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Summary 

 This report gives the result from the Phase-1 work on demonstrating greater than 10x 
speedup of the Barracuda computer program using parallel methods and GPU processors 
(General-Purpose Graphics Processing Unit or Graphics Processing Unit). Phase-1 
demonstrated a 12x speedup on a typical Barracuda function using the GPU processor. The 
problem test case used about 5 million particles and 250,000 Eulerian grid cells. The relative 
speedup, compared to a single CPU, increases with increased number of particles giving 
greater than 12x speedup. Phase-1 work provided a path for reformatting data structure 
modifications to give good parallel performance while keeping a friendly environment for new 
physics development and code maintenance. The implementation of data structure changes 
will be in Phase-2. Phase-1 laid the ground work for the complete parallelization of Barracuda 
in Phase-2, with the caveat that implemented computer practices for parallel programming 
done in Phase-1 gives immediate speedup in the current Barracuda serial running code.  
 The Phase-1 tasks were completed successfully laying the frame work for Phase-2. 
The detailed results of Phase-1 are within this document. In general, the speedup of one 
function would be expected to be higher than the speedup of the entire code because of I/O 
functions and communication between the algorithms. However, because one of the most 
difficult Barracuda algorithms was parallelized in Phase-1 and because advanced 
parallelization methods and proposed parallelization optimization techniques identified in 
Phase-1 will  be used in Phase-2, an overall Barracuda code speedup (relative to a single 
CPU) is expected to be greater than 10x. This means that a job which takes 30 days to 
complete will be done in 3 days. 
 
Tasks completed in Phase-1 are: 
 

Task 1: Profile the entire Barracuda code and select which subroutines are to be 
parallelized (See Section Choosing a Function to Accelerate) 
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Task 2: Select a GPU consultant company and jointly parallelize subroutines (CPFD 
chose the small business EMPhotonics for the Phase-1 the technical partner. See 
Section Technical Objective and Approach) 
 
Task 3: Integrate parallel subroutines into Barracuda (See Section Results from Phase-
1 and its subsections) 
 
Task 4: Testing, refinement, and optimization of parallel methodology (See Section 
Results from Phase-1 and Section Result Comparison Program) 
 
Task 5: Integrate Phase-1 parallel subroutines into Barracuda and release (See 
Section Results from Phase-1 and its subsections) 
 
Task 6: Roadmap of Phase-2 (See Section Plan for Phase-2) 
 

 With the completion of Phase 1 we have the base understanding to completely 
parallelize Barracuda. An overview of the work to move Barracuda to a parallelized code is 
given in Plan for Phase-2. 
 

Significance of the Problem and Technical Approach  

 Phase-1 is the first step in converting the Lagrangian-Eulerian Barracuda® 
computational fluid dynamics software package from a serial program to a parallel program. 
The parallel conversion will be a hybrid solution which allows parallelization on a multiple core 
CPU computer and using graphics processing units (GPUs). This approach provides a robust 
parallel environment that will scale with increased number of computational units. The hybrid 
CPU-GPU approach has several orders of magnitude higher performance than a conventional 
CPU in certain applications. The complete work at the end of Phase-2 is expected to yield a 
minimum performance increase in the Barracuda program of an order of magnitude compared 
to a single CPU (Farber, 2008).  
 The complex three-dimensional solution provided by Barracuda can take days to 
weeks to reach a quasi-steady solution for industrial size problems. To provide more 
versatility and quicker solution turn-around time for current size problems and increased 
fidelity for future problems, the logical choice is a parallel computing environment. A parallel 
solution on a traditional computer with multiple general purpose CPUs with shared memory is 
limited by the number of cores in a single CPU (currently 6 cores) and the general complex 
instructions used by the general purpose CPU. Going to a larger number of CPUs requires 
alternative approaches than using the traditional computer cluster. The traditional computer-
cluster is unwieldy, has severe bandwidth issues, and is difficult to run and costly to own and 
operate. The newer method of parallelization is to employ GPUs for computation giving 
speedups of an order of magnitude or larger. The combination of GPU and multi-core 
computer (hybrid) approach will be implemented in this work. The GPU has the potential of 
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orders-of-magnitude increase in computation speed without any loss in fidelity of results. 
GPUs are relatively inexpensive commodity processing units, and can be programmed by 
high level API (application program interface) directly from the C programming language.  
 A major challenge in the parallelization of Barracuda is the efficient and continuous 
providing of vector data to the vast number of process units. This will require expertise in 
parallelization techniques and restructuring of Barracuda data storage format to achieve the 
best performance. This work can also be implemented in such a manner to ensure all future 
Barracuda fluid-particle physics development will fit into the parallel-environment. Our 
technical approach to parallel development will be extensible and scalable as new computing 
hardware becomes available, e.g. multiple GPU cards. 
 

Anticipated Public Benefits  

 The Barracuda math-based computer program is a new generation software which 
provides complex three-dimensional solutions to fluid-solid flow. Barracuda provides solutions 
to the three-dimensional Navier-Stokes equation tightly coupled to the solid phase, the three-
dimension solution of particle phase with coupling to gas phase, solutions to the energy 
equations for the fluid phase and for the solid phase, solutions to gas chemistry, solid 
chemistry, and various physics models. Through solution of all the physics, the behavior of 
chemical reactors, petrochemical reactors, silicon reactors, cyclones, etc., can be accurately 
calculated. With understanding, small and large gains are made on operation, maintenance, 
upgrades and understanding commercial plants. Even small performance gains in reactors or 
extended operation cycles directly relate to significant monetary success. Solution of the 
complex physics in Barracuda requires significant computer ‘horsepower’. For large 
commercial units, a calculation can take 30 days to reach a quasi-steady condition. While the 
results are invaluable to plant-personnel, the results usually raise numerous questions of what 
is a better arrangement of reactor hardware or what can be expected with different flows, or a 
host of other questions. The challenge is to provide Barracuda solutions in a few days rather 
than several weeks. From the experience of others in math-based solutions, one or two 
orders of magnitude in computation speedup is realizable (Farber, 2008). A calculation which 
runs in 30 days can be done in less than 3 days. The ability to put science from a detailed, 
complex Barracuda solution behind day to day decisions in a chemical plant, or power plant 
or petrochemical plant will increase engineering productivity. This ability to move from art to 
science in decision making can be done on inexpensive commodity process units, and, for 
small companies, this may be a game changer.  
 

Overview Barracuda Eulerian-Lagrangian Code  

 The Barracuda program is an Eulerian-Lagrangian method for calculating fluid particle 
flows. The software has been employed for solving a wide variety of problems in the chemical 
and petrochemical industry. The fluid-granular flow is predicted with a computational particle 
fluid dynamic (CPFD®) numerical method [Snider 2001]. Continuum or fluid models (Eulerian 
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reference frame) readily allow modeling of forces using spatial gradients of properties 
[Batchelor 1988, Gidaspow 1986]. However, modeling a distribution of types and sizes of 
particles complicates the continuum formulation because separate continuity and momentum 
equations must be solved for each size and type [Gidaspow 1986, Risk 1993]. While a 
continuous-fluid description of the solids phase has application in some solid-fluid flow 
regimes it is inaccurate in others. For dilute solid flows, closure models based on the 
assumption of high collision frequencies are questionable. In addition, the non-linear behavior 
of some solid flows is difficult to model with a Navier-Stokes type momentum equation. The 
Lagrangian or material description for the particle phase allows economical solution for flows 
with a wide range of particle types, sizes, shapes and velocities [O'Rourke 1981] and has no 
numerical diffusion associated with an advection operator. The CPFD method uses the MP-
PIC scheme [Andrews and O'Rourke 1996, Snider, et al 1998, Snider 2001] for the motion of 
particles. The calculation method uses features from the Eulerian method and features from 
the material or Lagrangian method. The MP-PIC method models the fluid as a continuum  and 
models the particles as discrete entities (material description). The MP-PIC method models 
enduring collision force on each particle as a spatial gradient. Dense particle flow collisions 
are modeled by a BGK-type collision model [O'Rourke and Snider 2010]. The body of this 
work is included in the Barracuda® commercial software.  
 All calculations are solved in three dimensions. The continuum phase and the discrete 
particle phase are tightly coupled. This requires continuum information to be mapped to 
particles and particle information to be mapped to the grid. The Eulerian conservation 
equations are calculated as a set of implicit sparse matrices tightly coupled to the Lagrangian 
phase.   
 

Technical Objective and Approach 

 The objective of this work is to parallelize the Barracuda Eulerian-Lagrangian math-
based program in the GPU-CPU (hybrid) parallel environment. The expected outcome of this 
work is the Barracuda program will run at least one-order of magnitude (10 times) faster than 
in the serial mode.  
 
 The migration of a serial programming code to a parallel code is always unique to the 
software program being parallelized. The computer science of parallelization requires unique 
talents. CPFD Software recognized the need for computer science experts to participate in the 
parallelization work. CPFD teamed with EMPhotonics (EMP) to assist in the moving to a 
parallelized code in Phase-1. EMP is a small business, on the same size as CPFD Software, 
and their staff is recognized as experts in parallelization by NVIDIA Corp. The computer 
scientists of EMP and the research engineers of CPFD Software give a strong team for 
parallelizing the Barracuda program. 
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Results from Phase-1 

 The work done in Phase-1 was beyond simply porting one function to the GPU, 
because the more important goal was the moving of the entire Barracuda code to a parallel 
environment which happens in Phase-2. The tasks to be done in the Phase-1 proposal are 
met and provide a base for the Phase-2 effort presented below.  
 The section of code chosen for parallelizing on the GPU for Phase-1 was one that 
consumed considerable computation time and one of the most difficult Barracuda functions to 
parallelize. The function chosen was the mapping of Lagrangian properties to the Eulerian 
grid. The difficulty arises because particles can move independent of the grid, changing their 
cell location during the transient, and particles in a given cell can be anywhere in particle 
memory (without a sort). This gives poor data caching, limiting piping data through parallel 
GPUs, and increases expensive memory accesses. An even bigger challenge with the 
chosen function is a race condition. A race condition occurs when many particles are 
simultaneously trying to update the same grid variable (same memory location). Phase-1 
addressed these issues and others and the results are given below. The Barracuda function 
was parallelized to get the 12x speed gain.  
 

CPU Acceleration 

 CPU Acceleration was the first step in Phase-1 because these optimizations would 
become available to all users of the codebase (not just those with GPUs) and within a much 
shorter time frame than would have been available with the GPU acceleration. Additionally, 
the code optimizations will complement the GPU solver, allowing the code to perform at a 
high level by coupling two effective solvers in a hybrid fashion. We attempted a number of 
CPU techniques, and will describe the results from each below. 

1. Intel Compiler 

 Intel has provided a world-class compiler for its processors for many decades. 
Due to the Intel compiler’s development team having full access to the architectural 
details of its own company’s processors, they are able to generate code that can 
significantly outperform competing compilers on Intel processors. It is also among the 
best optimizing compilers for non-Intel processors, such as AMD. The Intel compiler 
often bests other compilers by 10% or more, and is often the best choice for high-
performance numeric applications.  
 As such, we compiled the Barracuda code using the Intel compiler. There were 
minor code incompatibilities which required working around, and many warnings were 
generated. One of the warnings pointed to a minor defect in the source, which was  
corrected. Once we were correctly compiling, we observed performance gain of 15% 
beyond the code generated with the GCC compiler. CPFD has since been putting effort 
into eliminating all of the warnings generated by Intel, with an eye towards overall code 
improvement by clean compilation at the strictest warning level. 
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2. Inter-Procedural Optimization 

 Inter-procedural optimization (IPO) is an advanced compiler feature that allows a 
compiler to see beyond the traditional boundaries of the software compilation model to 
optimize more effectively than it would otherwise. In a traditional compiler model, each 
source code file is analyzed independently, leading to each file being optimized 
independently. The traditional linking step combines these individual optimized objects 
together into an executable program. With IPO, the compiler analyzes and optimizes all  
files at once, allowing it to optimize with information not available in a single-file 
optimization. A good example is that IPO can inline functions residing in different 
source files, where traditional optimization and linking cannot. Compiling Barracuda 
using IPO gives a 5% speedup in overall run time. 

Task-level Parallelism 

 Task-level parallelism refers to running different sections of code at the same 
time. This type of development can be labor intensive, as it requires an analysis by 
hand to determine which operations/tasks can be run in parallel without leading to data 
hazards, and so we completed only a partial proof of concept for these principles. 
 We experimented with two toolkits to achieve task-level parallelism: OpenMP 
and Intel’s Threading Building Blocks (TBB) library. Each of these toolkits has their 
advantages but for this project we found TBB to be more effective and easier to use for  
development. One advantage of TBB is that it provides more direct parallelism control 
to the programmer than OpenMP, where the parallelism is largely implicit. We 
experimented with using TBB to run different parts of the codebase concurrently and 
found that even with the few functions we overlapped (parallelized),  we achieved a 5% 
gain in performance. 
 Task-level parallelism will become increasingly important as the full codebase is 
ported to the GPU. The reason for this is that while the GPU is a computational 
powerhouse, it does not excel at every function. For some of these functions it is 
desirable to utilize the CPU, while leaving the GPU to more parallel and 
computationally intensive problems. This is often a beneficial scenario as further gains 
can be achieved as the CPU and GPU are used concurrently, resulting in a higher total 
system utilization and correspondingly a greater performance. This is the definition of 
the “hybrid” GPU computing model. 

3. Other Optimizations 

 To complete this task, we implemented several common software optimizations 
such as loop reordering, link-time optimizations, and strength reduction. In total these 
optimizations achieved a 10% speedup beyond those realized by the efforts described 
above. 
 

4. Summary of CPU Acceleration 

 In summary, the CPU acceleration, in this short phase of the project, yielded a 



Phase-1 Report: Hybrid CPU-GPU Parallel Development of  
the Eulerian-Lagrangian Barracuda Multiphase Program 

 

CPFD Software LLC 9 

30% gain in performance for the entire codebase.  As shown in Fig. 1, a Barracuda job 
completing in 7 days would complete in 5 days. This gain can be delivered to end-
users today and will lead to increasingly larger gains as the second phase of the 
project is completed. 

 
 

 

Figure 1 - Performance gains were achieved by adopting the Intel Compiler, using task-level 
parallelism, and inter-procedural optimization. 

 

Code Restructuring 

 During the analysis of the Barracuda code, EM Photonics made numerous 
recommendations to CPFD on how to improve the quality, safety, and overall structure of the 
codebase. Some of these items were implemented in Phase-1, and progress in this area will 
continue throughout Phase-2. 
 One such example is the restructuring of the data storage. It was recognized from the 
onset that the current data format was not friendly to parallelization. The current array of 
structures limits the fast transfer of data to the GPU, and data are not presented in a cache 
friendly format to the GPU processors. Data are contained in several macro data structures 
whose address is passed throughout the code - in this format, they behave similarly to global 
variables. The Barracuda “block” data structure is a good example, weighing in at over 500 
bytes. The blocks are stored in a list with the block address passed pervasively throughout 
the code. Any given function that references the block-structure tends use only a few 
variables from it. This large structure with a pointer reference is OK on a single CPU where all 

1

0.7
5
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data are available in one shared memory. However, when data reside on different processors, 
such as the CPU and GPU, with different memory, the entire block of data must be transferred 
between processors to access a few variables from the structure. For efficient data transfer 
and access, in a GPU environment, the current large data structures need restructuring in two 
ways: 
 

1. Convert the majority of structs from array-of-structs to struct-of-arrays. The latter is 
more cache friendly. 

 
2. Reduce the number of elements in any given structure. Breaking structures  into 

smaller pieces allows for passing of blocks of only the relevant data between CPU and 
GPU. From a leaner new data structures, it becomes clear which data are used where, 
and this enables code analysis for task-level parallelism implementation.  

 
In a similar vein, const-correcting (standard coding practice) will be implemented to make it 
obvious which data values are inputs and which are outputs to a function. This also improves 
code safety and reliability. Current mufti-dimension arrays will be made 1-dimensional arrays 
with a pointer to the multi-dimensional data in the array. The array memory allocation will use 
the C++ vector type which avoids memory leaks, allocates contiguous memory, and reduces 
the possibility of coding errors. 
 

GPU Acceleration 

 In Phase 1, we completed a proof of concept of GPU acceleration by parallelizing one 
function in  Barracuda. We took one of the more computationally expensive and complicated 
functions and accelerated it to achieve a speedup of 10-15x over its CPU counterpart. The 
design took several iterations, but the final result provides a template for many of the other 
functions in the codebase that operate similarly to the one accelerated, laying out a path for 
acceleration of similar algorithms in Phase-2. 
 The work described in the following subsections represents the majority of the Phase-1 
effort, and completes the work described in Task 3 of the Phase-1 proposal. Task 5 is also 
largely completed in the below described work, as the parallel implementation was integrated 
cleanly to the codebase as it was added. The GPU integration into Barracuda was 
implemented with an inefficient superfluous GPU data transfers. The inefficient data transfer 
was done because it allowed quick testing of parallelization options and techniques, and 
because direct transfer of Barracuda data to the GPU requires extensive data structure 
changes and code wide changes. The inefficient data transfer used in Phase-1 will be 
removed in Phase-2. 

1. Choosing a Function to Accelerate 

 The first step towards accelerating the codebase on the GPU was to choose a 
section of code that would become the proof of concept for full acceleration of the 
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codebase. With this in mind, we chose a function that took a significant amount of the 
program’s run-time and represented one of the hardest problems in transitioning the 
codebase to the GPU. Figure 2 shows a few of the functions considered for moving to 
the GPU. The function CollisionParameters, was chosen because it has loops over all 
of the particles (~5,000,000 particles) mapping particle data to a grid cell  (~250,000 
cells). Another factor that drove the choice of this problem was the similarity of this 
snippet of Barracuda to other sections of the code. There are on the order of 50 similar 
particle loops in Barracuda. With this in mind, an accelerated implementation of this 
section of code created a template for porting similar code  to the GPU. 

 

Percentage of CPU run-time (?) 

Figure 2. CollisionParameters was an ideal choice for acceleration because it took up a large 
percentage of the run-time and was representative of many other costly sections of code. 

 

2. Starting Codebase 

 The starting codebase algorithm mapped particle properties to the grid in a 
serial fashion. Particles were organized into blocks, and although the particles were 
somewhat sorted in practice, there was no guarantee that a given particle would be 
spatially located anywhere near any of the particles in its set (see Fig. 3). What this 
resulted in was a code that was updating non-deterministic locations on a grid in an 
essentially stochastic fashion. This randomness prevented the code from taking 
advantage of the computer’s memory hierarchy, as the caching system, meant to 
optimize nearby memory transactions, fell down as the memory transactions were 
scattered across the entire grid. The cache was essentially disabled. 
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Figure 3. Particles are located within a cell on the grid. Because the code models a stochastic 
process, there is a non-deterministic number of particles in each particular cell. 

3. Basic Port 

 The first step in GPU acceleration was to complete a basic port to the GPU. The 
first step of this task is to set up data structures on the GPU and write functions that 
transfer data to and from the GPU. Once complete, we created a CUDA kernel that 
operates on this data that resides on the GPU. As is typical of most GPU development, 
in this early part of the project we created a kernel that was quite naive, as the main 
goal of the task was to include the GPU in the program flow, albeit with very low 
performance. After implementing this basic kernel, we took the first steps towards its 
correctness by using atomic operations to handle data races between different 
processing units. 

4. Atomic Operations 

 During the course of this work we explored the usage of atomic operations for 
implementing various sections of code in the GPU solver. Atomic operations are 
traditionally hardware-intrinsic functions for reading, updating, and writing a location in 
memory with one uninterrupted operation. Because none of the steps in this operation 
can be broken, this avoids any non-deterministic ordering of operations between 
different parallel processing units that may attempt to operate on this memory location 
at the same time. CUDA GPUs have supported atomic operations since the earliest 
models, yet only recently were built-in, double-precision operations included in the 
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Fermi GPU line. This capability was highly desired in this project, as many of the 
intensive kernels used double-precision arithmetic. 

 
 
 

 
 
Without synchronization, read, update, and 
write steps may be interleaved in unexpected 
orders, leading to four possible results from 
these two threads. 

With an atomic operation, read, update, and 
write are joined into one unbreakable operation. 
There is only one possible outcome for this 
code. 

Figure 4. Example of race condition 
  
 
 
 While studying this problem, we determined that atomic operations in global 
memory were far too costly for the particle accumulation loops. The reason for this is 
that atomics are traditionally meant to handle memory collisions between a small 
number of threads, on the order of less than 10. Within the particle code, however, a 
given cell could have several hundred particles located within it, leading to several 
hundred threads contending for access to one memory location, which led to a 
significant slowdown in the code. Additionally, different threads writing to scattered 
locations throughout memory prevented the GPU from achieving any economies of 
scale in its memory transactions. After completing this phase of the research, we 
sought to develop a version of the kernel that could avoid the limitations of the global 
memory and scattered global memory writes. 

5. Blockwise Synchronization 
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 Once we determined that atomic operations in global memory were too costly to 
be used with a non-deterministic number of threads writing to the same location, we 
experimented with introducing some determinism to the contention by sorting particles 
into blocks of nearby particles. The theory behind this approach was that instead of 
using global atomic operations, which were significantly expensive, we could utilize 
cheaper atomic operations in a shared workspace that is local to each microprocessor. 
These cheaper operations could minimize the most significant limitation of the first 
approach to the solver. Additionally, by co-locating particles by tying them to a particle 
cell, the GPU could achieve coalesced memory writes by writing out these contiguous 
memory locations in a completely parallel manner. A diagram of this approach is shown 
in Fig 4. 
 

 

 
 

Figure 5.  Neighboring cells are combined to form a block. Each of these blocks is processed 
in parallel, using atomic operations to handle collisions. 

 
 

 We implemented this approach but found that atomic operations were still far too 
costly. Although this had a speedup when compared with the first iteration, the 
contention was far too great to allow the GPU to perform at its full computational 
potential. 

6. Collision-Free, Cell-Wise Algorithm 

 The implementation above highlighted the need to move away from GPU 
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atomics for synchronization. Evolving the algorithm implemented above, we decided 
that rather than processing a block of cells in parallel, we would instead process each 
cell in parallel. The clear advantage of this approach is that instead of using atomic 
operations, we could allow each cell to have a private workspace in shared memory for 
its collision free accumulations. Once all of the threads processed each of their cells, 
the temporary values for each cell could be reduced in a deterministic and collision-free 
manner. 
 The key for processing each cell is to ensure that there are no conflicts between 
corners for a given cell interpolation. One factor at play, that leads to possible data-
collisions, is the interpolation operator in mapping particle properties to the grid. A 
particle in a cell maps data to 8 cells surrounding the particle. As illustrated in Fig. 7, 
part of the 8-corner stencil is shared by other particles in a neighbor cell.  In parallel 
computing, there is the possibility that multiple particles can change a cell variable at 
the same time (step on each other’s toes). We need to ensure that contributions from 
particles in neighboring cells are respected when we calculate the final result. 

 
 

 
 
Each cell is surrounded by 8 
corners. 

 Analogously, each corner is shared by 8 
cells. 

 
Figure 6.  The 8 point edge stencil for interpolating particle data to grid cells. 
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Figure 7 - Particles within a cell contribute to each corner in the cell, and these corners are 
shared between multiple cells. 

 

 

 
 

Figure 8 - In the first kernel, each thread completes a three step process that includes 
looping over all of the particles to which it has been assigned, reducing these particles 
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in partnership with its neighbors, and finally writing out the final result to global memory. 

 

 We handle these dependencies by splitting the processing into two steps, the 
corner contribution and the corner reduction. Within the kernel, a set of threads looped 
over all of the particles that were located in its cell, updating a private workspace 
location in the GPU’s shared memory. Once all the particles in a particle cell have been 
processed, each block combines (reduces) the private workspace locations into one 
cell. With the reduction complete, the full contribution of the particles to all 8 corners of 
a particular cell have been calculated, and all that remains is to write these values out 
to global memory. 
 The second step of this process is to push the contribution of particles from a 
given cell to its neighboring cells. The advantage of this approach is that each cell is 
completely independent and can proceed without need to perform any synchronization 
with any other cells. A diagram of this process is shown in Fig. 9. 
 
 
 

 

Figure 9 - A given corner is read by multiple cells because this corner is shared between 8 
different cells. Each of these reads can be done in parallel because the cell information is kept 

in a different array than the corner information, leading to no data hazards. 

 

 
 // Neighbor                 Corner of neighbor  Offset to neighbor 
if( hasLeftFrontBotNeighbor ) m += massCorners[ CORNER(rightBackTop,  x , y , z  ) ]; 
if( hasLeftFrontTopNeighbor ) m += massCorners[ CORNER(rightBackBot,  x , y , z+1 ) ]; 
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if( hasLeftBackBotNeighbor  ) m += massCorners[ CORNER(rightFrontTop, x , y+1, z  ) ]; 
if( hasLeftBackTopNeighbor  ) m += massCorners[ CORNER(rightFrontBot, x , y+1, z+1 ) ]; 
if( hasRightFrontBotNeighbor) m += massCorners[ CORNER(leftBackTop,  x+1, y , z  ) ]; 
if( hasRightFrontTopNeighbor) m += massCorners[ CORNER(leftBackBot,  x+1, y , z+1 ) ]; 
if( hasRightBackBotNeighbor ) m += massCorners[ CORNER(leftFrontTop, x+1, y+1, z  ) ]; 
if( hasRightBackTopNeighbor ) m += massCorners[ CORNER(leftFrontBot, x+1, y+1, z+1 ) ]; 

Figure 10 - Example of this process represented in code. Each cell looks to the corners of 
each of its 8 neighbors to determine the total contribution to the given cell. The desired corner 

mirrors the direction of its neighbor’s location; for example the ‘Right, Back, Top’ corner is 
read from the ‘Left, Front, Bot’ neighbor. 

 
 Within each of these statements, a given cell will check if it has a neighbor in a specific 
direction, and if so, will read the contribution of its neighboring cell to the corresponding 
corner. The reduction step completes the particle-to-grid interpolation algorithm.  By avoiding 
memory contention that the first two iterations of the solver exhibited, we were able to achieve 
a speedup of 10-15x over the CPU code. Analyzing and benchmarking the speedup 
completes the work described in Task 4 of the Phase-1 proposal.  
 

Result comparison program 

 A result comparison utility program was built to assist in testing code-correctness 
during the development of the parallel code. The purpose of this program was to compare 
output from two different versions of the code that have run the same test problem. When 
specified tolerances are exceeded between the two code versions, a diagnostic is printed 
showing the time and physical quantity out-of-bounds. In this utility program, code errors are 
easily identified and corrected. See Fig. 9 for an example output. 
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Figure 11 - The comparison program compares all of the variables that are collected in a 
given run and reports which of these variables exceed error thresholds. This provides a 

means to compare the output of different versions of the solvers. 

 

Documentation and Code Cleanup 

 Once the accelerated port was complete, we completed a documentation and code-
cleanup effort. This effort simplified merging the optimized code with other code modifications 
that were made while the branch was being implemented. Additionally, this effort served to 
provide the most solid foundation for the Phase-2 work.  
 

Plan for Phase-2 

 The acceleration of the Barracuda code in the upcoming Phase-2 effort, was 
demonstrated in Phase-1. The first step in Phase-2 is reformatting existing data structures to 
make data caching and data flow compatible with high degree of parallelization will be done. 
Current data structures will be broken into smaller structures, and structures will be switched 
from array of structures (AOS) to structure of arrays (SOA). The grouping of data in arrays will  
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be based on the code architecture, such that the blocks of data which will be moved to and 
from the GPU will contain only data needed on the GPU. This grouping will also be cache 
friendly in the hybrid parallelization. 
 The next step is to define the code which will reside on the GPU, which code is 
parallelized on the CPU and which code remains serial.  Currently there is a natural 
separation of having the particle algorithms reside on the GPU. It is also known that 
computation intensive operations, such as the conjugate gradient solver, are candidates for 
the speed that the GPU gives. A detailed code “call tree” will identify which routine calls other 
routines, and identify which data are required by which routines. The tree-map will assist in 
parallelizing Barracuda in Phase-2 by providing an obvious usage of data by function and the 
interconnection of functions.  By knowing such taxonomy, we can more easily identify where 
algorithms and each piece of data will reside, and identify times when data must be 
transferred between devices. 
 Serial code functions will be ported to GPU-kernel functions. The order of migrating 
Barracuda functions to the GPU will be based on profiling and identifying hot-spots of high 
computation time.    Sections of code which lend themselves to parallelization and have 
significant computation time will be ported to a GPU-kernel. Other parts of the code, such as 
i/o functions, input processing, etc., will be left in serial mode. In the parallelization process, 
less significant code sections which are used by the GPU code sections will need to be ported 
to the GPU. There are approximately 750 functions in Barracuda.  It estimated that 500  of the 
functions will be ported to GPU or parallelized on the CPU. This effort is expected to 
represent the top 95% of Barracuda’s run time.  
 Continual testing is required during the parallelization effort. Parallel programs are 
notorious for giving inconsistent calculation results, to a large extent from contention when 
updating a variable from multiple sources (race condition). The parallel code results will be 
compared to serial code results, as sections of parallel code are completed. Testing will also 
check that the section of code parallelized gives effective speedup. In Phase 2, testing and 
validating the parallel code to the serial code will be a significant effort throughout the project. 
The work will be heavily documented within Barracuda (coding comments), and standard 
coding practices will be enforced for ease of maintenance and giving an extensible code. 
 In the Phase-2 effort, the CPU codepath will be kept 100% operational, and it will be 
possible to compile the solver completely excluding GPU support, or to disable it at runtime. 
During this time, the CPU codepath will likely see additional improvements from completed 
Phase-2 tasks, such as from reorganization of data structures for the GPU. In some cases, 
the CPU code will be overlapped with GPU code in the hybrid mindset to avoid slowing the 
simultaneous GPU execution path.  
 At the end of the Phase-2, a GPU-accelerated Barracuda will meet the performance 
target of an order of magnitude improvement in run time. Future work beyond this Phase-2 
may include the use of multi-GPU processing or multi-node (i.e. cluster) processing to extend 
the performance of the code even further beyond this level. 
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