRC’s risk-
informed licensing and oversight activities.  For several years, BNL has worked on NRC projects 
to investigate methods and tools for the probabilistic modeling of digital systems, as 
documented mainly in NUREG/CR-6962 [Chu 2008] and NUREG/CR-6997 [Chu 2009a].  
However, the scope of this research principally focused on hardware failures, with limited 
reviews of software failure experience and software reliability methods.  NRC also sponsored 
research at the Ohio State University investigating the modeling of digital systems using 
dynamic PRA methods.  These efforts, documented in NUREG/CR-6901 [Aldemir 2006], 
NUREG/CR-6942 [Adlemir 2007], and NUREG/CR-6985 [Aldemir 2009], included a functional 
representation of the system’s software but did not explicitly address failure modes caused by 
software defects or by inadequate design requirements.  An important identified research need 
is to establish a commonly accepted basis for incorporating the behavior of software into digital 
I&C system reliability models for use in PRAs.  To address this need, BNL is exploring the 
inclusion of software failures into the reliability models of digital I&C systems, such that their 
contribution to the risk of the associated NPP can be assessed.  Two tasks were undertaken 
towards this objective.  
 
(1) Establishment of a philosophical basis for incorporating software failures into digital system 

reliability models for use in PRAs   
 

On May 5 and 6, 2009, BNL hosted an expert panel meeting (workshop) establishing a 
“philosophical basis” for incorporating software failures into digital system reliability models.  
The panelists, who were primarily experts that have performed substantial work and/or 
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research on the fundamental principles and application of software reliability engineering, 
agreed that there is a rational basis for modeling and quantifying software failures within the 
context of a PRA, and quantitative methods can be used to quantify software failure rates 
and probabilities [Chu 2009b].  Software failure can be defined as “not successfully 
performing a specified (intended) function or performing unintended actions.”  Faults (which 
may include, but are not limited to, coding errors and requirements and specification errors) 
are introduced into a piece of software during the software lifecycle.  A software failure 
occurs when some inputs to the software interact with the digital system’s internal state and 
trigger a fault.  As pointed out in [Chu 2009b], some researchers argue that software failure 
is a deterministic process and probabilistic descriptions of software behavior are 
inappropriate. However, because of our incomplete knowledge, we are not able to fully 
account for and quantify all the variables that define the software failure process. Therefore, 
we can choose to use probabilistic modeling to describe and characterize it. 

 
(2) Review of quantitative software reliability methods (QSRMs) 
 

A review was undertaken of current methods for quantifying software failure rates and 
probabilities to catalog those that might be used to support reliability modeling of digital 
systems of NPPs.  

 
The objective of this report is to document the work accomplished under the second task.  This 
report was peer reviewed by 15 internal and external reviewers.  
 
1.2 Objective and Scope 
 
The objective of reviewing the QSRMs was to gain comprehensive knowledge of available 
methods, especially those emphasizing the quantification of software failure rates and 
probabilities that might be employed in reliability models of digital systems used in NPP PRAs.  
The review was built upon BNL’s previous reviews of software reliability methods, and on 
leveraging earlier work sponsored by the NRC and by the National Aeronautics and Space 
Administration (NASA). 
 
In general, for PRA modeling purposes, there are two types of digital systems at an NPP, that 
is, control and protection systems.  A control system, such as a feedwater control system, 
performs its control function during normal plant operation.  In contrast, a protection system, 
such as a reactor protection system (RPS), monitors the condition of the plant during normal 
operation, but only generates a reactor trip or other appropriate signal if a need arises.  A 
control system may fail and cause a reactor trip, which would be included in a PRA as an 
initiating event (e.g., a loss of feedwater).  An initiating event in a PRA, which is the starting 
point of an accident sequence analysis, is characterized by its annual frequency.  Therefore, the 
frequency that a control system fails causing an initiating event needs to be estimated.  A 
protection system may have two different failure modes.  For example, an RPS may fail to 
generate a reactor trip signal when needed or may generate a spurious trip signal.  A spurious 
trip signal would be included in a PRA as an initiating event and can be modeled in the same 
way failure of a control system is modeled, that is, in terms of an annual frequency.  On the 
other hand, given the occurrence of some other initiating event that leads to the need for a 
reactor trip, a failure to generate a reactor trip signal would be modeled in the PRA in terms of a 
demand failure probability.  Therefore, even for a single system, different QSRMs may need to 
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be used depending on the failure modes of interest, that is, a failure-rate based method and a 
failure-on-demand based method.  
 
It is well recognized that software failures are sensitive to the context (environment) in which the 
software is operating.  Therefore, it is important that the software context be accounted for when 
modeling software failures in an NPP PRA (e.g., the specific system function being evaluated 
and the associated success criteria, as well as other relevant conditions in the plant).  As an 
example, in a typical PRA, the RPS is usually the first top event in the event trees.  Therefore, 
each initiating event defines a context for this system, that is, different initiating events represent 
different plant conditions that may generate different input signals to the RPS, and the system 
software may need to be modeled differently for different initiating events.  For other protection 
(actuation) systems, such as a system which generates an actuation signal of an injection 
system, different sequences in different event trees define the different contexts for the 
actuation system and its software.  More refined contexts can be determined by the cutsets of 
those sequences leading to the demand of the actuation system.  Each of the cutsets 
represents a more specific scenario in which the system should function, and typically contains 
hardware failures and human errors that help determine the possible variations in the input 
signals to the system.  It should be noted that the software context can be more refined than just 
what is specified by the cutsets, and, therefore, the resolution of the PRA should be considered 
when choosing and implementing a modeling approach for software failures. 
 
Currently, there is no consensus method for modeling digital systems in an NPP PRA.  It is 
possible that reliability models of digital systems may include software failures representing 
different software failure modes at different levels of detail (e.g., the software may be modeled 
as separate software modules).  However, a review of the literature revealed that practically all 
available QSRMs consider the software system as a whole, not as separate modules or broken 
down by failure mode.3  Depending on the reliability modeling method used for digital systems in 
a PRA, and the associated level of modeling detail, different QSRMs may be needed to quantify 
the digital system reliability model.  In addition, it may be necessary to separately model 
different types of software (e.g., application-specific software and operating system software), 
using different QSRMs. 
   
Since the software failure rates and/or probabilities are intended to be used in an NPP PRA, the 
review of QSRMs mainly centered on methods that can be used to quantify the reliability of 
software once it has been put into service at an NPP.  Therefore, it was not BNL’s intent to 
explore how to improve the reliability of software, for example, by formulating methods for 
identifying software faults and improving software verification and validation (V&V). 
 
Note that specific recommendations regarding which QSRMs have the most potential for 
integration into a PRA, and are therefore candidates for further assessment, are beyond the 
scope of this study. 
 

                                                            

3 In principle, the QSRMs can be applied to separate modules or failure modes (e.g., [Smidts 1999]).  In 
practice, the methods do not appear to have been applied that way.  Potential limitations of applying 
QSRMs to individual modules or failure modes include (1) difficulty in defining module boundary and 
(2) incomplete knowledge of failure modes. 
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1.3 Approach 
 
The approach followed in this study is summarized below: 
 
Development of Desirable Characteristics of QSRMs 
 
A set of desirable characteristics of a QSRM was developed and is documented in Section 2.  
The development of these characteristics greatly benefitted from the opinions of the panelists at 
the workshop of Task (1), as detailed in Chu [2009b].  While the characteristics are intended to 
be used to evaluate and select QSRMs for future applications, a structured comparison of the 
methods against the individual characteristics was not performed as part of this effort.  The 
selection of potential QSRMs for PRA applications is beyond the scope of the current study, but 
expectedly will rely on these desirable characteristics.  
 
Identification of QSRMs 
 
Multiple sources were searched to identify QSRMs.    

 
(1) NRC-sponsored research 

 
BNL previously reviewed the literature on modeling digital systems and identified the 
methods for, and the issues associated with, modeling them; Chu [2007] details some of 
the NRC sponsored research performed at BNL.  In addition, NRC sponsored research 
at the University of Virginia [Kaufman 2001], University of Maryland [Smidts 2000], and 
Ohio State University [Aldemir 2006] also identified modeling methods for digital 
systems.   
 

(2) Research performed at International Organizations 
 
Members of the NEA/CSNI/WGRisk (Risk Working Group of the Committee on the 
Safety of Nuclear Installations of the Nuclear Energy Agency) met in October 2008 to  
share their experience in digital-system modeling; QSRMs were among the topics 
discussed [NEA 2009].  In addition, an NEA/CSNI/WGRisk report [Dahll 2007] 
summarized software reliability methods, and a few papers and reports issued by the 
Halden Reactor Project, such as Gran [2002a], discussed QSRMs.  
 

(3) NASA-sponsored research 
  

A NASA - NRC technical interchange meeting on software/digital instrumentation and 
control system reliability analysis took place in March 2009 during which two methods 
being considered by NASA were presented: a context-based software risk model 
(CSRM) [ASCA 2007] and a correlation method based on software-development 
practices [Neufelder 2002]. 
 

(4) Open literature research 
 
There is a wealth of papers and books on software reliability.  Some discuss the 
problems in modeling software failure and include summary descriptions of various 
methods, which were particularly helpful (e.g., [Dahll 2007, Lyu 2007, National Research 
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Council 1997, Littlewood 2005].  To identify any newly developed methods, several 
recent conference proceedings were reviewed, for example, conferences of the PSAM 
(Probabilistic Safety Assessment and Management), PSA (Probabilistic Safety 
Assessment), and ISSRE (International Symposium on Software Reliability 
Engineering).  

 
Description and review of QSRMs 
 
Various QSRMs were reviewed for their potential use in quantifying software failure rates and 
probabilities to support the reliability modeling of digital systems in an NPP PRA.  These 
QSRMs fall into four major categories as discussed in [Dahll 2007], namely, software reliability 
growth methods, Bayesian belief network (BBN) methods, test-based methods, and other 
methods including the correlation method based on software engineering practices [Neufelder 
2002], metrics-based methods [Smidts 2004], the CSRM method [ASCA 2007], rule/standard 
based methods [Bloomfield 2007], and software diversity quantification methods [Lyu 2003].  It 
should be noted that in some taxonomies software reliability growth methods could be thought 
of as a subset of test-based methods, and as indicated in Section 5, some of the issues 
associated with test-based methods are applicable to software reliability growth methods. 

 
1.4 Organization of the Report 
 
In Section 2, a set of desirable characteristics is proposed for QSRMs for quantifying software 
failure rates and probabilities to support the reliability modeling of digital systems in an NPP 
PRA.  Sections 3 to 6 describe the QSRMs identified above and provide comments on their 
strengths and limitations.  Section 7 contains a summary and the principal findings of the 
review.
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2. DESIRABLE CHARACTERISTICS OF QUANTITATIVE 
SOFTWARE RELIABILITY METHODS 

 
A set of desirable characteristics for quantitative software reliability methods (QSRMs) for 
quantifying software failure rates and probabilities to support the reliability modeling of digital 
systems in a nuclear power plant (NPP) probabilistic risk assessment (PRA) is proposed below.  
The desirable characteristics were developed based on the perceived need for reliability models 
of digital systems in a PRA as discussed in Section 1 and the knowledge and experience of the 
study team in performing research and a literature review on modeling of digital systems.  
These characteristics are expected to address the general guidelines provided in the American 
Society of Mechanical Engineers (ASME) standard for PRA for NPP applications.  The internal 
and external peer review of this report served as an independent review of the proposed set of 
desirable characteristics.  It is emphasized that these characteristics are only “desirable,” and 
are not necessarily pre-requisites for using a QSRM to support an NPP PRA.  The desirable 
characteristics can be used in evaluating available QSRMs and their applications to determine if 
the characteristics are satisfied.  Although an itemized evaluation of the methods against the 
desirable characteristics is beyond the scope of this study and is planned to be included in the 
next phase of the research, the information in Sections 3-7 that reviewed different QSRMs is 
useful in performing such an evaluation. 
 
1. The description of the method and its application is comprehensive and understandable.  
 

There should be adequate documentation of the method and its applications such that the 
method and its applications can be understood and evaluated.  It should include a 
description of the intended uses (i.e., the applicability) of the method (e.g., is it only intended 
as a means for deciding if a software can be released) and all important assumptions, 
including their bases.  The information in the documentation should allow a reader to use 
the method in applications.  For applications of the method, the results and their use in 
accomplishing the objective of the application should be documented. 

 
2. The assumptions of the method have reasonable bases.   
 

The assumptions of a method can significantly limit the usefulness and applicability of the 
method.  The bases of the assumptions should be provided, their significance should be 
discussed, and the limitations on the applicability of the method due to the assumptions 
should be discussed.  For example, some QSRMs assume that a discovered fault is fixed 
perfectly; however, the “fix” may not completely resolve the problem and may even introduce 
new faults.  Nonetheless, this assumption is used in deriving empirical formulas that in some 
cases have been shown to produce good results.  Another example is the assumption that 
automated software tests are independently drawn from the software’s actual operational 
profile, which may be difficult to verify and may make test-based methods inadequate for 
demonstrating a low failure probability.  For example, it may not be possible to demonstrate 
a failure probability of 10-5 (typical for an analog reactor protection system [RPS]), even if 
millions of test cases can be performed, due to the epistemic (i.e., state-of-knowledge) 
uncertainty regarding the representativeness of the test profile [Chu 2009b]. 
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3. The method allows for consideration of the specific operating conditions of the software. 
 

It is well recognized that software failures are sensitive to the context (environment) in which 
the software is operating [Garrett 1999].  This context can include previous failures or other 
influential events or conditions.  For example, a specific failure mode of a digital feedwater 
control system may apply during full-power operation, but not during low-power operation.  
An application of a QSRM should take into consideration the specific operating conditions 
(context) of the software.  The QSRM and the reliability model in which it is used should also 
be compatible with the NPP PRA framework. 

 
4. The method takes into consideration the quality of lifecycle activities. 
 

High quality software results from the use of good software engineering practices during 
development to minimize the probability of introducing errors into the software, and a 
rigorous verification process to maximize the probability of detecting errors [National 
Research Council 1997].  The quality of life cycle activities of software is expected to 
significantly impact the reliability of the software.  For example, a certified, well-experienced 
software development team is expected to produce better software than that of a less 
qualified team.  Due to recognized weaknesses in the state of the art of QSRMs, that is, lack 
of adequate data to demonstrate high software reliability using test-based methods, the 
ability of a QSRM to account for the quality of life cycle activities is desirable, particularly 
through the systematic elicitation of expert judgment.   

 
5. The method makes use of available test results and operational experience. 
 

Operational experience is the most direct evidence of software system reliability.  Due to 
sensitivity of software to its operating environment (context), the operational experience 
should be collected from actual operation of the software being analyzed.  When test results 
are used in the same way operational experience is used, it should be demonstrated that 
the test inputs are sampled independently from the operational profile or a profile which is a 
good representation of the operational profile.  It is well recognized that different types of 
tests have different capabilities in detecting faults [Frank 1997].  For example, debug testing 
can be superior for identifying bugs because its detection rate may be greater than that of 
operational testing, but this does not mean that it is necessarily better for estimating 
software failure rate or probability. If sufficient test results and operational experience are 
not available for the software being analyzed, there may be some benefit to using data for 
similar software from other applications. 

 
6. The method addresses uncertainty. 
 

The method should estimate uncertainty of software failure rates and probabilities, and 
provide discussion on the significance of important assumptions.   For example, in the case 
of using operating experience and test data in a QSRM, applicability of the data has to be 
verified, that is, the test profile from which the data are collected should be representative of 
the actual operational profile of the software being analyzed.   
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7. The method has been verified and validated.   
 

The method should be verified and validated.  Successful application of a method in 
supporting decision-making and achieving the objectives of the applications (e.g., using 
system failure rate or probability in a reliability model or demonstrating that the reliability is 
satisfactory for a particular purpose) can serve as a means of verification and validation.  
Also, consistency with operational experience should be demonstrated. 

 
8. The method is capable of demonstrating the high reliability of a safety-critical system (e.g., a 

failure on demand probability on the order of 10-5, commensurate with an analog RPS). 
 

High reliability is considered typical of the analog RPS of current NPPs.  It is recognized that 
current methods are not capable of demonstrating such a high reliability with confidence for 
a digital protection system [Chu 2009b].  Therefore, improvements to the current methods 
are needed. 

 
9. The method should be able to estimate parameters that can be used to account for software 

common cause failures (CCFs),  
 

It is probably a reasonable assumption that multiple redundant channels of a digital system 
that use identical software would fail together.  For channels or systems that are not 
identical, dependent failure may also take place.  For example, N-version programming is a 
diversity strategy, but does not guarantee that software developed by different development 
teams will not fail dependently.  Effectiveness of diversity strategies in preventing software 
CCFs should be accounted for when modeling software CCFs. 

 
In Sections 3-6, summary descriptions of QSRMs are provided along with discussions of their 
strengths and limitations.  In addition, Section 7 provides summary comments on the QSRMs.  
The information in these sections is useful in evaluating the methods against the desirable 
characteristics. 
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3. SOFTWARE RELIABILITY GROWTH METHODS 
 
3.1 Introduction 
 
Software reliability growth methods,4 that is, as described in Institute of Electrical and 
Electronics Engineers (IEEE) Standard 1633 [2008], Lyu [1996], and American Institute of 
Aeronautics and Astronautics (AIAA) [1992], use test data to estimate software failure rates that, 
in turn, are employed to ascertain whether a particular software can be released, by 
demonstrating that its failure rate meets the desired level.  Software reliability growth methods 
are time-based and require as input the times between successive failures during tests, or 
number of failures during different intervals.  Typically, they assume that the software is fixed 
perfectly and instantaneously after failures, so that its reliability “grows” with time, that is, the 
software failure rate declines with time.  Software reliability growth methods are known so 
widely that models using these methods are often termed software reliability models, omitting 
the word “growth.”  Figure 3-1, from AIAA [1992], illustrates the use of software failure rate to 
determine by how much testing must be prolonged before reaching a failure-rate objective.  
After the findings from a reliability-growth model suggest a particular software is ready for 
release, the failure rate assessed using this model can be considered as the failure rate of the 
software during operation, which is the interest of this study. 
 

 
Figure 3-1 Using reliability growth methods to determine required test duration before 

achieving failure rate objective  
 
A large number of software reliability growth models (SRGMs) have been developed over the 
years, and each model has its strengths and limitations.  There are different assumptions in 
different SRGMs on how the failure rate decreases with time; that is, the models specify 
different empirical formulas, and use test data to estimate their parameters.  The empirical 
formulas and test data are employed to decide if the failure rate objective has been reached.  
Musa proposed a categorization scheme [1984 and 1987] that has been widely referenced, for 
example in Lyu [1996].  In general, the large number of SRGMs that were formulated separately 
should be unified because many of them are similar, although their terminologies are 
inconsistent.  More recently, IEEE Standard 1633 [2008] grouped SRGMs into three high-level 

                                                            

4 Many of the references for Section 3 of this report refer to reliability growth models, not methods.  While 
the authors of this report believe that it is more appropriate to characterize them as methods, they are 
often described in this report as models to maintain consistent terminology with the referenced 
documents. 
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categories: exponential Non-Homogeneous Poisson Process (NHPP), non-exponential NHPP, 
and Bayesian, and briefly described many of the models.   
 
An NHPP is a Poisson process wherein failure rate changes with time; it is needed because 
SRGMs basically assume the failure rate of software declines with time, unlike the supposedly 
constant hardware failure rate over time considered in a PRA.  The “exponential” and “non-
exponential“ NHPPs represent processes whose failure rate decreases in time exponentially or 
non-exponentially, respectively.  A homogeneous Poisson process can be considered a special 
case of an NHPP in which the failure rate is constant in time; it typically is used for failure-rate-
based events in a PRA. 
 
The SRGMs discussed in this report are failure-rate based.  To quantify the failure of a 
protection system to initiate its protective function(s), it would be more appropriate to use a 
failure-on-demand-based method, as discussed previously.  It may be possible to generate 
demand-based results by including the frequency of demands in the failure rate estimation of an 
SRGM, or re-interpret the time-based failure data used in an SRGM as demand-based data.  In, 
particular, two groups of methods that are related to the SRGMs, and can potentially be used to 
model software failure on demand, are discrete reliability growth methods and discrete software 
reliability growth methods.  Evaluation of these methods is beyond the scope of this study, but 
they are briefly summarized below: 
  
(1) In a recent study, Hall [2008] developed a mathematical formulation of a discrete reliability 

growth method, which models system reliability improvement due to changes in system 
design after failure modes are identified during tests.  The method is a failure-on-demand-
based method, and its applicability to modeling software failure remains to be evaluated. 
 

(2) Yamada [1985] proposed a discrete software reliability growth method using a discrete 
NHPP, which is based on the number of failures in a sequence of tests without considering 
the times when the tests are performed, and is intended to overcome the issue of the 
SRGMs associated with selecting calendar time or execution time for estimating software 
failure rates (i.e., in some cases, it may not be possible to collect data based on execution 
time, and calendar time has to be used to estimate the execution time).  Okamura [2004] 
presented additional discrete software reliability growth models such as the cumulative 
binomial process developed by Hoare and Rahman [1983], and developed an approach for 
estimating model parameters.  It may be possible to develop a failure-on-demand-based 
method building upon the discrete NHPP methods.  

 
Section 3.2 defines and details the properties of an NHPP, and categorizes and discusses some 
SRGMs according to the IEEE standard’s categorization.  Using a NHPP in characterizing 
SRGMs provides the mathematical foundation of the latter, and offers a means of unifying the 
many SRGMs in the literature.  Section 3.3 compares some of the SRGMs, while Section 3.4 
provides comments on them.     
 
3.2 Description and Categorization of SRGMs   
 
In this section, the SRGM categorization of the IEEE standard is adopted, and some of the 
methods in each of the categories are briefly discussed with references to the original 
publications provided.  Section 3.2.1 defines some of the terms used in SRGMs, including some 
basic properties of an NHPP.  Sections 3.2.2 to 3.2.4 offer short descriptions of different types 
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of SRGMs.  Due to the widely varying notations and assumptions of the SRGMs, the details of 
individual models are not provided.  As described in Section 3.2.1, a way of defining an SRGM 
is in terms of the functional form of how the failure rate changes with time.  Section 3.2.5 briefly 
describes standard methods of estimating the parameters of the SRGMs. 
 
3.2.1 Definition of Terms 
 
The lifetime (time to failure) of a system is represented by a probability distribution, F(t), and a 
probability density function, f(t), with failure rate defined as 
 

)}(1/{)()( tFtft −=λ . 
 
Reliability of the system is related to the failure rate by 
 

∫−=−=
t

dxxtFtR
0

)(exp[)(1)( λ ]          (3-1) 

 
In SRGMs, the occurrence of software failures can be modeled by an NHPP.  The following is a 
brief summary of an NHPP model extracted from Beichelt and Fatti [2002] and Cinlar [1975].   
 

Let )(tN  be the number of failures up to time t , )(tµ the expected number of failures at 
time t (also called the mean value function), that is, )}({)( tNEt =µ , and the intensity 

function5 
dt

tdt )()( µλ = .  The assumptions of NHPP include  

 
(1) 0)0( =N ,  
(2) }0),({ ≥ttN has independent increments,  
(3) )()(]1))()([( hOhttNhtNP +==−+ λ , and  
(4) )(]1))()([( hOtNhtNP =>−+  
 
for all t , and where h is a small value, and )(hO represents the second and higher order 
terms of h  such that 0/)( →hhO  as 0→h .  

 
Some of the properties of an NHPP include:  
 

(1) Let )(,,,),0( 32,10 tttttt n == L  be a partition of the interval 0 to t , and if  the number of 

failures between 1−it and it , then the if ’s are independent Poisson random variables 
with )()(}{ 1−−= iii ttfE µµ , and  
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5 In this report, the terms “failure rate” and “intensity function” are used interchangeably. 
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(2) The successive times to failure, L,,, 321 TTT , are random variables with distribution 
)(tFi representing the time to the ith failure,  For time to the first failure, 

])(exp[1)(
01 ∫−−=
t

dxxtF λ , and 

])(exp[)()(
01 ∫−=
t

dxxttf λλ . 

[Comparing F1(t) with Equation (3-1), note that the intensity function )(tλ of the NHPP is 
the same as the failure rate of 1T .] 
Similarly, 
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dxxtTTTtf λλ .         (3-3) 

As discussed later, Equations (3-2) and (3-3) often are used in SRGMs in estimating the 
models’ parameters.  
 
Historically, many different SRGMs were developed somewhat independently, making different 
assumptions and defining different terminologies and parameters.  Nevertheless, some of the 
models are very similar, if not identical [AIAA 1992].  Attempts were made to unify SRGMs, for 
example, Pham [2000] represented a few SRGMs in terms of different functional forms of )(tµ , 
Grottke [2001] represented a few SRGMs in terms of differential equations for )(tµ and Huang 
[2003] derived a few SRGMs in terms of different ways in which )(tµ is calculated as the 
average of earlier values.  This thought is also reflected in the categorization scheme of IEEE 
Standard 1633 [2008].   
 
Different SRGMs have dissimilar assumptions about how various parameters change with time, 
such as expected number of failures )(tµ .  Categorizing the methods in terms of 
how )(tµ changes with time is seemingly reasonable, and all the historical SRGMs can be 
grouped and standardized within this framework.       
 
3.2.2 Exponential NHPP Models 
 
The SRGMs in this category assume that the failure rate decreases exponentially with time, 
which is the consequence of the widely used assumption that the failure rate is proportional to 
the number of current faults in the software.  The decline with time is similar to the decay of 
radioactive isotopes, that is, the rate of radioactive decay of an isotope is proportional to the 
inventory of the isotope, which decreases exponentially with time.  The methods include Musa’s 
Basic model [Musa 1975], Schneidewind’s model [Schneidewind 1975], Goel’s NHPP model 
[Goel 1979], the Generalized Exponential model [IEEE 2008, AIAA 1992], Shooman’s 
Exponential model [Shooman 1972], and Jelinski-Moranda’s model [Jelinski 1972 and Lyu 
1996].  These methods follow different formulations and define some parameters differently.  It 
is demonstrated below that they all end up with a failure rate that decreases exponentially.  A 
frequent assumption in estimating the parameters for these models, and others, is that the 
failure rate remains constant over the intervals between failures.  Effectively, the integration of 
Equation (3-3) is replaced with )( 1−−× iii ttλ , where iλ  is the failure rate of the thi failure.   
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For example, in Sections 10.2.2 and 10.2.3, Musa [1987] essentially derived Equations (3-2) 
and (3-3) using somewhat different notations.   Musa’s Basic model [1975, 2004] assumes that 
the failure rate is proportional to the current fault content and showed that: 
 

)]exp(1[)(
0

0
0 tt

ν
λνµ −−= , and 

 

)exp()(
0

0
0 tt

ν
λλλ −= ,             (3-4) 

 
where the two parameters to be estimated using failure data are 0ν , the initial total number of 
faults, and 0λ , the initial failure rate.  The Basic Model is related to a few other models, namely, 
Shooman’s Exponential model [Shooman 1972], Jelinski-Moranda’s model [Jelinksi 1972], and 
the Generalized Exponential model [IEEE 2008, AIAA 1992], via simple transformations of the 
models’ parameters [IEEE 2008, AIAA 1992].  
 
Shooman’s Exponential model [1972] considered software failure rate on a per software 
instruction and per debugging man-month basis.  It assumes that the number of initial errors per 
instruction is a constant, and the failure rate is proportional to the number of errors present.  
 
Jelinski [1972] assumed (1) the failure data take the form of successive, independent times 
between failures, (2) a constant failure rate between failures, and (3) a failure rate that is 
proportional to the software’s current fault content; and derived an equation equivalent to 
Equation (3-3). 
 
The American Institute of Aeronautics and Astronautics/American National Standards Institute 
(AIAA/ANSI) standard [2002] and IEEE Standard 1633 [2008] highlighted simple 
transformations between the parameters of the above models, and suggested a Generalized 
Exponential model that could represent them.6   
 
Goel and Okumoto [1979] started with several assumptions, such as (1) the numbers of failures 
in non-overlapping intervals are independent and (2) the expected number of failures is 
proportional to the expected number of undetected errors, and demonstrated the underlying 
process is that of an NHPP.  Their model can be considered a good representative of all the 
exponential NHPP models.  It since has been mistakenly called the NHPP model, a misnomer 
because all other SRGMs are NHPPs, including those that are not exponential. 
 
The Schneidewind model [Schneidewind 1975], which is based on discrete intervals, has a 
failure rate defined by:  
 

)exp()( iid βα −= ,  
 

                                                            

6 In the standards, Musa’s Logarithmic model [Musa 1984] is in the table of the transformations.  
However, this model does not have an exponentially decreasing failure rate. 
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where )(id is the failure rate during interval i , and α  and β  are, respectively,  the rate at time 
zero and the decay constant.  
 
Xie [1992] showed that the Goel and Okumoto model is a continuous time version of the 
Schneidewind model.  Xie also showed that the Schneidewind model basically is the same as a 
few other models. Note that the exponential decaying function of Equation (3-4) is the same as 
the equation for failure rate in Goel and Okumoto’s model [Goel 1979], that is,  
 

)exp()( btabt −=λ ,                (3-5) 

 if 0ν=a  and 
0

0

ν
λ

=b . 

 
Therefore, the models in the exponential NHPP category are all essentially the same.  In Musa’s 
categorization scheme [Musa 1984], some SRGMs were classified into Poisson and binomial 
“types.”  He later demonstrated [Musa 1987] that a generalization of the binomial-type model 
leads to the Poisson model.   
 
Most of the above models presume that when a failure occurs, the fault immediately is fixed 
perfectly, so that failure rate decreases with time.  In attempting to address the potential for 
ineffectively removing faults, Musa’s Basic model introduces an additional fault-reduction factor 
representing the efficacy of that process.  The Schneidewind model [1975] has three variations 
and allows discarding older data and modeling of a delay in correcting faults detected by tests.  
Xie [1992] offers a generalization of the Schneidewind model.  The models of delayed fault 
correction incorporate an additional model parameter, making the failure rate non-exponential.  
In the overall scheme, it probably is not important whether the failure rate decreases 
exponentially.  Ultimately, the evaluation of how good a model is rests upon whether it fits the 
data well.      
 
3.2.3 Non-Exponential NHPP Models 
 
The reliability growth models of this category assume that the way failure rate 
changes/decreases with time does not follow an exponential function.  For example, it may 
follow the shape of the probability density function of a gamma or Weibull distribution [Duane 
1964].  The distinction between exponential and non-exponential is somewhat artificial.  
Different reliability growth models use different functional forms for how λ(t) and µ(t) change with 
time.  Some of the models in this category are briefly described below. 
 
In Musa’s Logarithmic Poisson Execution Time Method [Musa 1984], instead of the exponential 
NHPP assumption that failure rate decreases exponentially with time (proportional to the 
software’s current fault content), it is assumed that the failure rate falls exponentially with the 
expected number of failures, that is:  
 
 )](exp[)( 0 tt θµλλ −= ,             (3-6) 
 
where θ  is a proportionality constant, and )(tµ the expected number of failures.  It can be 
shown [Musa 2004] that:  
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Duane’s model [Duane 1964 and AIAA 1996] assumes that βαµ tt =)( , or equivalently, 

1)( −= βαβλ tt , where α  and β are larger than 0, and are the model parameters to be 
estimated.  Note that λ  is Weibull-distributed, and is decreasing with t  if β  is less than 1.  
 
The basis for the S-shaped reliability growth models [Yamada 1983 and 1984] is the 
observation that, in many software-development practices, the change in the cumulative number 
of removed faults with the testing time is represented by an S-shaped curve.  The S-shape of 
the mean value function (of the cumulative number of removed faults) reflects the following: 
(1) the fault detection/removal rate is relatively flat in the beginning of software testing, (2) it 
increases exponentially after the testers become familiar with the software, and (3) it flattens 
thereafter because the remaining faults are more difficult to uncover [IEEE 2008].  The S-
shaped reliability growth models are categorized as either "delayed" [Yamada 1983] or 
"inflection" [Yamada 1984] according to the causes of the S-shapedness, that is, either the 
delay between failure observation and fault removal, or the mutual dependency of some faults in 
the software [Kapur 1995].  Yamada’s delayed S-shaped model [1983] assumes that testing 
software involves two processes, fault observation and fault removal. 
   
In Yamada’s S-shaped model [Yamada 1983], the expected number of failures is assumed to 
be S-shaped, that is,  
 

)]exp()1(1[)( btbtat −+−=µ , 
 
where a is the total number of faults, and b is the error-detection rate per error in the steady 
state.   
 
Usually, an SRGM assumes that detection and removal of faults are independent.  The 
inflection S-shaped model [Yamada 1984] does not model the fault dependency directly; rather,  
it models the manifestation of this dependency assuming the rate of removing faults is a 
function of the cumulative number of faults removed until time t [Kapur 1995], that is, some 
faults are not detectable before others [Chillarege 1991].  The mean value function of the 
inflection model is 
 

)exp(11

)exp(1)(
bt

r
r

btat
−

−
+

−−
=µ  

 
where r )10( ≤< r is the inflection parameter, indicating the ratio of the number of detectable 
faults to the total number of faults in the software.  An inflection parameter of 1=r implies that 
the faults are independent, and so the inflection growth model is reduced to the Goel and 
Okumoto model [Kapur 1995], and the growth curve becomes exponential.  
 
There are many more published SRGMs, and it is likely that all can be expressed in terms of 
function forms of )(tµ  and )(tλ .  For example, Williams [2006] compared a few SRGMs, 
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including some methods briefly discussed above, and additional ones with three parameters 
instead of two.  The third parameter accounts for imperfect debugging, detectability of faults, 
and the like. 
  
3.2.4 Bayesian Models   
 
The two NHPP categories of reliability growth models assume that failure rate decreases with 
time (either exponentially or non-exponentially), while the Bayesian model developed by 
Littlewood and Verrall [Littlewood 1974, IEEE 2008] assumes that the failure rate decreases 
probabilistically/stochastically with time and uses Bayes’ theorem in its derivations.  The 
Bayesian model essentially is an exponential NHPP model that explicitly includes the 
uncertainty of the failure rate in the model.  This model considers successive times to failure, 

nTTT ,,, 21 L , to be exponentially distributed with failure rates nλλλ ,,, 21 L , with the failure rates 
being gamma distributed, that is: 
 

)(
)]([)(

)(1

α
λψλ

λψαα

Γ
=

−− ii
i

i
eig , 

 
where α and )(iψ  are the shape and scale parameters of the gamma distribution, and the 

expected (mean) value
)(

}{
i

E i ψ
αλ = .  Therefore, the mean of iλ  decreases with i  if )(iψ  

increases with i , that is, the failure rate decreases probabilistically.  This also reflects the 
likelihood, but not certainty, that correcting a fault is effective [IEEE 2008].  By assuming )(iψ  
equal to either i10 ββ +  or 2

10 iββ +  and eliminating α  from the likelihood function,  0β  add 1β  
can be assessed by the maximum likelihood method. 
 
3.2.5 Estimation of Parameters 
 
As discussed previously, the SRGMs use test data to estimate the parameters of assumed 
empirical formulas, and the empirical formulas, in turn, can be expressed in terms of failure rate 
or expected number of failures.  In general, standard ways of estimating parameters, such as 
the maximum likelihood method, least-squares method, and moment-matching methods, can be 
used.  These methods are not inherent parts of the SRGMs.   
 
Maximum likelihood and least-squares error methods often are used in estimating parameters of 
SRGMs.   For the maximum likelihood method, the likelihood function usually is based on 
Equation (3-2) or (3-3), depending on the data’s format, that is, number of failures in successive 
intervals or successive times to failure.  Sometimes, graphical methods are employed, for 
example, Duane [1964] and Shooman [1983].  The specific solutions of the original SRGMs are 
set out in the respective publications; they are not duplicated here. 
 
For the least-squares error method, depending on the parameters, different objective functions 
may be used.  Schneidewind [1975] used as the objective function the expected number of 
failures; IEEE Standard 1633 [2008] suggests evaluating the failure rate of the Generalized 
Exponential model with data from two different times to solve for the two model parameters.  
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In general, the SRGMs only consider point estimates of the model parameters.  However, there 
is no inherent difficulty in assessing the uncertainties in them.  A chapter on parameter 
estimation in Musa’s book [1987] considers uncertainties.  Also, one possible way of accounting 
for modeling uncertainty associated with SRGMs is to use different SRGMs to demonstrate the 
potential variability among the estimates obtained using the SRGMs.  
 
3.3 Applications of SRGMs 

SRGMs are widely used in determining/predicting the quality and reliability of software, and in 
deciding when to release it.  Williams [2006] compared six different SRGMs by how well they fit 
the first 80% of the data, and how well they predicted the rest of it.  Among other differences, 
the six models differed in their number of parameters.  The two-parameter models included the 
delayed S-shaped growth model, the exponential model, and the logarithmic Poisson model.  
The three-parameter models encompassed the imperfect debugging model, the inflection S-
shaped growth model, and the logistic growth model.  Four sets of data from the literature 
[Yamada 1983, Kapur 1990, Musa 1984, and Obha 1984], in the format of numbers of failures in 
various time intervals, were applied to each of the models.  The total number of failures from the 
four data sets was, respectively, 19, 20, 59, and 109.  The four data sets were of different sizes 
and from different periods (1980s and 1990s).  The comparison was straightforward; the models 
were ranked according to their goodness-of-fit and prediction capability.  Williams used the 
maximum likelihood method and one of the four sets of data to estimate a set of parameters for 
each model.  For this, he employed data in the format of the cumulative number of failures up to 
the thi   time interval  it .   The fitness and the prediction capability were measured in terms of 
respective "sum of square errors" (SSE) values for each data set, that is, the sum of the square 
of the deviation of the failure numbers calculated/predicted using the models and the actual 
failure data at different times.  Williams concluded that (1) the inflection S-shaped model fits the 
data best, and (2) the three-parameter logistic model shows the best overall ability to predict 
failure data, with the two-parameter delayed S-shaped model a close second.  He also noticed 
that the performance of many of the six models varies as the volume of the data rises, and more 
data does not necessarily improve model performance. 
 
It should be pointed out that there exists no SRGM that is universally superior to the other 
models in all applications [Lyu 1996], as evident from Williams’ comparison [2006].  Stringfellow 
[2002] pointed out that the assumptions made for individual SRGMs often are violated in real 
applications, although many models empirically were deemed robust.  He proposed a method 
for selecting the "best model(s)" to estimate the total number of failures in the software as 
testing progresses, and when to stop testing.  However, he cautioned that the "best" reliability 
model can vary across systems, and even across releases, recognizing that the underlying 
problem is the complexity of the interactions of the factors that influence the software’s 
reliability.   
 
Chapter 4 of Lyu's book [1996] discusses techniques for selecting a method/model that best 
predicts a specific set of test data, and making corrections to obtain better predictions.  
Essentially, older data of the data set are used to predict newer data, and measures are defined 
to determine which SRGM makes better predictions.  In addition, biases of the predictions can 
be identified and used to make adjustments to the predictions so that the accuracy can be 
improved.  The limitation of these techniques is that their benefits are applicable only to the 
specific set of data being analyzed, not universally (i.e., an SRGM that provides the best fit for 
one set of data may not provide the best fit for a different data set). 
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3.4 Review of SRGMs 
 
SRGMs successfully have supported decisions about testing; for example, deciding if the 
current version of the software meets the reliability goal, or how long should testing continue 
before releasing the software.  The many models and terminologies in the literature suggest that 
unifying them is desirable, especially models in the exponential NHPP category.  Unification of 
SRGMs in terms of the empirical formulas of an NHPP, that is, expressing the expected number 
of failures as a function of time, )(tµ , is a trend in software reliability, as exemplified in recent 
publications, such as IEEE Standard 1633 [2008], Son [2009], Huang [2003], and Williams 
[2006].  The formulation described in Section 3.2.1 of this report is a generalization of SRGMs in 
terms of an NHPP.  

 
Different SRGMs contain different assumptions about how variables, such as failure rate and 
expected number of failures, change with time.  The SRGMs also express the assumptions in 
terms of empirical formulas associated with these variables, and employ test data to assess the 
parameters of the assumed empirical formulas.  The accuracy of these models is reflected in 
how well their respective formulas fit the test data.  While there are published comparisons of 
applications of different methods, often they are intended to demonstrate that a new model 
produces better results, that is, it fits the data better.  However, consistent with the comparison 
in Williams [2006], no one model is universally considered to be better than the others, because 
all are based on assumed empirical formulas that are not applicable to all situations.  
 
Different SRGMs define different variables and parameters, and specify different physical 
meanings to them.  These physical meanings then are incorporated into assumptions and 
derivations of empirical formulas.  Often, it is difficult to judge if, and how well, the assumptions 
for a model are satisfied.  As stated by Stringfellow [2002], the assumptions for individual 
models frequently were violated in real applications, even though many models were 
demonstrated empirically to be robust.  For example, an exponential NHPP model assumes that 
failure rate is proportional to the number of faults remaining in the software, and that faults are 
fixed perfectly.  The former assumption is a reasonable one, leading to an exponentially 
decreasing failure rate.  The latter assumption probably is non-conservative.  However, the 
assumption may not be too critical because, ultimately, what counts with models based on 
empirical formulas is how well the model fits the data.   For the same reason, many of the 
assumptions that have been made in different SRGMs may not need to be scrutinized too 
critically. 
 
The failure rates estimated using SRGMs are generated by fitting actual test data, and 
therefore, should fit the data reasonably well.  The goodness of the fit reflects upon the choice 
of the model and its associated empirical formula.  Because these are empirical formulas, not 
laws of software reliability, a good fit in one application does not guarantee a good fit in other 
applications.  In addition, it remains to be demonstrated that the estimated failure rates fit actual 
operational experience well, since it is commonly recognized that test inputs do not necessarily 
reflect operational environment well.  In addition to finding a method/model that fits a set of test 
data well, it may be also useful to use multiple SRGMs to help address modeling uncertainty, as 
suggested in Section 3.2.   
 
The nature of SRGMs is to estimate or predict the software reliability based on the failure data.  
As alternative approaches to estimating the software reliability growth, both artificial neuron 
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networks (ANNs) and genetic programming have been explored by making use of their 
historical-data-based learning and predicting capabilities [Sitte 1999 and Costa 2005].   
 
As mentioned earlier, a review of the literature revealed that practically all available QSRMs 
consider the software system as a whole, not as separate modules or broken down by failure 
mode.  However, as described in [Musa 1987], failure rates and probabilities for different 
categories (e.g., severities or failure types) can be modeled by allocating the estimated failure 
rate/failure probability for each category according to the proportion of the total number of 
failures represented by that category.  This requires that failures reported during testing be 
categorized according to an appropriate scheme, which may represent additional unplanned 
effort for the testing, development, and assurance staff.   
 
An intuitive use of SRGMs in supporting PRA modeling would be taking the estimated software 
failure rate at the end of the test period as the failure rate for the software when it is in actual 
operation.  There are a few limitations of this use. 
 
1. The SRGMs discussed in the preceding sections provide failure rates.  Accordingly, they 

may be appropriate for modeling nuclear power plant (NPP) control systems, such as a 
digital feedwater control system, and spurious actuations of protection systems.  To quantify 
the failure of a protection system to initiate its protective function(s), it would be more 
appropriate to use a failure-on-demand-based method.7 
 

2. Since SRGMs are driven by test-failure data, this implies that the reliability of the software is 
not very high or the testing burden is significant.  Therefore, it may not be practical to use 
these models to demonstrate very high reliability, such as that required in the nuclear 
industry (with the possible exception of spurious actuations of protection systems). 
 

3. SRGMs share many of the limitations of test-based methods, as discussed in Section 5.4 
(e.g., the testing environment may not represent the actual “operational profile” to which the 
software is exposed during operation). 

 

                                                            

7 As mentioned previously, it may be possible to extend the SRGMs to model demand-type failures.  In 
particular, there are two groups of methods, referred to as discrete software reliability growth methods 
and discrete reliability methods (which remain to be reviewed), that may be more appropriate for 
modeling the failure of an NPP protection system to initiate its protective function(s). 
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4. BAYESIAN BELIEF NETWORK (BBN) METHODS 
 
Section 4.1 describes the BBN method, including its mathematical formulation and an example 
of a BBN.  Section 4.2 discusses a few BBN applications to safety-critical systems.  Comments 
on the method and its application are presented in Section 4.3.    
 
4.1 Description of Bayesian Belief Networks 
 
4.1.1 Mathematical Description 
 
Pearl first introduced the BBN method in his book on “Probabilistic Reasoning in Intelligent 
Systems” [1988].  A BBN is a probabilistic graphical model depicting a set of random variables 
and their conditional independencies via a directed acyclic graph.  Here, “acyclic” means the 
graph does not form a feedback loop.  In a BBN, the nodes represent random variables, and the 
arcs signify dependency among the nodes.  The random variables often are assumed to have 
discrete probability distributions [Jensen 2002], and may portray disparate information, as will 
be illustrated in this section through examples and applications of BBNs.  Shachter [2001] 
suggested that, in general, continuous distributions can be used.  The word “belief” is a 
subjective interpretation of probability often used in BBN modeling, that is, subjective probability 
describes one’s belief or confidence in the occurrence of a particular outcome.  In this report, 
BBN and Bayesian network (BN) are used interchangeably.  A simple example BBN is used in 
Section 4.1.3 to demonstrate the use of BBNs in making inferences.   
  
In probability theory, a joint distribution of n random variables in a graph always can be 
developed by using the chain rule, that is, 
 

),,|(),|()|()(),,,( 1112312121 VVVPVVVPVVPVPVVVP nnn LLL −=  
 
A BBN encodes a basic assumption that a node is conditionally independent of its non-
descendent nodes, given its parent nodes.  The basic premise represents a judgmental 
reasoning that provided there are known values for the parents of a node whose value is 
unknown currently, then no other knowledge (except that concerning the descendants of the 
node) will affect one’s opinion about the true value of the node [Lauritzen 1988].  Each node of a 
BBN can be described by a local conditional probability distribution function given its parents in 
the graph, that is, ))(|( ii VparentsVP , where )( iVparents indicates the parent nodes of node iV .  
Note that there is no specific constraint on how a variable depends on its parents.  If node iV  
does not have a parent node, then its local probability function is termed unconditional. 
 
For a BBN, the joint distribution of all variables is  

                                  ))(|(),,,(
1

21 ∏
=

=
n

i
iin VparentsVPVVVP L         (4-1) 

 
Equation (4-1) is the chain rule that is employed in making Bayesian inferences for BBNs.  A 
BBN is defined completely by specifying every term on the right-hand side of the equation.  
Should additional information about the nodes become available, the joint probability distribution 
can be Bayesian updated, and used in making inferences. 
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The conditional independence encoded by the BBNs supports a more compact development of 
the joint distribution by minimizing the number of required parameters.  In general, if there are n 
binary nodes, the number of parameters for constructing the full joint distribution, 

),,,( 21 nVVVP L  , is on the order of 2n.  Similarly, the number of parameters needed for the 

factored form of the joint distribution is ∑
=

n

i

Vparents i

1

)(2 , that is, not invariably larger than ( 12 −n ) 

[Langseth 2007].  The more compact joint distribution represents the modeler’s understanding 
of the system being modeled, and reduces data and calculation needs.    
 
The conditional independence of a BBN can be represented by the graphical property of d-
separation or d-connection in graph theory.  If two sets of nodes X and Y are d-separated in the 
graph by a third set, Z, then the corresponding variable sets X and Y are independent 
conditionally given the variables in Z.  Jensen’s book on Bayesian Networks and Decision 
Graphs [2002] details the definitions of d-separation and d-connection, and conditional 
dependence.  The following examples illustrate the concept of d-separation. 

 
In Figures 4-1(a) and 4-1(b) nodes A and B are all d-separated (conditionally independent) given 
C (i.e., C is in Z or is known) while in Figure 4-1(c) nodes A and B are d-connected (conditionally 
dependent) given C.    
 
A and B are conditionally independent of each other given C (1) in Figure 4-1(a), that is, 
provided C is known, knowing A does not add more information about B; and, (2) in 
Figure 4-1(b) because information about A and B can all be inferred separately by knowing C, 
the common parent of A and B. 
 

 

 

 

 

 

Figure 4-1 Types of network fragments in BBNs 

In Figure 4-1(c), nodes A and B are mutually independent because they have no common 
parents; this is equivalent to saying that nodes A and B are d-separated by the empty 
conditioning set [Langseth 2007].  On the other hand, nodes A and B are conditionally 
dependent given C because knowing C supports inferring information on A and B.  Interestingly, 
the network fragment in Figure 4-1(c) represents the case where independent causes (denoted 
by A and B) become dependent by conditioning on a common effect (of A and B, represented by 
C).  Figure 4-1(c) also shows that the conditioning set determines whether two sets of nodes are 
d-separated.  For example, A and B are dependent on each other in Figure 4-1(a), that is, if 
nothing is known about C (the conditioning set becomes empty in this case), A provides some 

B 
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C 
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C A B 

C 
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information about B and they become dependent.  In Figure 4-1(b), lacking any knowledge of C 
(the conditioning set again is empty), some information about B can be inferred from knowledge 
of A, so making A and B dependent.  On the other hand, if something is known about C in Figure 
4-1(c), then information on A may disclose some knowledge about B.  

 
4.1.2 Bayesian Inference 
 
Bayesian inference using BBN can be done in the standard way, as in Helminen [2001].  In 
general, once evidence is obtained, the joint distribution of the nodes, that is, Equation (4-1), is 
updated.  In particular, the distribution of a particular node, for example, one representing the 
rate or probability of software failure, is generated by integrating or summing (marginalizing) the 
irrelevant variables.  Marginalizing irrelevant variables can be time-consuming, and methods 
were developed for performing the task efficiently.  In particular, a “variable elimination” method 
is illustrated in the example BBN described in Section 4.1.3.   
 
4.1.3 An Example BBN 
 
The example demonstrates that a BBN allows for updating "beliefs" in light of evidence by 
calculating the conditional probabilities of the nodes given that some nodes have been observed 
and some evidence is available. 
 
Murphy [1998] presented an example wherein all variables represented by the nodes are binary 
ones, that is, each node has two values; true (T) or false (F), as shown in Figure 4-2.  An event, 
the grass is wet (W=T) may reflect two causes, that is, (1) the sprinkler is on (S=T), or (2) it is 
raining (R=T).  Also, if it is cloudy, the chance of raining (R=T) may increase; if not, the chance of 
turning on the sprinkler may rise to water the grass.  Thus, each node has an associated 
conditional probability table (CPT), as depicted in Figure 4-2.  The sum of probabilities for each 
column is 1.0. 
 
Using the chain rule of probability, the joint probability distribution of all nodes is  
 

),,|(),|()|()(),,,( RSCWPSCRPCSPCPWRSCP ×××=                 (4-2) 
 
Using the conditional independence encoded in the BBN, that is, the chain rule for BBN, the 
joint probability distribution of all nodes becomes 
 

),|()|()|()(),,,( RSWPCRPCSPCPWRSCP ×××=           (4-3) 
 
namely, a more compact expression of joint probability, even in this simple BBN. 
 
One major task in studying the BBNs is to undertake probabilistic queries or inferences using 
Bayes' rule, and some techniques such as marginalizing, that is, summing out over "irrelevant" 
variables.  Two types of inferences or reasoning can be completed using a BBN; inductive 
inference that diagnoses a cause for a given effect (called bottom-up reasoning), and, deductive 
inference that predicts an effect for a given cause (called top-down reasoning).  
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Figure 4-2 An example for a BBN inference 

 
 
An example for the former inference for the BBN in Figure 4-2 is to question that if the grass is 
wet, is it more likely to be caused by the rain or the sprinkler?  This query is solved by 
comparing the probability )|( TWTSP ==  to )|( TWTRP == .  Since the joint probability of 
occurrences of A and B is 
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From Equation (4-3), using the associated CPTs shown in Figure 4-2, we obtain                  
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Note that the order of marginalizing the variables does not affect the results, but may alter the 
efficiency of the calculation.  In this example, the calculation involves the so-called “variable-
elimination” method [Zhang 1996].  The key idea therein is to "push sums in" (to the right) as far 
as possible when summing (marginalizing) out the irrelevant terms.  For example, in the above 
equation, the summation over values of the variable R is moved to the right of those terms that 
do not include R, such that the summation over R does not need to be repeated for those terms.  
The example also demonstrates how tedious and time-consuming the calculation can be, even 
when using the chain rule for BBNs. 
 
Similarly, )|( TWTRP == can be calculated, as shown below. 
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Comparing the calculated )|( TWTSP ==  and )|( TWTRP == , it can be concluded that the 
grass is more likely wet from rain. 
 
An example of deductive inference is to solve the likelihood that the grass is wet, given that the 
sky is cloudy, that is, )|( TCTWP == , which is approached in the same way. 
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In these inferences, the "variable-elimination" method is used to generate the "exact" inference, 
that is, the full summation (or integration) over discrete (continuous) variables.  Murphy [2005] 
gives other exact inference methods as well as approximate ones.  
 
4.1.4 Software Tools for Bayesian Inference 
 
The complexity of the BBN inference is apparent from the simple example given above, and 
from Littlewood’s [2007] two-legged BBN study.  Murphy [2005] lists BBN software packages 
that can perform the inference; some major ones are described briefly by Korb [2004] in his 
Appendix B, available at http://www.csse.monash.edu.au/bai/book/appendix_b.pdf.  Note that 
most of the commercial software packages have free versions that are restricted in different 
ways, for example, the model’s size is limited or the models cannot be saved. 
 
4.1.5 Building BBNs 
 
In general, three tasks are involved in BBN applications, that is, elicitation and construction of a 
BBN model, elicitation of the probabilities of a model, and computation.  The computation of 
BBNs, that is, inferences, has been covered in the above discussion.  Building Bayesian 
Networks requires information or evidence from two main sources: expert knowledge and 
statistical data [Langseth 2007].  For example, the main sources of reliability evidence for a 
safety critical system may include design features, development processes, testing, and 
operational experience, as Gran [2002b] suggested. 
 
Usually, a group of experts in the domains of BBN and the specific application build the BBN.  
The structure of the BBN and assumptions encoded in it are decided by the BBN experts using 
information solicited from experts in the application domain. 
 
Dahll [2002] described the process of building a BBN for a specific application.  Some nodes are 
denoted as "observable" ones because they represent the different observable properties about 
the application.  The target node of the BBN is the node of interest.  Other nodes are referred to 
as "intermediate" nodes.  Starting from the target node, edges can be drawn to other nodes that 
affect the target node.  Then, new nodes can be connected to these nodes by combining the 
relevant information for the application.  Littlewood [2007] employed a two-legged8 (testing and 
verification) approach to build a simplified BBN for software-based system without considering 
other factors that might significantly affect system development, such as quality assurance and 
the development process itself.  
 
Although building the BBN usually starts from developing nodes representing high-level 
information, that is, an arrow goes from a higher abstraction to a lower one, or from a more 
general concept to a more detailed one (as discussed in Section 4.2.2), there is no unique way 
of doing this.  No general guideline can be followed that will guarantee the correctness of 
dependencies in the BBN.  The details of constructing BBNs are application-specific; some 
examples of applications using BBNs are discussed in the following section.   
 

                                                            

8 In this context, “legs” refer to sources of reliability evidence to be used in constructing the BBN, such as 
those discussed earlier in this section. 
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4.2 Applications of BBN Methods 

4.2.1 Multi-Legged Arguments 
 

Littlewood [2007] modeled a multi-legged argument representing the impact of diversity 
(i.e., diverse arguments) on confidence in safety claims for software-based systems using a 
Bayesian belief network that combined the disparate evidence and assumptions forming the 
different legs.  Each leg supports different reliability claims to be made at different levels of 
confidence in terms of different (reliability, confidence) pairs.   
 
Littlewood interpreted confidence as probability in his study, that is, the Bayesian subjective 
strength of belief in the claim.  The nodes (variables) of the BBN included the following:  
 
(1) the system's unknown, true probability of failure on demand (a continuous variable 

represented by S), or a probabilistic claim about it;  
(2) the system’s specification (symbolized by a discrete variable Z with a value of "correct" or 

"incorrect");  
(3) the conclusion from verifying the system against its specification (represented by a discrete 

variable V with a value of "verified" or "not verified");  
(4) the oracle used in testing the system (denoted by a discrete variable O that is either 

"correct" or "incorrect");  
(5) the system’s test results (typified by a discrete variable T indicating whether "no failures" or 

"failures" were uncovered ); and,  
(6) the acceptance (or otherwise) of the final claim (represented by C) on whether the system is 

suitable for use, that is, the claim is "accepted" or "rejected."   
 
In Littlewood’s study, the goal of the BBN was to obtain the posterior distribution of (a) the 
probability of failure on demand (pfd) of the system or a probabilistic claim about the pfd, that is, 
the S node, and (b) whether the claim on the system’s suitability should be accepted, that is, the 
C node, based on observations of the other variables in the BBN.  The two legs of argument, 
namely, the verification and testing nodes, were considered with other nodes.  These two nodes 
are the BBN’s observable nodes.  The updated joint probability distribution 

)|,( nsobservatioSCP , in particular, the value of ,( acceptedCP =  310−>S  )| nsobservatio  was 
of primary interest.  The BBN model was also used to consider the two legs of argument 
separately to investigate their individual influences on the claims, effectively producing two 
separate single-legged BBNs. 
 
From a set of simplifying and conservative assumptions, node probability tables with analytical 
expressions with parameters were developed representing the conditional relationships of the 
nodes.  For example, a beta distribution was assumed for the probability of failure on demand 
(the S node), and different sets of parameters of the distribution were assigned depending on 
whether or not the specification is correct (the Z node).  In this way, analytical solutions were 
obtained for the BBN, offering further insights than just the numerical solutions using the defined 
node probability tables.  In particular, an analytical expression for (P 310−>S  
ideal| )nsobservatio was derived, that is, the probability that the failure probability is higher 

than 310−  given that testing and verification succeed.   
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The study also revealed that adding a diverse second argument leg (e.g., having both a testing 
argument and a verification argument) can increase confidence in a dependability claim.  
However, it also generated counterintuitive results for some numerical values used for the 
parameters in the model.  In particular, for the two-legged model, for some specific parameter 
values, it is possible that (1) successfully verifying a system against its specification may reduce 
the confidence that was obtained from failure-free testing, and (2) an increase in the number of 
successful tests may slightly lower confidence in claims about pfd.  For the single testing leg 
BBN, evidence that no failures were observed in the test cases decreases the confidence in 
claims about pfd for some parameter values.  Similarly, for the single verification leg BBN, 
successful verification lowered the confidence in system failure probability when using some 
specific parameter values.  How these particular cases led to counterintuitive results was 
attributed by Littlewood [2007] to “subtle interplay between (simplifying and conservative) 
assumptions and evidence, both within and between legs.”  The authors also suggested that 
“the counterintuitive results may be not believable when real experts assess real systems.”  
They acknowledged that the model is oversimplified, and warned against naïvely trusting in the 
results of a numerical analysis of a BBN.    
 
4.2.2 BBN Applications to Software Reliability of M-ADS and Motor-Protection 

Relay Systems 
 
Applying the BBN method to assessing software reliability of different systems was discussed in 
several papers and reports representing the work at the VTT Technical Research Center of 
Finland [Helminen 2001, 2003a, 2003b, 2005, and 2007] and the Halden Reactor Project 
[Gran 2002a and 2002b].  Gran [2002a] used different approaches in studies of the software 
reliability of two different systems, a helicopter location identification system (M-ADS) and a 
motor-protection relay system (SPAM 150 C) produced by ABB Substation Automation.  These 
studies encompass both expert judgment and quantitative evidence, such as test data.  The 
qualitative evidence (soft evidence) represented the experts’ judgment on the quality of the 
development process and the system’s design features, while the quantitative evidence (hard 
evidence) included both testing and operational data that are directly measurable statistical 
evidence [Helminen 2001].  The M-ADS was developed following avionic standard DO-178B 
[RTCA 1999], and the BBN model considered the 10 lifecycle stages defined in the standard 
using system demand failure probability as the measure.  Gran [2002b] gives details about the 
study.  In the study of SPAM 150 C [Helminen 2003a and b], expert judgment was applied in a 
six-step process to estimate failure parameters, such as the percentiles of the lognormal 
distribution representing the frequency of system failure.  The experts produced a prior 
distribution that was further Bayesian updated using test and operational data, as detailed in 
Helminen [2003a] and [2003b].    
 
A more recent study of a different motor-protection relay system, that is, REM 610 [Helminen 
2005 and 2007], used a similar approach as for the SPAM 150 C.  The studies of the M-ADS, 
SPAM 150 C, and REM 610 are further described below. 
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• Study of the M-ADS [Gran 2002a and b] 
 
The BBN was built in three stages:  (1) eliciting and constructing a BBN model, (2) elicitation of 
the probabilities of the BBN model, and (3) carrying out the computations.  Separate pieces of 
information were collected and represented by the BBN nodes that were connected by edges 
expressing the causality between the nodes.  A directed edge from node A to node B means that 
a "belief" in A implies expectations on B.  The BBN was built starting with nodes representing 
high-level information and then moving down to nodes with lower level information, that is, an 
arrow goes from a higher abstraction to lower one, or from a general concept to a more detailed 
one.   
 
A high-level BBN was built first that included the "testing"-part and the "quality"-part 
(Figure 4-3).  The testing-part described the connection between observing "0 failures in 
N tests," and the "failure probability p of the system."  For a defined number of demands N with a 
constant failure probability p, the random number of failures Y was assumed binomially 
distributed.  The quality-part consisted of four high-level quality nodes (i.e., quality of producer, 
process, analyses, and the product); this part also encompassed the complexity of the problem 
and its solution.  Each of the quality nodes was a top-node in the lower-level BBN, and 
influenced the 10 lifecycle stages of the avionic standard DO-178B, which subsequently were 
linked to other nodes that represent the objectives of the lifecycle stages.  The higher-level and 
lower-level BBNs then were merged together. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

(1) QProducer: Quality of producer; (2) QProcess: Quality of production process;  
(3) QProduct: Quality of product; and, (4) QAnalysis: Quality of analysis. 

 
Figure 4-3 Quality part and testing part of the high-level BBN [Gran 2002a] 
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To compute the probabilities of variables in the BBN model, prior probability density functions 
(pdf’s) were assigned to the parent nodes, and then conditional pdf’s were ascribed to 
descendant nodes to reflect the influence of the parent nodes.  The variables represented by 
the nodes in a BBN are either continuous or discrete, accordingly eliciting continuous or discrete 
pdf’s.  However, conceptually it is easier to elicit pdf’s for discrete variables, and less effort is 
needed in the associated computation to generate the inference. 
 
Qualitative evidence mainly was used in deriving the prior estimation for the reliability of the 
system, and quantitative evidence was employed to update this judgment.  Note, the difference 
between soft evidence and hard evidence sometimes is not clear because testing and/or 
operational experience may have qualitative features, as suggested in Helminen [2001].  The 
prior estimate of the failure parameter of the system was derived from soft evidence during the 
system’s development, pre-testing, and design evaluation phases before the system was 
deployed.  It then was updated, incorporating the hard evidence obtained after the system came 
into operation [Helminen 2001].  [Gran 2002b] undertook a sensitivity study for the failure 
probability based on the uncertainty in the observations. 
 
In Gran [2002b], a high-level BBN (Figure 4-4) was developed, which differs from that in 
Figure 4-3 in that the quality-part in Figure 4-4 includes a node, N-hypothetical, intended to 
express the equivalence between the information in the quality-part and that of the system 
tested with N randomly selected inputs without failure.   The N-hypothetical node was modeled 
in terms of a subjectively developed conditional probability table given its three parent nodes as 
shown in Figure 4-4 [Gran 2002b].   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-4 Quality part and testing part of the high level BBN with N-hypothetical node 
[Gran 2002b] 
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• Studies of Motor-Protection Relay SPAM 150 C [Gran 2002a], [Helminen 2003a and 

2003b] 
 
The case studies in Gran [2002a], that are further described in Helminen [2003a and 2003b], 
considered revisions to the software of a motor-protection relay, SPAM 150C, manufactured by 
ABB Substation Automation.  The studies considered the software going through different 
revisions throughout its operating life.  Helminen [2003b] describes a six-step process for using 
expert judgment to formulate a prior estimate of the motor-protection relay failure rate for the 
first version of the software.  In the first two steps, the experts estimated score and weight 
values for the different software development phases of the system.  In the third step, a 
weighted total score value for each expert was calculated.  In order to convert the total score 
value of the expert to a failure frequency distribution, in step four, each expert was asked to 
estimate failure distributions for two or three different score values.  More specifically, the expert 
was asked to give failure frequency percentiles of given score values.  Failure frequency 
distributions for the score values were then estimated by fitting lognormal distributions to the 
percentiles given by the expert. In step five, a failure frequency distribution was estimated for 
each expert using the method of least square with the total score value calculated in step three 
and the lognormal distributions estimated in step four, for different score values.  In step six, a 
combined failure frequency distribution, that is, the prior distribution for the system failure 
frequency, was calculated by averaging the frequency distributions estimated for individual 
experts.  This prior distribution was Bayesian updated using information gleaned during the 
operation of this version of the software, represented as the approximated amount of working 
years and the number and types of software faults encountered. 
 
The underlying model for the Bayesian network was a lognormal-Poisson model because 
(1) the combined prior (p) was assumed to be a mixture of lognormal distributions and (2) the 
number of software faults found in a certain time period (Y) followed a Poisson distribution.  Four 
scenarios were explored, that is, a neutral approach and a conservative approach with two 
different data sets.  In the neutral approach, the prior distribution of a new version of the 
software was assumed to be equal to the posterior distribution of the previous version.  In the 
conservative approach, the assumption was that a software change always negatively affects 
reliability.  In this case, the prior distribution of a new version of the software was assumed to be 
equal to the posterior distribution of the previous version plus a subjectively assessed change.  
This change in the system’s failure rate after each software revision was modeled explicitly 
using a lognormally distributed random variable, the parameters of which were estimated by 
expert judgment [Helminen 2003b].  The two different data sets used included one that 
contained the number of clear software faults encountered in different versions of the software, 
and a  second that contained the clear software faults plus the so-called "inconveniences" (i.e., 
software faults that caused no trouble to the customer or caused inconvenience to a small 
fraction of the customers) [Helminen 2003b].  
 
The BBNs of the studies were modeled in the format of the WinBUGS program.  Note, that a 
WinBUGS model also is a BBN because it encodes the same "conditional independence" as do 
the general BBNs [Spiegelhalter 2003]. 
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• Study of Motor-Protection Relay REM 610 [Helminen 2005 and 2007] 
 
Helminen [2005 and 2007] assessed the software reliability of a different motor-protection relay 
system, REM 610, using a similar approach to that employed in studying the SPAM 150C 
system.  Four protection functions were chosen for the study.  The failure rates of two different 
failure modes were evaluated, that is, failure to trip and spurious trip of the system.  The study 
encompassed four different phases of software development, and experts estimated the 
percentiles of the lognormal distribution representing the failure rate for each failure mode.  The 
estimates then were used to derive a joint distribution for the failure mode.  Ten designers of the 
system participated, forming four assessment groups that represented the system’s different 
developmental stages.  The experts were assigned to these groups according to their position 
and involvement in the process.  Before taking part in the quantitative session, the experts first 
underwent training on the assessment process, and then took part in a qualitative session 
developing simple logical models of the protection functions, identifying dependencies of the 
functions, and highlighting potential uncertainties or inconsistencies in the design information.  
Equal weight was given to prior estimates from individual experts.  These priors for the same 
failure mode of the four protection functions were merged into a joint estimate using WinBUGS.  
The operational data, which was relatively substantial, was expressed in terms of the estimated 
operating years and the reported software faults of REM 610.  The number of REM 610 
operating years and the reported number of software faults were, respectively, 140 years and 
zero faults (for both failure modes of the software).  The priors were updated with these 
operating data to generate the posterior distributions of the failure modes.  
 
4.2.3 BBN Applications to Reactor Protection System Software 
 
Two papers [Eom 2004 and 2009], documenting the BBN work done by the Korean Atomic 
Energy Research Institute, are described below.  
 
The first paper [Eom 2004] suggests that obtaining a precise quantitative estimate of the 
software reliability of safety-critical systems is nearly impossible because of the many qualitative 
characteristics of the software that cannot be measured directly.  Hence, a BBN method was 
adopted for evaluating the reliability of the software embedded in a safety-critical system, 
combining both qualitative and quantitative evidence.  This included evaluating the quality of the 
software products (such as the requirement specifications, design specifications, code, and the 
final software product in the binary form) throughout the phases of the development life cycle 
and considering the test results (i.e., number of tests without faults or testing time without 
faults).  To illustrate the feasibility of the BBN method, this case study [Eom 2004] was limited to 
assessing the quality of the software requirement specification for an RPS in a nuclear power 
plant.  The identified variables for the BBN characterized the software function (accuracy, 
functionality, reliability, robustness, safety, security, and timing) and development process 
(completeness, consistency, correctness, style, traceability, unambiguity, and verifiability).  A set 
of questions was designed to assess the quality of the software requirement specification for 
each variable.  The target node of the BBN indicated whether 
"T100_Software_Requirement_Specification" is acceptable or not, and the target node’s 
variable had two states, that is, "acceptable" and "unacceptable”. The BBN encompasses 
166 nodes connected mainly according to causal relationship.  The Sherman Kent rating scale 
[Kent  1964], was used to convert some qualitative evidence to quantitative inputs to the BBN, 
for example, “likely” would represent a probability of 0.6.  A software tool, HUGIN [HUGIN 
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2010], was used to perform the Bayesian update. This paper does not describe how software 
failure probability was estimated using the BBN model.9   
 
In [Eom 2009], the researchers proposed the concept of a generalized BN template that is not 
restricted to a particular software development environment, thereby reducing the effort to build 
BNs for software developed under different environments.  The recently formulated object-
oriented BN (OOBN) and dynamic BN (DBN) can be used to implement the general BN 
template.  An OOBN simplifies the work to create large and repetitive BNs by creating BN 
subnets which are called a “class” in Object-Oriented methodology terms [Koller 1997].  A DBN 
allows time-indexed variables [Bangs 2000].  In Eom [2009], a general phase BN (an OOBN) is 
a BN subnet that models a single software development phase, and consists of the following six 
classes (i.e., nodes):   
 
1. Residual defects in the final product of a previous phase, representing the number of 

remaining defects therein;  

2. Inspection quality in a current phase, denoting the number of defects removed by 
inspections and traceability analyses;  

3. Residual defects in a current phase, representing the number of remaining defects in the 
final product of the current phase; 

4. Process quality in a current phase including seven process characteristics, that is, 
consistency, verifiability, unambiguity, traceability, style, correctness, and completeness; 

5. Functional quality  in a current phase that again includes seven characteristics, that is, 
accuracy, timing, reliability, robustness, security, safety, and functionality; and  

6. Defect prediction class that models a causal relationship predicting defect numbers in the 
current development phase.   

 
Thus, a DBN for the software development life cycle (SDLC) was created by linking BNs for the 
individual software development phases in terms of the causal relationship of the features 
represented by classes (nodes) in the BNs (e.g., the node "Residual defects in a current phase" 
of phase i and the node "Residual defects in the previous phase" of phase (i+1) are connected 
by a directed edge).  
 
A case study [Eom 2009] was performed for the software of a digital RPS following the 
approach described above.  The inputs for the model mainly were derived from the verification 
and validation (V&V) results of the software.  As an example, a node "Functional quality in a 
current phase" for phase "Coding" was calculated from its descendant nodes representing the 
original node’s properties.  Inputs to other nodes in the BN were calculated similarly from the 
V&V results.  Then, quantitative results and associated findings for each end node in the BN 
(e.g., the residual defects in the last phase of the SDLC of the RPS software) are obtained via 
Bayesian inferences.  

                                                            

9 Through private communication with one of the authors of the paper, Dr. Kang, it was confirmed that the 
model was used in quantifying software failure probability, but the documentation is not publicly available. 
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4.3 Review of BBN Methods and Applications 
 
The BBN method is a general method, accounting for the influence or effects of one event on 
another.  Often, it is employed to model the subjective opinions of experts and combine 
disparate information.  Another advantage is that uncertainties in parameters can be accounted 
for automatically within the scope of the model.  The BBN method is considered as a tool that 
affords structure in modeling, though the analyst needs to be aware of the underlying 
assumptions of the BBN method when applying it to a particular model.  A few software tools 
are available to facilitate the analysis (as identified in Section 4.1.4).   
 
Conditional independence or dependence is the fundamental concept of the BBN method.  
Deciding on how to characterize the dependencies between nodes is probably the most 
important and difficult part of developing a BBN model, and it is heavily dependent on the 
analyst’s judgment and knowledge.  As described in Section 4.1.1, an advantage of the BBN 
method is reflected in the relative simplicity of the BBN chain rule, compared with full 
dependency among the random variables; that is, the dependencies are localized and 
represented by conditional probability distributions.  However, the analyst must decide upon 
such dependencies.  For example, the analyst must verify that a node in one corner of a BBN is 
related to another node in a different corner only through some intermediate nodes of the BBN, 
and there is no direct dependency between the two.  Such judgments may be difficult to verify. 
 
The BBN method is promising as a potential way to quantify software reliability, as illustrated in 
the applications performed at the VTT Technical Research Center of Finland and the Halden 
Reactor Project.  A strength of the method is its ability to aggregate disparate information about 
software (e.g., aggregation of software failure data and quality of software lifecycle activities that 
is assessed using expert elicitation [Gran 2000a and 2000b]) and to include parameter 
uncertainties as a part of the modeling.  However, there are challenges in developing a BBN 
that takes full advantage of these capabilities, including the substantial development effort that 
is needed, the expertise of the BBN developers, the qualification of any experts used to elicit 
information, and the availability of thorough documentation of the software development 
activities.  Another challenge is that qualitative evidence (e.g., the impact of software 
development quality on software reliability) needs to be quantified.  Since there may not be 
sufficient available data to “anchor” the conversion of the qualitative information to quantitative 
values, the uncertainty in the resultant quantitative estimates from the experts may be very 
large, which may make it difficult to demonstrate the small failure probabilities often associated 
with safety-related systems (a limitation common to many QSRMs). 
 
The BBN method also can be used in a more traditional way.  For example, its use in 
performing Bayesian inferences [Helminen 2003a] using WinBUGs essentially is a standard 
Bayesian updating of a prior distribution obtained via expert elicitation with available data.  
Similarly, traditional Bayesian analyses undertaken as a part of a PRA can be considered 
applications of the BBN method. 
 
Some comments on a few applications of the BBN method are given below.  Note, no 
comments are provided on the Korean Atomic Energy Research Institute (KAERI) application of 
BBN to an RPS because no publicly available information exists regarding quantification of 
software failure probability/rate (i.e., [Eom 2004] only describes the calculation of the probability 
of whether the software requirement specification is acceptable or not). 
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1. Multi-legged Arguments [Littlewood 2007] 
 

The consideration of multi-legged arguments in Littlewood [2007] demonstrated, in terms of 
a seemingly simple BBN, a potentially complex interplay among the nodes.  It identified a 
few counterintuitive results for some numerical values used for the parameters in the BBN 
model, and offered tentative explanations for them.  It is desirable to have a way of 
systematically identifying the conditions under which counterintuitive results are generated, 
so they can be avoided. 

 
2. Analysis of a helicopter location identification system (M-ADS) [Gran 2002a and b] 
 

The study is a representative/prototype BBN analysis of a safety-critical software system.   
Essentially, it uses expert judgment on the quality of the software development process and 
system design to estimate a prior distribution of the probability of system failure, and 
combines it with test and operational data in a traditional Bayesian analysis.  In 
[Gran 2002a], the expert judgment was assessed to be equivalent to observing no failures in 
1000 trials.  While a prior distribution of system failure based on data of this magnitude 
might not be appropriate for assessing the probability of failure for an RPS in an NPP (which 
is expected to have a much lower failure probability), there is no reason why this method 
should not be able to account for any type of expert opinion, which potentially could justify 
much lower failure probabilities (i.e., result in an equivalent data set of no failures in a much 
larger number of trials). 

 
3. Motor-protection relay systems [Helminen 2003a, 2003b, 2005, and 2007] 
 

The studies of two motor-protection systems followed almost the same approach to perform 
a Bayesian update using operational data.  Expert opinion elicitation was used to estimate 
the prior distribution for the Bayesian analysis.  Unique to SPAM 150 C study is the way in 
which the experts arrived at an estimate of the prior failure rate distribution for the initial 
software version, and the changes in failure rate due to revising the software.   In this 
approach, it is unclear how the failure rate distribution was estimated using the least square 
method, as described in Step 5 of the process (see Section 4.2.2).  Another issue is that for 
a motor-protection relay system, which is a system that takes protective actions when an 
abnormal condition occurs, it may be more appropriate to model the system in terms of a 
failure probability on demand.  The use of failure frequency in these studies seems to 
include the frequency with which demands to the system occur.  Therefore, the results 
depend on the specific demand frequency, and are not applicable in cases where the 
demand frequency differs significantly. 
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5. TEST-BASED METHODS 
 
5.1 Introduction 
 
Test-based methods essentially are those employing standard statistical methods to the results 
of software tests, and possibly to operational data, in the same way as hardware data is 
analyzed.  The data is assumed to represent random samples from the software’s operational 
environment. In this report, test-based methods are mainly are used to demonstrate that a great 
amount of data is needed to demonstrate the high reliability of a safety-critical software 
program.  Other QSRMs considered in this report employ the same type of software failure data, 
but include more software-specific information in their modeling.   
 
Test-based methods for both demand and time-based failures can be formulated.   Due to the 
importance of demand failures for safety-related protection systems of a nuclear power plant, 
this section concentrates on this type of failure.  For control systems, a time-based approach is 
more appropriate; details are available in Littlewood [1997] and Butler [1993]. 
 
Dahll, et al. [2007] state, “Testing means to execute a program with selected data and check the 
answer against an oracle.”  An oracle is a decision mechanism for judging the outcome of 
executing a program as successful (acceptable) or failed.   Here, the term “program” signifies a 
procedure within a complete software, the software of a major component of a digital system in 
an NPP, or the software of the entire system.  
 
Using a test-based method to quantify a program’s probability of failure requires completing the 
following main tasks: (1) generating test cases via the program’s expected “operational 
profile,”10 (2) carrying out the tests, and (3) applying the method to quantify the program’s 
probability of failure.  Purposely, this method draws statistical conclusions about this probability 
from the test results.   
 
The test-based methods described in this section are divided into two types according to how 
testing is done.  The two main types of testing are white-box testing and black-box testing, 
defined by Pressman [2001] as follows: 
 
1. “White-box testing, sometimes termed glass-box testing (or gray-box testing), uses the 

control structure of the procedural design11 to derive test cases.  Test cases so derived 
(1) guarantee that all independent paths within a module are exercised at least once, 
(2) exercise all logical decisions on their true- and false-sides, (3) execute all loops at their 
boundaries and within their operational bounds, and, (4) exercise internal-data structures to 
ensure their validity. 

 

                                                            

10 Chapter 5 of Lyu [1996] defines operational profiles, and describes their development and use in 
testing.  An operational profile consists of disjoint “operations” that the software can execute, along with 
the probability with which the operations will occur.  The operations of an operational profile are partitions 
of its input space.  An operation is a group of runs that typically involve similar processing.  A run 
represents the smallest division of software processing that is started by external demand.  
11 This type of testing makes use of information on the internal structure of the software in deriving test 
cases, as exemplified by the methods described in Section 5.3. 
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2. Black-box testing, also called behavioral testing, focuses on the software’s functional 
requirements.   Using this kind of testing will deliver sets of input conditions that will exercise 
fully all the functional requirements for a program.”   

 
Subsection 5.2 describes two black-box test-based approaches for estimating the probability of 
failure of a program, that is, the frequentist and Bayesian approaches, which are based on two 
different interpretations of probability.  Singpurwalla [1999] defines the frequentist approach as 
the relative frequency of an event after indefinitely repeated trials under “almost identical 
conditions,” and the Bayesian approach as the degree of belief that a person (or a group) has 
about the occurrence of an event.  Both approaches can give estimates of the value of the 
probability of failure of a program; they are briefly discussed is Section 5.2 for the case in which 
there are no failures after n tests.  As described therein, an upper confidence bound can be 
derived for this probability at any confidence level. Haapanen, et al. [2000] present the 
frequentist and Bayesian upper-confidence bounds for the case wherein failures occurred 
during testing.  
 
Subsection 5.3 briefly discusses two methods that use data obtained from tests, but also 
consider the internal structure of a software program, that is, white-box-testing methods. 
 
A few unique issues are associated with using standard statistical methods with software test 
data.  Their significance and the resulting limitations on estimating software failure probabilities 
are discussed in Section 5.4.  In general, these issues apply to every QSRM that utilizes test 
data, that is, BBN methods and reliability growth methods.     
 
5.2 Black-Box Test-Based Methods 
 
As mentioned previously, test-based methods essentially are those employing standard 
statistical methods to the results of software tests, and possibly to operational data, in the same 
way as hardware data is analyzed.  Black-box test-based methods consider a software program 
as a single entity, take random samples from its input space, determine if the outputs are 
correct, and use the results in standard statistical analyses.  The statistical analyses based on 
the two different interpretations of probability (i.e., the frequentist approach and Bayesian 
approach) are summarized below. 
 
5.2.1 Frequentist Approach 
 
The basic frequentist approach considers that testing a program follows a Bernoulli process, 
namely, a series of independent, dichotomous trials, where the two events at each trial can be 
either success or failure.  The parameter θ is the probability that a test case randomly selected 
from the operational profile entails a failure, and θ is constant (i.e., remains unchanged from trial 
to trial).  In sampling from a Bernoulli process, the binomial model gives the probability of 
observing exactly x failures in n independent trials.  Accordingly, if X is a discrete random 
variable that counts the number of failures in this process, and the possible values of X are x = 
0, 1, 2, …, n, then the associated probability density function (pdf) of X is 
 

( ) xnxn
xxXxg −−=== )1(}Pr{)|( θθθ         (5-1) 

 
where θ is an unknown constant.  Actually, the notation of the conditional probability g(x|θ) 
signifies  that the probabilities related to X are conditional upon the unknown value of θ.   



 

5-3 

 

 
Using Equation (5-1), the probability of no failures in n tests is 
 

nXg )1(}0Pr{)|0( θθ −===                (5-2) 
 
The upper confidence bound for θ, θu, at any confidence level is derived from Equation (5-2) 
[Haapanen, et al. 2000], and is given by 
 
θu = 1 – (1 – γ)1/n                            (5-3) 

 
where γ is the confidence level (expressed as a decimal less than 1.0).  This upper confidence 
bound means that if a large number of test cases are undertaken, then 100γ% of the test cases 
are such that the true failure probability is covered by the interval [0, θu] and, accordingly, in 
100(1-γ)% of test cases the true failure probability is larger than the upper confidence bound.  
Thus, there is a 100(1-γ)% chance to erroneously judge the failure probability.  The choice of 
confidence level depends on the possible consequences of such mistaken conclusions, which 
rest upon the outcomes of system failure.  
 
The number of successful tests (i.e., tests whose outcomes were judged successful) required to 
demonstrate that the failure probability is bounded by θu at confidence level γ, is obtained from 
Equation (5-3) as 
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=            (5-4) 

 
This equation shows that 3 x 105 tests must be successful (no failures observed) to demonstrate 
a probability of failure of the software per demand of 10-5 with a confidence level of 0.95 (i.e., 
95% confidence). 
 
5.2.2 Bayesian Approach 
 
The Bayesian approach is a straightforward application of Bayes’ theorem.  Miller, et al. [1992] 
derived the Bayesian methodology described here.  The likelihood function is the binomial 
model (Equation [5-1]), and a conjugate beta prior distribution is used to obtain a beta posterior 
distribution.   
 
Let Θ be the random variable representing an analyst’s knowledge of the unknown probability θ 
before testing.   The prior distribution of Θ is assumed to follow a Beta(a,b) distribution.  Thus, 
the pdf of Θ is 
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where 0 ≤ θ ≤ 1, a > 0, b > 0, and the normalizing constant B(a,b) is the complete beta function.  
The expected value of Θ is a/(a+b). 
 
Several authors discussed the choice of the prior distribution and the parameters characterizing 
it in textbooks on Bayesian statistical inference.  The handbook of parameter estimation, 
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NUREG/CR-6823 [Atwood 2002], offers general guidance on selecting prior distributions.  Some 
authors broached this subject within the context of the Bayesian estimation of the failure 
probability of a program; for example, Haapanen, et al. [2000] and Miller, et al. [1992].  In 
particular, Miller, et al. suggested using the results of reliability growth methods to estimate a 
prior distribution via the moment matching method.  In addition, quality of software lifecycle 
activities can generate a subjective prior distribution, as was done in some BBN studies, for 
example, Gran [2002a] and Helminen [2003a]. 
 
In Bayesian terminology, f(θ) is the prior pdf of Θ, and g(x|θ) (given by Equation [5-1]) is the 
likelihood function of X conditioned on the value of Θ.  The posterior pdf of Θ conditioned on the 
observed (after testing) value of X is denoted by f(θ|x).  According to Bayes’ theorem, the 
posterior pdf of Θ, given the observed value x, is:  
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Accordingly,  
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where x = 0, 1, …, n, and 0 ≤ θ ≤ 1.  
 
In other words, the posterior (after testing) distribution of Θ is Beta(x+a, n-x+b), where x is the 
number of failures observed in n tests, and a and b are the parameters of the prior Θ 
distribution.  The posterior distribution has a mean of  
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The Bayesian approach also can generate an upper bound of θ, θu.   To do so, a confidence 
level γ is specified that implicitly defines the upper bound of θu, such that 
 

Pr{Θ ≤ θu | x} = γ           (5-9) 
 
Solving this equation for θu determines an interval 0 ≤ Θ ≤ θu in which Θ lies with confidence γ.  
For example, if γ = 0.95, an analyst is 95% confident that the value of Θ is in the interval 0 ≤ Θ ≤ 
θu.  
 
Simplifying the mathematics by assuming that a = 1 and x = 0, the posterior cumulative 
distribution function (cdf) is expressed as: 
 

  ∫=≤Θ= u dxfxxF uu

θ
θθθθ

0
)|(}|Pr{)|(       (5-10) 

 
which,  reduces to 
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Solving this equation for θu 
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The number of successful tests required to show that the failure probability is bounded by θu at 
confidence level γ is obtained from Equation (5-12) as: 
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        (5-13) 

With regard to the confidence interval, note that Equation (5-13) differs from Equation (5-4) only 
in the term of b, which is equal to 1 if a uniformed prior distribution is selected.  With regard to 
the mean value of the posterior distribution given in Equation (5-8), for a small value of b, the 
number of tests without failure needed to achieve a mean value of 10-5 is 105. 
 
5.3 White-Box Methods 
 
The white box (or gray box) test methods take into consideration the internal structure of the 
software and have the advantage that they provide information on internal components of the 
software and may ensure more internal components be covered by tests.  The associated 
QSRMs have to account for the internal structure accordingly.  The following two studies are 
applications of the white-box methods to a reactor protection system. 
  
May, et al. [1995] described gray box testing as a partition-based method developed for 
assessing the reactor protection system of a nuclear power plant.  It partitions software into 
subsets, each represented by a partitioning factor αi, that is, the proportion of the code covered 
by the partition; and performs tests on individual subsets.  For each partition, a simulation model 
of the operating environment was used in generating test sets allowing random variations in the 
software input space.  Using a Bayesian approach, May, et al., showed that the mean failure 

probability of the software is approximately 
)(

1

iinαΣ
 , where ni is the number of successful tests 

of subset i.   
 
The gray box reliability method of Zhang [2004] uses a Monte Carlo method to sample from the 
software’s operational profile and counts the number of times a node of the software system is 
visited.  The method does not require visiting every path of the system, but every node must be 
visited.  If a node has not been visited, a manually identified set of inputs is used to make sure 
the node is visited. Bayesian analysis is used to estimate the probability that the system would 
fail given that a node is visited.  The overall probability of system failure is calculated in terms of 
the failure probabilities and visit frequencies of the nodes.  In an enhanced model, Zhang [2004] 
gives the system failure probability in terms of the probabilities of the visited and unvisited paths 
of the system. 
 
In addition, the defect-density based method described in Section 6.2 can be considered a 
white-box method, even though a finite-state machine model of the software was used instead 
of the software itself. 
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5.4 Review of Test-Based Methods 
 
This section discusses the use of findings from software tests for estimating the probability of 
software failure.  The following discussion benefitted from a workshop on software reliability 
held at Brookhaven National Laboratory in May 2009 [Chu 2009].  In general, the discussion 
applies to any QSRM, including SRGMs, employing test results in assessing software failure 
rates and probabilities. 
 
1. Testing hardware and software is different.  Hardware usually is evaluated by repeating 

similar tests many times, and counting the number of failures over a number of demands, or 
a specified period.  In contrast, applying the same test to software invariably gives the same 
result, either success or failure.  To address this issue, the selection of test cases should be 
based on the software’s operational profile, which reflects the software’s input space.  In 
order to cover the input space as completely as possible, the test cases should all be 
selected to be different from each other.12 

 
On the other hand, the operational profile may not be well defined/known, and the profile 
from which the tests are generated may not be the same as the actual operational profile.  
Hence, the testing environment may not represent the actual “operational profile” to which 
the software is exposed during operation in an NPP.  Littlewood [1991] stated that, “most 
software testing is unlike operational use, and any reliability predictions based on this kind of 
classical testing will not give an accurate picture of operational reliability.”  For this reason, a 
review panel for the Nuclear Installations Inspectorate of England concluded that the test 
results of the plant-protection system of Sizewell B could not be used to determine the 
probability of failure on demand of the system [May 1995].  This problem is widely 
recognized, as discussed by Bastani and Pasquini [1993] and Miller, et al. [1992].  In 
general, there is epistemic uncertainty about such aspects as representativeness of the test 
environment and the accuracy of the test oracle.  Nevertheless, the software’s testing profile 
should approximate, as closely as possible, the software’s operational profile.  

 
2. If a failure occurs during a test, and the associated software fault is identified and corrected, 

and the failure is no longer applicable to the corrected software.  However, since the 
software was modified, it may be inappropriate to use directly the test results from older 
versions of the current software in estimating software failure probabilities.  Furthermore, 
revising the software may have introduced new faults.  

 
A basic way to resolve this issue is to consider the revised software as a new software, as 
suggested by Parnas, et al. [1990]; Haapanen, et al. [2000]; and Littlewood [Chu 2009].  
Therefore, any tests performed with the older version are ignored, and the revised software 
will be tested from the beginning again.  Hence, evidence obtained from testing before 

                                                            

12 It should be noted that some systems (e.g., multi-threaded systems or event-driven systems) may not 
exhibit the same behavior each time the same test is run.  Also, initialization errors and memory (aging) 
related errors may cause anomalous test results.  The definition of software failure in [Chu 2009b] also 
implies that the occurrence of a software failure depends not only on the input state (triggering event), but 
also on the internal state of the digital system.  This indicates that, in addition to selecting test cases to 
represent different input states, test cases may also need to be selected to characterize this type of non-
deterministic behavior, if appropriate and feasible. 
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modifying the software (to resolve the detected failure) is disregarded.   Since a safety-
critical system may be required to have a very low probability of failure, such an approach 
may be essential for this kind of system.  

 
3. Errors in requirements and specifications of software have caused many software failures 

[ASCA 2007, Lutz 2004].  Testing may not uncover incorrect requirement specifications of a 
program, since this is not the goal of software testing.13  However, since testing typically is 
planned and carried out carefully, some errors in the specifications may be discovered by 
chance [Lutz 2004].  For example, if the requirement specifications are incomplete, such 
that a function that the resulting software must perform is missing, then the “fault” in this 
example is that the software lacks the function.  Its absence may be manifest under testing if 
the function is required during a test case, and the software’s result is wrong.  Kang, et al. 
[2009] suggested that it might be possible to exhaustively test the software of a reactor 
protection system, which, if true, potentially would demonstrate that the software does not 
fail.  However, because exhaustive testing can only verify that the requirement specifications 
are satisfied, the problem of incorrect requirements would remain unresolved.  Failure to 
account for requirement and specification errors is a limitation common among many of the 
QSRMs reviewed. 

 
4. Different types of tests have different capabilities for identifying different types of faults.  

Therefore, these differences should be considered when using the tests to statistically 
estimate software failure rates and probabilities.  For example, Ciupa, et al. [2008] 
compared the results of identifying faults three different ways, that is, through manual 
testing, random testing, and user reports that reflect actual operating experience.  They 
compared the distributions of the faults, identified using the three ways of identifying faults, 
over the categories/sub-categories of faults (e.g., specification faults and implementation 
faults).  They found significantly different distributions from the three distinct ways of 
identifying faults.  Frank, et al. [1997] pointed out that (1) if test cases are selected by 
sampling according to the operational profile, then direct estimates of the failure probability 
may be obtained, and (2) if a test case is selected in any other way, then the probability of 
encountering a failure bears no necessary relationship to the failure probability in 
operational use.  Popov and Littlewood [2004] addressed this aspect of testing considering, 
“Test suites are drawn in accord with the testing goal.  If operational reliability is targeted the 
test suites are generated using the expected operational profile … of software.  If debugging 
is targeted the test suite is generated according to what the debugger believes maximizes 
the chances of finding faults…”  They define a test suite as “…a sequence of demands on 
which software is executed.”  Since the objective in a PRA is to assess reliability (rather than 
identifying different types of faults), tests incorporating the expected operational profile 
appear to be the most appropriate.  However, the difference between the expected 
operational profile and actual operational profile may impose limitations on the accuracy of 
the test-based methods and any other QSRMs that make use of test data.   

 
5. Assuming that test results are suitable, very many tests must be carried out to gain 

statistical confidence in a probabilistic parameter with a low value.  For example, per 
Equation (5-8), to demonstrate a mean software failure probability on demand of 10-5 
requires 105 successful tests to be conducted.  To demonstrate this same failure probability 

                                                            

13 Methods other than testing can potentially find requirement defects, for example, inspections and 
model checking.   
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with a confidence level of 0.95 (i.e., 95% confidence), per Equation (5-13), 3 x 105 
successful tests must be conducted.  In both of these cases, there can be no observed 
failures during the testing.  If a failure occurs during testing, and the fault causing it is fixed, 
then testing must be repeated with the updated software.   

 
This issue is particularly acute for safety-critical software because it usually demands a very 
low probability of failure.  Butler and Finelli [1993] discussed this problem in detail.  
However, with increasing computing power and advances in testing techniques, conducting 
a large number of test cases may be achievable, as discussed in Section 7.2  of [Lyu 1996] 
and in [Cukic 1998].  There are many publications on accelerated testing, for example, 
[Cukic 1998] and [Bastani 1993].  Their applicability to safety critical systems remains to be 
investigated. 

 
6. The White-box methods have the advantage that they take into consideration the internal 

structures, such as paths and nodes of software, so that tests can possibly be performed to 
ensure that certain parts of the software will be tested.  While these methods provide 
information about the internal structure of the software and may detect faults that would 
otherwise be undetected, they require additional resources, such as those needed to 
estimate the coverage of different structural elements (e.g., estimating the frequency at 
which a path or node is visited).  From the perspective of estimating software failure 
probability, it is not obvious that they would provide better statistical results as compared 
with black-box test-based methods, assuming that the same number of tests is performed in 
both cases.  For example, the white-box method of [May 1995] provided an example study 
indicating that given the same number of tests, the white-box method provides the same 
results as the black-box method only if the partitioning factors, αi’s, are equal to 100%, and 
providing worse results (i.e., higher failure probabilities) if the factors are less than 100%.  
This can be observed by examining the expression for the mean failure probability specified 
in Section 5.3, in which the number of tests performed for each partition is multiplied by the 
partitioning factor, making the tests not as effective in achieving a lower failure probability.  
This observation appears counterintuitive, because the white-box method uses more 
information about the software and should provide better results.  A possible explanation is 
that the mathematical model does not fully capture the benefits of white-box testing.   
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6. OTHER QSRMs 
 
The methods considered in this section represent those methods that do not belong to the major 
categories of methods discussed in the three preceding sections.  These methods include (a) a 
correlation approach that estimates software failure rate at the end of the software testing stage 
by making use of the software engineering practices of past software development projects, and 
implemented in a software tool called “Frestimate”; (b) metrics-based methods that estimate 
software failure rates and probabilities by correlating software engineering measures/metrics 
and software reliability; and (c) the context-based software risk model that combines traditional 
probabilistic risk assessment approaches (e.g., event trees) with an advanced (dynamic) 
modeling approach  to integrate the contributions of digital hardware and software into a model 
of overall system risk.  In addition, a few studies that considered rule/standard-based methods 
and software diversities were reviewed. 
 
6.1 A Correlation Method Using Software-Development Practices 
 
6.1.1 Introduction 
 
Neufelder [2000a, 2000b, 2002] developed approaches for estimating the probabilistic 
parameters of software, such as its failure rate, and then implemented them in a computer code 
called Frestimate [SoftRel 2009b].  The review which follows is based on gathering documents 
on these approaches and this code from the public literature and SoftRel’s website [SoftRel 
2009b].  The focus of this review is on those features of the computer code related to assessing 
the probabilistic parameters of a particular software.  Frestimate calculates the probabilistic 
parameters of the software being evaluated, such as the failure rate and the mean time to 
failure (MTTF), during three “phases” of the life of the software:  
 

1. Early development.  This capability usually is employed before the software is 
developed, or during its development, before starting testing.  The main type of data 
used in this phase is the software-development practices.  
 

2. Systems testing.  This capability typically is employed when testing the software.  
Estimates of the probabilistic parameters of the tested software are obtained during or at 
the end of testing, and are based on testing failure data. 

 
3. Operational measurement.  After deploying the software for operation in the field, 

operational failure data are gathered and entered into the code to assess the associated 
failure rate and MTTF. 

 
Frestimate’s users determine which phase the software is in, collect the data for that phase, and 
enter them into Frestimate.  Only the first function, “Early Development,” is reviewed here; in 
many cases, when people refer to Frestimate, they mean this function.  When a user employs 
the second function, “Systems Testing,” Frestimate applies some software reliability growth 
models to estimate parameters, such as failure rate.  Software reliability growth models are 
detailed in Section 3 of this report.  The third function, “Operational Measurement,” seemingly 
uses simple formulas for assessing failure rate and mean time to failure (MTTF).  Neufelder 
[2009a] proposes that the actual failure rate and MTTF are simply functions of how many units 
have been deployed, the average usage time of each unit, and the number of failures reported 
to date on those units.”  She gives the numerical results of the following example:  If 2 units 
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(with the same software) are deployed, the average “duty cycle” for each unit is 730 hours, and 
the total number of software failures, including multiple instances of the same defect, since 
deployment is 17, then the MTTF = 85.9 hours.  Apparently, the MTTF was calculated as 
(2*730)/17.  When the MTTF is determined in this way, that is, accounting for every instance of 
every defect, and for all duty on all deployed units, Neufelder calls it an “external MTTF.”  This 
approach is not discussed here due to its simplicity.   
 
6.1.2  Description of the Predictive Model 
 
Neufelder [2002] states that “A predictive model is used when the software has not been 
developed or tested yet.  It is based on empirical data…As with any predictive model, one 
needs to have some trained data.  In this case, that includes observed software defect counts 
and the practices employed during the development of that software.  The author has mined 
data from 48 organizations.  Of those, the actual fielded defects were known for 22 
organizations.  This set of data constitutes the ‘trained’ data for which a predictive model was 
developed.  The software-development practices of the organizations were correlated to the 
observed defects.”  The development of the predictive model (i.e., the “Early Development” 
function in Frestimate) is described in [Neufelder 2000a], [Neufelder 2000b], and [Neufelder 
2002].  The approach, which was derived from a Rome Air Development Center (RADC) 
method [McCall 1992], essentially correlates the failure rate of a software project and software-
development practices, using a database of software-development practices and past software 
projects, including fault-detection experiences.   
 
Frestimate predicts (latent) “defect density” (DD), namely, a measure of the number of defects 
per thousand lines of code of the software, as an intermediate step to assess failure rate.  A 
(latent) defect is the same as a fault; this review uses the terminology employed in Neufelder’s 
documents.  Frestimate uses DD to obtain the total number of defects of any type, N0, expected 
at the end of testing, that is, on the delivery date.   
 
Neufelder’s approach [2000a, 2000b, 2002] for estimating the failure rate of software consists of 
two main steps, described below: 
 

1. Develop a “predictive model” of DD based on empirical data.  
 

2. Obtain DD using this model, and transform it into the failure rate of the software. 
 
Develop a “predictive model,” based on empirical data 
 
Figure 6-1 is an overview of the process for developing the predictive model.  Assigning a 
consecutive number to each box in the figure in the direction of the arrows (i.e., from the top and 
from the left), each step is briefly explained from the information given by Neufelder [2000a, 
2000b, 2002].  
 

1. Determine the universe of software-development practices and create a survey.  Select 
those software-development practices (e.g., consistent and documented formal and 
informal reviews of the software and system requirements prior to design and code, the 
language and operating system is well supported by industry, and existence and use of 
test beds) that are likely to be correlated to defect density for any organization.  
McCall, et al.’s work [1992] was a starting point for selecting these parameters.   
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Figure 6-1 Development of predictive model [Neufelder 2002] 
 

2. Find and collect as much valid data (samples) as possible.  Neufelder [2006] states that 
she benchmarked the software-development practices at more than 90 organizations.  
Accordingly, the database consists of information collected from them.14  Her breakdown 
of the 90 organizations was semiconductor fabrication 57%, defense/aerospace/space 
29%, firmware 7%, medical 4%, energy 1%, telecomm 1%, and, commercial software 
1%.  
 

3. For each sample, compute actual observed defect density for a deployed system.  This 
was accomplished by 1) plotting, in a scatter plot of data collected at different times, 
failure intensity (cumulative failures per cumulative time) on the x-axis, and cumulative 
failures on the y-axis; 2) using a Least Squares Estimate to find the best straight line 
through these points; and, 3) determining the y intercept and setting it to the theoretical 
number of inherent defects which is the numerator in defect density.  This number is 
theoretical because it is impossible to be completely certain when no defects remain in 
the software.  
 

4. Normalize all defect densities.  The number of thousands of source lines of code 
(KSLOC) of the software for each sample were counted.  Since each software may be in 
a different programming language, the KSLOC for each software was converted into 
assembler KSLOC.  The defect density for each software was normalized by dividing the 
inherent number of defects identified in the previous step by its assembler KSLOC.  
Defect density was used, rather than absolute value, to support comparisons of defect 
densities of programs developed in different languages.  
 

5. For each sample, collect survey responses associated with that same system.  
Neufelder collected responses to the software-development practices as written in the 

                                                            

14 Apparently, only data from a fraction of the organizations was used in building the model.  For example, 
Neufelder [2002] stated that actual fielded defects were known for only 22 out of the 48 organizations for 
which data was mined.  
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surveys mentioned in step 1.  She states [2000a] that she “… evaluated the practices for 
each of the organizations using the same criteria,” and that she “…was intimately 
familiar with each organization and their ‘actual’ versus ‘wish list’ practices.”  To avoid 
documentation of overly optimistic or pessimistic responses, she “…required inputs from 
a wide cross section of employees such as managers, lead engineers, quality engineers, 
test engineers, engineers with an average level of experience and new hires…”  
 

6. For all responses, verify that they are supported by evidence – eliminate sample if not.  
Neufelder required each organization to provide physical proof of all questions answered 
positively.  
 

7. For each software-development practice on the survey, compute correlation to defect 
density for all samples.  The response to a practice (also called parameter) was given 1 
for yes, 0.5 for yes but not consistently, and 0 for never.  Regression analyses were 
applied to demonstrate a correlation between each practice and the defect density 
obtained previously.  A negative correlation is expected when correlating practices to 
defect density.  Correlations of -1 and +1, respectively, signify that the practice perfectly 
correlates to lower- and higher-defect density.  A correlation of 0 means no correlation at 
all; such practices are dropped.  
 

8. Use various modeling techniques to determine points for each software-development 
practice.  Estimate each practice’s points (also called weights) by using the relative 
correlation of the practice (from step 7) as a seeding value, and then “…maximizing the 
correlation between the score that results from the sum of the weighted yes answers and 
the actual defect densities observed” [Neufelder 2000b].  
 

9. Choose the model with the highest R2 and lowest relative error.  Neufelder does not 
define the term R2, but, seemingly, it is the coefficient of determination of the regression.  
A polynomial regression model was selected as the best model for expressing the 
relationship between empirical scores and empirical defect density.   
 

10. The resulting predictive model is a function of the points accumulated on the survey.  In 
other words, the resulting polynomial (model) is a function of the total score from a 
completed survey, represented by the variable X.  The actual polynomial varies in 
Neufelder’s different publications, presumably because it changes slightly as new 
samples are incorporated into the model.  The polynomial from her most recent 
publication [Neufelder 2002] is 

 
Predicted DD = 1.7x10-7X2 - 1.00439x10-3X + 1.58463875      (6-1) 

 
The units of DD from this formula are the number of defects in a thousand source lines 
of assembler code, and it is the expected DD when the developers deliver the software 
to be used in the field.  Frestimate includes the resulting predictive model (polynomial).  
Note, it is unclear that the raw data and process used to arrive at the predictive model 
(i.e., the polynomial in Equation (6-1) justify the number of significant digits of the 
coefficients in this equation. 
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Obtain DD using this model, and transform it into the failure rate of the software 
 
The specific software-development practices of an organization that is developing or developed 
a software can be used to estimate the software’s failure rate via the predictive model.  
Neufelder proposes using the steps in Figure 6-2 to do so.  Again, assigning a consecutive 
number to each box in the figure in the direction of the arrows (i.e., from top and from the left), 
each step is briefly explained from the information provided in Neufelder [2000a, 2000b, 2002]. 
 
 

 
 

Figure 6-2 Using the predictive model to estimate the failure rate [Neufelder 2002] 
 
 

1. Complete the survey responses.  Frestimate offers the following four types of surveys 
(implemented in its modules): Basic (1 question); Shortcut (15 questions); Rome Labs (7 
“factors,” such as a “Development” factor that incorporates many development practices 
planned or used for the particular software project); and, Full-scale modules (117 
questions).  A user selects one of the four modules and completes a survey of the 
software-development practices used by a particular organization for generating 
software.  The survey depends on the user’s choice of module; for example, the surveys 
of the Basic and Full-scale modules have 1 and 117 questions, respectively.  Neufelder 
states that the accuracy of the results generally increases with more detailed modules.   
 

2. Collect/provide supporting evidence for all survey responses.   
 

3. Tally the points for each response.  The points for each software-development practice 
were obtained during the development of the predictive model (Step 8, above).  For each 
practice, some points are assigned to a “yes” answer, and, frequently, a different number 
of points is given to a “sometimes” response.  Based on the analyst’s responses to the 
questions, a point value is assigned to the corresponding practice.   
 

4. Enter the total score into the predictive equation for defect density.  The number of 
points for all software-development practices are summed to obtain the value of the 
variable X, which then is used in Equation (6-1) to obtain the DD.  
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5. Normalize the result by language.  If the software being evaluated employs a 
programming language other than assembler, then the DD in terms of assembler code 
obtained in the previous step must be converted to DD in the other language.  
Accordingly, the value of the former DD must be multiplied by the “code expansion ratio” 
of the other language.  Neufelder [2000b] cites Table 7-9 of Lakey and Neufelder [1997] 
as a source of the ratios for several languages.  She further notes, “The code expansion 
ratios were developed by Capers Jones of the Software Productivity Research, Inc.  
Table 7-9 is a short summary of a comprehensive listing.” 
 

6. Multiply the DD by KSLOC to get N0.  The DD from the previous step, expressed in 
terms of the software’s language then is multiplied by the software’s size (in thousands 
of source lines of code [KSLOC]) to estimate the inherent number of defects in the 
software, N0.   
 

7. Determine ratio of defects to failure rate – Q.  Neufelder [2002] indicates that the 
parameter Q is “…the ratio … between inherent defects and failures per time based on 
historical data.”  Frestimate offers three ways to assess Q: 
 
a. Using Frestimate’s built-in default values.  Apparently, these values come from 

[McCall, et al. 1992] because Neufelder [2000b] notes “If no historical data is 
available, [McCall, et al. 1992] provides a lookup chart of average values for Q…” 
 

b. Calculating the parameter using all fielded software defects for a similar software 
previously deployed.  
 

c. Computing the parameter by employing observed MTTF values for a similar project 
previously deployed.  
 

8. Predict the failure rate as a function of N0 and Q using a simple exponential formula: 
 

λ(t) = N0 * exp(-Q*t/N0) / t               (6-2) 
 
where t is the time of interest.  No formal derivation of Equation (6-2) was found.   

 
In the function “Early development,” Frestimate calculates a “nominal” value and lower- 
and upper-bounds of the failure rate, based on a user-specified confidence interval.  

 
6.1.3 Applications of the Predictive Model 
 
The only application of the predictive model for assessing the probability of failure or failure rate 
of a software program that was found was to NASA’s Space Transportation System (STS) flight 
software (FSW).15  Unfortunately, the details of that study are not publicly available due to 
confidential and/or proprietary concerns, so a review of the study was not performed as part of 
this project.  In the STS FSW study, the predictive model was applied for estimating the 

                                                            

15 Thompson, N., “Using Frestimate for a Phase-Specific PRA of STS Flight SW,” NASA - NRC Technical 
Interchange Meeting on Software/Digital Instrumentation and Control System Reliability Analysis, March 
4, 2009, Rockville, MD. 
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probability of “critical” failure, which was considered to be the loss of the crew (LOC).  This 
probability was estimated as follows: 
 

P = 1 – exp (-λT) 
 
where λ is the failure rate generated by Frestimate, and T is the mission time of the software.   
 
6.1.4 Review of the Correlation Method 
 
The general concept of performing correlation/regression analyses using past software 
development experience is reasonable.  However, because of the unavailability of detailed 
information on the raw samples and the regression analyses used to construct the predictive 
model (i.e., the “Early Development” function in Frestimate), this methodology cannot be 
evaluated in detail, and may not be appropriate for use where transparency and understanding 
of both data and modeling assumptions are required to permit sufficient levels of peer review 
and quality assurance.  The Frestimate method is a failure-rate based method which is not 
suitable for modeling demand failures of protection systems, and may only be useful in 
evaluating the frequency of spurious actuation of protection systems.  The potential limitations 
of this code for NRC’s purposes are discussed next, based on current information.   
 

1. Neufelder examined the failure data of many software projects, and used these empirical 
data for building the predictive model.  Her basic assumption was that she could get 
information about all the faults in the software projects.  However, the relationship 
between faults and failures is complex because of the unpredictability of the number of 
faults in the software, and the samples used from the software’s input space.  For 
example, Kanoun and Laprie (in Lyu [1996]) point out that the data in Adams [1984] from 
nine large software products revealed the activation of only 5% of the faults in a program 
with a mean lifetime of 15 years.  Hence, it is unclear that the empirical data underlying 
Neufelder’s predictive model encompass all the faults of every software project that she 
reviewed.  Thus, it may be incorrect to assume that she obtained information about all 
the faults in the software projects.  Accordingly, the predictive model might under count 
the number of faults in a particular software, thus underestimating the associated 
parameters, such as the failure rate. 
 

2. Neufelder’s predictive model is based on failure data from past software projects.  If 
many or most of these past projects involved software for normally operating control 
systems, the associated data used to obtain estimates of defect density may not be 
applicable to the types of software used in NPP protection systems.   

 
3. A user must complete a subjective survey of software-development practices.  Different 

analysts, having different perceptions of the ways the organization developing the 
software implements these practices, may generate different parameters.  
 

4. Frestimate assumes that the operational period is a continuation of the testing period 
because it considers that failures will happen during the operational period, defects will 
be discovered and removed, the failure rate will decline, and reliability will increase.  In 
practice, this assumption may be unrealistic because new defects can be, and have 
been, introduced into software when removing known ones.  Hence, the failure rate may 
not decrease.  
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5. Applying Equation (6-2) requires estimating the parameter “Q.”  Assessing it via one of 

the three approaches described above seems to be a subjective process involving large 
uncertainties, because none of these approaches use information related to the specific 
software being assessed.  

 
6. Apparently, similar to most QSRMs, Frestimate does not specifically account for the 

context in which software operates, does not consider specific software failure modes, 
and cannot be used for estimating probabilistic parameters of software when the 
expected values of the parameters are small.  Lakey and Neufelder [1997] recognize this 
latter limitation when they discuss “Ultra High Reliability Prediction” as follows:  “It is 
essential to consider achievability and testability when predicting reliability for software 
systems that must be relatively high.  Demands for perfection should be avoided as they 
are not testable or demonstrable.  For example, if the demand for the failure rate is 10-4 
then there must be sufficient resources for extensive validation and verification to 
demonstrate this level.  The current state of the art is limited in providing any help in 
assessing the software reliability at this level…” 

 
7. It is not known whether Frestimate was validated or benchmarked by organizations 

independent from the organization (SoftRel, LLC) that developed it.   
 
6.2 Metrics Methods 

6.2.1 Description of Metrics Methods 

The metrics methods, developed by Smidts and Li at the University of Maryland (UMD) [2000, 
2004], estimate software failure rates and probabilities by correlating software engineering 
measures (SEMs)/metrics and software reliability.  Development includes (1) using expert 
opinion to identify and rank SEMs important to software reliability, and (2) developing methods 
for calculating software reliability using system specific SEM information.  As a test case, the 
methods were applied to a personnel access control system (PACS) and the findings compared 
with test results generated by sampling inputs from an operational profile representing the 
actual operating condition of the system.  The development of the methods is further described 
below. 
    

1. As detailed in NUREG/GR-0019, Smidts and Li [2000] screened by order of importance 
78 SEMs earlier identified and ranked at the Lawrence Livermore National Laboratory 
(LLNL) [Lawrence 1998]; they reduced them to 30 measures constituting the basis of the 
UMD study.  That study introduced an important concept, namely, that a “reliability 
prediction system” (RePS), that is, a method/system for estimating software reliability, is 
a complete set of SEMs from which software reliability can be predicted.  The criteria for 
ranking the SEMs were established by revising those of the LLNL study; the criteria 
constituted an important part of a questionnaire sent to a panel of experts who ranked 
the SEMs.  These experts from the nuclear and aerospace industries covered the 
following areas: Software development, software engineering, software reliability, 
software safety, and digital instrumentation and control system design.  Later, a 
workshop was held in which the experts summarized their evaluations, and offered 
feedback on the ranking method.  The data from this elicitation, including 10 missing 
measures identified, were aggregated and used in ranking a total of 40 measures. 
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2. In NUREG/CR-6848, Smidts and Li [2004] detail their selection of six “root”16 SEMs as 

the measures used to develop methods for quantifying probability of failure on demand.  
The objectives are to validate the RePSs in terms of their accuracy, and to validate the 
ranking of SEMs in [NUREG/GR-0019].  The criteria used in selecting the SEMs were: 
(a) ranking level determined in NUREG/GR-0019, (b) ease of data collection which calls 
for object-oriented measures identified in NUREG/GR-0019, (c) relevance to reliability 
determined in NUREG/GR-0019, and (d) coverages of different SEM families defined in 
NUREG/GR-0019.  The selected root SEMs are: 
 

• mean time to failure, 
• defect density, 
• test coverage, 
• bugs per line of code, 
• function points (a measure of the system’s functional size), and 
• requirement traceability. 

 
For each measure, typically supplemented by other support measures, a method for 
quantifying software failure probability was developed using available methods, 
concepts, and empirical formulas.  The RePS based on the SEM ranked highest by the 
experts (i.e., defect density) is briefly described below and reviewed in Section 6.2.2. 
 
For the SEM of defect density, defined as the number of defects per thousand lines of 
code, the estimation of the probability of system failure-on-demand was derived from a 
concept formulated by Voas [1992] on estimating testability of software.  The system’s 
failure probability is calculated as the sum of the probabilities of execution of all those 
input/output paths with identified but unresolved defects in a finite-state machine model 
of the system.  The probability that such a path is executed is calculated as the product 
of the probabilities of the transitions in the input/output path. To carry out the 
calculations, the method requires that a finite-state machine representing the users’ 
requirements and the associated operational profile be developed, and some defects of 
the system be identified during inspection of the code.  This method can be considered a 
white-box testing method of the type that is discussed in Section 5.3, which takes into 
consideration the internal structure of the software. 
 

3. In NUREG/CR-6864, Smidts and Li [2004] discuss six different methods used in 
estimating system failure probability, one for each SEM.  These methods were applied to 
the PACS and the results compared with the “real” failure probability estimated using 
test results of 42 failures in 499 trials.  The defect density SEM produced the best result. 

 
6.2.2 Review of Metrics Methods 

The metrics methods were applied to the PACS and some of the methods were demonstrated 
to provide reasonably good estimates of the actual system failure probability.  However, the 
example system is a relatively simple system that does not have the very high reliability that is 

                                                            

16 As stated in NUREG/CR-6848, “the measure on which RePS construction is based is termed the ‘root’ 
of the RePS.  Other measures within the RePS are defined as ‘support’ measures.” 
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expected of a safety related system at a nuclear power plant.  The proposed approach appears 
to suggest that one RePS be developed for each of the 40 SEMs to determine the best 
method(s).  It is desirable that the expert opinion in ranking the SEMs be used to reduce the 
number of RePSs to be considered, as suggested by one of the peer reviewer comments 
included in NUREG/CR-6848.   
 
The metrics methods were developed by applying available methods, concepts, and empirical 
formulas and do not represent new innovative methods.  Some of the methods use engineering 
insights (as opposed to application-specific information) to develop empirical formulas 
representing the relationship between software reliability, that is, failure rate and probability, and 
software engineering measures.  The empirical formulas are not laws of software reliability; 
hence, their general applicability and accuracy are limited.  An exception is the previously 
described method associated with defect density.   
 
As suggested in Smidts and Li [2000], a method (system) for estimating software reliability 
(i.e., an RePS,) should be a complete set of SEMs from which software reliability can be 
predicted.  Each of the 6 methods described in NUREG/CR-6848 is capable of producing an 
estimated failure probability using supporting measures that are not among the 40 root SEMs 
identified by the experts, and thus consists of a complete set of SEMs according to the definition 
of NUREG/GR-0019.  The root SEMs were applied in an orthogonal, independent manner and 
the available documentation does not indicate that any work has been done on development of 
metrics methods that combine some or all of the highly ranked SEMs.   
 
For the example method based on defect density, two important assumptions were implicit:  
 

1. The identified and unresolved defects are the only defects remaining, and 
2. The finite-state machine model of the system is a realistic representation of the actual 

software in terms of the likelihood that different branches of different paths are actually 
executed. 

 
These assumptions may not be valid.  In the case of the first assumption, there may be 
unidentified faults which the method does not account for.  NUREG/CR-6848 proposes to use 
Capture/Recapture models to estimate the unidentified defects.  It is not clear if this approach 
has ever been validated.  In the case of the second assumption, the probability of an execution 
path of the finite-state machine may not truly represent that of the actual system even if the 
operational profile were known perfectly.  In addition to concern over these two assumptions, it 
is also not clear from Section 5.2.4 of NUREG/CR-6848 how the defect density RePS actually 
relates to the calculated defect density. 
 
NUREG/CR-6848 considers that the results of the study validated the overall approach by 
showing that highly ranked SEMs produce results that are closer to the true answer.  However, 
such a conclusion depends on the quantification methods developed and associated with the 
SEMs.  Alternative quantification methods that may produce very different results can be 
developed and associated with the SEMs (as indicated in NUREG/GR-0019) and potentially 
lead to a different conclusion.  For example, it would be equally valid if one associates a 
software reliability growth model (SRGM) to the defect density SEM, because the SRGM does 
address defects, and this might lead to very different results.  
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6.3 The Context-based Software Risk Model (CSRM) Method 
 
6.3.1 Introduction 
 
The Context-based Software Risk Model (CSRM) method, as described in [ASCA 2007], 
combines traditional probabilistic risk assessment (PRA) approaches (e.g., event trees) with an 
advanced modeling approach (e.g., the Dynamic Flowgraph Methodology [DFM]), to integrate 
the contributions of digital hardware and software into a model of overall system risk.  To a large 
extent, the CSRM method apparently is an implementation and extension of the approach 
proposed by Garrett and Apostolakis [1999] using DFM.  It should be noted that, as indicated in 
[ASCA 2009], the context-based, risk-informed testing associated with this approach is not 
meant to be applied to scenarios that occur under nominal system conditions, since these types 
of scenarios can be quantified using existing software reliability estimation models.  Rather, as 
stated in [ASCA 2007], CSRM focuses on identification, assessment, and prevention of digital 
system failures that are due to incorrect or logically incomplete software design and 
specifications, which are likely to manifest themselves only under off-nominal conditions (e.g., in 
conjunction with hardware failures or other system conditions that might not have been 
envisioned when the software requirements were specified). 
 
6.3.2 Description 
 
Due to the novel approach involved, the descriptions of the CSRM method given below are 
quoted directly from [ASCA 2007] to preserve clarity.  This subsection also includes some 
information from [ASCA 2009] on using CSRM for quantifying a probabilistic parameter 
(i.e., demand failure probability or failure rate) of software failure.  The equations presented 
were re-numbered for simplicity, and some clarifications are offered in square brackets. 
 

The basic concept of the Context-based SW [software] Risk Modeling (CSRM) method is 
that software failures are highly context dependent, therefore, the probability of success or 
failure of software-driven and software-controlled operations can change drastically when 
the system of which the software is a part enters a different “context.” The boundary 
conditions and inputs to the software produced by the “balance-of-system” are ultimately 
what determines a proper or faulty response by the software itself. Unlike the majority of 
hardware failures that are characterized as being random in time with a certain type of 
failure rate (typically assumed to actually be constant in time), software failures are driven by 
a conditional cause-effect mechanism, by which faults in software logic design, or faults 
introduced accidentally at the time of coding or compilation, become actual failures when a 
specific logic path of instruction execution is traversed and activated because of a certain 
input condition – i.e., by a certain specific combination of inputs received from the balance-
of-system and / or external environment. 
 
The CSRM method is executed by carrying out the following steps. These steps correspond 
to the standard execution steps of a typical PRA, as referred to in parentheses.   
 
1. Identify all mission-critical and safety-critical system functions supported by software 

(System Familiarization Step of PRA).  The objective of this step is to identify all the 
critical system functions executed directly or supported indirectly by the software. This 
ensures that the analytical steps implemented later will cover all potential risk 
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contribution from the software, either by inclusion in the model or exclusion from the 
model with appropriate justification. 
 

2. Identify all major logic conditions of mission-critical system function execution that may 
induce or trigger software errors (Model Development Step of PRA).  … [The goal of this 
step is to] identify all major logic conditions of mission-critical system function execution 
that may induce or trigger software errors. The objective is to decompose the software-
related system risk into a disjunction of N context-dependent terms, as expressed by 
Equations 6.3-1 and 6.3-2 below: 

 

 
          (6.3‐1) 

 
   (6.3‐2) 

 
where: 

SSWR ≡ overall system-level SW-related risk  
CSWRi ≡ i-th context-related SW risk-contributing item 
SCi ≡ i-th context-forcing system condition 
SWR / SCi ≡ SW response given the i-th context-forcing system condition 

 
…logic PRA models will be used to analyze the context-dependent terms in 
Equations 6.3-1 and 6.3-2…such as the Dynamic Flowgraph Methodology (DFM).   

 
A DFM model is a graphic network that links key process parameters to represent the 
cause-and-effect and the time-dependent relationships. In particular, for a digital control 
system, both the controlled/monitored process and the controlling software itself are 
represented in the DFM model.   

 
Key controlled/monitored process parameters and software variables that capture the 
essential behavior of these components and software/firmware functions are identified 
and represented as process variable nodes.  The variable represented by a process 
variable node is discretized into a number of states.  The reason for discretization is to 
simplify the description of the relations between different variables.  The choice of the 
states for a process variable node is often dictated by the logic of the system.  The 
number of states for each variable must be chosen on the basis of careful consideration 
to balance the accuracy of the model with the complexity introduced by higher numbers 
of variable states. 
 
These process variable nodes are then linked together through transfer boxes or 
transition boxes for instantaneous actions or time-delayed actions, respectively.  A 
decision table is used to represent the relationships between input and output process 
variable nodes for [either type of] box.  This table is a mapping between the 
combinatorial states of box inputs to the outputs.  Decision tables allow each variable to 
be represented by any number of states. 

 
When traversed inductively, [DFM models] generate scenario representations 
conceptually similar to ET [event tree] or ESD [Event Sequence Diagram] model 
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representations, although of course not limited to binary variable and state 
representations like the latter. When traversed deductively, they produce the multi-state 
variable equivalent of binary FT [fault tree] models and generate failure “prime 
implicants,” which are the multi-valued logic equivalent of binary logic “cut-sets” (e.g., FT 
cut-sets). 

 
3. Quantify or bound the probability of erroneous software behavior in response to system 

conditions identified per Step 2 (Risk Quantification Step of PRA). … [The purpose of this step is] 
to quantify or “bound” the probability of erroneous software behavior in response to system 
conditions previously identified.  ...The prime implicants obtained in a DFM analysis can be 
generally classified into 3 types: 
 

1. Prime implicants that are conjunction of hardware states. This class of prime implicants 
represents hardware only fault conditions. 

2. Prime implicants that are conjunction of software states. This class of prime implicants 
represents software only fault conditions. 

3. Prime implicants that are conjunction of hardware states and software states. This class 
of prime implicants represents software fault conditions that are triggered by some 
specific hardware conditions. 

 
The DFM top events are quantified in fashion similar to fault-tree top events. For a particular top 
event i, the set of n prime implicants … is first converted to a set of m mutually exclusive 
implicants (MEIs) … [and] the probability of the top event can be calculated as the sum of the 
probabilities for these mutually exclusive implicants.  
 
[For the MEIs of the third type, i.e., those that are conjunction of hardware states and software 
states, the] CSWRi context-related SW risk-contributing items that appear in Equations 6.3-1 and 
6.3-2 can usually be considered as being independent and mutually exclusive, so that in terms of 
associated probabilities, the quantitative risk formulation below can be applied: 

 

 
            (6.3‐3) 

 
Using the context decomposition (Equation 6.3-3) as a road map, SW functional analysis can be 
carried out and the risk scenario modeling results can be used to guide the SW test process, 
which in turn drives risk scenario quantification. In essence the analysis permits the partitioning of 
quantification and associated testing between: 
 

A. A subset of “normal conditions” that have high values for the P(SCi) terms (order of 
magnitude 10-1 to 1) and thus need to be shown to have low values (typically order of 
magnitude < 10-3) for the conditional probabilities of erroneous SW response, 
P(SWR/SCi). 

 
B. Subsets of “off-normal” conditions, triggered by balance-of-system failure or anomaly 

events with relatively low value probabilities P(SCi) (order of magnitude < 10-2), and thus 
only need to be shown to have “low-enough” values for the conditional probabilities of 
erroneous SW response, P(SWR/SCi) (typically order of magnitude 10-2 or lower). 

 
In general, the recommended quantification of Equation 6.3-3 terms can proceed by choosing for 
each CSWRi scenario the best applicable SW reliability estimation model. For example, 
quantification of “type A” normal condition CSWRi scenarios, where P(SCi) values are by 
definition high and thus P(SWR/SCi) values should be demonstrated to be very low, one could 
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use a Bayesian belief network approach that accounts for generic and process-related 
information… to generate a prior for the P(SWR/SCi) values. Each such prior could then be 
“updated” (in the Bayesian statistical estimation sense) via the appropriate type of testing process 
that would be feasible in terms of time and resources. 
 
The “type B” anomaly or exception driven CSWRi scenarios, on the other hand, can be 
successfully quantified, regardless of whether the statistical method preferred is classical or non-
informative-prior-Bayesian, with a low number of tests, logically partitioned as discussed earlier to 
prove P(SWR/SCi) values to be below an upper bound that doesn’t need to be any lower than 
order-of-10-2. 
 
Since in testing, the SW may not be subjected to the same environment as in the actual system 
application. If a specific function cannot be tested in its true “mission-configuration,” either 
because it is not well defined, or because it is complex, or because of any other reasons, then the 
conditional SW reliability estimation may have to be modified with an appropriate adjustment 
factor, which will usually act in the conservative direction, i.e., pushing towards a lower reliability 
estimate than what is produced by the form of testing that is possible.  
 
The compilation of a table [containing such adjustment factors or alternative conditional 
probability estimations] … permits an expert judgment of to what degree a software reliability 
estimation obtained for a particular software module can be applied to specific functions that are 
relevant in a conditional probability formulation like Equation 6.3-3. The objective is to judge 
whether the software reliability model may have been applied to a software module containing the 
function but exerting it under conditions substantially different from those that may be 
encountered in the actual mission, or, in cases of more extreme divergence between test and 
mission conditions, whether the actual function may have not been exerted at all in testing. 
 
The different values of the factor that can be used in such a tabulation should be arrived at via a 
process of expert elicitation, which should include software design engineers and software test 
experts as well as PRA experts. This process may be carried out in three steps: 
 

1. Define the table structure, i.e., identify, structure and characterize, in qualitative and/or 
discrete terms, all the factors that are believed to have determinant influence on the value 
of the adjustment for the originally obtained direct estimation of the conditional software 
POF [probability of failure]; 

 
2. Define the ranges of magnitude of adjustment of the direct estimation believed 

appropriate for each combination of qualitative or discrete characterizations of the 
determining influence factors; 

 
3. Select a specific value, or distribution within the defined range, for the adjustment factor 

to be applied to the originally estimated conditional probability. 
 
The CSRM method can be used to support quantifying the probability of software failure, but it is 
not a quantification method or approach for this quantification.  This point was clarified in [ASCA 
2009] as follows: 

 
A. The CSRM process provides a modeling roadmap by which software events that are 

important to mission success or failure can be systematically identified and analyzed in 
PRA-compatible and consistent fashion; 

 
B. CSRM does not mandate or force any single particular way of quantifying the basic 

software failure modes that may contribute to the mission relevant software-related 
events referred to in A above. 
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The above points are made because some misinterpretations have occurred, by which the CSRM 
process was being looked at not as a PRA modeling process, but as if it provided a specific 
formula to generate quantitative risk values for software.  This is not the case.   CSRM is a PRA 
modeling tool, and, like the PRA event-tree / fault-tree modeling paradigm, does not mandate 
which specific failure rate databases or estimation formulas are to be used to quantify cut-sets 
and basic events.  Of course this does not make it inappropriate to consider the question of what 
quantitative estimation processes can be effectively used in conjunction with the CSRM modeling 
approach… 
 
…The method by which software failure modes and states can be quantified is highly dependent 
on the state of development of the system and the software itself.  In the application of CSRM, or 
any other PRA process to a mission and system at the design concept or early design phase of 
development, where little or no system-specific software test results are available, only “surrogate 
data” or “parametric” estimation methods can be used to quantify the software states, and this 
includes any data that may have been developed at lower levels of analysis (i.e., subsystem PRA 
models inclusive of software). 
 
In later stages of system development, the PRA model quantification can be updated with 
system-specific software test data, after extensive tests of the software have been performed.  To 
best support PRA model quantification, these tests should be “risk-informed,” i.e., directed at 
resolving questions and uncertainties pointed out by the earlier software PRA models and 
analyses… 
 
To summarize, CSRM quantification can be in principle executed using any of the following 
approaches, alone or in combination: 
 
Method A: Use of “surrogate data,” i.e., software failure and anomaly historical records from 
missions using software functions of similar nature, to estimate overall software failure probability 
and relative frequency of basic software failure modes.  …This method uses surrogate data to 
quantify the software failure states in the CSRM logic models.  This method is generally applied in 
the early design phase, where no direct system-specific software test data are available.  The 
surrogate data can be in the form of failure and anomaly history of software used in similar 
contexts. 
 
Method B: Use of a parametric regression model, such as “FREstimate,” to estimate an overall 
software residual (i.e., projected to post development and testing) failure rate.  …This method 
uses parametric regression models to estimate residual software failure rates. Factors that go into 
those regression models include the Software Engineering Institute (SEI) Capability Maturity 
Model (CMM) level of the software development organization, predicted size of the code, and 
scale of the development and quality assurance/quality control effort...  
 
Method C: Use of expert opinion to sub-allocate an overall software failure probability or failure 
rate to a sub-set of software failure modes of interest.  …This method assumes that the overall 
software failure probability estimates are derived by some means such as [Methods A and B].  
Expert opinion is then utilized to sub-allocate these overall estimates into software failure modes 
that are represented in the CSRM logic models. 
 
Method D: Use of system-specific software test data to estimate the probability or failure rate of 
specific software functions and failure modes of interest.  …This method…assumes a certain 
degree of communication and co-operation between the PRA team and the software testing team 
in identifying, setting up and running the tests to quantify…specific software failure states. 
 
…Methods A, B and C are applicable in early system development and design stages, whereas 
Method D becomes applicable only after system software has become available and testable, at 
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least in prototype form.  …[O]verall software failure probability derived with either Method A or 
Method B can be sub-allocated with Method C. 

 
 
6.3.3 Applications of CSRM 
 
ASCA [2007] describes the CSRM method and demonstrates it by applying it to part of the 
software of a Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam), a free-
flying satellite that affords flexible remote-viewing capabilities to support manned-space 
missions.  As described in [ASCA 2007], the principal steps in the analysis of the Mini AERCam 
included: 
 

1. Development of a top-level event tree that identifies the key events of the mission 
phases being modeled 

2. Development of DFM models for the pivotal events (top events) in the event tree 
3. Deductive analysis of the DFM models to obtain prime implicants (i.e., minimum 

combinations of states of variables that can cause occurrence of the top event) 
4. Conversion of the prime implicants (PIs) to a set of mutually exclusive implicants (MEIs) 
5. Quantification of the prime implicants using surrogate (generic) hardware failure data 

and testing results using a full system simulator package 
 

The DFM approach has been used previously to evaluate the risk associated with software 
failures in the nuclear and aerospace industries, as demonstrated by Yau, et al. [1995] and Yau, 
et al. [1998].  As mentioned previously, the prime implicants obtained through deductive DFM 
analysis of software-based systems can be classified into those that contain (1) only hardware 
conditions, (2) only software conditions, and (3) combinations of hardware and software 
conditions.  An excerpt from [ASCA 2007] describing how a PI (of the Mini AERCam) consisting 
of hardware and software conditions (i.e., of Type 3) was quantified is provided below. 
 

The hardware condition is a small leak in one of the propellant lines. The software condition … 
causes drifting of the attitude control given a sub-nominal thrust caused by a line leak. If only one 
of the two conditions exists, the Mini AERCam does not fail...  This PI example shows how this 
type of analysis identifies SW [software] entry conditions for which the SW needs to be tested, 
which do not correspond to normal states of the system and may not be otherwise identified and 
tested for. 

 
…[The PI] was quantified by considering the “entry condition” (i.e. small propellant line leak) 
[represented in the report as condition “C3”] and the conditional probability that the software 
causes an attitude shift under this … condition. The former entry condition was quantified with 
data from a HW [hardware] failure rate database (NPRD [Nonelectronic Parts Reliability Data]). 
The failure rate associated with the entry condition was determined to be 6.0E-06/hr. Given a 
mission duration of 5 hours, the probability is: 
 
P(C3) = 3.0E-05. 
 
Testing of the software conditional failure rate using real hardware in a test-as-you-fly 
configuration is ideal, but was considered unrealistic for this project. Instead, the software 
conditional failure probability [PF|C3] was estimated by testing the attitude control function under 
the simulated presence of the entry condition using a Virtual System Integration Laboratory 
(VSIL) simulation of the hardware provided by Triakis Corporation. The VSIL simulation uses 
hardware documentation to produce a realistic software model of the hardware that can interface 
with the actual GN&C [Guidance, Navigation and Control] software … To quantify the conditional 
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software failure contribution [for this PI], an unfaulted baseline mission profile was simulated and 
it was confirmed that the GN&C software functioned correctly. 
 
…A function was then added to simulate the presence of the gas leak and a series of test runs 
were performed to determine how the GN&C behaved under the faulted conditions. The function 
allowed the gas leak to occur at any time during the simulation, in any direction, and with any 
combination of force and torque. 
 
A combination of intelligent partitioning and randomization was used to ensure that the test cases 
covered the mission space as completely as possible. Testing showed that each attitude 
maneuver consisted of 3 phases: 
 

1. Initial movement 
2. Oscillation 
3. Stabilization 
 

The three phases take a disproportionate amount of time, so having the leak start at a random 
time during the mission would have tested the stabilization phase much more rigorously than the 
movement phase, even though the stabilization phase was considered the least likely to manifest 
a failure during a leak. To prevent this, an equal number of tests were performed for each phase, 
with the leak starting at a random time during that phase. The direction of each leak was 
randomized, with pitch, yaw, and roll equally represented. The force of the leak was randomized 
to be uniformly distributed between 5% and 40% of the Mini AER Cam’s thrust in that direction. 
The upper limit was selected in accordance with the definition of a small leak (0-40% of thrust). 
The lower limit was selected because leaks with very small force were unlikely to produce results 
more severe than larger leaks and testing time was limited. 
 
A total of 351 test cases were run. This number was determined by the time limits on the project; 
more cases would have been desirable. State data was recorded at 1 second intervals. A test 
case was considered a success if the Mini AER Cam’s actual orientation stabilized within the time 
allotted, and stabilized to within 8º per axis of the commanded orientation. 8º per axis was chosen 
because this is NASA’s [National Aeronautics and Space Administration’s] official success 
criterion for Mini AER Cam attitude accuracy. Other state data was recorded to clarify the 
decision tables in the GN&C DFM sub-model. 
 
None of the test cases produced an error, so a straight Bayesian estimation was used to 
establish a preliminary failure probability estimate of: 
 
PF|C3 = 2.83E-3 
 
Because the real hardware was not used for the testing, an adjustment to the preliminary PF|C3 
was made using the Probability Adjustment table in Table 2-1 of [ASCA 2007]. 
 
Type of Entry Condition = Exception 
Type of SW Function = Well Specified - Complex 
Type of Testing = Formal in Simulated System Configuration 
 
After expert elicitation from the VSIL team and examination of the quality of documentation used 
to create the simulation, an adjustment factor of 15 was chosen to reflect the departure from “test 
as you fly” principle introduced by using a simulation of the Mini AERCam hardware. 
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After applying the adjustment: 
 
P’F|C3 = 2.83E-3 x 15 
P’F|C3 = 4.2E-2 
 
Hence, the probability estimate for this mutually exclusive implicant is found to be: 
 
P(MEI3) = P(C3) x P’F|C3 
P(MEI3) = 3.0E-5 x 4.2E-2 
P(MEI3) = 1.26E-6 
 

One of the commonly cited limitations with using test-based methods is that they are not 
practical for demonstrating very low failure rates or demand failure probabilities [Butler 1993].  
As stated in [ASCA 2007], the risk-informed and CSRM-based testing shows how a risk level on 
the order of 10-5/demand for a specific risk scenario and context can be demonstrated with a 
test effort on the order of a few hundred hours of computer and simulator time. 

 
6.3.4  Review of CSRM 
 
As emphasized in [ASCA 2009], CSRM is not specifically an approach to estimating the 
probability or rate of failure modes of a particular software (i.e., it is not technically a QSRM), but 
is more of an overall integrated risk-modeling approach that incorporates hardware, software, 
and the static or dynamic interactions between them.  The principal focus of CSRM is on 
uncovering the type of problems that traditional software reliability approaches typically 
overlook, that is, logic errors triggered by off-nominal system conditions, since ASCA believes 
these errors are the dominant contributors to system risk from software errors and require a 
more targeted approach for quantification. 
 
The CSRM approach appears promising in its ability to risk-inform the software testing process 
for software-related failure scenarios that involve a combination of software and hardware 
failures.  In such an approach, the software testing process does not need to prove that the 
software is error-free through tens or hundreds of thousands of demands or hours of operation, 
but needs only to prove that the software correctly responds to randomly selected combinations 
of inputs associated with system conditions (contexts) that may not have been thought of by 
system and software designers.  However, the context-based evaluation has to be carried out 
for each software-related failure scenario that involves a combination of software and hardware 
failures, and based on the example for one software-related failure scenario described in [ASCA 
2007], the quantification approach appears to be relatively resource intensive.   
 
As discussed previously, ASCA [2009] proposes four methods for assessing a probabilistic 
parameter of a particular software: 
 

1. Use of “surrogate data” 
2. Use of a parametric regression model 
3. Use of expert opinion 
4. Use of system-specific software test data 

 
While the first three of these methods (surrogate data, parametric regression model, and expert 
opinion) appear to be applicable to a software function, in general, it is not clear that they can be 
effectively applied at the level of resolution needed to differentiate between different contexts 
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(i.e., different conditions of the system in which the software is embedded).  The remaining 
approach (use of system-specific software test data) is the most innovative and promising, 
though it does require the availability of a full system simulator package for performing the 
context-based, risk-informed testing.  Without such testing capability, it appears that the CSRM 
approach would need to rely on the same type of QSRMs addressed elsewhere in this report. 
 
Lastly, a key issue for all QSRMs that rely on test data involves how well a software’s testing 
profile matches its operational profile.  As described in [ASCA 2007], when performing risk-
informed testing (essentially by applying method 4, above), one way this issue can be 
addressed is by applying an adjustment factor obtained through expert elicitation.  Based on the 
information and examples provided in [ASCA 2007], it appears that adjustment factors of up to a 
factor of 50, or assumed conditional probabilities of failure up to 1.0, may be applied.  Since 
these adjustment factors can significantly influence the estimation of the software failure 
probability (or rate), and are determined and applied based on expert elicitation, the application 
of this method is likely to entail significant subjectivity and uncertainty, and the resulting factors 
may not be bounding.  Nonetheless, the application of adjustment factors appears to be one 
possible way of addressing the software testing conditions. 
 
In summary, CSRM is not specifically an approach to estimating the probability or rate of failure 
modes of a particular software (i.e., it is not technically a QSRM), but is more of an overall 
integrated risk-modeling approach that incorporates hardware, software, and the static or 
dynamic interactions between them.  It appears reasonable as a means of risk-informing the 
software testing process in support of assessing software reliability.  Aspects of the CSRM 
approach can also be used to support quantifying software failure rates or demand failure 
probabilities for inclusion into an existing digital system reliability model.  The most unique 
aspect of the CSRM approach is the context-based, risk-informed testing using a logically 
defined and partitioned input-parameter space for scenarios that involve off-nominal conditions 
(i.e., scenarios involving anomalous events such as one or more component hardware failures).  
This context-based evaluation has to be carried out for each software-related failure scenario 
that involves a combination of software and hardware failures.  The publicly available reports 
specifically on CSRM [ASCA 2007, ASCA 2009] provide only one example of the 
implementation of the context-based, risk-informed testing approach.  The CSRM reports 
suggest that such testing can be practically accomplished for the potentially large number of 
software failure modes that may need to be addressed given the level of resolution that CSRM 
applies in modeling software behavior, but it is not clear from the available information what 
amount of time and resources would be required.  It should also be noted that, as indicated in 
[ASCA 2009], the context-based, risk-informed testing is not meant to be applied to scenarios 
that occur under nominal system conditions (e.g., those that do not involve anomalous failures), 
since  these types of scenarios can be quantified using existing software reliability estimation 
models. 
 
6.4 Rule/Standard Based Methods 
 
IEC (International Electrotechnical Commission) Standard 61508 [IEC 61508] is a general 
standard for safety-related systems that specifies the requirements of the systems and provides 
guidance on assigning safety integrity levels (SILs).  Part 1 of the standard designates the target 
failure probability for failure on demand and the target failure rates for different SILs.  For 
example, the highest SIL is 4, with a target failure on demand probability of less than 10-4 and a 
target failure rate of less than 10-8 per hour.  The recommended techniques and measures for 
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each software’s SIL are given in the tables of Annex A and B of Part 3 of the standard; that is, to 
achieve a certain SIL, techniques/measures are recommended for the life-cycle activities of 
software.  For example, for SIL 4, formal proof is highly recommended.  Bloomfield [2007] 
suggested that uncertainty should be considered.  In an example study, experts estimated the 
probability of failure of a safety critical system; the resulting distribution was used in a 
discussion on how uncertainty should be accounted for in assigning SILs. 
 
The relationship between the SILs’ qualitative requirements and the associated quantitative 
requirements/targets was assigned subjectively, and is not validated.  Therefore, great care 
should be used in deciding whether use of the standard’s software failure probabilities and rates 
is appropriate.  Studies are needed to quantify the failure probabilities or rates of a few safety-
related systems that meet the SIL requirements, using either operational experience or reliability 
modeling, in order to verify the validity of the reliability targets.   
 
6.5 Quantification Methods for Software Diversities 

The review of the previous methods was focused on their capability to estimate a failure rate or 
probability for a particular software.  This section discusses the issue of software diversity, in 
particular N-version programming, which is important to consider when estimating the failure 
rate or probability of systems that include redundant software that is designed to accomplish the 
same function.  For a nuclear power plant, one situation in which software diversity might be 
considered is that of a diverse digital system for reactor shutdown.  A recent NRC-sponsored 
study on diversity strategies for digital instrumentation and control systems [Wood 2010] 
considers software diversity as a part of the overall digital system’s diversity, that is, software 
diversity is considered jointly in hardware-related diversity strategies.  It identifies a number of 
software diversities, such as usage of different algorithms, logic, program architectures, 
operating systems, and computer languages.  It is desirable to quantify the benefits of different 
software diversity strategies so that they can be accounted for in reliability models. 
 
N-version programming refers to use of multiple software development teams to develop 
different versions of software according to the same specification.  It is an important software 
diversity strategy, and the feasibility of quantifying its benefits has previously been 
demonstrated.  Eckhardt [1985] initially developed, and later Littlewood [1989] generalized, a 
mathematical theory that may afford a theoretical basis for considering N-version programming.  
The following four experiments of N-version programming were completed on different systems, 
each using a few programming teams to develop the application software.  The findings were 
analyzed to determine if the software developed by different teams fails together. 
 

1. Knight and Leveson’s experiment of an anti-missile system [Knight 1986]. 
 
2. UCLA Six-Language project on an automatic landing system for commercial airliners 

[Avizienis 1988 and Lyu 1995]. 
 
3. NASA 4-University project of a redundant, strapped down inertia measurement unit 

(RSDIMU) of an inertia navigation system [Eckhardt 1991].  
 
4. University of Iowa and Rockwell International’s study of a computerized airplane landing 

system [Lyu 1993]. 
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In general, the results of the four N-version programming experiments show that N-version 
programming can improve reliability.  However, different versions of software do not fail 
completely independently.  That is, a set of inputs may cause multiple versions to fail.  The 
possible causes of this dependency include the following [Knight 1986]: (1) certain parts of a 
problem are more difficult to resolve than others, entailing the same faults despite different 
programmers, (2) the specification contains too much information on implementation, leading to 
limited diversity, and (3) the programmers’ lack of understanding of key points in the 
specification.  The degree of dependency identified in the studies varied.  The information in the 
following table was taken from Lyu [1993].  It indicates the variability in the reduction factor of 
failure probability due to 3-version programming, compared with a single version, for each of the 
experiments identified previously. 
 
In a more recent experiment, Lyu [2003] used a mutation testing technique in an N-version 
programming project consisting of 34 programming teams.  The faults identified in the 
development stage were injected into versions of the final program to create mutants, each 
containing a fault.  The experiment investigated the effectiveness of data flow coverage, 
mutation coverage, and design diversity for fault coverage.  In another study Lyu [2005] 
undertook over 900,000 operational tests on the final versions of the 4-University project, and 
found that a 3-version system achieves a reduction factor of 80 to 330 compared with a single 
version. 
 
Table 6-1 Factor of reduction in failure probability of 3-Version in comparison with 1-Version. 

 Knight and 
Leveson UCLA NASA 

4-University 

University of 
Iowa/Rockwell 
International 

3-Version 
Improvement 

Not available 2 to 5 2.3 13 

 

As documented above (for N-version programming), diversity strategies can significantly impact 
the overall system failure rate or probability if redundant software is implemented to accomplish 
a particular function.  Therefore, the impact of these strategies should be accounted for when 
performing system reliability analysis. 
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7. SUMMARY AND PRINCIPAL FINDINGS 
 
In this study, a review of currently available quantitative software reliability methods (QSRMs) 
was performed with the objective of cataloging potential methods that can be used to quantify 
software failure rates and demand failure probabilities of digital systems at nuclear power plants 
(NPPs) such that the system models can be integrated into a probabilistic risk assessment 
(PRA).  The QSRMs were identified by reviewing research on digital system modeling methods 
sponsored by the Nuclear Regulatory Commission (NRC) and by the National Aeronautics and 
Space Administration, performed by international organizations, and published in journals and 
conferences.  The QSRMs were categorized, described, and evaluated regarding their strengths 
and limitations for PRA applications.  Note, as mentioned previously, specific recommendations 
regarding which QSRMs have the most potential for integration into a PRA, and are therefore 
candidates for further assessment, are beyond the scope of this study. 
 
In general, for PRA modeling purposes, there are two types of digital systems at an NPP, that 
is, control and protection systems.  A control system, such as a feedwater control system, 
performs its control function during normal plant operation.  In contrast, a protection system, 
such as a reactor protection system (RPS), monitors the condition of the plant during normal 
operation, but only generates a reactor trip signal if a need arises.  A control system may fail 
and cause a reactor trip, which would be included in a PRA as an initiating event (e.g., a loss of 
feedwater).  An initiating event in a PRA, which is the starting point of an accident sequence 
analysis, is characterized by its annual frequency.  Therefore, the frequency that a control 
system fails causing an initiating event needs to be estimated.  A protection system may have 
two different failure modes.  For example, an RPS may fail to generate a reactor trip signal 
when needed or may generate a spurious trip signal.  A spurious trip signal would be included in 
a PRA as an initiating event and can be modeled in the same way failure of a control system is 
modeled, that is, in terms of an annual frequency.  On the other hand, given the occurrence of 
some other initiating event that leads to the need for a reactor trip, a failure to generate a 
reactor trip signal would be modeled in the PRA in terms of a demand failure probability.  
Therefore, even for a single system, different QSRMs may need to be used depending on the 
failure modes of interest, that is, a failure-rate based method and a failure-on-demand based 
method.  
 
It is well recognized that software failures are sensitive to the context (environment) in which the 
software is operating.  Therefore, it is important that the software context be accounted for when 
modeling software failures in an NPP PRA (e.g., the specific system function being evaluated 
and the associated success criteria, as well as other relevant conditions in the plant).  As an 
example, in a typical PRA, the RPS is usually the first top event in the event trees.  Therefore, 
each initiating event defines a context for this system, that is, different initiating events represent 
different plant conditions that may generate different input signals to the RPS, and the system 
software may need to be modeled differently for different initiating events.  For other protection 
(actuation) systems, such as a system which generates an actuation signal of an injection 
system, different sequences in different event trees define the different contexts for the 
actuation system and its software.  More refined contexts can be determined by the cutsets of 
those sequences leading to the demand of the actuation system. Each of the cutsets represents 
a more specific scenario in which the system should function, and typically contains hardware 
failures and human errors that help determine the possible variations in the input signals to the 
system.  It should be noted that the software context can be more refined than just what is 
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specified by the cutsets, and, therefore, the resolution of the PRA should be considered when 
choosing and implementing a modeling approach for software failures. 
 
Currently, there is no consensus method for modeling digital systems in an NPP PRA.  It is 
possible that reliability models of digital systems may include software failures representing 
different software failure modes at different levels of detail (e.g., the software may be modeled 
as separate software modules).  However, a review of the literature revealed that practically all 
available QSRMs consider the software system as a whole, not as separate modules or broken 
down by failure mode.  Depending on the reliability modeling method used for digital systems in 
a PRA, and the associated level of modeling detail, different QSRMs may be needed to quantify 
the digital system reliability model.  In addition, it may be necessary to separately model 
different types of software (e.g., application-specific software and operating system software), 
using different QSRMs. 
 
As part of the study, a set of desirable characteristics for QSRMs for modeling the digital 
systems operating at an NPP was proposed.  The desirable characteristics can be used in 
evaluating available QSRMs and their applications to determine if the characteristics are 
satisfied.  In particular, it is desirable that a method be capable of demonstrating the high 
reliability of a safety-critical system (e.g., a failure on demand probability on the order of 10-5, 
commensurate with an analog RPS).  Although an itemized evaluation of the reviewed methods 
against the desirable characteristics is beyond the scope of this study, the information 
documented in this report is useful for performing such an evaluation.       
 
Only a few publicly available studies that attempted to quantify software failure rates and 
demand failure probabilities were performed by organizations that are related to the nuclear 
industry, for example, the Bayesian Belief Network (BBN) studies performed at the Technical 
Research Center of Finland VTT and Halden Reactor Project [Gran 2002a, Helminen 2007].  
However, these particular studies did not address NPP digital systems.  Even fewer publicly 
available studies were performed specifically to analyze digital systems at an NPP and these 
studies were explorative in nature.  For example, the BBN study [EOM 2004] performed at the 
Korean Atomic Energy Research Institute (KAERI) addressed the quality of the software 
requirement specification of an RPS.  However, even in this latter case, the part of the study 
involving quantification of the software reliability is not publicly available.  Therefore, the majority 
of methods reviewed in this report are those that have been used in other, non-nuclear 
industries. 
 
The reviewed QSRMs were separated into four major categories: (1) software reliability growth 
methods (e.g., see [IEEE 2008]), (2) BBN methods (e.g., see [Gran 2002a]), (3) test-based 
methods (e.g., see [Dahll 2007a]), and (4) other methods, which include a method based on 
software-development practices of past software development projects [Neufelder 2002], 
metrics-based methods [Smidts 2004] , and the context-based software risk model (CSRM) 
[ASCA 2007].  In addition, a few studies that considered rule/standard-based methods 
[Bloomfield 2007] and software diversities [Lyu 2003] were reviewed.  
 
The principal findings of the QSRM review are provided below.  More detailed discussions and 
comments on each of the individual QSRM categories are provided in previous sections of the 
report. 
 
1. Most of the existing QSRMs were not developed specifically for supporting quantification of 

software failure rates and demand failure probabilities to be used in reliability models of 
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digital systems.  However, they do estimate software failure rates or probabilities, and use 
the estimates in supporting decision making during software development.  For example, 
software reliability growth models (SRGMs) are used in supporting decisions on whether a 
particular software can be release based on its estimated failure rate, and the correlation 
approach developed by Neufelder [2002] is used to determine the software engineering 
practices that are most likely to reduce defects and to estimate warranty staffing levels.  
Since both of these methods use information obtained prior to placing the software into 
operation, the resultant estimates of software failure rate can be further updated with 
operating experience using a standard statistical Bayesian approach.  However, since both 
of these methods only estimate software failure rates (as opposed to demand failure 
probabilities), they would generally be applicable only to NPP control systems and the 
spurious actuation of protection systems, and not to the failure of protection systems to 
initiate their protective function(s).17 

 
2. Most of the SRGMs, if not all, can be expressed in terms of empirical formulas of the 

expected number of failures, µ(t), as a function of time, and parameter uncertainty 
associated with an SRGM model can be assessed.  There are many SRGMs in the 
literature, but none is generally superior to the others, because all are based on assumed 
empirical formulas that are not applicable to all situations.  An SRGM that provides the best 
fit for one set of data may not provide the best fit for a different data set.  Standard 
goodness-of-fit methods can be used to identify the SRGM which provides the best fit for a 
given set of data, and techniques for determining which method makes better predictions 
are available.  It should also be noted that performing the analysis with multiple SRGMs can 
be used as one means of addressing modeling uncertainty. 
 
The many methods and terminologies in the literature suggest that unifying SRGMs may be 
desirable, especially those methods in the exponential Non-Homogeneous Poisson Process 
(NHPP) category.  The formulation described in Section 3.2.1 of this report is a 
generalization of SRGMs in terms of an NHPP. 

 
3. BBN methods have the capability to aggregate disparate information about software (e.g., 

aggregation of software failure data and quality of software lifecycle activities that is 
assessed using expert elicitation [Gran 2000a and 2000b]) and to include parameter 
uncertainties as a part of the modeling.  However, there are challenges in developing a BBN 
that takes full advantage of these capabilities, including the substantial development effort 
that is needed, the expertise of the BBN developers, the qualification of any experts used to 
elicit information, and the availability of thorough documentation of the software 
development activities.  Another challenge is that qualitative evidence (e.g., the impact of 
software development quality on software reliability) needs to be quantified.  Since there 
may not be sufficient available data to “anchor” the conversion of the qualitative information 
to quantitative values, the uncertainty in the resultant quantitative estimates from the experts 
may be very large, which may make it difficult to demonstrate the small failure probabilities 
often associated with safety-related systems (a limitation common to many QSRMs). 

 
                                                            

17 As mentioned previously, it is possible that SRGMs could be extended to modeling demand-type 
failures.  In particular, there are two groups of methods, referred to as discrete SRGMs and discrete 
reliability growth methods (which remain to be reviewed), that may be more appropriate for modeling NPP 
protection systems. 
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4. The test-based methods use standard statistical methods with software testing and, 
conceivably, with operating data, if it is available.  These methods are used in this study to 
demonstrate that a very large number of tests, ~105, must be conducted (and no failures 
observed) to demonstrate a mean software failure probability on demand of 10-5 (which is 
expected of an NPP safety-related system like an RPS).  Besides the large number of tests 
required, there is also the concern that the testing environment may not represent the actual 
operating environment to which the software is exposed during operation in an NPP, which 
is a serious limitation on the accuracy of the testing results.  Note, this issue applies to any 
QSRMs that use test data (e.g., SRGMs).  Lastly, testing may not uncover errors in 
requirements and specifications of software, which have caused many software failures 
[ASCA 2007, Lutz 2004], though this limitation is common among many of the QSRMs 
reviewed. 

 
5. The general concept of performing correlation/regression analyses using past software 

development experience is reasonable.  However, because of the unavailability of detailed 
information on the past software development projects and the correlation/regression 
analyses used to construct the predictive model in [Neufelder 2002], this particular method 
could not be evaluated in detail.  Based on a review of the information available, some 
potential limitations of Neufelder’s predictive model include (1) subjectivity in the responses 
to the survey of software-development practices; (2) large uncertainties associated with the 
process for determining the ratio between inherent defects and failure rate, because it does 
not involve the use of information related to the specific software being assessed; and (3) it 
is not known whether Frestimate was validated or benchmarked by organizations 
independent from the organization (SoftRel, LLC) that developed it.  Also, similar to most 
QSRMs, Frestimate does not specifically account for the context in which software operates, 
does not consider specific software failure modes, and does not appear to be capable of 
estimating probabilistic parameters of software when the expected values of the parameters 
are small, as would be expected for protection systems in an NPP. 

 
6. NUREG/CR-6848 documents the use of 6 metrics methods for predicting software reliability 

(referred to as reliability prediction systems [RePSs]), each based on one of the 40 “root”18 
software engineering measures (SEMs) identified and ranked by a set of experts, as 
documented in NUREG/GR-0019.  The RePSs were developed by applying available 
methods, concepts, and empirical formulas, and do not represent new innovative methods.  
The root SEMs were applied in an orthogonal, independent manner and the available 
documentation does not indicate that any work has been done on development of metrics 
methods that combine some or all of the highly ranked SEMs.  Also, some of the metrics 
methods use engineering insights (as opposed to application-specific information) to 
develop empirical formulas representing the relationship between software reliability, that is, 
failure rate and probability, and software engineering measures.  Since the empirical 
formulas are not laws of software reliability, their general applicability and accuracy are 
limited.  Lastly, NUREG/CR-6848 considers that the results of the study validated the overall 
approach by showing that highly ranked SEMs produce results that are closer to the true 
answer.  However, such a conclusion depends on the quantification methods developed and 
associated with the SEMs.  Alternative quantification methods that may produce very 

                                                            

18 As stated in NUREG/CR-6848, “the measure on which RePS construction is based is termed the ‘root’ 
of the RePS.  Other measures within the RePS are defined as ‘support’ measures.” 



 

7‐5 

 

different results can be developed and associated with the SEMs (as indicated in 
NUREG/GR-0019) and potentially lead to a different conclusion.   

 
7. CSRM is not specifically an approach to estimating the probability or rate of failure modes of 

a particular software (i.e., it is not technically a QSRM), but is more of an overall integrated 
risk-modeling approach that incorporates hardware, software, and the static or dynamic 
interactions between them.  It appears reasonable as a means of risk-informing the software 
testing process in support of assessing software reliability.  Aspects of the CSRM approach 
can also be used to support quantifying software failure rates or demand failure probabilities 
for inclusion into an existing digital system reliability model.  The most unique aspect of the 
CSRM approach is the context-based, risk-informed testing using a logically defined and 
partitioned input-parameter space for scenarios that involve off-nominal conditions (i.e., 
scenarios involving anomalous events, such as one or more component hardware failures).  
This context-based evaluation has to be carried out for each software-related failure 
scenario that involves a combination of software and hardware failures.  The publicly 
available reports specifically on CSRM [ASCA 2007, ASCA 2009] provide only one example 
of the implementation of the context-based, risk-informed testing approach.  The CSRM 
reports suggest that such testing can be practically accomplished for the potentially large 
number of software failure modes that may need to be addressed given the level of 
resolution that CSRM applies in modeling software behavior, but it is not clear from the 
available information what amount of time and resources would be required.  It should also 
be noted that, as indicated in [ASCA 2009], the context-based, risk-informed testing is not 
meant to be applied to scenarios that occur under nominal system conditions (e.g., those 
that do not involve hardware failures), since these types of scenarios can be quantified 
using existing software reliability estimation models. 
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