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Abstract

The Swift parallel scripting language allows for the specification, execution and analysis of large-scale com-
putations in parallel and distributed environments. It incorporates a data model for recording and querying
provenance information. In this article we describe these capabilities and evaluate interoperability with other
systems through the use of the Open Provenance Model. We describe Swift’s provenance data model and
compare it to the Open Provenance Model. We also describe and evaluate activities performed within the
Third Provenance Challenge, which consisted of implementing a specific scientific workflow, capturing and
recording provenance information of its execution, performing provenance queries, and exchanging prove-
nance information with other systems. Finally, we propose improvements to both the Open Provenance
Model and Swift’s provenance system.

Key words: provenance, parallel scripting languages, scientific workflows

1. Introduction

The automation of large scale computational scientific experiments can be accomplished through the use
of workflow management systems [9], parallel scripting tools [23], and related systems that allow the definition
of the activities, input and output data, and data dependencies of such experiments. The manual analysis
of the data resulting from their execution is usually not feasible, due to the large amount of information
commonly generated by these experiments. Provenance systems can be used to facilitate this task, since they
gather details about the design [14] and execution of these experiments, such as data artifacts consumed
and produced by their activities. They also make it easier to reproduce an experiment for the purpose of
verification.

The Open Provenance Model (OPM) [18] is an ongoing effort to standardize the representation of prove-
nance information. It defines the entities artifact, process, and agent and the relationships used (between an
artifact and a process), wasGeneratedBy (between a process and an artifact), wasControlledBy (between an
agent and a process), wasTriggeredBy (between two processes), and wasDerivedFrom (between two artifacts).
These relationships are used to assert causal dependencies between the entities defined in the model. A set
of these assertions can be used to build a provenance graph. One of the main objectives of OPM is to allow
the exchange of provenance information between systems. It also describes valid inferences that can be made
from provenance graphs. More complex relationships between processes and artifacts can be derived using,
for instance, transitivity.

The Swift parallel scripting system [25] [23] is a successor of the Virtual Data System (VDS) [13] [26]
[6]. It allows the specification, management and execution of large-scale scientific workflows on parallel and
distributed environments. The SwiftScript language is used for high-level specification of computations, it
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Table 1: Database relation processes.

Attribute | Definition

id the URI identifying the process

type the type of the process: execution,
compound procedure, function, op-
erator

has features such as data types, data mappers, dataset iteration, conditional branching, and procedural
composition. It allows the manipulation of datasets in terms of their logical organization. The XML Dataset
Typing and Mapping (XDTM) [19] notation is used to define mappers between this logical organization and
the actual physical structure of the dataset. Procedures perform logical operations on input data, without
modifying them. SwiftScript also allows procedures to be composed to define more complex computations.
By analyzing the inputs and outputs of these procedures, the system determines data dependencies between
them. This information is used to execute procedures that have no mutual data dependencies in parallel.
Swift supports common execution managers for clustered systems and grid environments, such as Condor
[11], GRAM [7], and PBS [16]. It also supports Falkon [21], an execution engine that provides high job
execution throughput; and SSH [24], for executing jobs via secure remote logins. Swift logs a variety of
information about each computation. This information can be exported using tools included in Swift to a
relational database that uses a data model similar to OPM. Our provenance approach focuses on gathering
information about the relationship between data and processes at the SwiftScript level. We do not gather
information about lower level processes involved in executing a parallel script with Swift, such as moving
data to computational resources, and submitting tasks to execution managers, although this is logged and
could be integrated.

The objective of this paper is to present and evaluate the local and remote provenance recording and
analysis capabilities of Swift, and compare them with those of other provenance systems. In the sections
that follow, we describe the provenance capabilities of the Swift system and evaluate its interoperability
with other systems through the use of OPM. We describe the provenance data model of the Swift system
and compare it to OPM. We also describe and evaluate activities performed within the Third Provenance
Challenge (PC3) which consisted of implementing and executing a scientific workflow (Pan-STARRS’ [12]
LoadWorkflow), gathering and recording provenance information of its execution, performing provenance
queries, and exchanging provenance information with other systems.

2. Data Model

In Swift, data is represented by strongly-typed single-assignment variables. Data types can be atomic or
composite. Atomic types are given by primitive types, such as integers or strings, or mapped types. Mapped
types are used for representing and accessing data stored in local or remote files. Composite types are given
by structures and arrays. In the Swift runtime, data is represented by a dataset handle. It may have as
attributes a value, a filename, a child dataset handle (when it is a structure or an array), or a parent dataset
handle (when it is contained in a structure or an array).

Swift processes are given by invocations of external programs, invocations of internal procedures, built-in
functions, and operators. Dataset handles are produced and consumed by Swift processes.

In the Swift provenance model, dataset handles and processes are recorded, as are the relations between
them (either a process consuming a dataset handle as input, or a process producing a dataset handle as
output). Each dataset handle and process is uniquely identified in time and space by a URI. This information
is stored persistently in a relational database. The two key relational tables used to store the structure of
the provenance graph are processes, which stores brief information about processes (see table 1), and
dataset_usage, which stores produced and consumed relationships between processes and dataset handles
(see table 2). Other tables (see figure 1) are used to record details about each process and dataset, and other
relationships such as dataset containment.



Table 2: Database relation dataset_usage.

Attribute | Definition
process_id | a URI identifying the process end
of the relationship
dataset_id | a URI identifying the dataset
handle end of the relationship
direction | whether the process is consuming
or producing the dataset handle
param name | the parameter name of this rela-
tion
processes_in_workflows| | extrainfo processes workflow_events
workflow_id char{128) execute2id char(128) id char(128) workflow_id char(128)

process_id char(128)

extrainio char{1024)

type char({16)

starttime numeric

duration numeric

executes

known_workflows

executels

dataset_values

id char{128)

workflow_id char(128)

id char(128)

starttime numeric

workflow_log_filename char(128)

execute_id char{128)

value char(128)

duration numeric

version char(128)

starttime numeric

finalstate char(128)

importstatus char(128)

duration numeric

app char(128)

scratch char(128)

finalstate char(128)

site char(128)

dataset_usage

dataset_filenames

invocation_procedure_names

process_id char(128)

dataset_id char(128)

execute_id char(128)

direction char(1)

filename char(128)

procedure_name char(128)

dataset_id char(128)

param_name char({128)

Figure 1: Swift’s provenance database relations.

dataset_id char(128)

dataset_containment
outer_dataset_id char(128)
inner_dataset_id char(128)




Listing 1: SwiftScript program for sorting a file.

type file;
app (file o) sortProg(file i) {
sort stdin=@filename (i) stdout=@filename(o0);
}
file f <"inputfile">;
file g <"outputfile">;
g = sortProg(f);

Consider the SwiftScript program in listing 1, which first describes a procedure (sortProg, which calls
the external executable sort); then declares references to two files, (£, a reference to inputfile, and g, a
reference to outputfile); and finally calls the procedure sortProg. When this program is run, provenance
records are generated as follows:

e a process record is generated for the initial call to the sortProg(f) procedure;

e a process record is generated for the @filename (i) function invocation inside sortProg, representing
the evaluation of the @filename function that Swift uses to determine the physical filename correspond-
ing to the reference f;

e and a process record is generated for the @filename (o) function invocation inside sortProg, again
representing the evaluation of the @f ilename function, this time for the reference g.

Dataset handles are recorded for:

e the string "inputfile";

the string "outputfile";

e the file variable f;

the file variable g;
e the filename of i;
e and the filename of o.
Input and output relations are recorded as:
e the sortProg(f) procedure takes f as an input;

e the sortProg(f) procedure produces g as an output;

the @filename (i) function takes f as an input;

the @filename (i) function produces the filename of £ as an output;

the @filename (o) function takes g as an input;
e and the @filename (o) function produces the filename of g as an output.

The Swift provenance model is close to OPM, but there are some differences. Dataset handles correspond
closely with OPM artifacts as immutable representations of data. However they do not correspond exactly,
dataset handles do not record provenance due to aliasing, such as when accessing arrays. Section 4 discusses
this issue in more detail. The OPM entity “agent” is currently not represented in Swift’s provenance model,
however this could be represented, for instance, by the identity of the user that runs a workflow.

Except for wasControlledBy, the dependency relationships defined in OPM can be derived from the
dataset_usage database relation. It explicitly stores the used and wasGeneratedBy relationships. Table 3



used() @filename(i) wesSenerelaty
used()
sortProg
wasGeneratedBy(0)
used(o)

wasGeneratedBy
@filename(o) filename of g

Figure 2: Provenance relationships of a sortProg execution.

Table 3: Equivalence between tuples in the dataset_usage table and OPM relationships.
Tuple in the dataset_usage table
process_id | dataset.id [ direction | param name

sortProg(f) f In i £
P wasGeneratedBy(o)
sortProg(f) g Out o M—@
used(i) )
filename(i
@filename (i) f In i °
filename(i wasGeneratedBy
@filename (i) | filename of f Out result
filename(o
@filename (o) g In o e @ ©
Out result esssese

OPM equivalent

@filename(i) | filename of g

shows the equivalence between tuples stored in the dataset_usage table and OPM relationships. wasTrig-

geredBy and wasDerivedFrom dependency relationships can also be inferred from database_usage, in the

. wasDerivedFrom . . .
sortProg example we have, for instance, f «+——————— ¢. Figure 2 shows the provenance relationships

captured by Swift’s provenance system for the sortProg example using OPM notation.

One of the main concerns with using a relational model for representing provenance is the need for
querying over the transitive relation expressed in the dataset_usage table. For example, after executing the
SwiftScript code in listing 2, it might be desirable to find all dataset handles that lead to c: that is, a and
b. However simple SQL queries over the dataset_usage relation can only go back one step, leading to the
answer b but not to the answer a. To address this problem, we generate a transitive closure table by an
incremental evaluation system [10]. This approach makes it straightforward to query over transitive relations
using natural SQL syntax, at the expense of larger database size and longer import time.

Swift’s provenance data model is not dependent on a particular database model. A number of other forms
were briefly experimented with during development [5]. The two most developed and interesting models were
XML and Prolog. XML provides a semi-structured tree form for data. A benefit of this approach is that
new data can be added to the database without needing an explicit schema to be known to the database. In
addition, when used with a query language such as XPath, certain transitive queries become straightforward
with the use of the // operator of XPath. Representing the data as Prolog tuples is a different representation
than a traditional database, but provides a query interface that can express interesting queries flexibly.



Listing 2: Transitivity of provenance relationships.

p(a);
q(b);

3. PC3: Implementation and Queries

One of the main goals of PC3 was to evaluate OPM as a mechanism for interoperability between prove-
nance systems. An astronomy workflow from the Pan-STARRS [12] project, called LoadWorkflow, was used
for this purpose. It receives a set of CSV files containing astronomical data, stores the contents of these
files in a relational database, and performs a series of validation steps. This workflow makes extensive use of
conditional and loop flow controls and database operations. Database operations are somewhat outside the
scope of usual Swift applications, which are generally file-oriented. A Java implementation of the component
applications of LoadWorkflow was provided in the Provenance Challenge Wiki [2]. These components are de-
clared in the SwiftScript implementation of the workflow as external application procedures. The procedural
body of the SwiftScript code closely follows the LoadWorkflow specification since Swift has native support
for decision and loop controls, given by the if and foreach constructs.

Initially, the mapped types used in the workflow are declared. Mapped types refer to data objects that do
not reside in the main memory, which is the case for data files. Most of the inputs and outputs of the Java
implementation of the workflow activities are files in XML format, represented in our Swift implementation
as xmlfile. In order to manipulate the input and output values we had to convert some of these files into
plain text files, represented as textfile, and then read them using the readData SwiftScript function.

type xmlfile;
type textfile;

The following part consists of using app declarations to define the workflow’s component applications.
This allows the invocation of executable applications of the Java implementation of the workflow from Swift.
They define the applications’ inputs and outputs, which are XML files in the LoadWorkflow case, and
provide a reference that will allow Swift to find the actual application executable by looking at its appli-
cation catalog. These app declarations are given by ps_load_executable, ps_load_executable_threaded,
ps_load_executable_db, and compact_database. ps_load_executable_db and compact_database also have
a reference to the LoadWorkflow database as input, which is given also by an XML file. The subsequent
declarations are used to manipulate an XML file in order to extract boolean values, count entries, and extract
entries. Finally, the stop app declaration simply refer to a shell script that returns an error code and is used
to halt the workflow execution.

(xmlfile output) ps_load_executable(xmlfile input, string s) {
app {
ps_load_executable_app Q@input s Qoutput;
}
}

(xmlfile output) ps_load_executable_threaded(xmlfile input, string s, external thread) {
app {
ps_load_executable_app Q@input s Qoutput;
¥
¥

(xmlfile output) ps_load_executable_db (xmlfile db, xmlfile input, string s, external thread) {
app {
ps_load_executable_db_app @db Qinput s Qoutput;
¥
}

compact_database (xmlfile db, external thread) {
app {
compact_database_app @db;
}
}



Table 4: LoadWorkflow Activities - Pre-Load Section

Activity

Input

Output

IsCSVReadyFileExists: Verifies
if the CSV root directory and the
csv_ready.csv file exist.

string CSVRootPathInput, con-
taining the path to the CSV root
directory.

boolean IsCSVReadyFileExist-
sOutput, which is true if the ver-
ification succeeds, or false other-
wise.

ReadCSVReadyFile: For each
file listed in csv_ready.csv, it
creates a CSVFileEntry, which
consists of the path to the CSV
file to be loaded, the path to the
CSV header file containing the
list of data columns, the num-
ber of rows in the file, the tar-
get database table, and the MD5
hash function value of the file.
The columns names field is not
populated by this activity.

string CSVRootPathInput, con-
taining the path to the CSV root
directory.

list ReadCSVReadyFileOutput
of CSVFileEntry elements read
from csv_ready.csv.

IsMatchCSVFileTable: Verifies
if the tables to be loaded have
corresponding data files.

list FileEntriesInput of CSV-
FileEntry elements read from
csv_ready.csv.

boolean IsMatchCSVFileTable-
sOutput, which is true if the
tables have corresponding CSV
files, or false otherwise.

IsExistsCSVFileTable: Verifies if
CSV data file and CSV header
exist.

CSVFileEntry FileEntryInput.

boolean IsExistsCSVFileOutput,
which is true if the CSV data
file and CSV header files exist,
or false otherwise.

ReadCSVFileColumnNames:
Reads the list of column names
present in the CSV data file
from the CSV header file.

CSVFileEntry FileEntryInput.

CSVFileEntry FileEntryOutput,
which results from updating the
columns names field in the in-

put using the values listed in the
CSV header file.

IsMatchCSVFileColumnNames:
Verifies if the columns expected
for a target table are present in
the CSV data file.

CSVFileEntry FileEntrylnput,
with the columns names field
populated.

boolean IsMatchCSV-
FileColumnNamesOutput,
which is true if column names
listed in the CSV data files
match the column names for the
target database table, or false
otherwise.




Table 5: LoadWorkflow Activities - Load Section

Activity

Input

Output

CreateEmptyLoadDB:  Creates
the database to which the CSV
data files will be loaded. It re-
turns a DatabaseEntry, which is
a reference to the database con-
taining its name and connection
information.

string JobID, a unique job iden-
tifier for the batch of CSV data
files.

A DatabaseEntry CreateEmpty-
LoadDBOutput.

LoadCSVFileIntoTable: Loads a
CSV data file into the corre-
sponding database table.

DatabaseEntry DBEntry, con-
taining target table to load the
CSV data file into. CSVFileEn-
try FileEntry, refering to the
CSV data file to be loaded.

boolean LoadCSVFileIntoTable-
Output, which is true is the load
was successful, or false otherwise.

UpdateComputedColumns: Up-
dates the computed columns in
the table that was loaded. These
columns are indicated by the
value -999 in the CSV data file.

DatabaseEntry DBEntry, with
the target table already loaded
from the CSV data file. CSV-
FileEntry FileEntry, containing
the name of target table in the
database to update.

boolean UpdateComputed-
ColumnsOutput, which is true
if the columns were successfully
updated, or false otherwise.

Table 6: LoadWorkflow Activities - Post-Load Section

Activity Input Output
IsMatchTableRowCount: DatabaseEntry DBEntry, where | bool IsMatchTableRow-
Checks if number of rows | the target table isloaded and up- | CountOutput, which is true

loaded into table matches the
expected.

dated. CSVFileEntry FileEntry,
containing the expected number
of rows in the CSV data file and
the target database table name.

if the number of rows in the tar-
get table matches the expected
number of rows in the CSV data
file.

IsMatchTableColumnRanges:
Checks if the data loaded into
database table columns is within
the range of values expected.

DatabaseEntry DBEntry, where
the target table is loaded and up-
dated. CSVFileEntry FileEntry,
containing the name of target ta-

bool IsMatchTableColumn-
RangesOutput, which is true if
the data values of the columns
in the target table are within

ble in the database to validate | the expected range, or false
columns ranges. otherwise.
CompactDatabase: ~ Compacts | DatabaseEntry DBEntry, where | None.

the database before concluding
the workflow.

all tables are loaded and wvali-
dated.




string JobID

IsCSVRead)yFileExists

bool
IsCSVReadyFilebei
sts Output

ReadCSVReadyfile

List<(SVFileEntry>
ReadCsWReadyFile
Output

IsMatchCSVFileTables

bool
IsMatchCSVFileTab
les Output

CreateEmptyloadDs

DatabaseEntry
DBEntry

CSVFiLeEntry
FileEntry

IsExistsCSVFile

bool
IsExistsCSVFile
Output

ReadC5VFileColumn
Names
CSVFileEntry

FileEntry

IsMatchCSVFileColumn
Nomes

bool
IsMatchCSVFilecol
umnNames Output

Load CSVFilelntoTable

bool
LoadCSVFileIntoTa
ble Output

UpdateComputed
Columns

IsMatchTableRowCount

bool.
IsMatchTableRowCo
unt

IsMatch TableColumn
Ranges

bool
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nRanges Output

End ForEach esens:
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i

CompactDatabase
I oats/Parameter
- Activity/Process
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. Control Activity
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Figure 3: LoadWorkflow. Source: PC3 web site
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(textfile output) parse_xml_boolean_value(xmlfile input) {

app {
parse_xml_boolean_value_app Qinput Qoutput;
}
}
(textfile output) count_entries(xmlfile input) {
app {
count_entries_app @input Qoutput;
}
}
(xmlfile output) extract_entry(xmlfile input, int i) {
app {
extract_entry_app Qinput i Qoutput;
}
}
stop() {
app {
stop_app;
}

The next part of the SwiftScript code is used for the declaration of compound procedures, which invoke
other SwiftScript procedures instead of component programs. The extract _boolean procedure reads a text
file and extracts the boolean value it contains. The checkvalid procedure simply tests a boolean value and
halts the workflow if it is false. ps_load_executable_boolean and ps_load_executable_db_boolean are used
to execute a workflow activity, they return a boolean value as output. The remaining procedures implement
actual workflow activities by calling the other SwiftScript procedures defined.

(boolean output) extract_boolean(xmlfile input) {
textfile text_out = parse_xml_boolean_value(input);
output = readData(text_out);

}

(external out) checkvalid(boolean b) {
if (') { stop(); }
}

(boolean output) ps_load_executable_boolean(xmlfile input, string s) {
xmlfile xml_out = ps_load_executable(input, s);
output = extract_boolean(xml_out);

}

(boolean output) ps_load_executable_db_boolean(xmlfile db, xmlfile input, string s, external thread) {
xmlfile xml_out = ps_load_executable_db(db, input, s, thread);
output = extract_boolean(xml_out);

}

(boolean output) is_csv_ready_file_exists(xmlfile input) {
output = ps_load_executable_boolean(input, "IsCSVReadyFileExists");
}

(xmlfile output) read_csv_ready_file(xmlfile input) {
output = ps_load_executable(input, "ReadCSVReadyFile");
}

(boolean output) is_match_csv_file_tables(xmlfile input) {
output = ps_load_executable_boolean(input, "IsMatchCSVFileTables");
}

(xmlfile output, external outthread) create_empty_load_db(xmlfile input) {
output = ps_load_executable(input, "CreateEmptyLoadDB");
}

(boolean output) is_exists_csv_file(xmlfile input) {
output = ps_load_executable_boolean(input, "IsExistsCSVFile");
}

(xmlfile output) read_csv_file_column_names(xmlfile input, external thread) {
output = ps_load_executable_threaded(input, "ReadCSVFileColumnNames", thread);
}

10



(boolean output) is_match_csv_file_column_names(xmlfile input) {
output = ps_load_executable_boolean(input, "IsMatchCSVFileColumnNames") ;

}

(boolean output) load_csv_file_into_table(xmlfile db, xmlfile input, external thread) {
string dbcontent = readData(db);
string inputcontent = readData(input);
output = ps_load_executable_db_boolean(db, input, "LoadCSVFilelIntoTable", thread) ;

}

(boolean output) update_computed_columns(xmlfile db, xmlfile input, external thread) {
string dbcontent = readData(db);
string inputcontent = readData(input);
output = ps_load_executable_db_boolean(db, input, "UpdateComputedColumns", thread);
}

(boolean output) is_match_table_row_count(xmlfile db, xmlfile input, external thread) {
string dbcontent = readData(db) ;
string inputcontent = readData(input);
output = ps_load_executable_db_boolean(db, input, "IsMatchTableRowCount", thread);

}

(boolean output) is_match_table_column_ranges(xmlfile db, xmlfile input, external thread) {
string dbcontent = readData(db);
string inputcontent = readData(input);
output = ps_load_executable_db_boolean(db, input, "IsMatchTableColumnRanges", thread) ;

}

The subsequent piece of Swiftscript code is used for variable declarations. The workflow receives two
files as input arguments, one containing the path to the CSV root directory and another one containing a
job identifier. These values are received by the csv_root_path_input_arg and job_id_arg variables. The
csv_root_path_input and job_id mapped type variables are declared and their values are declared to be
contained in the files given as input arguments. The remaining variables declared in this piece of code are
used to hold outputs of workflow procedures.

string csv_root_path_input_arg = Qarg("csvpath");
string job_id_arg = Qarg("jobid");

xmlfile csv_root_path_input <single_file_mapper;file=csv_root_path_input_arg>;
xmlfile job_id <single_file_mapper;file=job_id_arg>;
boolean is_csv_ready_file_exists_output;

xmlfile read_csv_ready_file_output;

boolean is_match_csv_file_tables_output;

xmlfile create_empty_load_db_output;

textfile count_entries_output;

int entries;

xmlfile split_list_outputl[];

The final part of the SwiftScript code is the actual procedural portion of the Load Workflow implementation
in Swift. It closely follows the LoadWorkflow logic since Swift has native support for decision and loop
controls. The split_list_output array holds the CSV file entries that will be processed in the workflow,
they are extracted from the XML file generated by the read_csv_ready_file procedure.

is_csv_ready_file_exists_output = is_csv_ready_file_exists(csv_root_path_input);
if (lis_csv_ready_file_exists_output) { stop(); }
read_csv_ready_file_output = read_csv_ready_file(csv_root_path_input);
is_match_csv_file_tables_output = is_match_csv_file_tables(read_csv_ready_file_output);
if (is_match_csv_file_tables_output) {
external db_over_time[];
external dbinit; // some bug in analysis means can't use db_over_time for initial one
(create_empty_load_db_output, dbinit) = create_empty_load_db(job_id);
count_entries_output = count_entries(read_csv_ready_file_output);
entries = readData(count_entries_output);
int entries_seq[] = [1:entries];
foreach i in entries_seq {
split_list_output[i] = extract_entry(read_csv_ready_file_output, i);
}
foreach i in entries_seq {
boolean is_exists_csv_file_output;
xmlfile read_csv_file_column_names_output;
boolean is_match_csv_file_column_names_output;
boolean load_csv_file_into_table_output;
boolean update_computed_columns_output;
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boolean is_match_table_row_count_output;
boolean is_match_table_column_ranges_output;

is_exists_csv_file_output = is_exists_csv_file(split_list_output[i]);

external thread6 = checkvalid(is_exists_csv_file_output);

read_csv_file_column_names_output = read_csv_file_column_names(split_list_output[i],
thread6) ;

is_match_csv_file_column_names_output =
is_match_csv_file_column_names(read_csv_file_column_names_output) ;

external thread2 = checkvalid(is_match_csv_file_column_names_output);

if(i==1) { // first element...
load_csv_file_into_table_output = load_csv_file_into_table(create_empty_load_db_output,
read_csv_file_column_names_output, dbinit);
} else {
load_csv_file_into_table_output = load_csv_file_into_table(create_empty_load_db_output,
read_csv_file_column_names_output, db_over_time[il]);
}
external thread3=checkvalid(load_csv_file_into_table_output);
update_computed_columns_output = update_computed_columns(create_empty_load_db_output,
read_csv_file_column_names_output, thread3);
external thread4 = checkvalid(update_computed_columns_output);
is_match_table_row_count_output = is_match_table_row_count(create_empty_load_db_output,
read_csv_file_column_names_output, thread4);
external threadl = checkvalid(is_match_table_row_count_output);
is_match_table_column_ranges_output =
is_match_table_column_ranges(create_empty_load_db_output,
read_csv_file_column_names_output, threadl) ;
db_over_time[i+1] = checkvalid(is_match_table_column_ranges_output);
}
compact_database(create_empty_load_db_output, db_over_time[entries+1]);
}
else {
stop();

Core Query 1. The first query asks, for a given detection, which CSV files contributed to it. The
strategy used to answer this query is to determine input CSV files that preceed, in the transitivity table,
the process that inserted the detection. Suppose we want to determine the provenance of the detection that
has the identifier 261887481030000003, the first query can be answered by first obtaining the Swift process
identifier of the process that inserted the detection from the annotations included in the application database:

> select
provenanceid
from
ipaw.p2detectionprov
where
detectid = 261887481030000003;

> tag:benc@ci.uchicago.edu,2008:swiftlogs:execute2:pc3-20090507-1008-q4dpcm28
:ps_load_executable_db_app-b2bclgaj

The identifier returned is an execute2 identifier, which means in this case that it refers to a successful
execution attempt. In order to obtain the predecessors of this process in the transitivity table we need the
actual execute identifier of the process, which can we can get with the following SQL query:

> select
execute_id
from
execute2s
where
id = 'tag:benc@ci.uchicago.edu,2008:swiftlogs:execute2:pc3-20090507-1140-z7ebbrz0
:ps_load_executable_db_app-8d52pgaj';

> tag:benc@ci.uchicago.edu,2008:swiftlogs:execute:pc3-20090507-1140-z7ebbrz0:0-5-5-1-5-1-2-0

Finally, we determine the filenames of datasets that contain CSV inputs in the set of predecessors of the
process that inserted the detection:

> select
filename
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from
trans, dataset_filenames
where
after='tag:benc@ci.uchicago.edu,2008:swiftlogs:execute
:pc3-20090507-1140-z7ebbrz0:0-5-5-1-5-1-2-0"
and
before=dataset_id and filename like '%split%';

\4

file://split_list_output-65fe229c-2da2-4054-997e-fb167b8c30ed--array/elt-3
file://split_list_output-65fe229c-2da2-4054-997e-fb167b8c30ed--array/elt-2
file://split_list_output—65f9229c—2da2—4054—997e—fb167b85309d——array/elt—1

These files contain the filenames of the CSV files that were given as input to the workflow, and that will
result in the detection row insertion:

P2_J062941_B001_P2fits0_20081115_P2Detection.csv,
P2_J062941_B001_P2fits0_20081115_P2ImageMeta.csv,
P2_J062941_B001_P2fits0_20081115_P2FrameMeta.csv

Core Query 2. The second query asks if the range check (IsMatchColumnRanges) was performed in
a particular table, given that a user found values that were not expected in it. This is implemented in the
q2.sh script in the Swift SVN repository with the following SQL query:
> select
dataset_values.value
from
processes, invocation_procedure_names, dataset_usage, dataset_values
where
type='compound' and
procedure_name='is_match_table_column_ranges' and
dataset_usage.direction='0' and
dataset_usage.param_name='inputcontent' and
processes.id = invocation_procedure_names.execute_id and

dataset_usage.process_id = processes.id and
dataset_usage.dataset_id = dataset_values.dataset_id;

This returns the input parameter XML for all IsMatchColumnRanges calls. These are XML values, and
it is necessary to examine the resulting XML to determine if it was invoked for the specific table. There is
unpleasant cross-format joining necessary here to get an actual yes/no result properly, although probably
could use a LIKE clause to peek inside the value.

Core Query 3. The third core query asks which operation executions were strictly necessary for the
Image table to contain a particular (non-computed) value. This uses the additional annotations made, that
only store which process originally inserted a row, not which processes have modified a row. So to some
extent, rows are regarded a bit like artifacts (though not first order artifacts in the provenance database);
and we can only answer questions about the provenance of rows, not the individual fields within those rows.
That is sufficient for this query, though. First find the row that contains the interesting value and extract its
IMAGEID. Then find the process that created the IMAGEID by querying the Derby database table P2IMAGEPROV:

> select * from ipaw.p2imageprov where imageid=6294301;

IMAGEID | PROVENANCEID

6294301 | tag:benc@ci.uchicago.edu,2008:swiftlogs:execute2:pc3-20090519
| -2057d8dyi909:ps_load_executable_db_app-dpc8qlbj

Now we have a process ID for the process that created the row. Now query the transitive closure table for
all predecessors for that process (as in the first core query). This will produce all processes and artifacts that
preceeded this row creation. Our answer differs from the sample answer because we have sequenced access to
the database, rather than regarding each row as a proper first-order artifact. The entire database state at a
particular time is a successor to all previous database accessing operations, so any process which led to any
database access before the row in question is regarded as a necessary operations. This is undesirable in some
respects, but desirable in others. For example, a row insert only works because previous database operations
which inserted other rows did not insert a conflicting primary key - so there is data dependency between the
different operations even though they operate on different rows.
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Optional Query 1. The workflow halts due to failing an IsMatchTableColumnRanges check. How
many tables successfully loaded before the workflow halted due to a failed check? This counts how many
load processes are known to the database (over all recorded workflows):

> select
count (*)
from
invocation_procedure_names
where
procedure_name='load_csv_file_into_table';

This can be restricted to a particular workflow run like this:

\4

select
count (process_id)
from
invocation_procedure_names, processes_in_workflows
where
procedure_name='load_csv_file_into_table'
and
workflow_id='tag:benc@ci.uchicago.edu,2008:swiftlogs:execute:pc3-20090519-1659-jqcbod2f
:run'
and
invocation_procedure_names.execute_id = processes_in_workflows.process_id;

Optional Query 2. Which pairs of procedures in the workflow could be swapped and the same result
still be obtained (given the particular data input)? In our Swift representation of the workflow, we control
dataflow dependencies. So many of the activities that could be commuted are in our implementation run in
parallel. One significant thing one cannot describe in SwiftScript (and so cannot answer from the provenance
database using this method) is commuting operations on the database. From a Swift perspective, this is a
limitation of our SwiftScript language rather than in the provenance implementation. The query lists which
pairs Unix process executions (of which there are 50x50) have no data dependencies on each other. There
are 2082 rows. The base SQL query is this:

> select
L.id, R.id
from
processes as L, processes as R
where
L.type='execute'
and
R.type='execute'
and
NOT EXISTS (select * from trans where before=L.id and after=R.id);

This answer is deficient in a few ways. We do not take into account non-execute procedures (such as
compound procedures, function invocations, and operator executions) - there are 253 processes in total, 50
being executes and the remaineder being the other kinds of process. If we did that naively, we would not
take into account compound procedures which contain other procedures (due to lack of decent support for
nested processes - something like OPM accounts) and would come up with commutations which do not make
sense.

In our initial attempts to implement LoadWorkflow, we found the use of the parallel foreach loop
problematic because the database routines executed by the external application procedures are opaque to
Swift. Due to dependencies between iterations of the loop, these routines were being incorrectly executed in
parallel. It was necessary to serialize the loop execution to keep the database consistent. For the same reason,
since most of the PC3 queries are for row-level database provenance, we had to implement a workaround
for gathering this provenance by modifying the application database so that for every row inserted, an entry
containing the execution identifier of the Swift process that performed this insertion is recorded on a separate
annotation table.

The OPM output for a LoadWorkflow run in Swift was generated by a script that maps Swift’s provenance
data model to OPM’s XML schema. Since OPM and Swift’s provenance database use similar data models,
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Listing 3: Multiple provenance descriptions for a dataset.

int a =
int b =
int c[] = [a, bl;

it is fairly straightforward to build a tool to import data from an OPM graph into the Swift provenance
database. However we observed that the OPM outputs from the various participating teams, including
Swift, carry many details of the LoadWorkflow implementation that are system specific, such as auxiliary
tasks that are not necessarily related to the workflow. To answer the same queries, it would be necessary to
perform some manual interpretation of the imported OPM graph in order to identify the relevant processes
and artifacts.

4. PC3: Evaluation

PC3 provided an opportunity to use OPM in practice. This also enabled us to evaluate OPM and
compare it to Swift’s provenance data model. OPM originally did not specify a naming mechanism for
globally identifying artifacts outside of an OPM graph. In Swift, dataset handles are given an URI, now
OPM has an annotation for this purpose [18].

Swift’s provenance implementation has two models of representing containment for dataset handles con-
tained inside other dataset handles (arrays and complex types). A constructor/accessor model has special
processes called accessors and constructors corresponding to the [] array accessor and [1,2,3] explicit con-
struction syntax in SwiftScript. This model is proposed in OPM. In the Swift implementation, this is a cause
of multiple provenances for dataset handles. For example, consider the SwiftScript program displayed in
listing 3, the expression c[0] evaluates to the dataset handle corresponding to the variable a. That dataset
handle has a provenance trace indicating it was assigned from the constant value 7. However, that dataset
handle has additional provenance indicating that it was output by applying the array access operator []
to the array c and the numerical value 0. In OPM, the artifact resulting from evaluating c[0] is distinct
from the artifact resulting from evaluating a, although they may be annotated with an isIdenticalTo arc [15].
In order to address the divergence between OPM and Swift’s provenance data model, the dataset handle
implementation could be modified so that it supported dataset handles being aliases to other dataset han-
dles. The alias dataset handle would behave identically to the dataset handle that it aliases, except that it
would have different provenance reflecting both the provenance of the original dataset handle, and subsequent
operations made to retrieve it. In listing 3, then, c[0] would return a newly created dataset handle that
aliased the original dataset handle for a. There is also a container/contained model, where relations are
stored directly between dataset handles indicating that one is contained inside the other, without intervening
processes. These relations can be inferred from the constructor/accessor model. The Contained relation
between two artifacts, defined in [15], indicates that one is contained within another. This maps relatively
cleanly to Swift’s in-memory model of dataset handles containing other dataset handles. Swift collections
may be hierarchical. In [15], it is not specified if the Contained relation holds only one level deep or to all
elements contained in a collection.

The Swift team [3] made a proposal [2] for a minor change to the XML schema to better reflect the
perceived intentions of the OPM authors. It was apparent that the present representation of hierarchical
processes in OPM is insufficiently rich for some groups and that it would be useful to represent hierarchy of
individual processes and their containing processes more directly. In Swift this is given by two categories:
at the highest level, SwiftScript language constructs, such as procedures and functions; below that, the
mechanics of Swift’s execution, such as moving files to and from computational resources, and interactions
with job execution. Swift provenance work to date has concentrated on the high-level representation, treating
all of the low-level behavior as opaque and exposing neither processes nor artifacts. An OPM modification
proposal for this is forthcoming. In Swift, this information is often available through the Karajan [17]
execution engine thread identifier which closely maps to the Swift process execution hierarchy: a Swift
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process contains another Swift process if its Karajan thread identifier is a prefix of the second processes
Karajan thread identifier. The Swift provenance database stores values of dataset handles when those values
exist in-memory (for example, when a dataset handle represents and integer or a string). During PC3, interest
in a standard way to represent this was expressed.

5. Related Work

As pointed out by some provenance surveys [22] [8], provenance systems are diverse regarding what the
subject of the recorded provenance information is, what its level of granularity is, and how it is gathered,
stored, and queried. This is also noticeable in PC3, where a variety of approaches were used to perform
its activities. These provenance systems use a variety of data models, including semantic, relational and
semistructured ones. Nevertheless, most of them were able to map their data models to OPM. In this section
we build on these surveys and PC3 to compare Swift to other provenance systems.

Some provenance systems are not dependent on a particular workflow management system and work as
provenance stores accessible, for example, as web services or through API calls. Karma [4], for instance, is
implemented as a web service and stores provenance information in a relational database. Another example
is Tupelo [20], which is a data and metadata management middleware that uses semantic web techniques,
it has an API for enabling the storage of provenance information. Unlike Swift, systems of this type often
require the instrumentation of the applications that compose a scientific workflow, which was also observed
during PC3. This may prove difficult when the users of these applications are not also their developers, or if
these applications are given by undocumented legacy code.

Another category is given by workflow systems that have integrated provenance management support.
Vistrails [14], for instance, has a specialized provenance query language and uses both XML and relational
databases to store provenance about data, processes and workflow evolution. This category includes Swift,
which has a provenance system that is tightly coupled to it, that gathers information both about processes
and data involved in the execution of a parallel script. It has comprehensive support for execution engines on
high-performance parallel and distributed computing environments. Also, by having an integrated provenance
system, Swift enables its users to readily generate and query provenance records of their experiments. In
Swift, prospective provenance [26] is given by SwiftScript code, workflow evolution is not recorded. One
alternative for recording this, not yet implemented, would be to couple Swift’s provenance database with a
source code version control system.

6. Concluding Remarks

Swift was able to perform the activities proposed for PC3. This success illustrates its capability to support
provenance collection and analysis. Its provenance model is close to OPM, which enables interoperability with
other provenance systems. One important aspect of Swift is its support for scalable execution of large-scale
computations on parallel and distributed environments, along with the collection of provenance information.
Several examples of parallel scripting applications are mentioned in [23], which include protein structure
prediction, identification of drug targets using computational docking, and computational economics. In
a recent example, Swift executed a neural imaging analysis workflow that involved 500,000 jobs. Swift
development continues with the objective of improving its provenance capabilities and future work will
concentrate on the following aspects:

Provenance system scalability. Swift provenance tracking model results in the generation and storage
of large amounts of data. For smaller computations, such as LoadWorkflow, this is not a problem, but for
larger computations (which is precisely the sort of computations for which Swift is particularly well suited)
the provenance can become extremely large, and provenance queries can take a long time to execute. It
may be desirable to provide options that can allow the programmer to request that Swift store less data
albeit (presumably) with reduced accuracy. It may also be interesting to use distributed data management
techniques to enable better scalability.

Provenance query system. It was clear from PC3 that although it is possible to express the provenance
queries in SQL it is not always straightforward to do so, due to its poor transitivity support. One future
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objective is to make the provenance query system, which should include a specialized provenance query
language, capable of being readily queried by scientists to let them do better science through validation,
collaboration, and discovery.
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A. Database Schema

This is the schema definition used for the main relational provenance implementation (in both SQLite3
and PostgreSQL):

—- executes_in_workflow is unused at the moment, but is intended to associate
-- each execute with its containing workflow
CREATE TABLE executes_in_workflows
(workflow_id char(128),
execute_id char(128)
)s

-- processes gives information about each process (in the OPM sense)
-- it is augmented by information in other tables
CREATE TABLE processes
(id char(128) PRIMARY KEY, -- a uri
type char(16) -- specifies the type of process. for any type, it
-- must be the case that the specific type table
-- has an entry for this process.
-- Having this type here seems poor normalisation, though?

-- this gives information about each execute.
-- each execute is identified by a unique URI. other information from
-- swift logs is also stored here. an execute is an OPM process.
CREATE TABLE executes
(id char(128) PRIMARY KEY, -- actually foreign key to processes
starttime numeric,
duration numeric,
finalstate char(128),
app char(128),
scratch char(128)
)5

-- this gives information about each execute2, which is an attempt to
-- perform an execution. the execute2 id is tied to per-execution-attempt
-- information such as wrapper logs
CREATE TABLE execute2s
(id char(128) PRIMARY KEY,
execute_id, -- secondary key to executes and processes tables
starttime numeric,
duration numeric,
finalstate char(128),
site char(128)
)3

-- dataset_usage records usage relationships between processes and datasets;
-- in SwiftScript terms, the input and output parameters for each

-- application procedure invocation; in OPM terms, the artificts which are
-- input to and output from each process that is a Swift execution

CREATE TABLE dataset_usage

(process_id char(128), -- foreign key but not enforced because maybe process
-- doesn't exist at time. same type as processes.id

direction char(1), -- I or O for input or output

dataset_id char(128), -- this will perhaps key against dataset table

param_name char(128) -- the name of the parameter in this execute that

-- this dataset was bound to. sometimes this must
-- be contrived (for example, in positional varargs)

);
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-- invocation_procedure_name maps each execute ID to the name of its
—-- SwiftScript procedure
CREATE TABLE invocation_procedure_names
(execute_id char(128),
procedure_name char(128)

)5

-- dataset_containment stores the containment hierarchy between
-- container datasets (arrays and structs) and their contents.
—-- outer_dataset_id contains inner_dataset_id
CREATE TABLE dataset_containment
( outer_dataset_id char(128),
inner_dataset_id char(128)
)3

-- dataset_filenames stores the filename mapped to each dataset. As some
-- datasets do not have filenames, it should not be expected that
-- every dataset will have a row in this table
CREATE TABLE dataset_filenames
( dataset_id char(128),
filename char(128)
)5

-- dataset_values stores the value for each dataset which is known to have
-- a value (which is all assigned primitive types). No attempt is made here
-- to expose that value as an SQL type other than a string, and so (for
-- example) SQL numerical operations should not be expected to work, even
-- though the user knows that a particular dataset stores a numeric value.
CREATE TABLE dataset_values

( dataset_id char(128), -- should be primary key

value char(128)
)5

—-- known_workflows stores some information about each workflow log that has
-- been seen by the importer: the log filename, swift version and import
-- status.
CREATE TABLE known_workflows
(
workflow_id char(128),
workflow_log_filename char(128),
version char(128),
importstatus char(128)
)3

-- workflow_events stores the start time and duration for each workflow
-- that has been successfully imported.
CREATE TABLE workflow_events
( workflow_id char(128),
starttime numeric,
duration numeric

)s

-- extrainfo stores lines generated by the SWIFT_EXTRA_INFO feature
CREATE TABLE extrainfo
( execute2id char(128),
extrainfo char(1024)
);

References
[1] Third Provenance Challenge. http://twiki.ipaw.info/bin/view/Challenge/ThirdProvenanceChallenge.
[2] Provenance Challenge Wiki. http://twiki.ipaw.info, 2009.

[3] Swift Team Entry at the Third Provenance Challenge. http://twiki.ipaw.info/bin/view/Challenge/SwiftPc3,
2009.

18



[4]

B. Cao, B. Plale, G. Subramanian, E. Robertson, and Y. Simmhan. Provenance Information Model of
Karma Version 3. In Proc. IEEE Congress on Services, pages 348-351, 20009.

B. Clifford. Provenance Working Notes. http://www.ci.uchicago.edu/ benc/provenance.html, 2009.

B. Clifford, I. Foster, J. Voeckler, M. Wilde, and Y. Zhao. Tracking provenance in a virtual data grid.
Concurrency and Computation: Practice and Experience, 20(5):565-575, 2008.

K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and S. Tuecke. A Resource
Management Architecture for Metacomputing Systems. In Job Scheduling Strategies for Parallel Pro-
cessing - IPPS/SPDP 98 Workshop, volume 1459 of LNCS, pages 62-82. Springer, 1998.

S. da Cruz, M. Campos, and M. Mattoso. Towards a Taxonomy of Provenance in Scientific Workflow
Management Systems. In Proc. IEEE Congress on Services, Part I, (SERVICES I 2009), pages 259-266,
2009.

E. Deelman, D. Gannon, M. Shields, and I. Taylor. Workflows in e-Science: An overview of workflow
system features and capabilities. Future Generation Computer Systems, 25(5):528-540, 20009.

G. Dong, L. Libkin, J. Su, and L. Wong. Maintaining Transitive Closure of Graphs in SQL. Intl. Journal
of Information Technology, 5, 1999.

D. Epemaa, M. Livny, R. van Dantzig, X. Evers, and J. Pruyne. A worldwide flock of Condors: Load
sharing among workstation clusters. Future Generation Computer Systems, 12(1):53-65, 1996.

N. Kaiser et al. Pan-STARRS: A Large Synoptic Survey Telescope Array. Proc. SPIE, 4836:154—164,
2002.

I. Foster, J. Vockler, M. Wilde, and Y. Zhao. Chimera: A Virtual Data System for Representing,
Querying and Automating Data Derivation. In Proc. 1jth International Conference on Scientific and
Statistical Database Management (SSDBM’02), pages 37-46, 2002.

J. Freire, C. Silva, S. Callahan, E. Santos, C. Scheidegger, and H. Vo. Managing Rapidly-Evolving
Scientific Workflows. In International Provenance and Annotation Workshop (IPAW 2006), volume
4145 of LNCS, pages 10-18, 2006.

P. Groth, S. Miles, P. Missier, and L. Moreau. A Proposal for Handling Collections in the Open
Provenance Model.  http://mailman.ecs.soton.ac.uk/pipermail /provenance-challenge-ipaw-info,/2009-
June/000120.html, 2009.

R. Henderson. Job Scheduling Under the Portable Batch System. In Job Scheduling Strategies for
Parallel Processing - IPPS ’95 Workshop, volume 949 of LNCS, pages 279-294. Springer, 1995.

G. Laszewski, M. Hategan, and D. Kodeboyina. Java CoG Kit Workflow. In I. Taylor, E. Deelman,
D. Gannon, and M. Shields, editors, Workflows for e-Science, pages 340-356. Springer, 2007.

L. Moreau, B. Clifford, J. Freire, Y. Gil, P. Groth, J. Futrelle, N. Kwasnikowska, S. Miles, P. Missier,
J. Myers, Y. Simmhan, E. Stephan, and J. Van den Bussche. The Open Provenance Model - Core
Specification (v1.1). Future Generation Computer Systems, doi:10.1016/j.future.2010.07.005, 2010.

L. Moreau, Y. Zhao, I. Foster, J. Voeckler, and M. Wilde. XDTM: XML Dataset Typing and Mapping
for Specifying Datasets. European Grid Conference (EGC 2005), 2005.

J. Myers, J. Futrelle, J. Plutchak, P. Bajcsy, J. Kastner, L. Marini, R. Kooper, R. McGrath, T. McLaren,
A. Rodriguez, and Y. Liu. Embedding Data within Knowledge Spaces. CoRR, abs/0902.0744, 2009.

I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde. Falkon: A Fast and Lightweight Task Exe-
cution Framework. In Proc. ACM/IEEE Conference on High Performance Networking and Computing
(Supercomputing 2007), 2007.

19



[22] Y. Simmhan, B. Plale, and D. Gannon. A Survey of Data Provenance in e-Science. SIGMOD Record,
34(3):31-36, 2005.

[23] M. Wilde, I. Foster, K. Iskra, P. Beckman, A. Espinosa, M. Hategan, B. Clifford, and I. Raicu. Parallel
Scripting for Applications at the Petascale and Beyond. IEEE Computer, 42(11):50-60, November 2009.

[24] T. Ylonen. SSH - Secure Login Connections over the Internet. In Proc. of the Sizth USENIX Security
Symposium, pages 37-42, 1996.

[25] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. Laszewski, I. Raicu, T. Stef-Praun, and M. Wilde. Swift:
Fast, Reliable, Loosely Coupled Parallel Computation. In Proc. 1st IEEE International Workshop on
Scientific Workflows (SWF 2007), pages 199-206, 2007.

[26] Y. Zhao, M. Wilde, and I. Foster. Applying the Virtual Data Provenance Model. In International
Provenance and Annotation Workshop (IPAW 2006), volume 4145 of LNCS, pages 148-161. Springer,
2006.

20



Argonne@

NATIONAL LABORATORY

Mathematics and Computer Science Division
Argonne National Laboratory

9700 South Cass Avenue, Bldg. 240

Argonne, IL 60439-4847

www.anl.gov

U.S. DEPARTMENT OF

19/ ENERGY

Argonne National Laboratory is a U.S. Department of Energy
laboratory managed by UChicago Argonne, LLC



