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Abstract 
 

 
Recent research at Sandia has discovered a new class of organic binary ionic solids 
with tunable optical, electronic, and photochemical properties. These nanomaterials, 
consisting of a novel class of organic binary ionic solids, are currently being 
developed at Sandia for applications in batteries, supercapacitors, and solar energy 
technologies. They are composed of self-assembled oligomeric arrays of very large 
anions and large cations, but their crucial internal arrangement is thus far unknown. 
This report describes a) the development of a relevant model of nonconvex particles 
decorated with ions interacting through short-ranged Yukawa potentials, and b) the 
results of initial Monte Carlo simulations of the self-assembly binary ionic solids. 
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NOMENCLATURE 
 
 
CCDC Cambridge Crystallographic Data Center 
f(σ) probability density function of diameters σ 
k Boltzmann’s constant 
Lα length of side α of  a parallelepiped 
M number of components 
MC Monte Carlo 
MD molecular dynamics 
N number of particles 
rij distance between particles I and j 
p pressure 
qi charge of ion i 
T temperature 
TPP tetraphenylporphyrin 
TPPS tetrakis(4-sulfonatophenyl)porphyrin 
TCNQ tetracyanoquinodimethane 
TTF tetrathiafulvalene 
TTF-TCNQ strong charge-transfer complex of TTF and TCNQ 
V volume 
vi volume of particle i 
 
 
αij nonadditivity parameter of the ij interaction 
φ potential energy function 
η packing fraction 
κ inverse screening length 
ρ = N/V, particle density 
σ hard sphere diameter 
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1.  INTRODUCTION 
 
Detailed information about the internal structures of nanomaterials can be crucial for 
understanding their function. In the case of the organic binary ionic solids that will be studied in 
this project, knowledge of the internal structure (i.e., the arrangement of the organic ions) is 
especially important because interactions between the organic ions control key properties of the 
materials such as light absorption, charge separation, and electron transfer. However, obtaining 
such detailed information for nanomaterials is a non-trivial problem, and in many cases even 
indirect methods such as spectroscopic probes provide only limited insights. 
 
Recent research at Sandia has discovered a new class of organic binary ionic solids with tunable 
optical, electronic, and photochemical properties. These novel materials are currently being 
developed at Sandia for applications in batteries, supercapacitors, and solar energy technologies. 
They are composed of self-assembled oligomeric arrays of large anions and large cations such as 
crown ethers, dye molecules (e.g., phthalocyanines), or other compounds with highly variable 
molecular structures. Currently, materials are prepared by ionic self-assembly of oppositely 
charged organic dye molecules that are typically 2 x 2 nm on edge and approximately 0.5 nm 
thick. The macrocycles have ionic substituents at their corners and can have metal ions 
complexed to the center of the macrocycle (see Figure 1a). The electrostatic interaction of the 
positive and negative charges drives the formation of the materials, often producing 
nanostructures (see Figure 1b) but sometimes microstructures with nanoscale features.  
 

 
Figure 1. (a) Model of an organic macrocycle (green) with four peripheral charge centers representing the 
ionic substituents (blue) and a central charge representing the complexed metal ion (purple). (b) 
Transmission electron microscope image of nanotubes obtained by the self-assembly of two oppositely 
charge organic ions. In this case, the organic ions are dye molecules and the nanotubes are 
photocatalytically active. The inset shows a tube caught in an end-on orientation, confirming that the 
tubes are hollow. 
 
Ionic interactions direct the self-assembly process to produce a framework that positions the 
organic moieties. This then enables tailoring of the electronic and optical properties of the 
materials by modulating collective interactions between the organic moieties. There is little 
understanding of the internal structures and properties of these novel materials because of the 
well-known difficulties inherent in direct structural characterization of nanomaterials by X-ray 
crystallography. The goal of this work is to develop a platform for predictive simulations of the 
structures of these new organic binary ionic materials using Monte Carlo methods.  
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2.  METHODS 
 
Monte Carlo (MC) and Molecular Dynamics (MD) simulation techniques have applications in 
numerous areas involving hard convex particles, including: 
 
1. fluid- and solid-phase behavior of atomic and polymeric systems  
2. phase-behavior of self-assembling mixtures  
3. dynamics and packing of powders (granular materials)  
4. generation of random close-packings of mixtures of hard particles 
 
Although seemingly wide-ranging, these areas of interest are in fact often reasonably similar 
when viewed from a purely technical point of view. That is, all these areas share the need for a 
capability to generate valid, i.e. overlap free, configurations of some kind of hard convex bodies. 
The differences mainly concern the type of statistical mechanical ensemble that applies to each 
case, and the equilibrium versus non-equilibrium aspects. For example, a crystallization project 
of hard spheres will typically involve equilibrium MD or MC simulations in the canonical or 
NVT (constant number of particles, N, constant volume, V, and constant temperature, T) 
ensemble that allow the calculation of the absolute free energy of the solid phase, as well as MD 
simulations that monitor the nucleation and growth of a hard sphere crystal, i.e. the approach to 
equilibrium. On the other hand, to generate a random close-packed configuration of collections 
of hard spheres one would run an MD simulation of growing spheres (spheres whose diameter is 
time-dependent) until the system is thoroughly jammed, with all spheres touching. Similarly, 
powder-packing in a container might require one to run a MD simulation of inelastic spheres in 
gravity, while a packing of hard cubes would be generated by using MC in the constant pressure 
or NpT ensemble with the pressure, p, set to infinity. 
 
This report gives an overview of the enhancement of the basic capabilities of HSMIX, a Fortran 
code specifically developed to simulate a variety of different models spanning the range 
indicated above, and running on a variety of platforms including under Mac OS [1]. The report 
provides a description of the relevant general approach as well as important strategies underlying 
HSMIX and includes references to the existing literature. Features unique to the simulation of 
ionic macrocycles are treated in more detail. 
 
2.1  Models of Hard Convex Particles 
 
2.1.1  Spherical Particles 
Each model system is defined by specifying the Hamiltonian which expresses the interaction 
pair- potentials acting between the different particles. For so-called hard particles these are the 
simplest of all, namely the particles experience an infinite potential energy when they overlap, 
and zero potential energy otherwise. Thus for two hard spheres of diameter σi and σj we have 
 

  (1) 
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where σij = αij(σi + σj)/2 with αij a coefficient that controls the additivity of the interaction. If αij > 
1 then the two particles appear larger than their arithmetic mean and hence experience an 
enhanced repulsion over the simple additive spheres. On the other hand, if αij < 1 a reduced 
repulsion results. The parameter α allows one to promote or discourage mixing of various species 
in a mixture. This simple pair-potential leads to significant simplifications in the statistical 
mechanics of hard particle systems. Foremost amongst these is the fact that the phase diagram of 
non-additive fluids is a function of the density (or packing fraction) only, and not of the 
temperature (T). This follows immediately from the fact that for hard particles the Boltzmann 
factor (exp(−φ/kT)) reduces to either 0 or 1, and is hence independent of T. As a consequence, 
hard particle systems only have one single isotherm as all the properties scale linearly with the 
kinetic energy, i.e. T. 
 
2.1.2  Nonspherical Particles 
For hard spheres the overlap criterion, expressed in Eq. 1, amounts to a simple test, merely 
comparing the interparticle distance to the diameters. This test can be executed quickly on a 
computer. Nonspherical particles on the other hand are much more difficult, and the algorithms 
required to apply the overlap criterion are considerably more complex. In addition, whereas both 
MD and MC are readily used for spheres, MD becomes extremely challenging for nonspherical 
particles, and without very special extra care certainly less efficient. Of course, non-spherical 
particles constitute a potentially huge class, but in practice it is often narrowed down 
considerably. Thus, the nonspherical particle shapes that have been considered in the past 
(starting in the 1980s) still possess a high degree of symmetry. They include spheroids of 
revolution, spherocylinders (cylinders with a hemispherical cap), and cylinders with flat surfaces. 
These particular choices have been considered primarily because of the (relative) ease of 
developing and implementing an overlap criterion and further for their application in the area of 
liquid-crystals. Inspired by developments in granular materials we were previously motivated to 
take the next step and developed an algorithm for mixtures of parallelepipeds, block shaped 
particles consisting of 8 vertices and three sets of parallel faces. These objects are fully defined 
by providing three unit edge (or body) vectors (a, b, c) and three edge lengths La, Lb, and Lc. 
Alternatively, following the notation commonly used to categorize Bravais lattices, one can 
specify three lengths and three angles (α, β, γ). 
 
To simulate parallelepipeds we are currently restricted to the MC technique, and an efficient 
overlap detection algorithm. Whereas in two dimensions the overlap of parallelograms requires 
at least one particle vertex to lie inside the other particle, in three dimensions this is not the case. 
The algorithm we have developed considers the intersection of all possible pairs of edges of 
particle i and faces of particle j, and vice versa. In the worst-case scenario this could amount to 
checking 2x12x6 = 144 intersections! With each intersection problem being already far more 
computationally intensive than a simple check for sphere overlap it is easy to see that a 
simulation of parallelepiped particles is considerably more complex than a system of spheres. 
This probably goes a long way towards explaining why this kind of simulation has not been 
attempted previously. 
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2.1.3  Composite spheres as Nonspherical Particles  
Given that spheres are convenient computational shapes it is natural to consider the possibility of 
building composite particles, i.e. particles that are each composed of a (preferably) small set of 
connected spheres. This is indeed a powerful strategy, and to a large extent also part of the 
HSMIX capabilities. For reasons of computational efficiency and to maintain a model that has no 
temperature dependence we have implemented composite particles that are clusters or polymer 
chains of tethered spheres. A tether is a string (as opposed to a spring) of finite extension l that 
ties two spheres together, and forces them to stay linked. As long as the sphere centers are closer 
than l, the potential will be zero. Otherwise the potential is infinite. Notice that technically 
speaking the tether is equivalent to a square-well potential of infinite depth. The tether length 
should be chosen small enough, compared to the particle diameters, such that one avoids issues 
related to the crossing of distinct tethers. In practice tethers of 0.1σ are a typical choice 
 
2.1.4  Some Conventions: Dimensionless Quantities 
As stated before hard particle systems have phase diagrams that consist of just a single isotherm, 
depending only on the (number) density. Thus for monodisperse hard spheres all properties 
depend on the density ρ = N/V, where N is the number of particles and V is the volume of the 
MD box. It is customary to select the sphere diameter, σ, as the unit of length and to define a 
dimensionless density (sometimes denoted as the reduced density ρ∗) which in 3D is ρσ3 = 
Nσ3/V. A derived quantity is the packing fraction, η, (or in some parts of the literature φ). For 
monodisperse hard spheres we have 
 

 (2) 

 
The packing fraction is, as the name suggest, the fraction of the volume that is occupied by the 
spheres. Recall that πσ3/6 is the volume of of a sphere of diameter σ. This interpretation 
assumes, of course, that the spheres are nonoverlapping. Otherwise it is an upper bound. 
To preserve the above interpretation of packing fraction, for an M-component mixtures of 
spheres the expressions must become 
 

 (3) 

 
where Ni denotes the number of spheres of species i of diameter σi. The diameter ratios are 
σi/σ1. Analogously, for nonspherical particles we have, in terms of the volume , vi, of species i, 
 

 (4) 

 
It is instructive to re-arrange expression 4, and rewrite it with the help of the molefractions xi ≡ 
Ni/N as: 
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  (5) 

 
This allows a straightforward generalization to polydisperse mixtures. First, we recognize that 
the molefraction xi is essentially the probability density, f(σi) for finding a sphere of diameter σi. 
Then, upon re-expressing the packing fraction more formally in terms of the probability density 
distribution, we obtain an expression that is valid for any mixture, polydisperse or discrete. 
 

 (6) 

 
where < σ3 > is the third moment of the particle size distribution (to be distinguished from < σ 
>3, the average diameter cubed) 
 
2.2  Models of Composite Particles 
 
In this section we will address composite particles, in particular, particles that result from 
combining several convex particles. Perhaps the simplest example of this results when we build a 
diatom out of two spheres that can be overlapping, touching or with centers farther apart or less 
apart than the sum of the two radii. The combining of particles implies that the subparticles are 
held together by some type of unbreakable bond. This bond can take various forms. It can be 
rigid, a spring, or a finite extension tether.  The objective of composite particles is to represent 
more complex shapes. In this report we will focus on rigid bonds.  
 
To enable an adequate exploration of both the equilibrium phase behavior and the kinetics of 
binary ionic systems requires a judicious choice of a simplified model that contains the essential 
physics. The crucial elements defining the organic ions that must be represented are the overall 
shape of the organic ion (i.e., a thin square) and the ionic groups (both position and charge). To 
capture all of these characteristics, we will employ a model representing the organic ions by thin 
hard parallelepipeds decorated with up to 5 charge centers (see Figure 1a). Each charge center is 
composed of a hard sphere with an electronic charge at its center. Four charges centers are 
located at the corners (corresponding to the ionic substituents) and a final charge is located at the 
center of mass of the molecule (corresponding to a complexed metal ion).  Complete flexibility 
exists regarding the shape and size of the parallelepiped as well as the value of the charges. In 
addition to the excluded volume interactions between parallelepipeds and spheres there exist 
charge-charge interactions. The latter will be represented by an effective (Yukawa) pair-potential 
which captures the screened Coulombic interactions.  We have implemented the above model in 
a combined Monte-Carlo/Molecular dynamics code that was previously developed to study the 
behavior of general mixtures of hard convex particles. As an aside, our ionic model also has all 
the necessary features to study other ionic systems of interest, such as ionic liquids. 
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The simulations will be performed employing the Monte Carlo method in both the constant 
volume (NVT) and constant pressure (NpT) ensembles using a stoichiometric ratio of the binary 
components. This approach will enable the prediction of the solid structure as a function of 
charge distribution, size and shape, temperature and pressure.  The self-assembly process of the 
binary ionic solid can be studied by using the NVT ensemble and preparing the simulation 
system at a fixed density that lies in between the densities of the coexisting solid and dilute 
phase.  To obtain time-dependent information about the self-assembly process we switch in the 
future from Metropolis Monte Carlo to Brownian dynamics. This requires estimates or 
experimental information about the translational and rotational diffusion coefficients. We have 
previously done this for a system of hard rod colloids.  
 
2.3  Charge interactions 
 
The ionic macrocycles introduced above experience coulombic interactions between the ions. 
The Coulomb potential between two ions of (partial) charge qi and qj is proportional to the 
inverse of the distance between them, i.e., φ(rij) ~ qi qj /rij . This interaction is positive (i.e., 
repulsive) for like charges, qi qj>0, and attractive otherwise. The Coulomb interaction is very 
long range, it is the slowest decay encountered. In ionic systems this interplay between repulsive 
and attractive interactions leads to charge ordering: ions at short-range find themselves primarily 
surrounded by the opposite charged ion [3]. In the solid phase this leads to the familiar ionic 
crystals such as halite (or rock salt, NaCl). The charge ordering effect in a dense fluid is also of 
very long range.  
 
The long-range nature of charge ordering is not, as is commonly implicitly assumed, the 
consequence of the long-range Coulomb force. In fact, it is the consequence of the 
positive/negative nature of the ionic system, which causes an interplay between favorable 
attractions and unfavorable repulsions.  Short-range interaction models can give rise to the very 
same charge ordering. A powerful example is that of a non-additive hard sphere AB mixture, 
where the AA and BB interactions are defined to be less favorable then the AB interaction. For a 
binary non-additive hard sphere mixture this is accomplished by employing σij = αij(σi + σj)/2, 
with αAB=1 and αAA= αBB>1. Remarkably, such a simple system has been shown to display all 
the simple salt crystal structures [2].  
 
In order to study ionic macrocycles of the complex shape defined above it is advantageous to 
consider a short-range version of an ionic interaction. For this we choose the familiar Yukawa 
interaction 
 

 

 
Here, 1/κ denotes a decay-length, and ε is a constant that denotes the strength of the interaction 
and sets the energy scale. The Yukawa potential has a convenient functional form, and arises 
naturally in the context of screened Coulomb interactions, such as are encountered in suspension 
of colloidal particles. As is common, the actual implementation we use is the cut-and-shifted 
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form of the Yukawa potential, where a cut-off distance rc is used and the potential is shifted to 
zero at r= rc to make the potential (but not the force) continues at rc. 
 
3.  RESULTS  
 
3.1  Derivation of the particles used in the simulation. 
 
Simulations of the self-assembled porphyrin nanostructures were undertaken using a structure 
derived from the crystal structure of the common synthetic porphyrin 5,10,15,20-
tetraphenylporphyrin (H2TPP).  The coordinates of the structure (reference code TPHPOR01) 
were taken from the Cambridge Crystallographic Data Center (CCDC) [4]. The structure of the 
porphyrin molecule is shown in Figure 2, together with a space-filling model generated from the 
coordinates.  
 

  
 

Figure 2. Chemical structure of H2TPP and a space-filling model of a crystal structure of H2TPP. 
 
A porphyrin ion was modeled as a block with spheres at the four corners representing the 
substituents on the macrocycle. Most of the porphyrins used in the experimental ionic self-
assembly studies are variants of TPP with ionic groups located on the porphyrin macrocycle [5-
7]. Examples include T(NMe4Py)P (positively charged) and TPPS  (negatively charged) (Figure 
3). The dimensions of the block required to encompass the porphyrin ring of H2TPP was 
determined to be 12.5 x 3.4 Å, based on the measured width of the block plus twice the van der 
Waals radius of a hydrogen atom. The thickness of the block was set at twice the van der Waals 
radius of a carbon atom. The diameter of the charged spheres representing the ionic substituents 
was set to 6.6 Å, derived from the width of a phenyl group (4.2 Å) plus twice the van der Waals 
radius of a hydrogen atom. 
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Figure 3. Chemical structure of the tin complexes of  the charged porphyrins T(NMe4Py)P (4+) and 
TPPS (4-). 
 
3.2  Construction, relative energies and packing fractions of crystal 
lattices 
 
Lattices were generated from the structure described in Section 3.1. Oppositely charged 
porphyrins (+4 or -4) were positioned using fractional coordinates such that lattices of any 
desired size could be produced.  Figure 4 shows some of the different ways in which a fully 
interleaved lattice composed of 192 porphyrins was visualized. This array consists of 96 
porphyrins with a charge of +4 (red) and 96 porphyrins with a charge of -4 (grey). Each charged 
sphere is surrounded by four oppositely charged spheres, two in the plane of the porphyrin ring 
(Figure 4a, defined as the x,y plane) and one each from the porphyrin ions above and below 
(Figure 4b, defined as the z axis). The boundaries of the simulation box are shown by the white 
lines in Figure 4. 
 

   
 

Figure 4. Different ways of visualizing an interleaved lattice composed of oppositely charged porphyrin 
ions (red and grey): (a) and (b) porphyrins are shown as plates with the ionic substituents as spheres; (c) 
with solid blocks representing the porphyrins and the spheres not shown 
 
A brief survey was conducted to determine the relative energies of different lattice structures. 
Lattices were generated with a range of packing motifs such as the fully interleaved pattern 
shown in Figure 4, segregated columns of porphyrins with the same charge (Figure 5a), offset 
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stacks of porphyrin (Figure 5b), and z- or x,y-layered  (Figure 5c) structures (in the layered 
structures, the layers consist of porphyrins of the same charge).  The segregated and interleaved 
structures are of particular interest because of their relevance to models of conductivity in 
classical donor-acceptor solids such as TTF-TCNQ [5], and the potential use of the binary 
porphyrin solids in applications such as artificial photosynthesis. The distances between the 
charges were manually optimized to obtain the lowest energy structure for each motif. The larger 
number of structural parameters that could be varied for the lower symmetry offset stacking 
structure prevented a definitive determination of the lowest energy structure for this motif. 
Overall, the lowest energy motif was found to be the fully interleaved structures shown in Figure 
4, for which the energy per particle was -3.295. Physical reasonable structures with low energies 
were also found for the offset stack (-3.101), x,y-layered (-2.569) and segregated (-2.230) 
structures.  For comparison, structures with randomly oriented porphyrins (generated by 
extended NVT runs of the ordered lattice structures at high temperatures) had energies per 
particle as low as -3.1 (depending upon the packing fraction). 
 

   
 

Figure 5. Different lattices generated for oppositely charged porphyrins: (a) segregated columns, (b) 
offset stacks, (c) x,y-layered.  
 
For the cases examined, the packing fraction was inversely correlated with the energy per 
particle for the structure. For example, the fully interleaved structure gave the highest packing 
fraction (xsi  value) of 0.22. Note that this xsi value is based on the volume of the blocks i.e., the 
sphere volume was not included in the calculation, so the true xsi value will be higher.  The 
offset stack structure had a packing fraction of 0.21 and the x,y-layered structure a xsi value of 
0.16 The segregated structure is more complicated because the repulsive interactions between the 
like-charged porphyrins within a column decrease significantly as the packing fraction is 
reduced, but a some point the structure becomes physically unrealistic.  For the segregated 
structure with an energy per particle of -2.230, the interplane separation of the porphyrins is 
large (approximately 12 Å) but still physically reasonable, and the packing fraction is only 0.12. 
 
3.3  Simulations of the self-assembly process. 
 
The self-assembly process of the oppositely charged porphyrins was investigated using two sets 
of starting structures: (a) those with randomly oriented porphyrins (derived from extended NVT 
runs of the ordered lattice structures at high temperatures), and (b) ordered lattice structures, 
particularly the segregated structure shown in Figure 5a.  The goal of these studies was to 
investigate if it was possible to generate an ordered lattice from a randomly oriented structure or 
to transition between different lattice structures. 
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NVT studies of the random structures did not result in the formation of lattice structures, 
although a degree of local order was observed in some cases. In particular, portions of many 
simulations displayed ribbon-like structure with alternating oppositely charge porphyrins (see 
Figure 6). NpT studies beginning with a random structure also did not result in the formation of 
ordered lattices. The formation of a different and more stable lattice was observed when the 
segregated structure (E = -2.230 per particle) was used as a starting point in the NVT runs 
(Figure 7). The final structure showed the principal elements of the interleaved structure, usually 
with some slight slippage between layers. The energy of the final structure in Figure 6 (-3.057) 
did not match that of the fully interleaved structure (-3.295), presumably due to the fact that the 
simulation box contains several ordered regions separated by voids, preventing the full lattice 
energy from being realized.  
 

 
 

Figure 6. ‘Ribbon’-type structures formed by oppositely charged porphyrins. 
 
The transition from a segregated to interleaved structure was striking so additional simulations 
were performed to further investigate this change. A range of packing fractions were investigated 
to determine if this affected the segregated to interleaved transition.  Significantly, interleaved 
structures were not generated  with packing fractions of 0.10 or 0.16, indicating that the 
transition only occurs over a very narrow range of packing fractions. The structures formed at 
these higher or lower packing fractions were highly disordered. The segregated to interleaved  
transition was seen for large lattice simulations than those shown in Figure 7 (N = 192, 
consisting of a 2 x 2 x 6 lattice of  unit cells each containing 8 molecules). The largest simulation 
attempted was for a 6 x 6 x 6 lattice corresponding to N = 1728 particles, where the simulation 
gave basically two fully interleaved phases separated by a void and the energy per particle (-
3.14) was closer to that seen for the fully interleaved structure 
 
4.  CONCLUSIONS 
 
A new class of solids, so-called binary ionic solids, has been successfully grown in the 
laboratory. The materials form as a range of nano- or micro-sized clovers with a morphology that 
depends on, among other things, the acidity of the solution. However, up until now the internal 
arrangement of the ionic macrocycles, although crucial to their function and future applications, 
is unfortunately virtually unknown. To gain insights into the internal structures of these materials 
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we have developed a model of nonconvex charge-decorated particles that interact through short-
ranged Yukawa potentials. The self-assembly behavior and internal structures can be simulated 
with Monte Carlo techniques. This novel approach enables the first predictive simulation of these 
unusual binary ionic solids.  
 
 
 
 

 

 
 
Figure 7. Starting segregated structure (N = 192, xsi = 0.12, E = -2.230 per particle) and final interleaved 
structure (E = -3.057). The simulation conditions were T = 0.005, electrostatic cutoff = 1.7, number of 
moves 1.68 x 107. 
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