
SANDIA REPORT
SAND2010-6389
Unlimited Release
Printed September 2010

Modeling Cortical Circuits

Fredrick H. Rothganger
Stephen J. Verzi
Brandon R. Rohrer
Patrick G. Xavier

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

2

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any
of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
 U.S. Department of Energy
 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831

 Telephone: (865) 576-8401
 Facsimile: (865) 576-5728
 E-Mail: reports@adonis.osti.gov
 Online ordering: http://www.osti.gov/bridge

Available to the public from
 U.S. Department of Commerce
 National Technical Information Service
 5285 Port Royal Rd.
 Springfield, VA 22161

 Telephone: (800) 553-6847
 Facsimile: (703) 605-6900
 E-Mail: orders@ntis.fedworld.gov
 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

3

SAND2010-6389
Unlimited Release

Printed September 2010

Modeling Cortical Circuits

Fredrick H. Rothganger and Stephen J. Verzi
Cognitive Science and Applications

Brandon R. Rohrer

Intelligent Systems Controls

Patrick G. Xavier
Interactive Systems Simulation & Analysis

Sandia National Laboratories

P.O. Box 5800
Albuquerque, New Mexico 87185-MS1188

Abstract

The neocortex is perhaps the highest region of the human brain, where audio and
visual perception takes place along with many important cognitive functions. An
important research goal is to describe the mechanisms implemented by the neocortex.
There is an apparent regularity in the structure of the neocortex [Brodmann 1909,
Mountcastle 1957] which may help simplify this task.

The work reported here addresses the problem of how to describe the putative
repeated units (“cortical circuits”) in a manner that is easily understood and
manipulated, with the long-term goal of developing a mathematical and algorithmic
description of their function. The approach is to reduce each algorithm to an
enhanced perceptron-like structure and describe its computation using difference
equations. We organize this algorithmic processing into larger structures based on
physiological observations, and implement key modeling concepts in software which
runs on parallel computing hardware.

4

Acknowledgements

We thank our collaborators at the Beckman Institute / University of Illinois at Urbana-
Champaign. Dr. Stephen Levinson and his students Luke Wendt, Alexander Duda, and Lydia
Majure provided stimulating discussions and helpful insights on various approaches to modeling
brain processes. Dr. Thomas Anastasio provided expertise in neural modeling and its
computational implementation.

5

Contents

1. Introduction .. 7

2. Modeling Approach ... 9
2.1. Organizing Cortical Models .. 9

2.1.1. Survey of gross brain structure ... 9
2.1.2. Layers .. 10
2.1.3. Fuzzy Columns ... 11

2.2. Representing Algorithms .. 13
2.2.1. Graphical Notation .. 14
2.2.2. Mathematical Notation .. 15
2.2.3. Analyzing Physiological Evidence ... 16

3. Analyzed Algorithms ... 18
3.1. Self-Organizing Maps (SOM) ... 18
3.2. Douglas & Martin Models .. 19

3.2.1. Full interconnection between two populations of excitatory cells and a
population of inhibitory interneurons, all driven by thalamic input. 19
3.2.2. Winner take all for feature resolution. .. 20
3.2.3. Linear Threshold Neurons with inhibitory “pointer” neurons. 21

3.3. Kalman Filters (R&B)... 22
3.3.1. Learn a sparse basis set while maintaining an internal representation of input
state. ... 22
3.3.2. Learn the state transition model as well as the sensor model. 23

3.4. Adaptive Resonance Theory (ART) ... 25
3.4.1. Simple ART .. 25
3.4.2. Laminar ART (LAMINART) ... 27

3.5. Brain Emulating Cognitive Control Architecture (BECCA) .. 28
3.6. Hierarchical Temporal Models (HTM) ... 29
3.7. Comparisons and Contrasts... 31

3.7.1. SOM and R&B and ART .. 31
3.7.2. ART and LAMINART .. 32

3.8. Synthesis ... 33

4. Implementation and Results ... 35
4.1. Reproduce the results of [Rao & Ballard 1999].. 35
4.2. Add Layering and Fuzzy Columns ... 36
4.3. Generate Saccades .. 39
4.4. Add Lateral Connections .. 41
4.5. Software Architecture and Parallel Computation ... 42

5. Conclusions .. 44

Appendix A: Representation of Neural Structures .. 45

Appendix B: Equation Simplification Patterns .. 47

Appendix C: Derivations ... 48
C.1. Self-Organizing Maps ... 48

6

C.2. Kalman Filters ... 49
C.3. Adaptive Resonance Theory (ART) ... 52
C.4. Laminar ART (LAMINART) ... 54
C.5. Hierarchical Temporal Models ... 56

References ... 61

7

1. Introduction

The neocortex (also known as the cerebral cortex) is the large outer layer that surrounds most of
the human brain, and together with its white-matter occupies about 80% of the brain by volume
[Zhang & Sejnowski 2000]. It is widely regarded to be the seat of the uniquely powerful human
mind. The goal of Sandia’s Cognitive Science and Technology thrust is to develop models of
human behavior that are based on a scientific understanding of the human mind. This work is
motivated by the impact that the human factor has our national security mission, including the
safety and surety of nuclear weapons, and how our nation interacts with other cultures and
organizations in the world. A complete scientific description of the human mind must
necessarily specify the mechanisms of the neocortex.

This task is challenging for a number of reasons. The neocortex is enormously complex,
containing (by some estimates) 100+ distinct cell types organized into numerous interconnected
structures. Fortunately there appear to be some regularities in its construction. We can begin to
gain understanding by focusing on how an arrangement of neurons (“circuit”) within a small
region interact with each other. The neuroscience community is working intently on this
problem, and has already made tremendous progress. At the molecular level, we have a basic
understanding of how neurons transduce, transform and transmit signals. We also have some
knowledge, at a statistical level, about the connectivity between various types of neurons.
However, despite the sheer volume of studies, there are still large gaps in our knowledge in both
of these areas. The consequence is that we cannot yet describe the exact structure of the
complete cortical circuit. This prevents us from forming any accurate estimate of what function
it implements.

The goal of the work presented here was to explore the function of the putative cortical circuit,
particularly at the mathematical and algorithmic level. As a result, we have begun to develop
techniques that may eventually make the modeling task tractable. Researchers can approach this
task from two directions. A “bottom-up” approach looks at neurophysiological details, attempts
to assemble a likely circuit, and then infers its functions. A “top-down” approach starts with an
assumption about the function of the neocortex, develops a circuit that could implement this, and
then correlates it with neurophysiological details. In this work, we tried to combine both
approaches, but have emphasized the top-down path.

Why use the language of algorithms to describe circuit function? At any given modeling level,
we want to make a transition from the underlying mechanisms to something that is functionally
equivalent. A good functional equivalent is something that does the same job, but could possibly
be implemented by a different set of mechanisms. In the case of cortical circuits, there is a de
facto consensus that it is doing some kind of staged information processing. Therefore, a
procedural description of the information processing seems to be a reasonable choice for
functional equivalent.

The modeling approach consists of two key components: 1) A set of general principles about
how models should be organized. These principles are derived from observations about the
brain, and from comparisons between different brain subsystems. 2) A restricted language
within which to describe the models. The constraints imposed by the language act to filter the

8

plausibility of the models. In addition, we have developed a software framework to support
testing models built within this approach. The software runs on parallel hardware in the form of
either a shared-memory multiprocessor desktop system or a cluster computer system. The
remainder of this report describes the modeling methodology (Section 2) and applies it to a
number of published algorithms (Section 3). Finally, it describes the software implementation
and tests performed on one of the models (Section 4).

9

2. Modeling Approach

The approach to modeling cortical circuits consists of two parts. At the most basic level, we
represent algorithms as neural circuits that perform various computations on signals that flow
through them. At a higher level, we organize these circuits into systems that communicate
spatially structured information. In order to give context to the models, the following
presentation with start with the larger scale structures and work towards the smaller scale
specifics of neural circuits.

2.1. Organizing Cortical Models

2.1.1. Survey of gross brain structure

Figure 2.1 shows a diagram of the brain with some of the major regions identified. Although all
the regions of the brain make a contribution to cognition, the particular focus in this work is on
the neocortex. In a normal human brain, key functions such as auditory and visual perception, as
well as decision making, occur in the neocortex, making an interesting area to study from the
perspective of Cognitive Science.

Figure 2.1. The brain, with major regions identified by color. Dark blue is neocortex. Dark red
is cerebellum. Yellow is thalamus and hypothalamus. Other colors are brain-stem structures.
[Wikipedia, public domain]

The two major cortices of the brain, the neocortex and the cerebellum, both share some
comparable structures. They have a regularly organized outer sheet (the term “cortex” means
“bark” like that on a tree) and a central core where connections are routed. In the case of the
cerebellum, the core consists of the deep cerebellar nuclei and the inferior olive. In the case of
the neocortex, the core is the thalamus. The neocortex contains other structures, mainly the basal
ganglia, that do not map neatly to anything in the cerebellum.

The focus of this work is primarily on the outer sheet, or “bark” of the neocortex. This ~5mm
thick sheet is what we normally refer to as the “gray matter” of the brain, whereas the myelinated
axon bundles that interconnect regions within cortex form the “white matter”. The cortical sheet
has two distinctive organizational characteristics. First, it appears the all the cells within a radial
section (column) work together on a particular piece of the brain’s information processing.

10

Second, it seems that cells of various types tend to reside at characteristic depths within the
sheet.

2.1.2. Layers

Figure 2.2 shows how cells at different depths within the sheet express different genes. The fact
that a cell at a particular depth expresses a distinct set of genes suggests that it performs a distinct
function from cells at other depths. We use the term “layer” to refer to a population of a
particular type of cell and to the depth at which it occurs. There is a layer naming system in
common use in the neurophysiology community which came into existence before genetic typing
techniques were applied to the neocortex. This naming system still acts as a reference frame for
specifying a layer. However, there are many more types of cells than there are named layers, and
several types of cell may occur at the same depth.

Figure 2.2. Layer-specific gene expression. [Watakabe 2009 – Figure 1a]

The quantity of particular cell types varies from region to region within the neocortex. These
variations, and the effect they have on the bulk appearance of a slice of gray matter, are the basis
for the Brodmann system of designating areas of the brain [Brodmann 1909]. These variations
almost certainly have functional significance. The long-term goal of the kind of work presented
here is to find the common algorithmic structures that these cellular elements implement, as well
as the algorithmic significance of the variations in structure across the neocortex.

Although cell specialization is an important function of layering, it is not the only one. We
propose a hypothesis that one function of layering is to provide pre-defined places for neural
processes to meet and exchange information. To motivate this hypothesis, consider two points:
the physical constraints on neurons, and an analogy with the structure of the retina.

Neurons are physical objects that have volume and thus use up space. They also need to be in
close physical proximity to each other to exchange signals. These two constraints indicate that
some volume must be used up making connections, and that all connections cannot occur at the
same place. That is, once a connection is made, few or no other neurons can share that
connection. These constraints also suggest that neural processes must “find” each other in order

11

to make a connection. The job of finding the desired type of connection can be simplified if
there is an agreed upon place where information of a particular type will be delivered/received.

The retina is an example of this type of organization. In particular, the inner-plexiform layer
consists of roughly 5 sub-layers. The retinal ganglia project dendritic tufts that spread out in one
or a few specific sub-layers. Meanwhile, bipolar cells carrying specific bands of rod/cone output
deliver axons into specific sub-layers, associated with the kind of information. This arrangement
strongly suggests that the ganglion cells select input layers based on the kind of information they
compute.

Figure 2.3. Retinal ganglion cells make connections in IPL sublaminae specific to the kind of
information they output. [Nelson et al. 1978]

If the hypothesis (that one function of layering is to provide pre-defined places for neural
processes to meet and exchange information) is correct, then we predict that the degree of
elaboration in layering in a given region of the neocortex is proportional to the number of
information channels that it needs to keep separate. This is consistent with what is known about
layering in the neocortex: Sensory areas such as V1 have elaborate layering, and presumably
keep a wide range of feature types segregated. “Association” areas, on the other hand, tend to
have simpler layering, and presumably are fusing information.

Based on the notion that a layer is a place to exchange a channel of information, we model each
one as a 2D matrix of numbers. However, since a computational model is never an exact
reflection of cytoarchitecture, a matrix is not exactly equal to a physiological layer. In particular,
the goal of a model layer is to represent a particular cell type population, so several matrices may
be associated with the same physiological layer.

Each matrix is intended to map to a 2D sheet tangential to the cortical surface, that is, it has a
spatial interpretation. In particular, suppose a model were processing visual input. The cortical
sheet would be retinotopically organized (somewhat like a picture laid over the surface of the
brain), and the associated model matrix would also be retinotopically organized. For
convenience of organization, each element of a “layer” matrix is generally associated with the
output of exactly one model neural unit, and the number of neural units determines the number
of elements in the matrix.

2.1.3. Fuzzy Columns

12

Implicit in the use of matrices to represent layers is the fact that a neural unit must input from
one or more matrices as well as output to at least one “home” matrix. In general, a real neuron
will spread both its inputs and its outputs over a region, making multiple contacts. For simplicity
in modeling, a model neural unit will only output to a single element of a matrix (or a single
element in several different matrices in some cases). All spatial spread of signals between
neurons is modeled on the input side: a model neural unit will read a region from each of its
input matrices, rather than just a single element. The exact spatial arrangement of inputs is
encoded in the synaptic weights of the model neural unit.

Figure 2.4. Layers and neural units. Spatial dispersion is implemented only on the input side.

The structure created by connecting several populations of model neural units to a set of model
layers can be thought of as a model cortical column. The natural question to address next is
where to draw boundaries around columns on the model cortical surface. A typical approach in
neural network (NN) modeling is the break the area up into units that do not interact with each
other except between stages of processing. IE: units may cover overlapping regions of input, and
may feed into a common unit in the next stage, but will not share any processing components
within a stage. This is a natural organization from a programmer’s perspective, because it
creates well-defined inputs and outputs for a function that implements the model neural unit.

However, this organization is rather unnatural when compared to a real brain. Each neuron
interacts with other neurons within a neighborhood. This neighborhood spreads tangentially to
the cortical surface for some limited distance in all directions [Costa & Martin 2010]. It is
unlikely that the neighborhood of neurons fit entirely in the boxes defined by variables in a given
algorithm. This observation has a profound impact on how we organize models and their
software implementation. A model neural unit should contribute to all the computation within its
neighborhood, not just a vertically regimented subset. This implies a lateral bleeding of signals
in an algorithm that would otherwise keep the same set of values together over several
operations.

13

Figure 2.5. Contrast between block diagonal (left) and band diagonal (right) matrices.

In terms of matrix algebra, this is analogous to the distinction between block diagonal and band
diagonal matrices. For the sake of discussion, let the rows and columns of a matrix to represent
individual variables, and the non-zero elements of matrix to represent interactions between those
variables. Then a block diagonal matrix represents independent subsets of the variables, which
do not interact with the other subsets. On the other hand, a band-diagonal matrix represents
variables that interact with their near neighbors. If we multiply such a matrix by itself several
times, which is equivalent to performing several iterations of interactions between the variables,
then eventually all the variables interact with each other.

“Fuzzy columns” refers to arrangements in which each model neural unit contributes to multiple
processing streams within its neighborhood. (The term “fuzzy column” was coined by Lydia
Majure.) The closest analog of fuzzy columns that we are aware of in the literature is
convolutional neural networks [LeCun 1999, Jarrett et al. 2009]. In convolutional NNs, the
neural units in a given layer are modeled as a single set of weights that are convolved over all
positions in the input. In contrast, we model each neural unit with a separate set of weights. On
the surface, this would seem to imply that a fuzzy column arrangement would require far more
data to learn a representation of the input. However, model neural units share data in
overlapping regions, so in practice the difference in the required amount of data is not that much.

2.2. Representing Algorithms

The goal of this work is to represent the function of cortical circuits in a mathematical and
algorithmic form. There are two obvious sources of information upon which to build such
models. One is neurophysiological studies of the neocortex, and the other is published
computational models. In this work, we looked for common themes in existing computational
models in order to develop new insight and to avoid re-inventing an existing algorithm. This
task was made more difficult by the fact that authors tend to illustrate their algorithms in
different ways and to use very detailed differential equations to express the relationships between
the variables. To simplify the task of analyzing and comparing algorithms, we developed two
tools: a short-hand notation for neural networks, and a method for abbreviating the mathematical
forms. One outcome of developing and using these methods was a realization that a similar
approach could help us make sense of the neurophysiological evidence as well.



































111

111

111

111

111

111

111

111

111



































11

111

111

111

111

111

111

111

11

14

2.2.1. Graphical Notation

Figure 2.6 (bottom left) shows a typical example of a neural network diagram. These diagrams
break out all scalar values as separate nodes and draw lines between them to represent
connections. The drawback of this type of representation is a profusion of lines and circles that
do not add much more to our understanding of the system beyond the first line or circle. Figure
2.6 (top) shows a more concise notation used by some neurophysiologists to represent
connectivity between neuron types. This diagram has the right level of abstraction, but it
represents shape and spatial information which we don’t really need to understand the circuit.

Figure 2.6. Three different neural network notations. Physiological connections (top),
traditional perceptron (bottom left), and proposed short-hand (bottom right).

We propose a notation in which all units (the circles in Figure 2.6 bottom left) in a particular
layer are grouped together and represented by a single triangle. That is, the triangle stands for an
entire population of neural units. The triangle points in the nominal direction of signal flow
(which is somewhat the opposite of the normal usage in physiological literature, where a triangle
is typically used to represent a pyramidal cell). A line extends out the “back” of the triangle to
represent the dendritic arbors of all the units in the population, and another line extends out the
point to represent all the axonal outputs. An arrowhead appears on the “axon” line to remind the
reader of the nominal signal direction. Lines crossing the dendritic arbor mark at a right angle
represent inputs to the population. Such a crossing represents an all-to-all connection between

[Wikipedia, public domain]

I

O

W

Sf

[Shepherd 2004]

15

the vector of input values and the set of units in the population. Clearly, this is equivalent to a
2D matrix of connections, and we can note a matrix variable at the crossing point to represent
connections weights. Any connection that does not exist has a zero-valued element in matrix.

In real neural tissue, inhibitory inputs to a population can come in several forms. One form
comes from local inhibitory cells that impinge on the dendritic arbor. Another form, shunting
inhibition, comes from inhibitory cells that wrap multiple synapses around the bodies or axons of
the output neurons. The second form of inhibition varies the gain of the whole neuron and can
be modeled as a multiplicative factor applied to the total activation of a given unit. In the
graphical notation described here, dendritic inhibition would appear simply as negative weights
in the input matrix. Shunting inhibition appears as an open circle touching the side of the
triangle. See Appendix A for a more complete description of the various neural structures that
can be represented in this notation system.

2.2.2. Mathematical Notation

Our goal is to represent the basic relationships between variables with a minimum of notation
and clutter. The point of minimizing notation is simply to minimize cognitive load in analyzing
and comparing circuit models. The method for simplifying equations presented here works by
throwing away carefully selected mathematical details in order to focus on the key underlying
structure. The resulting equations are not generally equivalent to the original equations. Instead,
they are an abstract form that can represent any number of different systems. A specific system
can be created from the abstract form by filling in particular choices of those mathematical
details.

As noted above, the connections from one set of neural units to another set can be represented as
a matrix multiply. A typical perceptron unit has the basic mathematical form

)(WIO f ,
where I is a vector of activities from the input units, O is a vector of output activities from the
units represented by the equation, W is a matrix of connection weights, and f() is a non-linear
“squashing” function. The job of the squashing function is to keep the output within some range,
and to introduce non-linear behavior into an otherwise linear system. Introducing a non-linearity
allows additional layers to increase the representational capacity of the system; otherwise, it
would simply be a multi-layer linear system, which is equivalent to a single-layer linear system.

The first and most important simplification we propose is to assume an implied non-linearity is
always present and therefore not write it explicitly. Effectively, this allows us to write most
systems as if they were strictly linear:
 WIO  .
For that reason, this notation could be called “pseudo-linear”. Furthermore, a good deal of
complexity can be removed from published equation sets by changing from multi-subscripted
scalars to matrix notation.

Some models, particularly those that apply shunting inhibition, need to multiply the activity of
each unit in a population by a corresponding value in a vector. To represent this in matrix
notation, we use an extended form of the Hadamard operator:

16

crcrc

rcrrc

rcrcrc

vB

Bv

BA





)(

)(

)(

vB

Bv

BA







where A and B are matrices, and v is a vector. A and B must have exactly the same dimensions,
and v must have the same number of rows or columns as B, depending on which side it is
applied. The first form is the original Hadamard operator, which we rarely use. The second
form says that pre-multiplying a matrix with a vector scales its rows, and the third form says that
post-multiplying a matrix with a vector scales its columns. We define the Hadamard product to
have higher precedence than regular matrix multiplication, but will usually add parenthesis to
make the order clear.

Most published equations for neural algorithms appear as differential equations, or on occasion
as difference (discrete time) equations. Both forms may be useful when developing a software
implementation, depending on the numerical techniques used. However, we can write the
equations in a more compact form by changing to update equation form. This is the kind of
notation used by Donald Knuth and other computer scientists when writing out pseudo-code for
algorithms. Our running example would be written as

WIO  ,
where the term on the left (O) is at discrete time-step t+1 and all terms on the right are at the
previous time-step t. The equation basically says that in a given execution cycle, the new value
of O is computed from the current values of W and I.

In order to translate from differential equations to update equations, it is often necessary to take
into account a decay rate in the variable being updated. We prefer representing this as a
balanced update using a generic decay rate L (for “learning rate”). Here is another form of our
running example, in all three notations to show how to move from one to the other:

WIOO

WIOO

WI
O

LL

t

tt










)1(
1 



Here we have translated ε to the generic constant L, and added the term -LO to keep the gain of
the update equation at unity. The justification for this is that we seek models that are stable
under long-term operation. Differential equations in published models often add extra terms just
for the purpose of gain control. Part of the simplification process is to recognize and remove
these terms in favor of the generic decay rate L. Alternately, some of the gain control is folded
into the implicit squashing function, whose job is to keep the values within a certain range.

See Section 3 for examples of simplified models, Appendix B for list of simplification patterns,
and Appendix C for fully worked simplifications.

2.2.3. Analyzing Physiological Evidence

Up to now, we have been assuming that a restricted class of algorithms can be expressed as a set
of differential/difference/update equations. It is also common to describe the dynamics of real
neurons using differential equations. This suggests that a bridge can be built between the domain

17

of neural dynamics and the domain of algorithms, and that this could be done in a systematic
way. Here is an outline of one possible approach: Collect key pieces of published physiological
evidence and translate them into difference equation form, where the key variables are levels of
neural activity, synaptic strengths, second messenger activity, etc. The bulk structure of the
neural system will be mapped to a set of model layers, and specialized neural types will be
assigned to various layers. The difference equations will express interactions between these
components. When enough structure is assembled, identify algorithmic motifs within the
equation sets.

That difference equations are rich enough to express the key neural structures is evidenced by the
fact that differential equations are used to describe the basic functioning of neurons (cf. the
Hodgkin-Huxley model). It is worth noting that difference equations are also rich enough to
express any finite Turing machine, meaning that they don’t simply express a restricted class of
algorithms, but rather all algorithms that might be implemented on a digital computer.

18

3. Analyzed Algorithms

This section summarizes the analysis of a number of well-known algorithmic models of cortical
function. The emphasis here is on understanding the algorithms and comparing them to gain
insight. Therefore, we do not present full derivations, but instead refer the reader to the original
papers and to Appendix C. The models are presented roughly in order complexity, starting with
the simplest.

3.1. Self-Organizing Maps (SOM)

Kohonen [1982] proposes a general algorithm for learning feature maps in an on-line manner.
These maps effectively perform dimensionality reduction by projecting from the (high)
dimensionality of the input space to the (low) dimensionality of the map space. This algorithm is
offered as a model of processing in various regions of the brain where features maps emerge.
For example, area V1 contains oriented edge detectors that are arranged so that neighboring
detectors have similar orientations, and the orientations vary as a function of position on the
cortical sheet. Self-organizing maps (SOMs) naturally reproduce maps with these
characteristics.

The SOM algorithm in its simplest form involves the following steps:

1) For a given input vector, select the vector in the map that is most similar.
2) Update that vector and its close neighbors to be more similar to the input.

Kohonen [1982] provides a neural implementation of this algorithm, which we reproduce below.
Kohonen gives these equations at several different levels of detail. We select the simplest
version of each that still conveys the full algorithm.

Figure 3.1. [Kohonen 1982 – Figure 7] and original equations.

   

 

























constant is ij

1









b

Sk
kkii

n

j
jiji

dt

d

ttt
i

19

Figure 3.2. Translation and simplified equations.

Circuit operation: The weight matrix M stores a set of feature vectors, one per row where each
row is associated with a neural unit in the population. When input I arrives, some units will be
more activated than others due to a better match between their weights and the input pattern.
Each unit produces negative feedback that is distributed via a Gaussian weighting to its
neighbors. This produces a local winner-take-all effect, where units that closely match I remain
active, and all others become silent. Furthermore, when multiple units respond they will be
separated by some distance that is determined by the neighborhood size of the negative feedback.
The circuit adapts its weights using a Hebbian rule: units that are most active will adapt their
weights to become more similar to the input, while inactive units will make little or no change.
Specifically, each unit updates its weights based on its own current activity (expressed as an
element of O) and the input vector I. This is expressed succinctly as the product of O and the
transpose of I, resulting in a matrix with the same shape and semantics as the weight matrix M.

3.2. Douglas & Martin Models

Douglas & Martin [1991, 2004, 2007] present greatly simplified models of the interactions
between the major neocortical cell types. The emphasis in these models is on reciprocal and/or
recurrent feedback among excitatory neurons, combined with broad regulation from inhibitory
neurons. We present these models in graphical form only because the original papers do not
offer a mathematical form.

3.2.1. Full interconnection between two populations of excitatory cells and a population
of inhibitory interneurons, all driven by thalamic input.

TLL OIMM

GOMIO





)1(

)()(

I

O

M

G

20

Figure 3.3. [Douglas & Martin 1991 - Figure 5]

Figure 3.4. Translation.

3.2.2. Winner take all for feature resolution.

Figure 3.5. [Douglas & Martin 2004 - Figure 6]

2,3,4 5,6

I a

Smooth
Cells

21

Figure 3.6. Translation.

3.2.3. Linear Threshold Neurons with inhibitory “pointer” neurons.

Figure 3.7. [Douglas & Martin 2007 – Figures 2 and 4]

Fiugure 3.8. Translation.

2,3 5

I a

I d

O

Horizontal
Smooth Cells

Horizontal
Smooth
Cells

Vertical
Smooth

Cells

I a I d

22

3.3. Kalman Filters (R&B)

Rao & Ballard [1997, 1999] propose a method for learning a sparse code online. The idea of
sparse coding [Olshausen & Field 1996] is to select a linear basis for an input space such that
each input requires a minimum number of non-zero coefficients (linear mixing weights). Rao
[1999] proposes a linear Kalman filter which not only optimizes current state but also the state
transition and sensor matrices themselves. He then simplifies this filter by reducing all the
associated covariance matrices to scalars. Rao and Ballard [1999] propose an even simpler
model which does not use a state transition matrix, but rather updates the current state based
solely on input. Here we present the simpler model first along with a small modification we
made for better neural plausibility, and then the full model.

3.3.1. Learn a sparse basis set while maintaining an internal representation of input
state.

Figure 3.9. [Rao & Ballard 1999 – Figure 1b] and original equations.

Figure 3.10. Translation and simplified equations.

Circuit operation: Input enters the module from both “lower” (Ia) and “higher” (Id) stages.
Likewise, the module outputs to lower (Od) and higher (Oa) stages. The left-hand population
handles prediction generation and differencing with ascending input. It takes the current internal
state Oa and transforms it via the basis vectors U into a prediction of the input activity. The

 
  T

da

T
ad

dda

aad

LL

LL

OOWW

OOUU

IWOO

IUOO








1

1

-1 1

U W
Ia

Od Oa

Id

























i
i

T
T

td

td

T
T

rg

xxf

kUf
x

fkEk

dt

d

g
kk

Uf
x

f
U

kEk

dt

d

2

22
22

1
2
1

2
11

)(

)tanh()(

))((
2

)(
2

)())((
2








r

UrrI
U

U

rrrrI
r

r

23

same population also receives inhibitory input Ia from the previous stage, effectively subtracting
it from the prediction. These differences Od are fed back to the previous stage as well as to the
right-hand population. The right-hand population handles internal state updates. It transforms
the prediction error Od into the internal state space via the basis vectors W, and adds in the error
feedback Id from higher stages. Both populations follow a Hebbian rule for updating their
weights. This circuit is essentially a Kalman filter that lacks any notion of tracking
uncertainty/covariance between the variables.

The original model proposed by Rao & Ballard had a UT in instead of a W. We made this
change because it seemed implausible that two neural populations could share the same set of
weights, and that conveniently these weights were transposes of each other. Note that W can
easily be learned using Hebb’s rule, just as U can.

Remarkably, this circuit is almost completely symmetric. The key difference between its two
halves is the negative weights on Ia. These are also somewhat implausible, although structures
such as triadic synapses do exist that could invert inputs. In order to provide error feedback
between stages, it is in fact necessary for one of Ia and Id to have negative weights and the other
to have positive weights. However, the choice of which one to make negative is not critical.
The original version by Rao & Ballard made the weights on Id negative, but our version chooses
Ia instead. A more biologically plausible implementation would need to pay attention to the
actual types (excitatory versus inhibitory) of top-down and bottom-up connections, and perhaps
introduce an extra population of inhibitory units that handle the differencing between predicted
and actual inputs.

One of the original motivations for this work was to examine whether the Input Minimization
learning rule [Anastasio 2001, Rothganger & Anastasio 2009] might apply in the neocortex. Our
approach was to start with this circuit by Rao and Ballard, and adapt it to follow the InMin rule.
The proof of concept would then be whether such a circuit could reproduce some neocortical
phenomenon using the InMin rule. As it turns out, the circuit devised by Rao and Ballard is
already an input minimizer. We can see this in two ways. First, notice that the sparse coding
rule calls for a minimum number of active elements in the vector that encodes each input. This
is effectively an output minimization rule. If the system consists entirely of such modules
connected to each other, then output minimization implies that input will be minimized as well.
Second, notice that the right-hand population minimizes the error fed back to it. Specifically, it
updates its output vector Oa in the direction indicated by the error feedback vector Id. When it
reaches the target value, Id should reduce to zero. Despite these observations, notice that the left-
hand population does not explicitly implement an InMin rule, so the Rao & Ballard module as a
whole does not fully implement InMin. Because the Rao & Ballard module partially implements
the InMin rule, we have not pursued this modeling question further. One possible extension
would be to use the perturbative gradient descent mechanism proposed by Rothganger &
Anastasio [2009] in the left-hand population.

3.3.2. Learn the state transition model as well as the sensor model.

24

Figure 3.11. [Rao 1999 – Figure 2, and equations 18 – 21]

Figure 3.12. Translation and simplified equations.

Circuit operation: Operation is similar to the previous circuit model. The left-hand population
does two jobs: It computes the predicted input vector based on current internal state Oa and the
matrix of basis vectors U. Then it subtracts this value from the actual input Ia and sends error
value Od to the right-hand population and to any previous stage. The left-hand population learns
the weights of U using a Hebbian rule based on correlations between state Oa and error Od. The
right-hand population computes an updated state Oa based on error values Od and an inverse

 
 
  T

da

T
ad

T
ad

daa

aad

LL

delayLL

LL

OOWW

OWOVV

OOUU

WOVOO

IUOO










1

)(1

1

1

-U W

Od Oa

I a

V

 
 

 

)(with synonymous is)(

)(ˆ)(

)2(ˆ)1(

)1(ˆ)(

with

)1()1(ˆ)1()(

)()()()()()(ˆ

)1(ˆ)()()1()1(ˆ

)()()()()()(ˆ

2
0

tt

tt

tVtV

tUtU

tttVt

ttUttU
N

tt

ttttVtV

tttUttUtU

T

T

T

rr

rr

mrr

rIrr

rrr

rrI






















25

basis set W. It also maintains its own activity level over time via feedback through the state
transition matrix V. V will generally be close to identity, with some off-diagonal values that
contain a model of how the underlying states evolve over time. The right-hand population learns
the weights W using a Hebbian rule, similar to how the left-hand population learns U. The right-
hand population also learns the state transition matrix V by comparing the computed update
WOd with the previous state Oa. This is again a Hebbian learning rule, perhaps implemented
with spike-timing dependent plasticity (STDP). A physiologically dubious aspect of our neural
network interpretation is how the computed update is communicated to the synapses that
implement V. If the outputs of the right-hand unit are randomly but spatially distributed back
onto its own dendritic arbor, and if activities from the synapses implementing W can propagate
to V, then STDP could strengthen those weights that are predictive of the outputs from W. We
do not know if such an arrangement has ever been observed in the brain.

3.4. Adaptive Resonance Theory (ART)

Grossberg, along with various collaborators in students, has developed a model of how neural
circuitry may perform clustering in an on-line and stable manner. In that sense, it is another kind
of self-organizing map (cf. Kohonen maps). A key characteristic of this theory is the need for
positive feedback (resonance) between two populations of units in order to select and learn a
particular category. Various versions of the model include other elements, such as a reset circuit
to enable searching through multiple candidates. Grossberg [1999] indicates that one of the
simpler forms of the ART network is well supported by neural evidence. We present this version
here, and then present a more elaborate variant called LAMINART, which interprets
observations about the laminar structure of the visual cortex in terms of ART.

3.4.1. Simple ART

26

Figure 3.13. [Grossberg 1999 – Figure 2C] and equations from [Carpenter & Grossberg 1987]

Figure 3.14. Translation and simplified equations.

Circuit operation: Inputs directly activate their respective units. The weight matrix V
transforms the current activity pattern x into categories y. Local inhibition implements a winner-
take-all rule on y, so that only one member is strongly active. The weight matrix U transforms
the selected category from y into predicted input values. Activity in y produces an equal amount
of inhibition across all the F1 units, effectively reducing their gain. Units in F1 that receive
strong input or that are reinforced by y will continue to output into x, while others will be
suppressed. A Hebbian rule guides the learning of the weights of both U and V. The rate of
decay in both U and V is determined by which category in y is active. The more active a
category, the faster its associated weights decay, allowing weights of active categories to change
quickly.

 
 

T

T

xyyUU

yxVyV

HyVxyy

GyUyIxx









)1(

)1(

)1(
1

11









I
U V

1

G H

x y

F1 F2

 

 
1

)()(

)()(

)(

)(

)(

)(

)(

)()1(

)()1(

2

2

1

2

1

112

111













































ijji

ijijijji

iijijjij

jk
kj

jjj

i
ijij

j
ji

iii

j
jiji

jjjjjj

iiiiii

EEK

xhzExfKz
dt

d

xhzExfKz
dt

d

xgJ

TxgJ

zxhDT

xfJ

VIJ

zxfDV

JxCBJxAxx
dt

d

JxCBJxAxx
dt

d





27

Note that the network diagram shows shunting (divisive) inhibition, while the equations show
dendritic (subtractive) inihibition. We prefer modeling with shunting inhibition, but dendritic
inhibition is the form that falls out of the ART equations. Also note that the variable learning
rate in the rules for U and V could be reasonably implemented in real neurons using influx of
calcium or other molecular mechanisms for varying level of plasticity based on activity.

3.4.2. Laminar ART (LAMINART)

Figure 3.15. [Raizada & Grossberg 2000 – Figure 6e] and equations from [ibid. – Appendix]

 

ijrrkijkinhib
pqr

pqrpqrijkijkijk
s

r
ijrrkijk

excit
pqr

pqrpqrijkijkijkijkijk
z

pqr
pqrpgrijkijkijkijkijk

m

pqr
pqrpgrijkijkijkijkijkijkijk

C

nn

n

V
ijkijkijkijkijkijk

C

ijkijk

sTsattazFHss
dt

d

sTz

attazFHyzzz
dt

d

mWfmxmm
dt

d

mWfyxCyyy
dt

d

x

x
xf

attxVzFCxxx
dt

d

zzF






























































23

23

2
21

),(
1

)(

),(][)1(
1

1

)1())(1(
1

)(

),()1(
1

)0,max(),(




















28

Figure 3.16. Translation and simplified equations.

Circuit operation: Populations 6 and 4 both receive the primary input to the module. In
addition, population 6 integrates cues from higher stages and from internal feedback. The job of
population 6 is to convey this summed activity to population 4. If the constants are tuned
correctly, input from population 6 to population 4 will remain under population 4’s threshold, but
will enhance weak direct input in population 4. Population 2/3 produces the primary output of
the module, and also exchanges horizontal connections within itself. These connections spread
activity within network, which may for example help complete interrupted contour lines.

All the weights on the connections within this network are constant. There are no on-line
learning rules in [Raizada & Grossberg 2000] itself, although it does give reference to other
papers that explain how the fixed kernels were calculated.

3.5. Brain Emulating Cognitive Control Architecture (BECCA)

The BECCA model [Rohrer et al. 2009, Rohrer 2010] builds up dictionaries of discrete sensory
events and their sequences. BECCA issues action commands, takes in observations (which
includes a copy of the actions), and receives rewards based on its performance. BECCA
performs feature extraction from its observations using an online clustering method called kx-
trees. It works by online divisive partitioning of the state space into regions, based on the local
frequency of observations. Each region that contains a sufficiently large number of observations
is a feature. As features are observed, they are fed to a sequence learning (S-learning) process.
Over time, repeated sequences are weighted more heavily and unrepeated sequences are
forgotten. The resulting sequence library constitutes the model of a robot and its environment.
Given an initial state, the library also shows which states can be reached by which sequence of
actions. Actions are selected based on the expected reward of the predicted states.

 

)()1(

)()1(

)()1(

)()1(

)1(

UsIHOss

TsIHOyOO

WmOmm

VmOIyy

IOIOO









da

daaa

d

da

daadd

fLL

edLL

cLL

cLL

baLL

Od

Oa

b

a 1

c dc

W V

H

T U

H

y smx

z

6 4 2/3

I a

I d

1 e f

29

Here we present neuralBECCA, a version of BECCA that can be implemented using neural
mechanisms. neuralBECCA is not just a model of cortical circuit operation, but also a cognitive
architecture. A basic idea of this architecture is that all cortical activity is folded back into its
input. This function is assigned to the thalamus and to white-matter connections between
regions of the neocortex. The specifics of connectivity between cortical regions are ultimately
due to the routing of related signals to the same place.

Figure 3.17. Diagram and equations.

Circuit operation: Input to the system come from various sources: folded output (O), folded
input from peer modules (Il), and external input (Ia). These are combined into a single input
vector a. The “Mux” unit is not specifically a neural population. Instead, it represents a routing
of subsets of the input vector to various modules. The remaining two populations belong to one
such module. Notionally, the multiplexing is learned by finding correlations between inputs and
routing bundles of correlated values to the same module. The weight matrix X represents this
routing. X is a square matrix constructed from three blocks of weights (Xo, Xl, Xa) associated
with the three input sources. The center population does the job of developing a basis set of
features and transforming the input into that basis. This may be done any number of ways. Here
we illustrate the simplest mechanism already discussed in this section: a Kohonen map. The
resulting vector of feature activities c then enters the right-hand population, which combines c
with a prediction of how state will evolve. The right-hand population uses a Hebbian rule to
learn the state transition matrix W based on its input and a delayed version of its output. Finally,
the output is folded back into the input vector.

3.6. Hierarchical Temporal Models (HTM)

Dileep George [2008] proposes a model the broadly follows the ideas of Jeff Hawkins [Hawkins
and Blakeslee 2004] regarding a general purpose neocortical algorithm. A key characteristic of
this approach is to treat groups of sensory events that tend to occur next to each other in time as a
single feature. George observes that the temporal proximity of events is a powerful cue about
the structure of the underlying cause. That is, if two events A and B always occur one after the
other in a given order, then they are probably due to the same underlying world state.

The structure of the model consists of a step that extracts sensory features and a step that learns
Markov chains of such events and groups them to form the temporal features. The sensory

T

T

T

delayLL

LL

LL

cfWW

cbUU

aaXX

Wfcf

GcUbc

Xab

)()1(

)1(

)1(










O

U

W

Mux

1

b c d

I a
Xa

I l
Xl

Xo

G

a

30

feature extractor is essentially a form of on-line clustering or dimensionality reduction. The
temporal feature extractor consists of a standard Markov chain learning process (learning the
transition matrix), followed by agglomerative clustering using the transition probabilities
between events as a distance measure. Modules that implement this process and be assembled in
hierarchies, and George proposes a Bayesian framework within which they communicate state
information with each other.































































otherwise ,0

 ofcomponent a is if ,1
)(

)()()(

),|)0(())0(|(),(

),()),1(|)(())(|(),(

),()|()(

)|)0(())0(|(),(

),()),1(|)(())(|(),(

),())(|()(

)())(|()(

000

)1(
1

0

00

)1(
1

)(

1

0

i
child
m

i

i
ii

im
child

riiri

Ctc
rjtrjiitrit

rit
Gg

rit

riiri

Ctc
rjtrjiitrit

Ctc
ritr

t
r

k
t

M

j

m

i

m

titt

cg
cI

cBelcIg

egtcPtcePgc

gcgtctcPtcePgc

gcegPcBel

gtcPtcePgc

gcgtctcPtcePgc

gctgePg

rtcePiy

k
j

k
r

k
j

k
i

jj

















Figure 3.18. [George 2008 – Figure 4.4] and equations from [ibid. – Table 4.1].

31

Figure 3.19. Translation and simplified equations.

Circuit operation: Inputs Ia are projected onto the set of basis vectors C. The resulting linear
mixing weights y modulate the internal state x. The structure of x is a vector where each element
represents the probability of being in a particular state in a Markov chain. The next value of x is
determined by the transition matrix M, which encodes the weights of the Markov chain, as well
as the values of y, which indicate which state(s) are likely based on the input. The weight matrix
N groups subsets of the elements in x so that they act as a single feature. Each feature is
represented as an element in the output vector Oa. Top-down input essentially goes through the
reverse of this process. NT projects a top-down feature vector into subsets of the Markov states.
The active subset of states in turn projects onto bottom-up features via CT.

In [George 2008], all learning is off-line and accomplished by processes that are independent of
the run-time architecture. We have attempted to propose on-line learning rules based on the
structure of the circuit. However, only a learning rule for the state transition matrix M is clearly
plausible (based on a Hebbian mechanism). A learning rule for C would require reciprocal
feedback between the upper-left population and the lower-left population, similar to a Rao &
Ballard module (discussed earlier). The basis set C could also be learned using a Kohonen
module (discussed earlier). It is not clear how the CT would be learned in this setup. Finally, we
have not yet determined a neurally plausible mechanism for learning the groupings among
Markov states represented by N.

3.7. Comparisons and Contrasts

3.7.1. SOM and R&B and ART

An ART module is similar to a pair of SOM modules reciprocally connected.

C M
Ia

Id

Oa

N

C N
T

Od

T

y x

 
???

1

???

)(











N

yxMM

C

INxCO

NxO

Mxyx

CIy

T

d
TT

d

a

a

LL





32

Figure 3.20. Reciprocal SOM (left) compared to ART (right).

The subtle difference between these two is that in ART, all inhibitory activity comes from F2,
while in reciprocal SOM, inhibition comes from the other population.

Likewise the R&B model is similar to a pair of reciprocally connected SOM units in that both
sides apply a Hebbian rule to learn mappings between input and output. However, unlike either
SOM or ART, R&B does not implement a winner-take-all rule via self-inhibition.

3.7.2. ART and LAMINART

The authors [Raizada & Grossberg 2001] argue that LAMINART is indeed an implementation of
the basic ART algorithm. We can see this by performing a series of simplification to the
LAMINART circuit diagram. First, remove the inhibitory interneuron populations and treat
them as direct inhibition. Note that direct inhibition in a circuit diagram is in general a short-
hand for a population of local inhibitory interneurons.

Remove population 6 and route signals directly to population 4.

I
U V

M

G H

I
U V

1

G H

x y

F1 F2

Od Oa

b

a 1

c d

V T

H

yx z

6 4 2/3

I a

I d

1 e

33

Compare with the simple ART circuit…

and we can see that the same basic structure of connections is present. The key differences are
the addition of the attention signal Id and direct positive feedback from population 2/3 to itself.

3.8. Synthesis

The basic characteristic of all the models is a feature extraction stage. Typically, this involves
casting a higher-dimensional input space into a lower-dimensional feature space. The feature
space is usually learned on-line by detecting correlations between the input and the currently
selected feature held internally by the model. This type of processing can be alternately
described as vector quantization or dimensionality reduction.

The more sophisticated models (R&B model 2, BECCA, HTM) also include a stage that learns
sequential relationships between features. Based on the models studied here, the consensus
model of the neocortical circuit would therefore be a feature extraction unit connected to a
sequence detection/prediction unit. (Lydia Majure first made this observation regarding the
HTM model.)

Figure 3.21. Synthesis of models.

Oa

b

1

d

V T

H

y z

4 2/3

I a

I d

1 e

I
U V

1

G H

x y

F1 F2

Lower
Stages or
Outside
World

Higher
Stages

Sequence
Extraction

Feature
Extraction

34

Either one of these components is “plug and play” in the sense that a range of algorithms could
be substituted into the box to achieve similar results. The simplest model presented here that has
both components is R&B model 2.

35

4. Implementation and Results

We developed a sequence of increasingly sophisticated models, and implemented each one in
software in order to characterize its behavior. We selected the Kalman filter model by Rao &
Ballard (R&B) as the starting point for this process for a number of reasons. First, it is a simple
model and therefore fairly direct to implement. As pointed out in Section 3, the model is the
simplest one that incorporates all the elements of the consensus model. Second, it describes a
clear role for top-down feedback. Finally, its authors have demonstrated the emergence of
receptive field patterns similar to those measured in real animals.

Here we present four stages in the evolution of the model and associated implementation, along
with results. We finish by describing the software architecture and the task of moving it to a
parallel processing environment.

4.1. Reproduce the results of [Rao & Ballard 1999]

We requested the original software from the authors, but they were unable to provide us with it.
Instead they pointed us to a dataset and code by Bruno Ohlshausen [Ohlshausen & Field 1996]
which they had used as a starting point. We implemented the algorithm based on the appendix of
[Rao & Ballard 1999], and reproduced their results on the emergence of receptive fields. Below
is a qualitative comparison of our results against their paper.

Figure 4.1. R&B network architecture and results.

36

The above diagram illustrates the network architecture used in [Rao & Ballard 1999] and
reproduced in our work. Each input image is converted to a “whitened” image (not illustrated),
and then a 26x16 pixel patch is extracted from a random location in the image. The first stage of
processing consists of three R&B units, which each process a 16x16 pixel sub-window of the
patch. These overlapping windows are offset from each other by 5 pixels, which accounts for the
total input patch width of 26 pixels (16+5+5). The outputs of the three first-stage units feed to a
single second stage unit.

On the left of the figure are qualitative results from the first stage units. At the top is the output
of some units in our implementation (“MCC” is an abbreviation for “Modeling Cortical Circuits”
and labels the results of this project). In the middle is an image from the original paper. At the
bottom is a figure from [Hubel & Wiesel 1959] which illustrates the receptive field of a simple
cell in V1. These are sensitive to edges of a particular orientation. Such edges are formed by a
bright field adjacent to a dark field in the image. Both MCC and R&B learn such receptive field
patterns after exposure to natural images.

On the right of the figure are results for the second-stage unit. These reproduce patterns similar
to the complex cells reported in [Hubel & Wiesel 1968]. In particular, these cells have an end
stopping effect, where an edge of an ideal length will produce an optimal response, while an
edge that is too long will produce a weaker response. We interpret this as the effect of a checker-
board-like pattern of bright and dark field sensitivities. Note that in the original work of Hubel
and Wiesel, the bars of light were always in motion. However, in both R&B and this work, we
proceed as if the system will respond to stationary light patterns. This is a simplification for
working with still images, but it probably reduces the validity of the models.

4.2. Add Layering and Fuzzy Columns

With a working implementation of R&B as a baseline, the next logical step was to implement the
new modeling concepts developed in this work and evaluate them. We implemented the layering
and fuzzy column structures in two separate steps. The baseline R&B code used direct
connections between scalars (essentially pointers) to move data. We rewrote the code to instead
communicate by filling and reading matrices. In terms of impact on circuit behavior, this was a
fairly minor change. We then rewrote the code to assign each model neural unit to a particular
2D position. Each unit then reads from a sub-matrix surrounding its position. This had a
substantial impact on behavior, which we discuss below.

Figure 4.2 shows a somewhat more detailed conceptual diagram of how an R&B module fits
together in the new scheme. This illustration treats the input as 1-dimensional, so that all
neighborhood relationships can be seen on a single row. All vector values are shown as bundles
of lines, one per element. Black dots mark places where an element of some vector interacts
with a unit. The inputs, both ascending and descending, map one-to-one with individual units
via fixed weights. The interaction between the inputs of one population and the outputs of the
other population form a grid which can be thought of as a weight matrix. These inputs are
staggered, so that nearby units share some common inputs, while distant units do not. This is the
effect of having each unit read from a neighborhood near its assigned position. If this example
were extended to 2 dimensions, then the line bundles would represent layer matrices, and the

37

connectivity pattern would be staggered in both dimensions. In the actual code implementation,
there is no single weight matrix that covers the interaction between a population of units and one
of its input layers. Instead, each individual unit has a representation of just its part of the
weights. Effectively, this is a way of encoding a sparse weight matrix, that is, a weight matrix
where many or most of the elements are zero.

Figure 4.2. Connection detail for a small R&B circuit, showing two populations interconnecting
four layers. Black dots indicate connection, which are staggered to implement fuzzy columns.

Figure 4.3. Network architecture for R&B using layering and fuzzy columns, along with
qualitative results.

38

Figure 4.3 shows the revised network architecture. This looks similar to the original R&B
architecture. However, each element in one of the output vectors of the original model is now
associated with a distinct unit. These units are spread evenly over the image space in both
dimensions. Thus, the indicated number of units is much larger in this version, but each unit is
simpler in form. For convenience, we do not exactly translate the dimensions of the original
model into the new form. In particular, there are 32 units along the horizontal dimension, rather
than 26; and the top level is simply a 2:1 downsample of the bottom level. On the right of the
figure are qualitative results in the same format as the baseline. These are somewhat different
than the original results, mainly due to the way the units share regions of input. However, they
still retain the basic form. First level units detect oriented edges, or contrasts between a light and
a dark region. Second level units develop a checkerboard-like pattern which can behave as an
endstopped segment detector.

One of the milestones of this work was to test the model on an object recognition task. The first
and most obvious approach was to create a deep hierarchy of R&B units using the same basic
circuits as the two stage system described above. Each subsequent stage downsampled the
image space by roughly 2 until we got to a layer with 100 units (10x10) in it, one per category in
a very slightly reduced Caltech 101 dataset. On top of this layer operated a supervised learning
module which reinforced one predefined output element per category.

Figure 4.4 (right side) shows a conceptual diagram of the network architecture. At the bottom is
the current input image, which passes through successively smaller stages until it reaches the
category stage. On the bottom left is a visualization of the Caltech 101 dataset (due to Antonio
Torralba). For each category, it shows the average of all the images in that category.
Conveniently, most of the images are well-registered, which makes spatially dependent feature
recognition feasible. This makes the set well-suited for neural network style recognition
systems. The top left shows a snapshot of the network in operation. The snapshot consists of 4
images side-by-side. The leftmost is the original input image. Next is a processed version of the
input that is actually fed to the network. Third from the left is the “error” image coming down
from the bottom-most stage of the hierarchy. These middle two images are direct visualizations
of the first two layers in the model. They are exactly Ia and Od of the first R&B stage (the one
that is 300x300 units in size). The rightmost image in the snapshot is the top 10x10 layer (Oa
from the top stage).

Unfortunately, this system was not able to develop stable representations, which is a prerequisite
for associating network states with categories. There are a number of network parameters that
we could adjust that may enable this arrangement to work. However, we chose instead to
develop a more sophisticated model that incorporates saccades. The hope was that a model that
could focus on preferred parts of the input would develop stable representations.

39

Figure 4.4. First approach to object recognition. (Top) Snapshot of network in operation.
(Lower left) Summary of input data. (Right) Network architecture.

4.3. Generate Saccades

One of the motivations for developing a saccade model was the generation of stable
representations, but it was not the only one. A saccade model is interesting in its own right as a
model of perceptual saliency. Saccades are very high speed eye movements that humans
produce when looking at a scene. These movements are nearly subconscious and often terminate
on points that have explainable significance. The goal of the work presented here was not
necessarily to reproduce human-like saccade behavior, but rather to experiment with some
possible neural mechanisms that could underlie saccade generation.

The basic approach is to treat the error output (Od) from the bottom stage of the network as an
indication of saliency. The error output is effectively a difference between the actual input
image and the image predicted by the network. Presumably, any failure to predict a part of the
image indicates that it is worthy of more attention.

In real brains, a region called the superior colliculus (SC) integrates signals from other areas of
the brain in a 2D saccade map. When some part of the map becomes highly activated, and the
system is not refractory from a previous saccade, it will initiate a new saccade towards the point
in the eye’s movement space indicated by the point in the map. When this happens, the activity
in the map is quenched, at least partially. It then begins to integrate activity, leading up to
another saccade.

We developed a very primitive model of this process, illustrated in Figure 4.5. Rather than
inputting the whole image, we select a sub-window that is about 1/3 the size of the image in each
dimension. We added a layer that accumulates the error output from the bottom stage in a leaky
integrator. The first element in the matrix to exceed the saccade threshold triggers the system to

40

re-center the working window over the associated point in the image. At the same time, the
entire saccade layer is cleared to zero.

We implemented the saccade mechanism in a simpler version of the object recognition
architecture. In particular, the model only had four stages, all of equal size. The input window
was 100x100 pixels, and the input images were on average 300x300 pixels. The network stages
themselves were also 100x100 to match the input window. Figure 4.6 shows some of the results
from running this model on the Caltech 101 set. The input window is moved to the center of the
image at the start of each presentation. After that, it is free to move around under the direction of
the saccade map. The red line shows the path the input window followed. Note how the system
moved to the center of the eye in the face image and then stayed there. The eye produces a very
strong low-level saliency cue. It is also noteworthy that it did not move to the eye on the cougar
image. This may be due to the nose producing an even stronger cue.

This model did not produce stable representations that are suitable for object recognition.
However, it did produce fairly consistent behavior on similar images, suggesting that more
development of the network configuration could lead to stable representations.

Figure 4.5. Network architecture for saccade generation.

41

Figure 4.6. Saccade tracks on various input images.

4.4. Add Lateral Connections

In parallel with developing the saccade model, we also developed a model for lateral interactions
between units. Again, part of the motivation for doing this was to learn stable representations.
We supposed that if related feature could cue each other, than they system could identify an
object even when it shifted out of canonical position. Lateral connections are an approach to
achieve feature pooling, which enables a recognition system to develop some shift invariance
[Jarrett et al. 2009]. In terms of physiology, it is well-known that neurons with particular
receptive field types establish lateral connections with neurons of similar type that are in nearby
patches [da Costa & Martin 2010].

Figure 4.7 shows the circuit diagram for the lateral connection model. This is an adaptation of
both R&B models discussed in Section 3.3. The second R&B model discussed in that section is
structured to find temporal sequences, and it lacks a top-down input. The model we present here
is more similar to the first R&B model, in that it has a top-down input. We did not implement a
delay in the lateral input, so this model does not learn temporal sequences, but rather
coincidences between activities in nearby units. The distinction between these two modes is
very slight, and should be viewed as a continuum in which one can select a behavior by varying
the amount of delay.

42

Figure 4.7. Circuit diagram for lateral connections added to R&B.

For a number of reasons, we use an annular kernel (Figure 4.8) to weight the lateral input to a
unit. One motivation is to encourage the model to make more distant connections, and another is
to avoid feedback. Finally, Kevan Martin and others report “daisy”-like patterns in the lateral
connections of the cortex, where a neuron will be connected to other non-adjacent patches
reminiscent of petals on a flower. The hope was that this kernel would encourage such a pattern
in the model.



































111111111

111111111

111111111

111111

111111

111111

111111111

111111111

111111111

Figure 4.8. Annular input pattern.

We implemented and tested this model. Although it runs stably as a whole, after some time there
emerge regions within a stage that oscillate at maximum amplitude. This suggests that laterally
connected units are driving each other to saturation. This model therefore requires more
development to be useful.

4.5. Software Architecture and Parallel Computation

The neural simulations are coded in C++ and follow an object-oriented design. The simulation
infrastructure is a set of generic base-classes. Any specific neural unit types are implements as
extensions of these classes, and any specific network architectures are built by extension code as
well. This enables the simulation infrastructure to be used for a wide range of neural unit types
and network structures, not just the ones discussed in this report. The base classes are:

-1 1

U W

Od Oa

I a I d

V

43

 Network – Contains the entire network. Manages startup and shutdown of the
simulation, as well as saving/restoring state.

 Unit – One model neural unit. All simulated neurons extend this class.
 Layer – A matrix of values that are exchanged between populations of neurons.

Maintains time coherence of all data within the matrix. Double-buffered so data can be
read and written at the same time.

 WorkUnit – A group of Units that execute on a single thread or process.

The Rao & Ballard networks described in this report were implemented by a number of
specializations:

 RBnetwork (Network) – The network builder that creates all the various stages of various
sizes and interconnects them.

 RBunit (Unit) – Implement half of an R&B module. A complete R&B module consists
of two populations of these units reciprocally connected. (See Figures 3.10 and 4.2.)

 RBinput (Unit) – Reads images an inserts them into the bottom stage. Accumulates error
feedback and generates saccades.

 RBcategory (Unit) – Implements reinforcement learning by imposing error feedback on
top stage of network.

 RBvisualizePyramid (Unit) – Collects information from various Layers and displays it as
an image.

The software is designed to run in two distinct parallel-computation environments. On multi-
core desktop computers, the software breaks the work up into a number of threads that run in
parallel. A separate WorkUnit exists for each piece of the simulation, and each WorkUnit runs
on its own thread. A WorkUnit contains some subset of the Units in the simulation. The
WorkUnit keeps track of the data dependencies for the Units and ensures that all the input and
output Layers are at the same time-step before executing the code in the Units. The Layer
objects ensure that all their data have been read or written before moving on to the next step in
the simulation. Because there is little interprocess communication overhead on shared memory
multiprocessor desktop systems, this code achieves significant speedup and can make use of all
available cores.

On cluster computers, the software uses the Basic Linear Algebra Communication Subroutines
(BLACS) message passing infrastructure, as opposed to running directly on top of MPI. In this
version of the software, a WorkUnit manages all the work within a given process, which
typically maps to exactly one compute node. Each process contains a copy of all the Layers that
its Units read from or write to. For any given region in any given Layer, there is exactly one
process in the system that owns the authoritative copy. At the end of each simulation cycle, that
process sends an update message to each other processes that depends on that Layer.

The cluster computing implementation is currently written in a naïve way, and requires further
development in order to achieve speedup. An alternate communication scheme may be to
formulate the networks directly as sparse matrices and use sparse linear algebra libraries
designed for cluster computers. Another future direction may be to run neural simulations on top
of Xyce. A neural version of Xyce is currently being developed under another project.

44

5. Conclusions

We have examined a number of published models at various levels of complexity. Surprisingly,
the methodology has exposed critical weaknesses in some highly acclaimed models (in particular
the lack of learning rules in HTM and LAMINART). Many of the more sophisticated models
examined have some aspect that is implausible, suggesting that there is still a good deal of work
to be done in this area. However, the methodology has also shown that some of these models
hold promise as both physiologically plausible and computationally effective. Our hope is to
synthesize progressively better approximations of the neocortex.

We have implemented two forms of the Kalman filter model (by Rao & Ballard) in software,
with significant restructuring to follow the layering and fuzzy column organization patterns, and
have successfully reproduced the emergence of receptive fields in early visual processing. We
extended the model to generate saccade sequences and experimented with a lateral connection
architecture. We did not achieve the goal of object recognition, but see a number of directions
forward that could lead to this. One possibility is to retune the network parameters so that
oscillations between the higher and lower stages eventually damp out, resulting in stable
representations. Another possibility is to treat cyclic trajectories in activity space as
representations in their own right. (Alex Duda, one of our university collaborators, is developing
general purpose neural models that use cyclic fixed points as representations.)

One of the outcomes of the modeling work is the realization that difference equations may
provide a common representation for both “top-down” algorithmic descriptions of neocortical
circuit function and “bottom-up” descriptions of neural structure and connectivity. As a common
representation, it could provide a bridge between structural detail and the function that structure
implements. The neuroscience community is working towards the goal of mapping all the
connectivity within the neocortex and understanding its function. Their efforts produce a
growing body of evidence about various structures and connections. As the subject of future
work, we will develop a method for translating this information into difference equations and
look algorithmic motifs in the result. We are hopeful that a new and deeper understanding of
neocortical function will emerge.

45

Appendix A: Representation of Neural Structures

Figure A.1. Illustration of graphical notation.

Axon Bundle – Represented by a line with an arrowhead. The arrow indicates the traditional
direction of action potential propagation. Mathematically, an axon bundle is a vector of the
activities of the units within its associated population. Axon bundles may be marked with a
vector variable.

Axon Collateral – Axon bundles can give off multiple branches. Represented by a line joined to
the main axon bundle by a small dot.

Dendritic Arbor – Represented by a vertical line extending from the top of a population icon
(triangle).

Dendritic Weights – Represented by an intersection between a dendritic arbor symbol (vertical
line) and an axon symbol (horizontal line ending in an arrowhead). In diagrams where it is
useful to allow some crossings that are not actual innervations, a large black dot indicates those
intersections that are in fact innervations, while a simple crossing with no dot indicates that the
arbor and axons do not interact.

The values of the weights are represented by a matrix variable placed near the
intersection. It is permissible to have negative weights provided a physiological justification
exists for them. Otherwise, avoid negative weights.

An identity matrix represents a one-to-one relationship between neural units and
incoming axons. (Climbing fibers in the cerebellum approach this condition by being mutually
exclusive, although the number of units innervated is generally on the order of 10 rather than 1.)
Because “I” is already reserved for inputs, an identity matrix can be stated with the numeral “1”
or “-1”.

Local Inhibition – A principal output cell may have local collaterals that synapse onto local
inhibitory interneurons. The inhibitory outputs of these neurons in turn synapse onto the
principal output cells, sometime even the same ones that deliver the stimulus to the interneurons.
Represented by a cell population symbol (triangle) for the interneurons that receives the output
of the principal cell population and feeds back to it using an open circle on the side of the
principal cell population icon. This can also be abbreviated as a direct feedback from the
principal cell population icon to itself, in which case the presence of a population of inhibitory
interneurons is generally implied.

I

O

W

Sf

46

Neural Population – A group of neurons with similar characteristics that work together at a
particular stage of processing. Represented by a triangle whose point faces downward. The
direction of the triangle indicates the forward flow of action potentials in a traditional view of
neural behavior. That is, integration in the dendritic arbor followed by an action potential
initiated at the hillock followed by an action potential that travels in one direction along the
axon. This description is not consistent with observations about the more general behavior of
neurons, which includes retrograde action potentials and reciprocal synapses, among other
phenomena.

Neurotrophism / Neurotopism – Various patterns of growth, structuring and connection
formation, some of which may be information driven. Represented by intersecting an axon
bundle with all possible targets and associating a weight matrix with each one. The “learning
rule” for each matrix would be based on neurotropic factors. Elements of the respective weight
matrices would start at exactly zero, and only become nonzero if a connection is made. Any
nonzero elements, however small, represent the existence of a connection.

Non-linear Response – Most details about the behavior of neurons in a given population are
abstracted by the population icon (triangle). Notations inside the triangle can express some of
these details. For example, a triangle may contain the name of a function which models the
behavior of population.

Shunting Inhibition – An input that modulates the gain of a neuron, generally in an inverse
manner. That is, the more active the input, the less responsive the neuron becomes. Represented
by an open (non-filled) circle attached to the side of a triangle. A matrix variable next to the
circle represents the neural weights mapping between the axonal bundle and the units in the
population.

Retrograde Action Potential – An action potential that travels in from the soma towards the
dendrites. May be involved in Hebbian learning mechanisms. Not represented explicitly in the
graphic notation, but implied by mathematical forms that express learning based on relationships
between the dendritic inputs and firing activities of a given population.

Spike Timing Dependent Plasticity (STDP) – A potential mechanism for Hebbian learning. If
this mechanism plays a significant role in the behavior of a population, then the acronym
“STDP” may be placed in small-type inside the triangle the represents the population.

47

Appendix B: Equation Simplification Patterns

Pattern 1 – Remove any subscripts whose only job is to iterate over elements of respective
matrices or vectors.
 Rationale – Subscripts add clutter, and thus tend to obscure the meaning of the math. In
many cases, standard linear algebra operations directly imply which elements interact with each
other. In those cases, the subscripts are truly unnecessary to readers familiar with such
conventions. In other cases, it requires only a small abuse of notation to express something in
vector form.

Pattern 2 – Remove decorations from the names of values. Attempt to rename to a single
symbol.
 Rationale – Complex names for a value add clutter. The choice to decorate a symbol is a
judgment call. If there are a large number of values of essentially the same type, then it may
make sense to use one symbol with a subscript to specify them.

Pattern 3 – Convert difference equations into update equation form.
 Rationale – Update equations express the numerical relationships between variables
while disposing of details about their time relationships, and are thus easier to read. If all the
variables on the right-hand side of a difference equation are at the same time step, and the
variable on the left-hand side is at the subsequent time step, then the update equation also
preserves the mathematical meaning.

Pattern 4 – Remove any non-linear squashing function from a term.
 Rationale – Summarizing the neural units as a linear operation simplifies the notation
while preserving the relationships between the variables. Generally, we can assume that every
group of neural units has some kind of non-linearity in their outputs, so it is sufficient to leave
this non-linearity implicit.

Pattern 5 – Remove normalizations from a term.
 Rationale – Normalizations are just another kind of non-linearity, and thus can be
absorbed into the implicit non-linearity associated with each term.

Pattern 6 – Express weight updates with a gain of unity.
 Rationale – Most weights should maintain some kind of normalization, so generally the
determinant of a weight matrix should remain constant, rather than grow or shrink.
 A simple form to express a gain of unity is A←(1-L)A+LB, where L is a scalar that
means roughly “learning rate”. L may be any value, but is generally a real number in (0,1).

Pattern 7 – Rename these common connections between a local circuit and its neighbors:
 Ia – Input ascending, that is, input from a “lower” stage.
 Id – Input descending, that is, input from a “higher” stage
 Il – Input lateral
 Oa – Output ascending, that is, output to a “higher” stage
 Od – Ouput descending, that is, output to a “lower” stage
 Ol – Output lateral

48

Appendix C: Derivations

This appendix shows how to derive the various simplified mathematical forms given in Section
3.

C.1. Self-Organizing Maps

Original equations.

   

 





b

Sk
kkii

n

j
jiji

dt

d

ttt
i





















1

Change to update equation form. In the equation for η i, we treat φi as if it occurred at t-Δt rather
than t. This algorithm is not learning a temporal relationship between φi and η i, so the time
difference is mainly to distinguish η i before and after update.

 





b

Sk
kkii

n

j
jiji

LL
i























)1(

1

Substitute φ into second equation.

 



b

Sk
kk

n

j
jiji

LL
i











 



)1(

1

Translate matrix multiply to linear algebra form. Rename µ to M, γ to G, η to O, and ξ to I.
Note that the form of G is no longer a simple vector of weights, but rather a matrix that
represents this set of weights as seen by each neural unit.

 
 TbLL IIOMM

GOMIO





)1(



Drop σ on the assumption that its value is rolled into M and G. Drop Ib in favor of allowing I to
carry negative activity levels.

TLL OIMM

GOMIO





)1(

49

Implement G as shunting inhibition rather than a matrix with some negative weights. The shape
of G would then need to be annular, that is, its center weights would be at or near zero.

TLL OIMM

GOMIO





)1(

)()(

C.2. Kalman Filters

Original equations.

 
 

 

)(with synonymous is)(

)(ˆ)(

)2(ˆ)1(

)1(ˆ)(

with

)1()1(ˆ)1()(

)()()()()()(ˆ

)1(ˆ)()()1()1(ˆ

)()()()()()(ˆ

2
0

tt

tt

tVtV

tUtU

tttVt

ttUttU
N

tt

ttttVtV

tttUttUtU

T

T

T

rr

rr

mrr

rIrr

rrr

rrI






















Make substitutions implied in [Rao 1999].

 
 

 
)1(ˆ)2(ˆ)(

)()1(ˆ)()1(ˆ)()(ˆ

)1(ˆ)()(ˆ)2(ˆ)1(ˆ

)(ˆ)(ˆ)1(ˆ)()1(ˆ)(ˆ

2
0









ttVt

ttUttU
N

tt

ttttVtV

tttUttUtU

T

T

T

rr

rIrr

rrr

rrI







Rename)1(ˆ tV to)(ˆ tV , since it is effectively functioning as a value in the present.

 
 

 
)1(ˆ)1(ˆ)(

)()1(ˆ)()1(ˆ)()(ˆ

)1(ˆ)()(ˆ)1(ˆ)(ˆ

)(ˆ)(ˆ)1(ˆ)()1(ˆ)(ˆ

2
0









ttVt

ttUttU
N

tt

ttttVtV

tttUttUtU

T

T

T

rr

rIrr

rrr

rrI







Substitue)()(ˆ tt rr  .

50

 
 

 
)1(ˆ)1(ˆ)(

)()1(ˆ)()1(ˆ)()(ˆ

)1(ˆ)()1(ˆ)()1(ˆ)1(ˆ)(ˆ

)(ˆ)(ˆ)1(ˆ)()1(ˆ)(ˆ

2
0

2
0









 



ttVt

ttUttU
N

tt

tttUttU
N

tVtV

tttUttUtU

T

TT

T

rr

rIrr

rrI

rrI








Substitute)(tr .

 
 

 )1(ˆ)1(ˆ)1(ˆ)()1(ˆ)1(ˆ)1(ˆ)(ˆ

)1(ˆ)1(ˆ)1(ˆ)1(ˆ)()1(ˆ)1(ˆ)(ˆ

)(ˆ)(ˆ)1(ˆ)()1(ˆ)(ˆ

2
0

2
0







 



ttVtUttU
N

ttVt

tttVtUttU
N

tVtV

tttUttUtU

T

TT

T

rIrr

rrI

rrI








Use r̂ from previous cycle to compute the update of Û . This is the first transformation that
actually changes the mathematical meaning of the equations. This is justified on the assumption
that input changes slowly enough that it can be adequately predicted by the previous internal
state r̂ . Alternately, we assume that the time quantum is small, so that there is little change
between cycles.

 
 

 )1(ˆ)1(ˆ)1(ˆ)()1(ˆ)1(ˆ)1(ˆ)(ˆ

)1(ˆ)1(ˆ)1(ˆ)1(ˆ)()1(ˆ)1(ˆ)(ˆ

)1(ˆ)1(ˆ)1(ˆ)()1(ˆ)(ˆ

2
0

2
0







 



ttVtUttU
N

ttVt

tttVtUttU
N

tVtV

tttUttUtU

T

TT

T

rIrr

rrI

rrI








The difference equations are now in a normal form that can be converted to update equations.
Specifically, all variables on the right-hand sides (except input) are at time t-1, and all variables
on the left-hand sides are at time t. Also remove “hat” notation on estimated values.

 

 

 rIrr

rrI

rrI

UVU
N

V

UVU
N

VV

UUU

T

TT

T







 



2
0

2
0








Substitute standard variable names.

51

 

 

aad

aa
T

aa

T
aaa

T

T
ad

N

N

UOIO

UVOIUVOO

OUVOIUVV

OOUU









 



2
0

2
0








Convert constants into balanced update equation form. Use “L” as a generic constant that may
have different values for each update equation. This again causes a change in mathematical
meaning.

 

 

aad

aa
T

aa

T
aaa

T

T
ad

N

LL

LL

UOIO

UVOIUVOO

OUVOIUVV

OOUU









2
0

)1(

)1(



For neural plausibility, create a new matrix variable W to replace TN
U

2
0


, and provide a separate

learning rule for it.

 

 
aad

aaaa

T
da

T
aaa

T
ad

LL

LL

LL

UOIO

UVOIWVOO

OOWW

OUVOIWVV

OOUU










)1(

)1(

)1(

Simplify the expression aVO to aO . This effectively modifies the Kalman filter gain to use the

current state rather than the predicted state, and again we apply the small time quantum
assumption to justify this approximation. However, it is necessary to have a time difference
between current state aO and the correction  aa UOIW  in order to learn the state transition

matrix V. Instead of multiplying by V to move the correction ahead of aO , we can use a

delayed copy of aO .

aad

daa

T
da

T
ad

T
ad

LL

delayLL

LL

UOIO

WOVOO

OOWW

OWOVV

OOUU










)1(

)()1(

)1(

52

C.3. Adaptive Resonance Theory (ART)

Original equations. Note that we have chosen the simplest configuration implied in the text,
rather than the one preferred by Carpenter and Grossberg. Specifically, we do not follow the
Weber Law version of weight normalization.

 

 
1

)()(

)()(

)(

)(

)(

)(

)(

)()1(

)()1(

2

2

1

2

1

112

111













































ijji

ijijijji

iijijjij

jk
kj

jjj

i
ijij

j
ji

iii

j
jiji

jjjjjj

iiiiii

EEK

xhzExfKz
dt

d

xhzExfKz
dt

d

xgJ

TxgJ

zxhDT

xfJ

VIJ

zxfDV

JxCBJxAxx
dt

d

JxCBJxAxx
dt

d





Perform all substitutions. Add the assumption that K1=1.

 

 )()(

)()(

)()())()()(1(

)()())()(1(

2222

1111

ijijji

iijjij

jk
kj

i
ijijjjj

j
ji

j
jijiiii

xhzxfz
dt

d

xhzxfz
dt

d

xgxCBzxhDxgxAxx
dt

d

xfxCBzxfDIxAxx
dt

d



















Drop non-linearities f(), g() and h(). In the original paper, these are typically defined as
quantizing threshold functions. In the case of f(), the definition involves a combinatorial process
over several time-steps that would require some very specialized neural structures to implement.
Instead of these, we use an implied non-linearity in the outputs of the neural units, hopefully one
that naturally occurs.

53

 

 ijijji

iijjij

jk
kj

i
ijijjjj

j
ji

j
jijiiii

xzxz
dt

d

xzxz
dt

d

xxCBzxDxxAxx
dt

d

xxCBzxDIxAxx
dt

d















)())(1(

)())(1(

2222

1111





Convert to matrix notation. Combine the scalar activities xj from the upper set of units (that is,
the F2 units, see [Carpenter & Grossberg 1987] for details on nomenclature) into a vector named
y. Combine the scalar activities xi from the lower set of units (F1) into a vector named x.
Combine the bottom-up weights zij into a matrix V, and combine the top-down weights zji into a
matrix U. Define G to be a square matrix of all 1s. Define H to be a square matrix of all 1s, but
with 0s along its main diagonal.

T

T

dt

d
dt

d

CBDA
dt

d

CBDA
dt

d

xyyUU

yxVyV

HyyVxyyyy

GyxUyIxxx













)()()1(

)()()1(

2222

1111





Convert to update equation form.

 
 

T

T

CBDA

CBDA

xyyUUU

yxVyVV

HyyVxyyyyy

GyxUyIxxxx













)()()1(

)()()1(

2222
1

1111
1





Treat constants A and C as 0, D as 1, and B as slightly larger than 1 (see [Carpenter & Grossberg
1987 – Table 1] for constraints on these values). Roll B into G and H.

 
 

T

T

xyyUUU

yxVyVV

HyVxyy

GyUyIxxx

















1

1

Recombine terms into balanced update.

54

 
 

T

T

xyyUU

yxVyV

HyVxyy

GyUyIxx









)1(

)1(

)1(
1

11









C.4. Laminar ART (LAMINART)

Original equations. Although the appendix of [Raizada & Grossberg 2000] includes equations
for retina and LGN, we omit them because they are not part of the repeated cortical circuit, and
because they amount to computing an input value C. Also, we do not include the equilibrium
form of the equations, as they are redundant with the differential form.

 

ijrrkijkinhib
pqr

pqrpqrijkijkijk
s

r
ijrrkijkexcit

pqr
pqrpqrijkijkijkijkijk

z

pqr
pqrpgrijkijkijkijkijk

m

pqr
pqrpgrijkijkijkijkijkijkijk

C

nn

n

V
ijkijkijkijkijkijk

C

ijkijk

sTsattazFHss
dt

d

sTzattazFHyzzz
dt

d

mWfmxmm
dt

d

mWfyxCyyy
dt

d

x

x
xf

attxVzFCxxx
dt

d

zzF
























































23

23

2
21

),(
1

)(),(][)1(
1

1

)1())(1(
1

)(

),()1(
1

)0,max(),(


















Remove squashing functions and instead treat them as implicit.

 

ijrrkijkinhib
pqr

pqrpqrijkijkijk
s

r
ijrrkijkexcit

pqr
pqrpqrijkijkijkijkijk

z

pqr
pqrpgrijkijkijkijkijk

m

pqr
pqrpgrijkijkijkijkijkijkijk

C

V
ijkijkijkijkijkijk

C

sTsattazHss
dt

d

sTzattazHyzzz
dt

d

mWmxmm
dt

d

mWyxCyyy
dt

d

attxVzCxxx
dt

d



































23

23

2
21

1

)()1(
1

1

)1())(1(
1

)1(
1















55

Change to linear algebra notation. Treat all triple-subscripted variables as vectors. The spatial
structure implied by these indices is mainly encoded in the connection weight matrices. Since
the superscript “+” has a meaning in linear algebra, rename variables that have such superscripts:
W+ to V, W- to W, T+ to T, and T- to U.

 

 

UssHzss

TszHzyzzz

Wmmxmm

VmyxCyyy

xzCxxx

























atta
dt

d

atta
dt

d

dt

d

dt

d

attV
dt

d

inhib
s

excit
z

m

C

V

C

23

23

2
21

1

)()1(
1

1

)1()()1(
1

)1(
1















Change to update equation form. Use L as a generic stand-in for various decay rates.

 
 

 
)()1(

)()()1()1(

)()1(

)1()()1()1(

)1()1(

23

23

2
21

UssHzss

TszHzyzzz

Wmmxmm

VmyxCyyy

xzCxxx

























attaLL

attaLL

LL

LL

attVLL

inhib

excit

V









Use standard variable names. In the update equation for x (layer 6 output), two inputs play the
role of descending input Id. One is xV2, the output of layer 6 from the next higher stage. The
other is the attention input att. Here we take a cue from the network diagram and treat xV2 as a
special case of att.

 
 

 
)()1(

)()()1()1(

)()1(

)1()()1()1(

)1()1(

23

23

UssIHOss

TsOIHOyOOO

WmmOmm

VmyOIyyy

IOIOOO

























dinhiba

adexcitaaaa

d

da

daaddd

aLL

aLL

LL

LL

LL









Remove all factors that are present primarily for gain control on the inputs. Instead, treat these
as part of the implied non-linearity associated with each unit.

56

)()1(

)()1(

)()1(

)()1(

)()1(

23

23

UsIHOss

TsIHOyOO

WmOmm

VmOIyy

IOIOO















dinhiba

dexcitaaa

d

da

daadd

aLL

aLL

LL

LL

LL









Rename constants to lower-case Roman letters, in order starting at “a”.

 

)()1(

)()1(

)()1(

)()1(

)1(

UsIHOss

TsIHOyOO

WmOmm

VmOIyy

IOIOO









da

daaa

d

da

daadd

fLL

edLL

cLL

cLL

baLL

C.5. Hierarchical Temporal Models

Original equations.































































otherwise ,0

 ofcomponent a is if ,1
)(

)()()(

),|)0(())0(|(),(

),()),1(|)(())(|(),(

),()|()(

)|)0(())0(|(),(

),()),1(|)(())(|(),(

),())(|()(

)())(|()(

000

)1(
1

0

00

)1(
1

)(

1

0

i
child
m

i

i
ii

im
child

riiri

Ctc
rjtrjiitrit

rit
Gg

rit

riiri

Ctc
rjtrjiitrit

Ctc
ritr

t
r

k
t

M

j

m

i

m

titt

cg
cI

cBelcIg

egtcPtcePgc

gcgtctcPtcePgc

gcegPcBel

gtcPtcePgc

gcgtctcPtcePgc

gctgePg

rtcePiy

k
j

k
r

k
j

k
i

jj

















Remove initialization of α and β, and assume random initialization instead. The original model
appears to assume episodic operation with a full reset between each problem presentation.
Because our focus is on neural plausibility, we change the assumption to continuous operation
with time-varying input. In this case, initialization becomes insignificant.

57























































otherwise ,0

 ofcomponent a is if ,1
)(

)()()(

),()),1(|)(())(|(),(

),()|()(

),()),1(|)(())(|(),(

),())(|()(

)())(|()(

)1(
1

0

)1(
1

)(

1

0

i
child
m

i

i
ii

im
child

Ctc
rjtrjiitrit

rit
Gg

rit

Ctc
rjtrjiitrit

Ctc
ritr

t
r

k
t

M

j

m

i

m

titt

cg
cI

cBelcIg

gcgtctcPtcePgc

gcegPcBel

gcgtctcPtcePgc

gctgePg

rtcePiy

k
j

k
r

k
j

k
i

jj













Apart from initialization, α and β are exactly the same. Therefore, only compute α and substitute
it for β.














































otherwise ,0

 ofcomponent a is if ,1
)(

)()()(

),()|()(

),()),1(|)(())(|(),(

),())(|()(

)())(|()(

0

)1(
1

)(

1

0

i
child
m

i

i
ii

im
child

rit
Gg

rit

Ctc
rjtrjiitrit

Ctc
ritr

t
r

k
t

M

j

m

i

m

titt

cg
cI

cBelcIg

gcegPcBel

gcgtctcPtcePgc

gctgePg

rtcePiy

k
r

k
j

k
i

jj











Change to update equation form, but keep time expressions where necessary to distinguish
probability expressions.

58













































otherwise ,0

 ofcomponent a is if ,1
)(

)()()(

),()|()(

),()),1(|)(()|(),(

),()|()(

)()|()(

0

1

0

i
child
m

i

i
ii

im
child

ri
Gg

ri

Cc
rjrjiiri

Cc
rir

t
r

k

M

j

m

i

m

i

cg
cI

cBelcIg

gcegPcBel

gcgtctcPcePgc

gcgePg

rcePiy

k
r

k
j

k
i

jj











Convert to linear algebra notation: Define C to be a set of basis vectors for the input, where each
row is a pattern, and each column is associated with an element in the input vector. Notice that
each column of C is associated with a node in one or more Markov chains. Substitute matrix
multiplication with C for the equivalent operations. Substitute vectors for indexed scalars in
those same operations. Rename the ascending inputs to Ia to avoid confusion with the ascending
outputs. Change the nature of the input vector from binary to real-valued. In the first equation
of the set, change the product into a sum to enables us to express it as a matrix operation.
Observe how this changes the mathematical meaning. The original computes the probability that
a given input simultaneously matches all the features in each given “coincidence” vector (row of
C). The new equation computes the cosine distance between the input and each row. With
appropriate squashing and normalization, the cosine distance could also be treated as a
probability, but with somewhat different meaning than the original.

Bel

gcegPcBel

gcgtctcPcePgc

gcgePg

T

ri
Gg

ri

Cc
rjrjiiri

Cc
rir

t
r

k

a

k
r

k
j

k
i

Cπ

CIy





























),()|()(

),()),1(|)(()|(),(

),()|()(

0

0







The expression)),1(|)((rji gtctcP  gives the Markov transition probabilities. If none of the

Markov chains share nodes (as described in the first three chapters of [George 2008]), then this
can be expressed as a single block-diagonal matrix M. The fourth chapter of [George 2008]
generalizes the formulation to allow nodes to be shared between Markov chains. Presumably,
the transition probabilities within each chain are normalized separately from the others. In this
case, M is still block diagonal, but any given node may be associated with several row or column
indices, rather than just one. Implicitly, there is also mapping between elements of y and sets of
units that handle each of the Markov chains. This mapping can be combined with matrix of basis
vectors C or it can be a separate transform. For the purpose of this analysis, we will assume it is

59

rolled into C. Substitute a matrix multiplication with M for the equivalent operations. Substitute
the vector y for the equivalent probability expression.

Bel

gcegPcBel

gcgePg

T

ri
Gg

ri

Cc
rir

t
r

k

a

k
r

k
i

Cπ

Mαyα

CIy























),()|()(

),()|()(

0

0







Use standard variable names for ascending and descending outputs.

Bel

gcegPcBel

gcgePg

T
d

ri
Gg

ri

Cc
rir

t
ra

a

k
r

k
i

CO

Mαyα

O

CIy























),()|()(

),()|()(

0

0







Define a matrix N to represent the assignment of Markov nodes to their respective chains, such
that the rows are associated with chains, and each column is associated with a node. If a node is
assigned to a chain, the element in the matrix N is 1, otherwise it is 0. This matrix does two jobs.
First, it sums up activity from all the nodes in a chain and passes the value up the next stage as an
element in the next feature vector. Second, it maps descending inputs to Markov chains.
Substitute matrix multiplication with N for the equivalent operations. Also, use)|(egP r

 instead

of)|(0egP r
 , that is, allow descending input to vary over time, as opposed to remaining constant

for a given episode. Again, this is due to our continuous operation assumption, which is
different from George’s work.

Bel

Bel
T

d

d
T

a

a

CO

INα

Mαyα

NαO

CIy














Eliminate Bel.

)(d
TT

d

a

a

INαCO

Mαyα

NαO

CIy












60

Rename α to x for better readability. Rearrange order of equations.

)(d
TT

d

a

a

INxCO

NxO

Mxyx

CIy











61

References

Thomas J. Anastasio (2001). Input minimization: a model of cerebellar learning without
climbing fiber error signals. Neuroreport volume 12, number 17, pages 3825-31.

Korbinian Brodmann (1909). Vergleichende Lokalisationslehre der Grosshirnrinde in ihren
Prinzipien dargestellt auf Grund des Zellenbaues. J.A. Barth Verlag, Leipzig.

Edward M. Callaway (1998). Local Circuits in Primary Visual Cortex of the Macaque Monkey.
Annual Review of Neuroscience volume 21, pages 47–74.

Gail A. Carpenter and Stephen Grossberg (1987). A Massively Parallel Architecture for a Self-
Organizing Neural Pattern Recognition Machine. Computer Vision, Graphics, and Image
Processing volume 37, pages 54-115.

Nuno Maçarico da Costa and Kevan A. C. Martin (2010). Whose cortical column would that be?
Frontiers in Nueroanatomy volume 4, article 16.

R.J. Douglas and Kevin C. Martin (1991). A functional microcircuit for cat visual cortex. Journal
of Physiology volume 440, pages 735–769.

R.J. Douglas and Kevin C. Martin (2004). Neuronal Circuits of the Neocortex. Annual Review
of Neuroscience volume 27, pages 419–451.

R.J. Douglas and Kevin C. Martin (2007). Recurrent neuronal circuits in the neocortex. Current
Biology volume 17, number 13, pages 496-500.

Dileep George (2008). How the Brain Might Work: A Hierarchical and Temporal Model for
Learning and Recognition. Ph.D. Thesis. Stanford University.

Stephen Grossberg (1999). How Does the Cerebral Cortex Work? Learning, Attention, and
Grouping by the Laminar Circuits of Visual Cortex. Spatial Vision volume 12, pages 163-186.

Jeff Hawkins and Sandra Blakeslee (2004). On Intelligence. Times Books.

Jonathan C. Horton and Daniel L. Adams (2005). The cortical column: a structure without a
function. Philosophical Transactions of the Royal Society B volume 360, pages 837-862.

David H. Hubel and Torsten N. Wiesel (1959). Receptive fields of single neurons in the cat's
striate cortex. Journal of Physiology volume 148, pages 574-591.

David H. Hubel and Torsten N. Wiesel (1968). Receptive Fields and Functional Architecture of
Monkey Striate Cortex. Journal of Physiology volume 195, pages 215-243.

62

David H. Hubel and Torsten N. Wiesel (1974). Sequence Regularity and Geometry of
Orientation Columns in the Monkey Striate Cortex. Journal of Comparative Neurology volume
158, pages 267-294.

Kevin Jarrett, Koray Kavukcuoglu, Marc'Aurelio Ranzato and Yann LeCun (2009). What is the
Best Multi-Stage Architecture for Object Recognition? IEEE International Conference on
Computer Vision.

Teuvo Kohonen (1982). Self-Organized Formation of Topologically Correct Feature Maps.
Bilogical Cybernetics volume 43, pages 59-69.

Yann LeCun, Patrick Haffner, Léon Bottou and Yoshua Bengio (1999). Object Recognition with
Gradient-Based Learning. In David Forsyth (Editor), Feature Grouping, Springer.

Vernon B. Mountcastle (1957). Modality and topographic properties of single neurons of cat's
somatic sensory cortex. Journal of Neurophysiology volume 20, pages 408-434.

R. Nelson, E.V. Famiglietti, and Helga Kolb (1978). Intracellular staining reveals different
levels of stratification for on-center and off-center ganglion cells in the cat retina. Journal of
Neurophysiology volume 41, pages 472-483.

B. A. Olshausen and D. J. Field (1996). Emergence of simple-cell receptive field properties by
learning a sparse code for natural images. Nature volume 381, pages 607–609.

Rajeev D.S. Raizada and Stephen Grossberg (2001). Context-Sensitive Binding by the Laminar
Circuits of V1 and V2: A Unified Model of Perceptual Grouping, Attention, and Orientation
Contrast. Visual Cognition volume 8, pages 431-466.

Rajesh P.N. Rao (1999). An Optimal Estimation Approach to Visual Perception and Learning.
Vision Research, volume 39, number 11, pages 1963-1989.

Rajesh P.N. Rao and Dana H. Ballard (1997). Dynamic model of visual recognition predicts
neural response properties in the visual cortex. Neural Computation volume 9, pages 721-763.

Rajesh P. N. Rao and Dana H. Ballard (1999). Predictive coding in the visual cortex: a
functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience
volume 2, number 1, pages 79-87.

Brandon Rohrer (2010). kx-trees: An unsupervised learning method for use in developmental
agents. 9th International Conference on Development and Learning, Ann Arbor, Michigan, Aug
18-21.

Brandon Rohrer, Michael Bernard, James D. Morrow, Fred Rothganger and Patrick Xavier
(2009). Model-free learning and control in a mobile robot. 5th International Conference on
Natural Computation, Tianjin, China, Aug 14-16.

63

Fredrick H. Rothganger and Thomas J. Anastasio (2009). Using input minimization to train a
cerebellar model to simulate regulation of smooth pursuit. Biological Cybernetics volume 101,
pages 339-359.

Gordon Shepherd (Editor) (2004). The Synaptic Organization of the Brain. 5th edition. Oxford
University Press.

Akiya Watakabe (2009). Comparative molecular neuroanatomy of mammalian neocortex: What
can gene expression tell us about areas and layers? Development, Growth & Differentiation
volume 51, pages 343-354.

Kechen Zhang and Terrence J. Sejnowski (2000). A universal scaling law between gray matter
and white matter of cerebral cortex. PNAS volume 97, pages 5621–5626.

64

Distribution

1 MS 1188 John Wagner 1432 (electronic copy)
1 MS 1316 Danny Rintoul 1412 (electronic copy)

1 MS 1010 Brandon Rohrer 6473 (electronic copy)
1 MS 1188 Stephen Verzi 1434 (electronic copy)
1 MS 1004 Patrick Xavier 6385 (electronic copy)

1 MS 0899 Technical Library 9536 (electronic copy)
1 MS 0359 D. Chavez, LDRD Office 1911 (electronic copy)

