
Phase-1 Report: Hybrid CPU-GPU Parallel Development of
the Eulerian-Lagrangian Barracuda Multiphase Program

CPFD Software LLC 1

DOE SBIR Phase-1 Report
on

Hybrid CPU-GPU Parallel Development of the Eulerian-Lagrangian Barracuda
Multiphase Program

CPFD Software, LLC
10899 Montgomery Blvd NE, Suite A, Albuquerque, NM 87111

Principal Investigator: Dr. Dale M. Snider
Topic 23, Subtopic d

February 28, 2011

Phase-1 Report: Hybrid CPU-GPU Parallel Development of
the Eulerian-Lagrangian Barracuda Multiphase Program

CPFD Software LLC 2

Table of Contents

Summary .. 3

Significance of the Problem and Technical Approach ... 4

Anticipated Public Benefits ... 5

Overview Barracuda Eulerian-Lagrangian Code ... 5

Technical Objective and Approach .. 6

Results from Phase-1 ... 7

CPU Acceleration ... 7

1. Intel Compile .. 7

2. Inter-Procedural Optimization .. 8

3. Task-level Parallelism .. 8

4. Other Optimizations ... 8

5. Summary of CPU Acceleration .. 8

Code Restructuring .. 9

GPU Acceleration ... 10

1. Choosing a Function to Accelerate .. 10

2. Starting Codebase ... 11

3. Basic Port .. 12

4. Atomic Operations ... 12

5. Blockwise Synchronization .. 13

6. Collision-Free, Cell-Wise Algorithm ... 14

Result comparison program ... 18

Documentation and Code Cleanup ... 19

Plan for Phase-2 ... 19

Phase-1 Report: Hybrid CPU-GPU Parallel Development of
the Eulerian-Lagrangian Barracuda Multiphase Program

CPFD Software LLC 3

DOE SBIR Phase-1 Report

on
Hybrid CPU-GPU Parallel Development of the Eulerian-Lagrangian Barracuda

Multiphase Program

CPFD Software, LLC

10899 Montgomery Blvd NE, Suite A, Albuquerque, NM 87111
Principal Investigator: Dr. Dale M. Snider

Topic 23, Subtopic d

February 28, 2011

This report does not contain any proprietary data or information

Summary

 This report gives the result from the Phase-1 work on demonstrating greater than 10x
speedup of the Barracuda computer program using parallel methods and GPU processors
(General-Purpose Graphics Processing Unit or Graphics Processing Unit). Phase-1
demonstrated a 12x speedup on a typical Barracuda function using the GPU processor. The
problem test case used about 5 million particles and 250,000 Eulerian grid cells. The relative
speedup, compared to a single CPU, increases with increased number of particles giving
greater than 12x speedup. Phase-1 work provided a path for reformatting data structure
modifications to give good parallel performance while keeping a friendly environment for new
physics development and code maintenance. The implementation of data structure changes
will be in Phase-2. Phase-1 laid the ground work for the complete parallelization of Barracuda
in Phase-2, with the caveat that implemented computer practices for parallel programming
done in Phase-1 gives immediate speedup in the current Barracuda serial running code.
 The Phase-1 tasks were completed successfully laying the frame work for Phase-2.
The detailed results of Phase-1 are within this document. In general, the speedup of one
function would be expected to be higher than the speedup of the entire code because of I/O
functions and communication between the algorithms. However, because one of the most
difficult Barracuda algorithms was parallelized in Phase-1 and because advanced
parallelization methods and proposed parallelization optimization techniques identified in
Phase-1 will be used in Phase-2, an overall Barracuda code speedup (relative to a single
CPU) is expected to be greater than 10x. This means that a job which takes 30 days to
complete will be done in 3 days.

Tasks completed in Phase-1 are:

Task 1: Profile the entire Barracuda code and select which subroutines are to be
parallelized (See Section Choosing a Function to Accelerate)

Phase-1 Report: Hybrid CPU-GPU Parallel Development of
the Eulerian-Lagrangian Barracuda Multiphase Program

CPFD Software LLC 4

Task 2: Select a GPU consultant company and jointly parallelize subroutines (CPFD
chose the small business EMPhotonics for the Phase-1 the technical partner. See
Section Technical Objective and Approach)

Task 3: Integrate parallel subroutines into Barracuda (See Section Results from Phase-
1 and its subsections)

Task 4: Testing, refinement, and optimization of parallel methodology (See Section
Results from Phase-1 and Section Result Comparison Program)

Task 5: Integrate Phase-1 parallel subroutines into Barracuda and release (See
Section Results from Phase-1 and its subsections)

Task 6: Roadmap of Phase-2 (See Section Plan for Phase-2)

 With the completion of Phase 1 we have the base understanding to completely
parallelize Barracuda. An overview of the work to move Barracuda to a parallelized code is
given in Plan for Phase-2.

Significance of the Problem and Technical Approach

 Phase-1 is the first step in converting the Lagrangian-Eulerian Barracuda®
computational fluid dynamics software package from a serial program to a parallel program.
The parallel conversion will be a hybrid solution which allows parallelization on a multiple core
CPU computer and using graphics processing units (GPUs). This approach provides a robust
parallel environment that will scale with increased number of computational units. The hybrid
CPU-GPU approach has several orders of magnitude higher performance than a conventional
CPU in certain applications. The complete work at the end of Phase-2 is expected to yield a
minimum performance increase in the Barracuda program of an order of magnitude compared
to a single CPU (Farber, 2008).
 The complex three-dimensional solution provided by Barracuda can take days to
weeks to reach a quasi-steady solution for industrial size problems. To provide more
versatility and quicker solution turn-around time for current size problems and increased
fidelity for future problems, the logical choice is a parallel computing environment. A parallel
solution on a traditional computer with multiple general purpose CPUs with shared memory is
limited by the number of cores in a single CPU (currently 6 cores) and the general complex
instructions used by the general purpose CPU. Going to a larger number of CPUs requires
alternative approaches than using the traditional computer cluster. The traditional computer-
cluster is unwieldy, has severe bandwidth issues, and is difficult to run and costly to own and
operate. The newer method of parallelization is to employ GPUs for computation giving
speedups of an order of magnitude or larger. The combination of GPU and multi-core
computer (hybrid) approach will be implemented in this work. The GPU has the potential of

Phase-1 Report: Hybrid CPU-GPU Parallel Development of
the Eulerian-Lagrangian Barracuda Multiphase Program

CPFD Software LLC 5

orders-of-magnitude increase in computation speed without any loss in fidelity of results.
GPUs are relatively inexpensive commodity processing units, and can be programmed by
high level API (application program interface) directly from the C programming language.
 A major challenge in the parallelization of Barracuda is the efficient and continuous
providing of vector data to the vast number of process units. This will require expertise in
parallelization techniques and restructuring of Barracuda data storage format to achieve the
best performance. This work can also be implemented in such a manner to ensure all future
Barracuda fluid-particle physics development will fit into the parallel-environment. Our
technical approach to parallel development will be extensible and scalable as new computing
hardware becomes available, e.g. multiple GPU cards.

Anticipated Public Benefits

 The Barracuda math-based computer program is a new generation software which
provides complex three-dimensional solutions to fluid-solid flow. Barracuda provides solutions
to the three-dimensional Navier-Stokes equation tightly coupled to the solid phase, the three-
dimension solution of particle phase with coupling to gas phase, solutions to the energy
equations for the fluid phase and for the solid phase, solutions to gas chemistry, solid
chemistry, and various physics models. Through solution of all the physics, the behavior of
chemical reactors, petrochemical reactors, silicon reactors, cyclones, etc., can be accurately
calculated. With understanding, small and large gains are made on operation, maintenance,
upgrades and understanding commercial plants. Even small performance gains in reactors or
extended operation cycles directly relate to significant monetary success. Solution of the
complex physics in Barracuda requires significant computer ‘horsepower’. For large
commercial units, a calculation can take 30 days to reach a quasi-steady condition. While the
results are invaluable to plant-personnel, the results usually raise numerous questions of what
is a better arrangement of reactor hardware or what can be expected with different flows, or a
host of other questions. The challenge is to provide Barracuda solutions in a few days rather
than several weeks. From the experience of others in math-based solutions, one or two
orders of magnitude in computation speedup is realizable (Farber, 2008). A calculation which
runs in 30 days can be done in less than 3 days. The ability to put science from a detailed,
complex Barracuda solution behind day to day decisions in a chemical plant, or power plant
or petrochemical plant will increase engineering productivity. This ability to move from art to
science in decision making can be done on inexpensive commodity process units, and, for
small companies, this may be a game changer.

Overview Barracuda Eulerian-Lagrangian Code

 The Barracuda program is an Eulerian-Lagrangian method for calculating fluid particle
flows. The software has been employed for solving a wide variety of problems in the chemical
and petrochemical industry. The fluid-granular flow is predicted with a computational particle
fluid dynamic (CPFD®) numerical method [Snider 2001]. Continuum or fluid models (Eulerian

Phase-1 Report: Hybrid CPU-GPU Parallel Development of
the Eulerian-Lagrangian Barracuda Multiphase Program

CPFD Software LLC 6

reference frame) readily allow modeling of forces using spatial gradients of properties
[Batchelor 1988, Gidaspow 1986]. However, modeling a distribution of types and sizes of
particles complicates the continuum formulation because separate continuity and momentum
equations must be solved for each size and type [Gidaspow 1986, Risk 1993]. While a
continuous-fluid description of the solids phase has application in some solid-fluid flow
regimes it is inaccurate in others. For dilute solid flows, closure models based on the
assumption of high collision frequencies are questionable. In addition, the non-linear behavior
of some solid flows is difficult to model with a Navier-Stokes type momentum equation. The
Lagrangian or material description for the particle phase allows economical solution for flows
with a wide range of particle types, sizes, shapes and velocities [O'Rourke 1981] and has no
numerical diffusion associated with an advection operator. The CPFD method uses the MP-
PIC scheme [Andrews and O'Rourke 1996, Snider, et al 1998, Snider 2001] for the motion of
particles. The calculation method uses features from the Eulerian method and features from
the material or Lagrangian method. The MP-PIC method models the fluid as a continuum and
models the particles as discrete entities (material description). The MP-PIC method models
enduring collision force on each particle as a spatial gradient. Dense particle flow collisions
are modeled by a BGK-type collision model [O'Rourke and Snider 2010]. The body of this
work is included in the Barracuda® commercial software.
 All calculations are solved in three dimensions. The continuum phase and the discrete
particle phase are tightly coupled. This requires continuum information to be mapped to
particles and particle information to be mapped to the grid. The Eulerian conservation
equations are calculated as a set of implicit sparse matrices tightly coupled to the Lagrangian
phase.

Technical Objective and Approach

 The objective of this work is to parallelize the Barracuda Eulerian-Lagrangian math-
based program in the GPU-CPU (hybrid) parallel environment. The expected outcome of this
work is the Barracuda program will run at least one-order of magnitude (10 times) faster than
in the serial mode.

 The migration of a serial programming code to a parallel code is always unique to the
software program being parallelized. The computer science of parallelization requires unique
talents. CPFD Software recognized the need for computer science experts to participate in the
parallelization work. CPFD teamed with EMPhotonics (EMP) to assist in the moving to a
parallelized code in Phase-1. EMP is a small business, on the same size as CPFD Software,
and their staff is recognized as experts in parallelization by NVIDIA Corp. The computer
scientists of EMP and the research engineers of CPFD Software give a strong team for
parallelizing the Barracuda program.

Phase-1 Report: Hybrid CPU-GPU Parallel Development of
the Eulerian-Lagrangian Barracuda Multiphase Program

CPFD Software LLC 7

Results from Phase-1

 The work done in Phase-1 was beyond simply porting one function to the GPU,
because the more important goal was the moving of the entire Barracuda code to a parallel
environment which happens in Phase-2. The tasks to be done in the Phase-1 proposal are
met and provide a base for the Phase-2 effort presented below.
 The section of code chosen for parallelizing on the GPU for Phase-1 was one that
consumed considerable computation time and one of the most difficult Barracuda functions to
parallelize. The function chosen was the mapping of Lagrangian properties to the Eulerian
grid. The difficulty arises because particles can move independent of the grid, changing their
cell location during the transient, and particles in a given cell can be anywhere in particle
memory (without a sort). This gives poor data caching, limiting piping data through parallel
GPUs, and increases expensive memory accesses. An even bigger challenge with the
chosen function is a race condition. A race condition occurs when many particles are
simultaneously trying to update the same grid variable (same memory location). Phase-1
addressed these issues and others and the results are given below. The Barracuda function
was parallelized to get the 12x speed gain.

CPU Acceleration

 CPU Acceleration was the first step in Phase-1 because these optimizations would
become available to all users of the codebase (not just those with GPUs) and within a much
shorter time frame than would have been available with the GPU acceleration. Additionally,
the code optimizations will complement the GPU solver, allowing the code to perform at a
high level by coupling two effective solvers in a hybrid fashion. We attempted a number of
CPU techniques, and will describe the results from each below.

1. Intel Compiler

 Intel has provided a world-class compiler for its processors for many decades.
Due to the Intel compiler’s development team having full access to the architectural
details of its own company’s processors, they are able to generate code that can
significantly outperform competing compilers on Intel processors. It is also among the
best optimizing compilers for non-Intel processors, such as AMD. The Intel compiler
often bests other compilers by 10% or more, and is often the best choice for high-
performance numeric applications.
 As such, we compiled the Barracuda code using the Intel compiler. There were
minor code incompatibilities which required working around, and many warnings were
generated. One of the warnings pointed to a minor defect in the source, which was
corrected. Once we were correctly compiling, we observed performance gain of 15%
beyond the code generated with the GCC compiler. CPFD has since been putting effort
into eliminating all of the warnings generated by Intel, with an eye towards overall code
improvement by clean compilation at the strictest warning level.

Phase-1 Report: Hybrid CPU-GPU Parallel Development of
the Eulerian-Lagrangian Barracuda Multiphase Program

CPFD Software LLC 8

2. Inter-Procedural Optimization

 Inter-procedural optimization (IPO) is an advanced compiler feature that allows a
compiler to see beyond the traditional boundaries of the software compilation model to
optimize more effectively than it would otherwise. In a traditional compiler model, each
source code file is analyzed independently, leading to each file being optimized
independently. The traditional linking step combines these individual optimized objects
together into an executable program. With IPO, the compiler analyzes and optimizes all
files at once, allowing it to optimize with information not available in a single-file
optimization. A good example is that IPO can inline functions residing in different
source files, where traditional optimization and linking cannot. Compiling Barracuda
using IPO gives a 5% speedup in overall run time.

Task-level Parallelism

 Task-level parallelism refers to running different sections of code at the same
time. This type of development can be labor intensive, as it requires an analysis by
hand to determine which operations/tasks can be run in parallel without leading to data
hazards, and so we completed only a partial proof of concept for these principles.
 We experimented with two toolkits to achieve task-level parallelism: OpenMP
and Intel’s Threading Building Blocks (TBB) library. Each of these toolkits has their
advantages but for this project we found TBB to be more effective and easier to use for
development. One advantage of TBB is that it provides more direct parallelism control
to the programmer than OpenMP, where the parallelism is largely implicit. We
experimented with using TBB to run different parts of the codebase concurrently and
found that even with the few functions we overlapped (parallelized), we achieved a 5%
gain in performance.
 Task-level parallelism will become increasingly important as the full codebase is
ported to the GPU. The reason for this is that while the GPU is a computational
powerhouse, it does not excel at every function. For some of these functions it is
desirable to utilize the CPU, while leaving the GPU to more parallel and
computationally intensive problems. This is often a beneficial scenario as further gains
can be achieved as the CPU and GPU are used concurrently, resulting in a higher total
system utilization and correspondingly a greater performance. This is the definition of
the “hybrid” GPU computing model.

3. Other Optimizations

 To complete this task, we implemented several common software optimizations
such as loop reordering, link-time optimizations, and strength reduction. In total these
optimizations achieved a 10% speedup beyond those realized by the efforts described
above.

4. Summary of CPU Acceleration

 In summary, the CPU acceleration, in this short phase of the project, yielded a

Phase-1 Report: Hybrid CPU-GPU Parallel Development of
the Eulerian-Lagrangian Barracuda Multiphase Program

CPFD Software LLC 9

30% gain in performance for the entire codebase. As shown in Fig. 1, a Barracuda job
completing in 7 days would complete in 5 days. This gain can be delivered to end-
users today and will lead to increasingly larger gains as the second phase of the
project is completed.

Figure 1 - Performance gains were achieved by adopting the Intel Compiler, using task-level
parallelism, and inter-procedural optimization.

Code Restructuring

 During the analysis of the Barracuda code, EM Photonics made numerous
recommendations to CPFD on how to improve the quality, safety, and overall structure of the
codebase. Some of these items were implemented in Phase-1, and progress in this area will
continue throughout Phase-2.
 One such example is the restructuring of the data storage. It was recognized from the
onset that the current data format was not friendly to parallelization. The current array of
structures limits the fast transfer of data to the GPU, and data are not presented in a cache
friendly format to the GPU processors. Data are contained in several macro data structures
whose address is passed throughout the code - in this format, they behave similarly to global
variables. The Barracuda “block” data structure is a good example, weighing in at over 500
bytes. The blocks are stored in a list with the block address passed pervasively throughout
the code. Any given function that references the block-structure tends use only a few
variables from it. This large structure with a pointer reference is OK on a single CPU where all

1

0.7
5

Phase-1 Report: Hybrid CPU-GPU Parallel Development of
the Eulerian-Lagrangian Barracuda Multiphase Program

CPFD Software LLC 10

data are available in one shared memory. However, when data reside on different processors,
such as the CPU and GPU, with different memory, the entire block of data must be transferred
between processors to access a few variables from the structure. For efficient data transfer
and access, in a GPU environment, the current large data structures need restructuring in two
ways:

1. Convert the majority of structs from array-of-structs to struct-of-arrays. The latter is
more cache friendly.

2. Reduce the number of elements in any given structure. Breaking structures into

smaller pieces allows for passing of blocks of only the relevant data between CPU and
GPU. From a leaner new data structures, it becomes clear which data are used where,
and this enables code analysis for task-level parallelism implementation.

In a similar vein, const-correcting (standard coding practice) will be implemented to make it
obvious which data values are inputs and which are outputs to a function. This also improves
code safety and reliability. Current mufti-dimension arrays will be made 1-dimensional arrays
with a pointer to the multi-dimensional data in the array. The array memory allocation will use
the C++ vector type which avoids memory leaks, allocates contiguous memory, and reduces
the possibility of coding errors.

GPU Acceleration

 In Phase 1, we completed a proof of concept of GPU acceleration by parallelizing one
function in Barracuda. We took one of the more computationally expensive and complicated
functions and accelerated it to achieve a speedup of 10-15x over its CPU counterpart. The
design took several iterations, but the final result provides a template for many of the other
functions in the codebase that operate similarly to the one accelerated, laying out a path for
acceleration of similar algorithms in Phase-2.
 The work described in the following subsections represents the majority of the Phase-1
effort, and completes the work described in Task 3 of the Phase-1 proposal. Task 5 is also
largely completed in the below described work, as the parallel implementation was integrated
cleanly to the codebase as it was added. The GPU integration into Barracuda was
implemented with an inefficient superfluous GPU data transfers. The inefficient data transfer
was done because it allowed quick testing of parallelization options and techniques, and
because direct transfer of Barracuda data to the GPU requires extensive data structure
changes and code wide changes. The inefficient data transfer used in Phase-1 will be
removed in Phase-2.

1. Choosing a Function to Accelerate

 The first step towards accelerating the codebase on the GPU was to choose a
section of code that would become the proof of concept for full acceleration of the

Phase-1 Report: Hybrid CPU-GPU Parallel Development of
the Eulerian-Lagrangian Barracuda Multiphase Program

CPFD Software LLC 11

codebase. With this in mind, we chose a function that took a significant amount of the
program’s run-time and represented one of the hardest problems in transitioning the
codebase to the GPU. Figure 2 shows a few of the functions considered for moving to
the GPU. The function CollisionParameters, was chosen because it has loops over all
of the particles (~5,000,000 particles) mapping particle data to a grid cell (~250,000
cells). Another factor that drove the choice of this problem was the similarity of this
snippet of Barracuda to other sections of the code. There are on the order of 50 similar
particle loops in Barracuda. With this in mind, an accelerated implementation of this
section of code created a template for porting similar code to the GPU.

Percentage of CPU run-time (?)

Figure 2. CollisionParameters was an ideal choice for acceleration because it took up a large
percentage of the run-time and was representative of many other costly sections of code.

2. Starting Codebase

 The starting codebase algorithm mapped particle properties to the grid in a
serial fashion. Particles were organized into blocks, and although the particles were
somewhat sorted in practice, there was no guarantee that a given particle would be
spatially located anywhere near any of the particles in its set (see Fig. 3). What this
resulted in was a code that was updating non-deterministic locations on a grid in an
essentially stochastic fashion. This randomness prevented the code from taking
advantage of the computer’s memory hierarchy, as the caching system, meant to
optimize nearby memory transactions, fell down as the memory transactions were
scattered across the entire grid. The cache was essentially disabled.

Phase-1 Report: Hybrid CPU-GPU Parallel Development of
the Eulerian-Lagrangian Barracuda Multiphase Program

CPFD Software LLC 12

Figure 3. Particles are located within a cell on the grid. Because the code models a stochastic
process, there is a non-deterministic number of particles in each particular cell.

3. Basic Port

 The first step in GPU acceleration was to complete a basic port to the GPU. The
first step of this task is to set up data structures on the GPU and write functions that
transfer data to and from the GPU. Once complete, we created a CUDA kernel that
operates on this data that resides on the GPU. As is typical of most GPU development,
in this early part of the project we created a kernel that was quite naive, as the main
goal of the task was to include the GPU in the program flow, albeit with very low
performance. After implementing this basic kernel, we took the first steps towards its
correctness by using atomic operations to handle data races between different
processing units.

4. Atomic Operations

 During the course of this work we explored the usage of atomic operations for
implementing various sections of code in the GPU solver. Atomic operations are
traditionally hardware-intrinsic functions for reading, updating, and writing a location in
memory with one uninterrupted operation. Because none of the steps in this operation
can be broken, this avoids any non-deterministic ordering of operations between
different parallel processing units that may attempt to operate on this memory location
at the same time. CUDA GPUs have supported atomic operations since the earliest
models, yet only recently were built-in, double-precision operations included in the

Phase-1 Report: Hybrid CPU-GPU Parallel Development of
the Eulerian-Lagrangian Barracuda Multiphase Program

CPFD Software LLC 13

Fermi GPU line. This capability was highly desired in this project, as many of the
intensive kernels used double-precision arithmetic.

Without synchronization, read, update, and
write steps may be interleaved in unexpected
orders, leading to four possible results from
these two threads.

With an atomic operation, read, update, and
write are joined into one unbreakable operation.
There is only one possible outcome for this
code.

Figure 4. Example of race condition

 While studying this problem, we determined that atomic operations in global
memory were far too costly for the particle accumulation loops. The reason for this is
that atomics are traditionally meant to handle memory collisions between a small
number of threads, on the order of less than 10. Within the particle code, however, a
given cell could have several hundred particles located within it, leading to several
hundred threads contending for access to one memory location, which led to a
significant slowdown in the code. Additionally, different threads writing to scattered
locations throughout memory prevented the GPU from achieving any economies of
scale in its memory transactions. After completing this phase of the research, we
sought to develop a version of the kernel that could avoid the limitations of the global
memory and scattered global memory writes.

5. Blockwise Synchronization

Phase-1 Report: Hybrid CPU-GPU Parallel Development of
the Eulerian-Lagrangian Barracuda Multiphase Program

CPFD Software LLC 14

 Once we determined that atomic operations in global memory were too costly to
be used with a non-deterministic number of threads writing to the same location, we
experimented with introducing some determinism to the contention by sorting particles
into blocks of nearby particles. The theory behind this approach was that instead of
using global atomic operations, which were significantly expensive, we could utilize
cheaper atomic operations in a shared workspace that is local to each microprocessor.
These cheaper operations could minimize the most significant limitation of the first
approach to the solver. Additionally, by co-locating particles by tying them to a particle
cell, the GPU could achieve coalesced memory writes by writing out these contiguous
memory locations in a completely parallel manner. A diagram of this approach is shown
in Fig 4.

Figure 5. Neighboring cells are combined to form a block. Each of these blocks is processed
in parallel, using atomic operations to handle collisions.

 We implemented this approach but found that atomic operations were still far too
costly. Although this had a speedup when compared with the first iteration, the
contention was far too great to allow the GPU to perform at its full computational
potential.

6. Collision-Free, Cell-Wise Algorithm

 The implementation above highlighted the need to move away from GPU

Phase-1 Report: Hybrid CPU-GPU Parallel Development of
the Eulerian-Lagrangian Barracuda Multiphase Program

CPFD Software LLC 15

atomics for synchronization. Evolving the algorithm implemented above, we decided
that rather than processing a block of cells in parallel, we would instead process each
cell in parallel. The clear advantage of this approach is that instead of using atomic
operations, we could allow each cell to have a private workspace in shared memory for
its collision free accumulations. Once all of the threads processed each of their cells,
the temporary values for each cell could be reduced in a deterministic and collision-free
manner.
 The key for processing each cell is to ensure that there are no conflicts between
corners for a given cell interpolation. One factor at play, that leads to possible data-
collisions, is the interpolation operator in mapping particle properties to the grid. A
particle in a cell maps data to 8 cells surrounding the particle. As illustrated in Fig. 7,
part of the 8-corner stencil is shared by other particles in a neighbor cell. In parallel
computing, there is the possibility that multiple particles can change a cell variable at
the same time (step on each other’s toes). We need to ensure that contributions from
particles in neighboring cells are respected when we calculate the final result.

Each cell is surrounded by 8
corners.

 Analogously, each corner is shared by 8
cells.

Figure 6. The 8 point edge stencil for interpolating particle data to grid cells.

Phase-1 Report: Hybrid CPU-GPU Parallel Development of
the Eulerian-Lagrangian Barracuda Multiphase Program

CPFD Software LLC 16

Figure 7 - Particles within a cell contribute to each corner in the cell, and these corners are
shared between multiple cells.

Figure 8 - In the first kernel, each thread completes a three step process that includes
looping over all of the particles to which it has been assigned, reducing these particles

Phase-1 Report: Hybrid CPU-GPU Parallel Development of
the Eulerian-Lagrangian Barracuda Multiphase Program

CPFD Software LLC 17

in partnership with its neighbors, and finally writing out the final result to global memory.

 We handle these dependencies by splitting the processing into two steps, the
corner contribution and the corner reduction. Within the kernel, a set of threads looped
over all of the particles that were located in its cell, updating a private workspace
location in the GPU’s shared memory. Once all the particles in a particle cell have been
processed, each block combines (reduces) the private workspace locations into one
cell. With the reduction complete, the full contribution of the particles to all 8 corners of
a particular cell have been calculated, and all that remains is to write these values out
to global memory.
 The second step of this process is to push the contribution of particles from a
given cell to its neighboring cells. The advantage of this approach is that each cell is
completely independent and can proceed without need to perform any synchronization
with any other cells. A diagram of this process is shown in Fig. 9.

Figure 9 - A given corner is read by multiple cells because this corner is shared between 8
different cells. Each of these reads can be done in parallel because the cell information is kept

in a different array than the corner information, leading to no data hazards.

 // Neighbor Corner of neighbor Offset to neighbor
if(hasLeftFrontBotNeighbor) m += massCorners[CORNER(rightBackTop, x , y , z)];
if(hasLeftFrontTopNeighbor) m += massCorners[CORNER(rightBackBot, x , y , z+1)];

Phase-1 Report: Hybrid CPU-GPU Parallel Development of
the Eulerian-Lagrangian Barracuda Multiphase Program

CPFD Software LLC 18

if(hasLeftBackBotNeighbor) m += massCorners[CORNER(rightFrontTop, x , y+1, z)];
if(hasLeftBackTopNeighbor) m += massCorners[CORNER(rightFrontBot, x , y+1, z+1)];
if(hasRightFrontBotNeighbor) m += massCorners[CORNER(leftBackTop, x+1, y , z)];
if(hasRightFrontTopNeighbor) m += massCorners[CORNER(leftBackBot, x+1, y , z+1)];
if(hasRightBackBotNeighbor) m += massCorners[CORNER(leftFrontTop, x+1, y+1, z)];
if(hasRightBackTopNeighbor) m += massCorners[CORNER(leftFrontBot, x+1, y+1, z+1)];

Figure 10 - Example of this process represented in code. Each cell looks to the corners of
each of its 8 neighbors to determine the total contribution to the given cell. The desired corner

mirrors the direction of its neighbor’s location; for example the ‘Right, Back, Top’ corner is
read from the ‘Left, Front, Bot’ neighbor.

 Within each of these statements, a given cell will check if it has a neighbor in a specific
direction, and if so, will read the contribution of its neighboring cell to the corresponding
corner. The reduction step completes the particle-to-grid interpolation algorithm. By avoiding
memory contention that the first two iterations of the solver exhibited, we were able to achieve
a speedup of 10-15x over the CPU code. Analyzing and benchmarking the speedup
completes the work described in Task 4 of the Phase-1 proposal.

Result comparison program

 A result comparison utility program was built to assist in testing code-correctness
during the development of the parallel code. The purpose of this program was to compare
output from two different versions of the code that have run the same test problem. When
specified tolerances are exceeded between the two code versions, a diagnostic is printed
showing the time and physical quantity out-of-bounds. In this utility program, code errors are
easily identified and corrected. See Fig. 9 for an example output.

Phase-1 Report: Hybrid CPU-GPU Parallel Development of
the Eulerian-Lagrangian Barracuda Multiphase Program

CPFD Software LLC 19

Figure 11 - The comparison program compares all of the variables that are collected in a
given run and reports which of these variables exceed error thresholds. This provides a

means to compare the output of different versions of the solvers.

Documentation and Code Cleanup

 Once the accelerated port was complete, we completed a documentation and code-
cleanup effort. This effort simplified merging the optimized code with other code modifications
that were made while the branch was being implemented. Additionally, this effort served to
provide the most solid foundation for the Phase-2 work.

Plan for Phase-2

 The acceleration of the Barracuda code in the upcoming Phase-2 effort, was
demonstrated in Phase-1. The first step in Phase-2 is reformatting existing data structures to
make data caching and data flow compatible with high degree of parallelization will be done.
Current data structures will be broken into smaller structures, and structures will be switched
from array of structures (AOS) to structure of arrays (SOA). The grouping of data in arrays will

Phase-1 Report: Hybrid CPU-GPU Parallel Development of
the Eulerian-Lagrangian Barracuda Multiphase Program

CPFD Software LLC 20

be based on the code architecture, such that the blocks of data which will be moved to and
from the GPU will contain only data needed on the GPU. This grouping will also be cache
friendly in the hybrid parallelization.
 The next step is to define the code which will reside on the GPU, which code is
parallelized on the CPU and which code remains serial. Currently there is a natural
separation of having the particle algorithms reside on the GPU. It is also known that
computation intensive operations, such as the conjugate gradient solver, are candidates for
the speed that the GPU gives. A detailed code “call tree” will identify which routine calls other
routines, and identify which data are required by which routines. The tree-map will assist in
parallelizing Barracuda in Phase-2 by providing an obvious usage of data by function and the
interconnection of functions. By knowing such taxonomy, we can more easily identify where
algorithms and each piece of data will reside, and identify times when data must be
transferred between devices.
 Serial code functions will be ported to GPU-kernel functions. The order of migrating
Barracuda functions to the GPU will be based on profiling and identifying hot-spots of high
computation time. Sections of code which lend themselves to parallelization and have
significant computation time will be ported to a GPU-kernel. Other parts of the code, such as
i/o functions, input processing, etc., will be left in serial mode. In the parallelization process,
less significant code sections which are used by the GPU code sections will need to be ported
to the GPU. There are approximately 750 functions in Barracuda. It estimated that 500 of the
functions will be ported to GPU or parallelized on the CPU. This effort is expected to
represent the top 95% of Barracuda’s run time.
 Continual testing is required during the parallelization effort. Parallel programs are
notorious for giving inconsistent calculation results, to a large extent from contention when
updating a variable from multiple sources (race condition). The parallel code results will be
compared to serial code results, as sections of parallel code are completed. Testing will also
check that the section of code parallelized gives effective speedup. In Phase 2, testing and
validating the parallel code to the serial code will be a significant effort throughout the project.
The work will be heavily documented within Barracuda (coding comments), and standard
coding practices will be enforced for ease of maintenance and giving an extensible code.
 In the Phase-2 effort, the CPU codepath will be kept 100% operational, and it will be
possible to compile the solver completely excluding GPU support, or to disable it at runtime.
During this time, the CPU codepath will likely see additional improvements from completed
Phase-2 tasks, such as from reorganization of data structures for the GPU. In some cases,
the CPU code will be overlapped with GPU code in the hybrid mindset to avoid slowing the
simultaneous GPU execution path.
 At the end of the Phase-2, a GPU-accelerated Barracuda will meet the performance
target of an order of magnitude improvement in run time. Future work beyond this Phase-2
may include the use of multi-GPU processing or multi-node (i.e. cluster) processing to extend
the performance of the code even further beyond this level.

Phase-1 Report: Hybrid CPU-GPU Parallel Development of
the Eulerian-Lagrangian Barracuda Multiphase Program

CPFD Software LLC 21

References

J. Andrews and P. J. O'Rourke, 1996 "The multiphase particle-in-cell (MP-PIC) method for
dense particle flow," Int. J. Multiphase Flow, 22, 379-402

G. K. Batchelor, 1988, "A new theory of the instability of a uniform fluidized bed," J. Fluid
Mech., 193, 75-110

D. Gidaspow, 1986, "Hydrodynamics of fluidization and heat transfer supercomputer
modeling," Appl. Mech. Rev. 39, 1-22

P. J. O'Rourke, 1981, Collective drop effects on vaporizing liquid sprays, PhD. Thesis,
Princeton University

P.J. O'Rourke ans D.M. Snider, 2010, “An improved collision damping time for MP-PIC
calculations of dense particle flow with application to polydisperse sedimenting beds and
colliding particle jets,” Chemical Engineering Science, 65, 6014-6028

M. A. Risk, 1993, "Mathematical modeling of densely loaded, particle laden turbulent flows,"
Atomization and Sprays, 3, 1-27

D.M. Snider, 2001, “An Incompressible three dimensional multiphase particle-in-cell model for
dense particle flows”, Journal of Computational Physics, 170, 523-549.

D.M. Snider, P. J. O’Rourke, and M. J. Andrews, 1998, “Sediment flow in inclined vessels
calculated using multiphase particle-in-cell model for dense particle flow,” Int. J. Multiphase
Flow, 24, 1359-1282

R. Farber, 2008, “CUDA, Supercomputing for the Masses: Part 1”, Dr. Dobb's,
http://www.ddj.com/cpp/207200659

